English Grammar Error Detection Using Recurrent Neural Networks

Automatic marking of English compositions is a rapidly developing field in recent years. It has gradually replaced teachers’ manual reading and become an important tool to relieve the teaching burden. The existing literature shows that the error of verb consistency and the error of verb tense are th...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2021; pp. 1 - 8
Main Author He, Zhenhui
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic marking of English compositions is a rapidly developing field in recent years. It has gradually replaced teachers’ manual reading and become an important tool to relieve the teaching burden. The existing literature shows that the error of verb consistency and the error of verb tense are the two types of grammatical errors with the highest error rate in English composition. Hence, the detection results of verb errors can reflect the practicability and effectiveness of an automatic reading system. This paper proposes an English verb’s grammar error detection algorithm based on the cyclic neural network. Since LSTM can effectively retain the valid information in the context during training, this paper decided to use LSTM to model the labeled training corpus. At the same time, how to convert the text information in English compositions into numerical values for subsequent calculation is also an important step in automatic reading. Most mainstream tools use the word bag model, i.e., each word is encoded according to the order of each word in the dictionary. Although this encoding method is simple and easy to use, it not only causes the vector to lose the sequence information of the text but also is prone to dimensional disaster. Therefore, word embedding model is adopted in this paper to encode the text, and the text information is sequentially mapped to a low-dimensional vector space. In this way, the position information of the text is not lost, and the dimensional disaster is avoided. The proposed work collects some corpus samples and compares the proposed algorithm with Jouku and Bingguo. The verification results show the superiority of the proposed algorithm in verb error detection.
AbstractList Automatic marking of English compositions is a rapidly developing field in recent years. It has gradually replaced teachers’ manual reading and become an important tool to relieve the teaching burden. The existing literature shows that the error of verb consistency and the error of verb tense are the two types of grammatical errors with the highest error rate in English composition. Hence, the detection results of verb errors can reflect the practicability and effectiveness of an automatic reading system. This paper proposes an English verb’s grammar error detection algorithm based on the cyclic neural network. Since LSTM can effectively retain the valid information in the context during training, this paper decided to use LSTM to model the labeled training corpus. At the same time, how to convert the text information in English compositions into numerical values for subsequent calculation is also an important step in automatic reading. Most mainstream tools use the word bag model, i.e., each word is encoded according to the order of each word in the dictionary. Although this encoding method is simple and easy to use, it not only causes the vector to lose the sequence information of the text but also is prone to dimensional disaster. Therefore, word embedding model is adopted in this paper to encode the text, and the text information is sequentially mapped to a low-dimensional vector space. In this way, the position information of the text is not lost, and the dimensional disaster is avoided. The proposed work collects some corpus samples and compares the proposed algorithm with Jouku and Bingguo. The verification results show the superiority of the proposed algorithm in verb error detection.
Author He, Zhenhui
Author_xml – sequence: 1
  givenname: Zhenhui
  orcidid: 0000-0002-1382-9593
  surname: He
  fullname: He, Zhenhui
  organization: Foreign Languages DepartmentHunan University of ChangshaChangsha 410082Hunan ProvinceChinahnu.edu.cn
BookMark eNp9UNFKwzAUDTLBbfrmBxR81LokTdrmSWTWKQwFceBbSdN0y-zSeZMy_HsztidBn869l3Pu4ZwRGtjOaoQuCb4lhPMJxZRMMszzjCYnaEjyjMeCiI9BmMM1FpSxMzRybo0xyQnGQ3RX2GVr3CqagdxsJEQFQAfRg_ZaedPZaOGMXUZvWvUA2vroRfcg2wB-18GnO0enjWydvjjiGC0ei_fpUzx_nT1P7-exYjjxMVVKNqnCtWRNUjEhSMOpIowrlqWVqnKtiKialNYVkyJVtaRZWksZFs0z3CRjdHX4u4Xuq9fOl-uuBxssS8q5SJI8SVlg3RxYCjrnQDflFkxI9V0SXO4rKvcVlceKAp3-oivj5T62B2nav0TXB9HK2FruzP8WP1HRd-E
CitedBy_id crossref_primary_10_1155_2022_1881369
crossref_primary_10_1155_2022_7957365
crossref_primary_10_1145_3711829
crossref_primary_10_4108_eetsis_4939
crossref_primary_10_20965_jaciii_2024_p1164
crossref_primary_10_1515_jisys_2023_0170
crossref_primary_10_1155_2022_2226544
crossref_primary_10_1155_2021_1407407
crossref_primary_10_1155_2022_3501494
crossref_primary_10_2478_amns_2024_2021
crossref_primary_10_3389_fpsyg_2024_1484630
crossref_primary_10_1155_2022_5957566
crossref_primary_10_1515_jisys_2023_0259
crossref_primary_10_1155_2021_9483719
crossref_primary_10_2478_amns_2023_2_01352
crossref_primary_10_1109_ACCESS_2024_3399163
crossref_primary_10_1155_2022_9800539
crossref_primary_10_1080_2331186X_2024_2404264
Cites_doi 10.18653/v1/D19-1632
10.52810/tpris.2021.100050
10.52810/tc.2021.100024
10.1155/2021/5568208
10.13053/cys-23-3-3271
10.1109/tcsvt.2020.3043026
10.1075/jicb.19011.man
10.1007/s12559-020-09731-7
10.2307/357499
10.3390/e23040435
10.18653/v1/2020.bea-1.12
10.1007/s11042-020-10188-x
10.1016/j.procs.2018.10.482
10.32674/jis.v6i4.321
10.1177/0020720920983536
10.1017/s0272263118000025
10.3390/electronics9101686
10.52810/TC.2021.100022
10.1080/01690960143000254
10.1016/s0010-0277(96)00713-5
10.1109/access.2019.2908668
ContentType Journal Article
Copyright Copyright © 2021 Zhenhui He.
Copyright © 2021 Zhenhui He. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Zhenhui He.
– notice: Copyright © 2021 Zhenhui He. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2021/7058723
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Jan, Mian Ahmad
Editor_xml – sequence: 1
  givenname: Mian Ahmad
  surname: Jan
  fullname: Jan, Mian Ahmad
EndPage 8
ExternalDocumentID 10_1155_2021_7058723
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Foreign Language Association Project of Social and Scientific Funding of Hunan Province, China
  grantid: 18WLH18
– fundername: Education and Science Planning Project of Hunan Province, China
  grantid: XJK18QGD010
– fundername: Foreign Language Research Institute, Shanghai, China
  grantid: 2018HN0063B
– fundername: Education Department of Hunan Province
  grantid: 20B287; HNJG-2020-0038
GroupedDBID .4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABDBF
ABJNI
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
DU5
EAD
EAP
EBS
EDO
EMK
EPL
EST
ESX
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
TUS
24P
AAYXX
ACCMX
CITATION
H13
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c403t-2ccaf6c0da4f3b4991f52c145c476bcb8ec19bf62db4a96cda276daa4a9e570f3
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:30:25 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 02:50:05 EDT 2025
Sun Jun 02 19:18:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-2ccaf6c0da4f3b4991f52c145c476bcb8ec19bf62db4a96cda276daa4a9e570f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1382-9593
OpenAccessLink https://dx.doi.org/10.1155/2021/7058723
PQID 2559338364
PQPubID 2046410
PageCount 8
ParticipantIDs proquest_journals_2559338364
crossref_primary_10_1155_2021_7058723
crossref_citationtrail_10_1155_2021_7058723
hindawi_primary_10_1155_2021_7058723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
K. M. Knill (17)
25
26
27
28
29
K. A. Moore (24) 2016; 6
C. Ying (14) 2021; 1
Y. H. Wu (12)
W. Liqiu (6) 2002; 3
M. Maros (10) 2017; 4
F. Guzmán (23) 2019
H. Y. Melissa (1) 2021
G. Mancho-Barés (5) 2020; 8
11
13
S. Bell (15) 2019
18
19
M. Kaneko (16) 2019
Z. Maxwelll-Smith (21)
2
3
X. Q. Cheng (4) 2008
7
8
9
20
References_xml – year: 2019
  ident: 23
  article-title: The FLoRes evaluation datasets for low-resource machine translation: Nepali-English and Sinhala-English
  doi: 10.18653/v1/D19-1632
– ident: 19
  doi: 10.52810/tpris.2021.100050
– ident: 2
  doi: 10.52810/tc.2021.100024
– ident: 25
  doi: 10.1155/2021/5568208
– year: 2019
  ident: 16
  article-title: Multi-head multi-layer attention to deep language representations for grammatical error detection
  doi: 10.13053/cys-23-3-3271
– ident: 27
  doi: 10.1109/tcsvt.2020.3043026
– volume: 8
  start-page: 1
  year: 2020
  ident: 5
  article-title: EMI lecturers’ practices in correcting English: resources for language teaching?
  publication-title: Journal of Immersion and Content-Based Language Education
  doi: 10.1075/jicb.19011.man
– ident: 17
  article-title: Automatic grammatical error detection of non-native spoken learner English
– ident: 20
  doi: 10.1007/s12559-020-09731-7
– ident: 3
  doi: 10.2307/357499
– year: 2008
  ident: 4
  article-title: Simple remark on correcting English compositions
  publication-title: Journal of Huanghe S&T University
– ident: 29
  doi: 10.3390/e23040435
– ident: 21
  article-title: Applications of natural language processing in bilingual language teaching: an Indonesian-English case study
  doi: 10.18653/v1/2020.bea-1.12
– ident: 26
  doi: 10.1007/s11042-020-10188-x
– ident: 11
– ident: 18
  doi: 10.1016/j.procs.2018.10.482
– volume: 6
  start-page: 857
  issue: 4
  year: 2016
  ident: 24
  article-title: Supporting postsecondary English language learners’ writing proficiency using technological tools
  publication-title: Journal of International Students
  doi: 10.32674/jis.v6i4.321
– volume: 3
  year: 2002
  ident: 6
  article-title: An efficient composition-correcting way
  publication-title: Journal of Hechi Normal College
– ident: 22
  doi: 10.1177/0020720920983536
– ident: 9
  doi: 10.1017/s0272263118000025
– start-page: 91
  volume-title: Innovative Approaches in Teaching English Writing to Chinese Speakers
  year: 2021
  ident: 1
  article-title: A pedagogical inquiry into students’ writing skills development from the perspective of English as a lingua franca: insights from secondary and tertiary English language education in Taiwan
– ident: 13
  doi: 10.3390/electronics9101686
– volume: 1
  start-page: 12
  issue: 1
  year: 2021
  ident: 14
  article-title: Errors of machine translation of terminology in the patent text from English into Chinese
  publication-title: ASP Transactions on Computers
  doi: 10.52810/TC.2021.100022
– ident: 8
  doi: 10.1080/01690960143000254
– year: 2019
  ident: 15
  article-title: Context is key: Grammatical error detection with contextual word representations
– volume: 4
  issue: 1
  year: 2017
  ident: 10
  article-title: Interference in learning English: grammatical errors in English essay writing among rural Malay secondary school students in Malaysia
  publication-title: e-Bangi
– ident: 12
  article-title: Verb replacer: an English verb error correction system
– ident: 7
  doi: 10.1016/s0010-0277(96)00713-5
– ident: 28
  doi: 10.1109/access.2019.2908668
SSID ssj0018100
Score 2.325489
Snippet Automatic marking of English compositions is a rapidly developing field in recent years. It has gradually replaced teachers’ manual reading and become an...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Composition
Criminal sentences
Disasters
Error correction & detection
Error detection
Grammar
Language
Learning
Machine translation
Natural language processing
Neural networks
Reading
Recurrent neural networks
Speech
Teaching
Text editing
Training
Title English Grammar Error Detection Using Recurrent Neural Networks
URI https://dx.doi.org/10.1155/2021/7058723
https://www.proquest.com/docview/2559338364
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7cQPDF3-J0jjzMJym2aZK2TyK6OQSHiIO9lSRNUZBOuor_vrk2HegQfQxc7-GS6-XL3X0HMBSJVipMlJdllHuMhZGnbNz3bKw3UiIFG8Xm5IepmMzY_ZzPHUnScj2Fb6MdwvPgMvJ5HNGwAx17wBCUT-arZEEc-A3pALe-a8NVW9_-49tvkWfzBSHv5-vaL7iOK-Nd2HYXQnLd7OAebJhiH3baYQvE-d4BXLmGW3JXSuw3I6OyXJTk1lR1MVVB6uQ_ecL3c2RcIki7YRVPmzrv5SHMxqPnm4nnph94mvlh5VFr21xoP5MsD5UFJkHOqQ4Y1ywSSqvY6CBRuaCZYjIROpM0EpmUdmF45OfhEXSLRWGOgURcWWQQWnUxQiRfZrFViBnNXPmBMj24aC2TakcNjhMq3tIaInCeoh1TZ8cenK-k3xtKjF_khs7If4j12x1Inf8sUwQ6CJ4FO_mfllPYwmXzONKHblV-mDN7XajUADqUPQ7qI_MFKEu2gw
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=English+Grammar+Error+Detection+Using+Recurrent+Neural+Networks&rft.jtitle=Scientific+programming&rft.au=He%2C+Zhenhui&rft.date=2021&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1155%2F2021%2F7058723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_7058723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon