Identification of Expanded Austenite in Nitrogen-Implanted Ferritic Steel through In Situ Synchrotron X-ray Diffraction Analyses

The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive insights into the formation and decomposition of expanded austenite through in situ structure analyses during thermal treatments of ferritic...

Full description

Saved in:
Bibliographic Details
Published inMetals (Basel ) Vol. 13; no. 10; p. 1744
Main Authors Schibicheski Kurelo, Bruna C. E., Lepienski, Carlos M., de Oliveira, Willian R., de Souza, Gelson B., Serbena, Francisco C., Cardoso, Rodrigo P., das Neves, Julio C. K., Borges, Paulo C.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive insights into the formation and decomposition of expanded austenite through in situ structure analyses during thermal treatments of ferritic steels. To achieve this objective, we employed the Plasma Immersion Ion Implantation (PIII) technique for nitriding in conjunction with in situ synchrotron X-ray diffraction (ISS-XRD) for microstructural analyses during the thermal treatment of the samples. The PIII was carried out at a low temperature (300–400 °C) to promote the formation of metastable phases. The ISS-XRD analyses were carried out at 450 °C, which is in the working temperature range of the ferritic steel UNS S44400, which has applications, for instance, in the coating of petroleum distillation towers. Nitrogen-expanded ferrite (αN) and nitrogen-expanded austenite (γN) metastable phases were formed by nitriding in the modified layers. The production of the αN or γN phase in a ferritic matrix during nitriding has a direct relationship with the nitrogen concentration attained on the treated surfaces, which depends on the ion fluence imposed during the PIII treatment. During the thermal evolution of crystallographic phase analyses by ISS-XRD, after nitriding, structure evolution occurs mainly by nitrogen diffusion. In the nitrided samples prepared under the highest ion fluences—longer treatment times and frequencies (PIII 300 °C 6 h and PIII 400 °C 3 h) containing a significant amount of γN—a transition from the γN phase to the α and CrN phases and the formation of oxides occurred.
AbstractList The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive insights into the formation and decomposition of expanded austenite through in situ structure analyses during thermal treatments of ferritic steels. To achieve this objective, we employed the Plasma Immersion Ion Implantation (PIII) technique for nitriding in conjunction with in situ synchrotron X-ray diffraction (ISS-XRD) for microstructural analyses during the thermal treatment of the samples. The PIII was carried out at a low temperature (300–400 °C) to promote the formation of metastable phases. The ISS-XRD analyses were carried out at 450 °C, which is in the working temperature range of the ferritic steel UNS S44400, which has applications, for instance, in the coating of petroleum distillation towers. Nitrogen-expanded ferrite (α[sub.N]) and nitrogen-expanded austenite (γ[sub.N]) metastable phases were formed by nitriding in the modified layers. The production of the α[sub.N] or γ[sub.N] phase in a ferritic matrix during nitriding has a direct relationship with the nitrogen concentration attained on the treated surfaces, which depends on the ion fluence imposed during the PIII treatment. During the thermal evolution of crystallographic phase analyses by ISS-XRD, after nitriding, structure evolution occurs mainly by nitrogen diffusion. In the nitrided samples prepared under the highest ion fluences—longer treatment times and frequencies (PIII 300 °C 6 h and PIII 400 °C 3 h) containing a significant amount of γ[sub.N]—a transition from the γ[sub.N] phase to the α and CrN phases and the formation of oxides occurred.
The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive insights into the formation and decomposition of expanded austenite through in situ structure analyses during thermal treatments of ferritic steels. To achieve this objective, we employed the Plasma Immersion Ion Implantation (PIII) technique for nitriding in conjunction with in situ synchrotron X-ray diffraction (ISS-XRD) for microstructural analyses during the thermal treatment of the samples. The PIII was carried out at a low temperature (300–400 °C) to promote the formation of metastable phases. The ISS-XRD analyses were carried out at 450 °C, which is in the working temperature range of the ferritic steel UNS S44400, which has applications, for instance, in the coating of petroleum distillation towers. Nitrogen-expanded ferrite (αN) and nitrogen-expanded austenite (γN) metastable phases were formed by nitriding in the modified layers. The production of the αN or γN phase in a ferritic matrix during nitriding has a direct relationship with the nitrogen concentration attained on the treated surfaces, which depends on the ion fluence imposed during the PIII treatment. During the thermal evolution of crystallographic phase analyses by ISS-XRD, after nitriding, structure evolution occurs mainly by nitrogen diffusion. In the nitrided samples prepared under the highest ion fluences—longer treatment times and frequencies (PIII 300 °C 6 h and PIII 400 °C 3 h) containing a significant amount of γN—a transition from the γN phase to the α and CrN phases and the formation of oxides occurred.
Audience Academic
Author das Neves, Julio C. K.
Borges, Paulo C.
Schibicheski Kurelo, Bruna C. E.
de Souza, Gelson B.
de Oliveira, Willian R.
Cardoso, Rodrigo P.
Lepienski, Carlos M.
Serbena, Francisco C.
Author_xml – sequence: 1
  givenname: Bruna C. E.
  surname: Schibicheski Kurelo
  fullname: Schibicheski Kurelo, Bruna C. E.
– sequence: 2
  givenname: Carlos M.
  orcidid: 0000-0002-9759-9704
  surname: Lepienski
  fullname: Lepienski, Carlos M.
– sequence: 3
  givenname: Willian R.
  surname: de Oliveira
  fullname: de Oliveira, Willian R.
– sequence: 4
  givenname: Gelson B.
  surname: de Souza
  fullname: de Souza, Gelson B.
– sequence: 5
  givenname: Francisco C.
  surname: Serbena
  fullname: Serbena, Francisco C.
– sequence: 6
  givenname: Rodrigo P.
  orcidid: 0000-0003-0449-0564
  surname: Cardoso
  fullname: Cardoso, Rodrigo P.
– sequence: 7
  givenname: Julio C. K.
  orcidid: 0000-0001-6938-0740
  surname: das Neves
  fullname: das Neves, Julio C. K.
– sequence: 8
  givenname: Paulo C.
  orcidid: 0000-0002-9622-6412
  surname: Borges
  fullname: Borges, Paulo C.
BookMark eNptUU1vEzEUXKEiUUpP_AFLHNEWf2XtPUalhZWqcghI3FbP3ufU0cYOtiM1N346boJQVfF8sDWemefneduchRiwad4zeiVETz9tsTDBKFNSvmrOOVWLVirKzp6d3zSXOW9oLc072vfnze9hwlC88xaKj4FER24edxAmnMhynwsGX5D4QO59SXGNoR22uxlCqfe3mJIv3pJVQZxJeUhxv34gQyArX_ZkdQi2QlUWyM82wYF89s4lsMdGywDzIWN-17x2MGe8_LtfND9ub75ff23vvn0Zrpd3rZVUlJYjM5Ot1SmDFqeOaWNcJ5Wc-g61cboyFDgjBXVoDHSMit6xiSLvhQNx0Qwn3ynCZtwlv4V0GCP48QjEtB4h1WFmHHuqBeUaERBlz5QG2TFYLKQA03Pz5PXh5LVL8dcecxk3cZ_qQHnkWnNNF1qqyro6sdZQTX1w9SvA1jXh1tuanfMVXyrFaxJcdlXw8SSwKeac0P17JqPjU8Tjs4grm71gW1-OIdY2fv6v5g8pbq1Y
CitedBy_id crossref_primary_10_3390_ma18030546
crossref_primary_10_1016_j_surfcoat_2023_130309
crossref_primary_10_3390_met14121371
crossref_primary_10_3390_met14121396
Cites_doi 10.1016/j.matpr.2020.01.299
10.1016/S0257-8972(03)00188-9
10.1016/j.surfcoat.2016.09.059
10.1016/j.tsf.2017.06.065
10.1007/s11085-013-9391-1
10.1016/S1006-706X(17)30011-0
10.1007/BF02665509
10.1016/j.scriptamat.2020.113705
10.1107/S1600576714005214
10.1016/S0257-8972(01)01090-8
10.1016/j.jallcom.2021.159509
10.1016/j.scriptamat.2003.09.042
10.3390/met12020331
10.3390/met13040776
10.1016/j.corsci.2015.07.014
10.1016/j.surfcoat.2003.10.064
10.1016/j.jmrt.2022.03.072
10.1039/C6RA04935D
10.3390/met10020187
10.1080/1478422X.2017.1396648
10.1109/TPS.2006.877746
10.1007/s11665-020-04753-6
10.3390/met10101319
10.1088/2053-1591/3/6/066502
10.3390/coatings12101404
10.1016/j.jmrt.2013.01.007
10.1016/S0257-8972(01)01314-7
10.1016/j.matpr.2020.01.298
10.1016/j.actamat.2016.11.004
10.1016/j.surfcoat.2010.12.046
10.1016/j.jmrt.2019.02.006
10.1016/j.surfcoat.2020.126388
10.1016/j.apsusc.2014.04.142
10.1002/(SICI)1521-396X(199910)175:2<537::AID-PSSA537>3.0.CO;2-B
10.1179/026708410X12550773057983
10.1016/0257-8972(96)02880-0
10.3390/met10050615
10.1016/S0257-8972(99)00086-9
10.1107/S0021889810030499
10.1515/ijmr-2006-0012
10.4322/2176-1523.20222809
10.1111/j.1365-2818.2009.03228.x
10.1038/s41598-019-44410-0
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/met13101744
DatabaseName CrossRef
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-4701
ExternalDocumentID oai_doaj_org_article_9083028eeaee49178a461a5543ab92ba
A772099246
10_3390_met13101744
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
TUS
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-2e1bdcccc67beced618bbf6474d96e8bf82e17afb430febba61039f1d0e293fa3
IEDL.DBID DOA
ISSN 2075-4701
IngestDate Wed Aug 27 01:29:50 EDT 2025
Fri Jul 25 10:32:53 EDT 2025
Tue Jul 01 05:45:30 EDT 2025
Tue Jul 01 03:20:23 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-2e1bdcccc67beced618bbf6474d96e8bf82e17afb430febba61039f1d0e293fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9759-9704
0000-0002-9622-6412
0000-0003-0449-0564
0000-0001-6938-0740
OpenAccessLink https://doaj.org/article/9083028eeaee49178a461a5543ab92ba
PQID 2882805847
PQPubID 2032361
ParticipantIDs doaj_primary_oai_doaj_org_article_9083028eeaee49178a461a5543ab92ba
proquest_journals_2882805847
gale_infotracacademiconefile_A772099246
crossref_primary_10_3390_met13101744
crossref_citationtrail_10_3390_met13101744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Metals (Basel )
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Christiansen (ref_42) 2004; 50
ref_14
Schreiber (ref_9) 2003; 170
Borges (ref_21) 2020; 29
Christiansen (ref_39) 2006; 97
ref_30
Rohith (ref_44) 2016; 6
Blawert (ref_8) 2001; 142–144
Manne (ref_24) 2020; 26
Bian (ref_35) 2017; 24
Chen (ref_34) 2004; 184
Chuproski (ref_37) 2021; 871
Somers (ref_32) 1989; 20
Bandeira (ref_2) 2019; 8
Tschiptschin (ref_29) 2017; 644
Psoda (ref_17) 2010; 237
Wojdyr (ref_36) 2010; 43
Manova (ref_46) 2016; 3
Brink (ref_31) 2014; 47
Blawert (ref_22) 1999; 175
Che (ref_18) 2021; 194
Alphonsa (ref_1) 2018; 53
Jimenez (ref_6) 2023; 20
Fernandes (ref_38) 2014; 310
Manova (ref_10) 2006; 34
Wang (ref_26) 2017; 124
Cao (ref_45) 2013; 80
Sasidhar (ref_25) 2019; 9
ref_43
Luiz (ref_12) 2021; 201
Blawert (ref_19) 1996; 85
ref_41
Tadepalli (ref_5) 2020; 26
ref_40
Blawert (ref_15) 1999; 116
Fernandes (ref_16) 2013; 2
Serbena (ref_13) 2022; 18
Mayrhofer (ref_33) 2001; 142–144
Manova (ref_28) 2011; 205
Alphonsa (ref_20) 2015; 100
Gontijo (ref_3) 2010; 26
Serbena (ref_11) 2020; 403
Manova (ref_27) 2017; 312
Piekoszewski (ref_23) 2004; 49
ref_4
ref_7
References_xml – volume: 26
  start-page: 1014
  year: 2020
  ident: ref_5
  article-title: A Review on Effects of Nitriding of AISI409 Ferritic Stainless Steel
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.01.299
– volume: 170
  start-page: 447
  year: 2003
  ident: ref_9
  article-title: Thermal Stability of PI 3 Nitrided Surface Layers on Ferritic Steels
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(03)00188-9
– volume: 312
  start-page: 81
  year: 2017
  ident: ref_27
  article-title: Formation of Metastable Diffusion Layers in Cr-Containing Iron, Cobalt and Nickel Alloys after Nitrogen Insertion
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2016.09.059
– volume: 644
  start-page: 156
  year: 2017
  ident: ref_29
  article-title: Thermal Stability of Expanded Austenite Formed on a DC Plasma Nitrided 316L Austenitic Stainless Steel
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.06.065
– volume: 80
  start-page: 479
  year: 2013
  ident: ref_45
  article-title: Role of Nitrogen Uptake during the Oxidation of 304L and 904L Austenitic Stainless Steels
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-013-9391-1
– volume: 24
  start-page: 77
  year: 2017
  ident: ref_35
  article-title: Oxidation Resistance, Thermal Expansion and Area Specific Resistance of Fe-Cr Alloy Interconnector for Solid Oxide Fuel Cell
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(17)30011-0
– volume: 20
  start-page: 1533
  year: 1989
  ident: ref_32
  article-title: Dependence of the Lattice Parameter of γ′ Iron Nitride, Fe4N, on Nitrogen Content; Accuracy of the Nitrogen Absorption Data
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02665509
– volume: 194
  start-page: 113705
  year: 2021
  ident: ref_18
  article-title: Microstructure of Perfect Nitrogen-Expanded Austenite Formed by Unconstrained Nitriding
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.113705
– volume: 47
  start-page: 819
  year: 2014
  ident: ref_31
  article-title: Thermal Expansion and Phase Transformations of Nitrogen-Expanded Austenite Studied with in Situ Synchrotron X-Ray Diffraction
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576714005214
– volume: 142–144
  start-page: 78
  year: 2001
  ident: ref_33
  article-title: Microstructure and Mechanical/Thermal Properties of Cr-N Coatings Deposited by Reactive Unbalanced Magnetron Sputtering
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/S0257-8972(01)01090-8
– volume: 871
  start-page: 159509
  year: 2021
  ident: ref_37
  article-title: Symmetry between the Anisotropic N Behavior in the Lattice under High Pressures and the Formation of Expanded Austenite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159509
– volume: 50
  start-page: 35
  year: 2004
  ident: ref_42
  article-title: On the Crystallographic Structure of S-Phase
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2003.09.042
– ident: ref_7
  doi: 10.3390/met12020331
– ident: ref_30
  doi: 10.3390/met13040776
– volume: 100
  start-page: 121
  year: 2015
  ident: ref_20
  article-title: Study of Plasma Nitriding and Nitrocarburizing for Higher Corrosion Resistance and Hardness of 2205 Duplex Stainless Steel
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.07.014
– volume: 184
  start-page: 69
  year: 2004
  ident: ref_34
  article-title: The Young’s Modulus of Chromium Nitride Films
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2003.10.064
– volume: 18
  start-page: 1717
  year: 2022
  ident: ref_13
  article-title: Improved Saline Corrosion and Hydrogen Embrittlement Resistances of Superaustenitic Stainless Steel by PIII Nitriding
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.03.072
– volume: 6
  start-page: 45850
  year: 2016
  ident: ref_44
  article-title: Insights into the Nitridation of Zero-Valent Iron Nanoparticles for the Facile Synthesis of Iron Nitride Nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04935D
– ident: ref_14
  doi: 10.3390/met10020187
– volume: 53
  start-page: 51
  year: 2018
  ident: ref_1
  article-title: Study of Plasma Nitriding and Nitrocarburising of AISI 430F Stainless Steel for High Hardness and Corrosion Resistance
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1080/1478422X.2017.1396648
– volume: 34
  start-page: 1136
  year: 2006
  ident: ref_10
  article-title: Influence of Microstructure on Nitriding Properties of Stainless Steel
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2006.877746
– volume: 29
  start-page: 2612
  year: 2020
  ident: ref_21
  article-title: Effect of Low-Temperature Plasma Nitriding on Corrosion and Surface Properties of Duplex Stainless Steel UNS S32205
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-04753-6
– ident: ref_40
  doi: 10.3390/met10101319
– volume: 3
  start-page: 066502
  year: 2016
  ident: ref_46
  article-title: CrN Precipitation and Elemental Segregation during the Decay of Expanded Austenite
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/3/6/066502
– ident: ref_4
  doi: 10.3390/coatings12101404
– volume: 2
  start-page: 158
  year: 2013
  ident: ref_16
  article-title: Microstructure of Nitrided and Nitrocarburized Layers Produced on a Superaustenitic Stainless Steel
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2013.01.007
– volume: 142–144
  start-page: 376
  year: 2001
  ident: ref_8
  article-title: The Effect of HV in the Nitriding of Ferritic Steels by Plasma Immersion Ion Implantation
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/S0257-8972(01)01314-7
– volume: 26
  start-page: 1010
  year: 2020
  ident: ref_24
  article-title: A Review on Influence of Nitriding on AISI430 Ferritic Stainless Steel
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.01.298
– volume: 124
  start-page: 237
  year: 2017
  ident: ref_26
  article-title: “Colossal” Interstitial Supersaturation in Delta Ferrite in Stainless Steels: (II) Low-Temperature Nitridation of the 17-7 PH Alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.11.004
– volume: 205
  start-page: S290
  year: 2011
  ident: ref_28
  article-title: Relation between Lattice Expansion and Nitrogen Content in Expanded Phase in Austenitic Stainless Steel and CoCr Alloys
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2010.12.046
– volume: 8
  start-page: 2180
  year: 2019
  ident: ref_2
  article-title: Effect of Ionic Plasma Nitriding Process on the Corrosion and Micro-Abrasive Wear Behavior of AISI 316L Austenitic and AISI 470 Super-Ferritic Stainless Steels
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.02.006
– volume: 403
  start-page: 126388
  year: 2020
  ident: ref_11
  article-title: Mechanical Properties and Corrosion Resistance of AN-Rich Layers Produced by PIII on a Super Ferritic Stainless Steel
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2020.126388
– volume: 201
  start-page: 8131
  year: 2021
  ident: ref_12
  article-title: Effect of Nitrogen Plasma Immersion Ion Implantation on the Corrosion Protection Mechanisms of Different Stainless Steels
  publication-title: Mater. Today Commun.
– volume: 310
  start-page: 278
  year: 2014
  ident: ref_38
  article-title: Mechanical Properties of Nitrogen-Rich Surface Layers on SS304 Treated by Plasma Immersion Ion Implantation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.04.142
– volume: 175
  start-page: 537
  year: 1999
  ident: ref_22
  article-title: Thermal Stability of Stainless Steel Surfaces Nitrided by Plasma Immersion Ion Implantation
  publication-title: Phys. Stat. Sol. (a)
  doi: 10.1002/(SICI)1521-396X(199910)175:2<537::AID-PSSA537>3.0.CO;2-B
– volume: 26
  start-page: 265
  year: 2010
  ident: ref_3
  article-title: X-Ray Diffraction Characterisation of Expanded Austenite and Ferrite in Plasma Nitrided Stainless Steels
  publication-title: Surf. Eng.
  doi: 10.1179/026708410X12550773057983
– volume: 85
  start-page: 15
  year: 1996
  ident: ref_19
  article-title: Plasma Immersion Ion Implantation of Stainless Steel: Austenitic Stainless Steel in Comparison to Austenitic-Ferritic Stainless Steel
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/0257-8972(96)02880-0
– ident: ref_41
  doi: 10.3390/met10050615
– volume: 49
  start-page: 57
  year: 2004
  ident: ref_23
  article-title: Interaction of Nitrogen Atoms in Expanded Austenite Formed in Pure Iron by Intense Nitrogen Plasma Pulses
  publication-title: Nukleonika
– volume: 116
  start-page: 189
  year: 1999
  ident: ref_15
  article-title: Structure and Composition of Expanded Austenite Produced by Nitrogen Plasma Immersion Ion Implantation of Stainless Steels X6CrNiTi1810 and X2CrNiMoN2253
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/S0257-8972(99)00086-9
– volume: 43
  start-page: 1126
  year: 2010
  ident: ref_36
  article-title: Fityk: A General-Purpose Peak Fitting Program
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889810030499
– ident: ref_43
– volume: 97
  start-page: 79
  year: 2006
  ident: ref_39
  article-title: Decomposition Kinetics of Expanded Austenite with High Nitrogen Contents
  publication-title: Int. J. Mater. Res.
  doi: 10.1515/ijmr-2006-0012
– volume: 20
  start-page: e2809
  year: 2023
  ident: ref_6
  article-title: Plasma Nitriding of 410S Ferritic/Martensitic Stainless Steel: Microstructure, Wear and Corrosion Properties
  publication-title: Tecnol. Metal. Mater. Mineração
  doi: 10.4322/2176-1523.20222809
– volume: 237
  start-page: 227
  year: 2010
  ident: ref_17
  article-title: TEM Studies of Plasma Nitrided Austenitic Stainless Steel
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2009.03228.x
– volume: 9
  start-page: 7996
  year: 2019
  ident: ref_25
  article-title: Thermodynamic Reasoning for Colossal N Supersaturation in Austenitic and Ferritic Stainless Steels during Low-Temperature Nitridation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44410-0
SSID ssj0000826099
Score 2.2951903
Snippet The existence and formation of expanded austenite in ferritic stainless steels remains a subject of debate. This research article aims to provide comprehensive...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1744
SubjectTerms Analysis
Austenite
Cooling
Crystal structure
Crystallography
Decomposition
Diffraction
Distillation
Ferritic stainless steel
Ferritic stainless steels
Fluence
Heat treatment
in situ thermal evolution of crystallographic phases
Ion implantation
Iron compounds
Low temperature
Metastable phases
Nitriding
nitriding at low temperature
Nitrogen
Petroleum
Phase transitions
Plasma
Refining
Solid solutions
Steel alloys
Synchrotron radiation
synchrotron XRD
Synchrotrons
Temperature
Thermal evolution
UNS S44400 alloy
X-ray diffraction
X-rays
αN phase
γN phase
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA-696IP4ieunpIHQRDKpW2aZp_kTnc5BRdxPdi3kI-JLNy1a7cH3pt_ujNt9jxB7WM6hDbzkZlJ5jeMvfLSQu08xiZO-kwq4VGlbMh0rHyMoYJ8qFv7tFSnZ_LjulqnhNsuXavc28TBUIfWU478qEBXUAs61Hu7_Z5R1yg6XU0tNG6zAzTBWk_Ywcl8-fnLdZYFNziFPtBYmFdifH90AX1ekhxK-cdWNCD2_8suD5vN4j67l7xEfjyy9QG7Bc1DdvcGduAj9nMssY0p58bbyOc_tpQSDpwSGEDOJN80fLnpuxbFJCMgYFrHwBcEx4hT81UPcM5Trx7-oeGrTX_JV1eNxyFKkvN11tkr_n4TYzeWQPARxgR2j9nZYv713WmW2ilkXoqyzwrIXfD4qBoZB0Hl2rmoZC3DTIF2USNFbaOTpYjgnFV0TBzzIAB9gmjLJ2zStA08ZVyVUBXaYvjstXQi1-CrILwPsfbCejdlb_Yra3zCGqeWF-cGYw5ig7nBhilKzJ54O0Js_J3shFh0TUK42MNA230zSc3MTBCemQawABIjUW2lyi26TKV1s8LZKXtNDDakvfhB3qYiBPwtwsEyxxhsoLwUUk3Z4V4GTFLrnfkthM_-__o5u0N96cdbf4ds0neX8AK9l969TCL6C5Fb8_s
  priority: 102
  providerName: ProQuest
Title Identification of Expanded Austenite in Nitrogen-Implanted Ferritic Steel through In Situ Synchrotron X-ray Diffraction Analyses
URI https://www.proquest.com/docview/2882805847
https://doaj.org/article/9083028eeaee49178a461a5543ab92ba
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpcmkPJUlbuk2y6BAoFExkW5a1x6TdbRrIUroN7E3oMYKF1Bs2DjS3_PTMWN6ygZZe4qMYjKz55HlI8w1jx15aqJ3H2MRJn0klPG4pGzIdKx9jqCDv6tYup-r8Sl7Mq_lGqy-6E5bogdPCnYwEMVRpAAsgMbbQVqrcohEsrRsVrnON0OZtBFPdPxi9ZvR9UkFeiXH9yS9o85LwJ-UTE9Qx9f_rf9wZmckue917h_w0zWqPbUGzz15tcAa-YQ-ptDb2uTa-jHz8-4ZSwYFT4gLIieSLhk8X7WqJ8MiIAJjWL_AJ0TDiq_msBbjmfY8e_q3hs0V7x2f3jcchSo7zebay9_zLIsZVKn3gib4Ebt-yq8n45-fzrG-jkHkpyjYrIHfB46NqVBgElWvnopK1DCMF2kWNErWNTpYignNW0fFwzIMA9AWiLd-x7WbZwHvGVQlVoS2GzV5LJ3INvgrC-xBrL6x3A_ZpvbLG9xzj1Ori2mCsQWowG2oYIFLWwjeJWuPvYmekoj8ixIfdDSBKTI8S8z-UDNhHUrChXYsT8rYvPsDPIv4rc4pBBuKlkGrADtcYMP12vjUFxiFa0Inyh-eYzQF7SV3r053AQ7bdru7gCH2b1g3ZCz35OmQ7Z-Pp9x_DDtSPtb79Mw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPABhIQUNQ_H6z0gVGiXXdruZVtpb8aPMVqpJEs2FeyNX8RvZCaPUiTg1hyTUZR4Pnse9nzD2AsnDAytw9jEChcJGTucUsZHKuQuBJ9D0tStHc_k5FR8XOSLLfazr4WhY5X9mtgs1L50lCPfTdEVVDFt6r1dfY2oaxTtrvYtNFpYHMLmG4Zs6zfTfdTvyzQdH5y8n0RdV4HIiTiroxQS6x1ecojfD14mytogxVD4kQRlg0KJoQlWZHEAa42k3dKQ-BjQNAaT4XuvsesiQ0tOlenjDxc5HTSnEj2utgwQn8e7X6BOMkK9EH8YvqY_wL-sQGPaxnfY7c4n5XstiO6yLSjusVuXmArvsx9tQW_oMny8DPzg-4oS0J5TugTIdeXLgs-WdVUiKCOiHSateT4m8kd8NZ_XAGe86wzEpwWfL-tzPt8UDm9RSp4vosps-P4yhKotuOAtaQqsH7DTKxnmh2y7KAt4xLjMIE-VwWDdKWHjRIHLfeycD0MXG2cH7HU_stp1zObUYONMY4RDatCX1DBAfPbCq5bQ4-9i70hFFyLEwt3cKKvPupvUehQTe5oCMAAC415lhEwMOmiZsaPUmgF7RQrWtFbgBznTlTzgbxHrlt7D0Abxkgo5YDs9BnS3iKz1b8g__v_j5-zG5OT4SB9NZ4dP2M0U_bD2vOEO266rc3iKflNtnzVg5ezTVc-OX33PMpo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQDzVQIE9gJCQrPixXjsHhFqSqKEQVYRKuS37mEWRih0SV5Abv4tfx4wfpUjArT6uRyt7Z2bnsTvfMPbMCg2ZsRibGGEDIUOLKqVdkPvUeu9SiOq6tfczeXQq3i7SxQ772dXC0LXKbk-sN2pXWsqRD2J0BfOQDvUGvr0WcTKavF59DaiDFJ20du00GhE5hu03DN82r6Yj5PXzOJ6MP745CtoOA4EVYVIFMUTGWXxkhv8CTka5MV6KTLihhNz4HCky7Y1IQg_GaEknpz5yIaCZ9DrBea-x3Yyioh7bPRzPTj5cZHjQuEr0v5qiwCQZhoMvUEUJ6YAQf5jBulvAv2xCbegmt9mt1kPlB41I3WE7UNxlNy_hFt5jP5ryXt_m-3jp-fj7itLRjlPyBMiR5cuCz5bVukQRDQiEmHjo-ISgIHFqPq8AznjbJ4hPCz5fVud8vi0sDlGCni-Ctd7y0dL7dVN-wRsIFdjcZ6dXstAPWK8oC9hjXCaQxrnG0N3mwoRRDjZ1obXOZzbU1vTZy25llW1xzqndxpnCeIfYoC6xoY_S2hGvGniPv5MdEosuSAiTux4o159Vq-JqGBKWWg6gAQRGwbkWMtLoriXaDGOj--wFMVjRzoEfZHVbAIG_RRhc6gADHZSXWMg-2-9kQLVbykb9VoCH_3_9lF1HzVDvprPjR-xGjE5Zc_lwn_Wq9Tk8RieqMk9aaeXs01UryC9dJDgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Expanded+Austenite+in+Nitrogen-Implanted+Ferritic+Steel+through+In+Situ+Synchrotron+X-ray+Diffraction+Analyses&rft.jtitle=Metals+%28Basel+%29&rft.au=Bruna+C.+E.+Schibicheski+Kurelo&rft.au=Carlos+M.+Lepienski&rft.au=Willian+R.+de+Oliveira&rft.au=Gelson+B.+de+Souza&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2075-4701&rft.volume=13&rft.issue=10&rft.spage=1744&rft_id=info:doi/10.3390%2Fmet13101744&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9083028eeaee49178a461a5543ab92ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon