Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy
One of the significant challenges in the food industry is the determination of the geographical origin, since products from different regions can lead to great variance in raw milk. Therefore, monitoring the origin of raw milk has become very relevant for producers and consumers worldwide. In this e...
Saved in:
Published in | Journal of spectroscopy (Hindawi) Vol. 2021; pp. 1 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2021
Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the significant challenges in the food industry is the determination of the geographical origin, since products from different regions can lead to great variance in raw milk. Therefore, monitoring the origin of raw milk has become very relevant for producers and consumers worldwide. In this exploratory study, midinfrared spectroscopy combined with machine learning classification methods was investigated as a rapid and nondestructive method for the classification of milk according to its geographical origin. The curse of dimensionality makes some classification methods struggle to train efficient models. Thus, principal component analysis (PCA) has been applied to create a smaller set of features. The application of machine learning methods such as PLS-DA, PCA-LDA, SVM, and PCA-SVM demonstrates that the best results are obtained using PLS-DA, PCA-LDA, and PCA-SVM methods which show a correct classification rate (CCR) of 100% for PLS-DA and PCA-LDA and 94.95% for PCA-SVM, whereas the application of SVM without feature extraction gives a low CCR of 66.67%. These findings demonstrate that FT-MIR spectroscopy, combined with machine learning methods, is an efficient and suitable approach to classify the geographical origins of raw milk. |
---|---|
AbstractList | One of the significant challenges in the food industry is the determination of the geographical origin, since products from different regions can lead to great variance in raw milk. Therefore, monitoring the origin of raw milk has become very relevant for producers and consumers worldwide. In this exploratory study, midinfrared spectroscopy combined with machine learning classification methods was investigated as a rapid and nondestructive method for the classification of milk according to its geographical origin. The curse of dimensionality makes some classification methods struggle to train efficient models. Thus, principal component analysis (PCA) has been applied to create a smaller set of features. The application of machine learning methods such as PLS-DA, PCA-LDA, SVM, and PCA-SVM demonstrates that the best results are obtained using PLS-DA, PCA-LDA, and PCA-SVM methods which show a correct classification rate (CCR) of 100% for PLS-DA and PCA-LDA and 94.95% for PCA-SVM, whereas the application of SVM without feature extraction gives a low CCR of 66.67%. These findings demonstrate that FT-MIR spectroscopy, combined with machine learning methods, is an efficient and suitable approach to classify the geographical origins of raw milk. |
Author | El Karbane, Miloud Cheikh, Amine El Orche, Aimen Elhamdaoui, Omar Bouatia, Mustapha Mamad, Amine |
Author_xml | – sequence: 1 givenname: Aimen orcidid: 0000-0001-5352-2476 surname: El Orche fullname: El Orche, Aimen organization: Team of Analytical and Computational Chemistry,Nanotechnology and EnvironmentFaculty of Sciences and TechniquesUniversity of Sultan Moulay SlimaneBeni MellalMoroccousms.ac.ma – sequence: 2 givenname: Amine surname: Mamad fullname: Mamad, Amine organization: Laboratory of Analytical ChemistryFaculty of Medicine and PharmacyMohammed V UniversityRabatMoroccoum5.ac.ma – sequence: 3 givenname: Omar surname: Elhamdaoui fullname: Elhamdaoui, Omar organization: Laboratory of Analytical ChemistryFaculty of Medicine and PharmacyMohammed V UniversityRabatMoroccoum5.ac.ma – sequence: 4 givenname: Amine surname: Cheikh fullname: Cheikh, Amine organization: Faculty of MedicineAbulcasis UniversityRabatMorocco – sequence: 5 givenname: Miloud surname: El Karbane fullname: El Karbane, Miloud organization: Laboratory of Analytical ChemistryFaculty of Medicine and PharmacyMohammed V UniversityRabatMoroccoum5.ac.ma – sequence: 6 givenname: Mustapha orcidid: 0000-0002-6700-4984 surname: Bouatia fullname: Bouatia, Mustapha organization: Laboratory of Analytical ChemistryFaculty of Medicine and PharmacyMohammed V UniversityRabatMoroccoum5.ac.ma |
BookMark | eNp9kdtKAzEQhoMoqNU7HyDgpVZz2u7upVSthZaCp9uQTSZt6nazJivSN_CxTQ946dUMwzffMPyn6LDxDSB0QckNpVl2ywijt1khMsHYATphnIq-KHl5-NczcozOY1wSQmiiRJmdoJ-hX7UquOgb7C2eKr1wDeAJqNC4Zo6HtYrRWadV5xIyhW7hTcTWB3wPHYSV22LdAvAI_DyodpHYGs-Cm7ut8ll946mrP_Bb3JDvrgpbV4JeWtBd8FH7dn2GjqyqI5zvaw-9PT68Dp_6k9loPLyb9LUgvOuzUnEmqiJnlNlUQHOTc-CkGJAqyysrCpJraqAcVERwDaKkKq1oRitLeMl7aLzzGq-Wsg1upcJaeuXkduDDXKrQOV2DTGuFtcxYY3JhclVAagwtbFWKgdUsuS53rjb4zy-InVz6r5A-i5INKOVZkZMNdb2jdHo1BrB_VymRm-jkJjq5jy7hVzs8BWHUt_uf_gUTJptu |
CitedBy_id | crossref_primary_10_1016_j_talanta_2023_124457 crossref_primary_10_1016_j_vibspec_2022_103406 crossref_primary_10_1007_s11694_022_01403_4 crossref_primary_10_1007_s11694_023_02025_0 crossref_primary_10_1080_10408398_2024_2312537 crossref_primary_10_1007_s00217_023_04300_2 crossref_primary_10_1007_s11694_024_02625_4 crossref_primary_10_1016_j_rechem_2024_101575 crossref_primary_10_1093_jaoacint_qsac146 crossref_primary_10_36107_spfp_2023_412 |
Cites_doi | 10.3168/jds.2008-1624 10.1016/j.jfoodeng.2021.110643 10.1186/s40104-020-00455-0 10.3390/e17041795 10.3389/fnut.2021.680627 10.1155/2020/8816249 10.1016/j.lwt.2016.08.053 10.1155/2020/8860161 10.1039/b804439b 10.3168/jds.2015-9769 10.1016/j.talanta.2018.02.097 10.1002/jsfa.11335 10.1016/j.tifs.2018.09.025 10.1007/bfb0062108 10.1109/iccca.2012.6179181 10.1016/b0-12-227410-5/00164-2 10.1007/s12161-015-0308-2 10.1039/c3ay41907j 10.1111/1541-4337.12436 10.1007/s11306-007-0099-6 10.1002/jsfa.10534 10.1016/j.foodchem.2016.07.035 10.24966/DRT-9315/100014 10.3168/jds.s0022-0302(06)72409-2 10.1155/2020/9317350 10.3168/jds.2015-10342 10.1039/c3ay40582f 10.3390/toxins10090375 10.1016/j.tifs.2018.04.001 10.3390/foods9040489 10.1016/j.foodcont.2021.108418 10.1016/j.aca.2007.03.001 10.3168/jds.2018-14885 10.1016/j.idairyj.2010.12.012 10.1016/j.envint.2020.105545 10.1080/10942912.2011.583706 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Aimen El Orche et al. Copyright © 2021 Aimen El Orche et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Aimen El Orche et al. – notice: Copyright © 2021 Aimen El Orche et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1155/2021/5845422 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access Journals url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2314-4939 |
Editor | Domi nguez Vidal, Ana |
Editor_xml | – sequence: 1 givenname: Ana surname: Domi nguez Vidal fullname: Domi nguez Vidal, Ana – fullname: Ana Domi nguez Vidal |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_a328ff2dfdd74d7a8edd7d18fb946fc2 10_1155_2021_5845422 |
GeographicLocations | Morocco |
GeographicLocations_xml | – name: Morocco |
GroupedDBID | 5VS 8FE 8FG AAFWJ AAJEY ADBBV AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO ITC KQ8 M~E P62 PIMPY PROAC RHU RHW RHX TUS 24P AAYXX CITATION H13 ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c403t-29a324b87212fb87ec3d73e30860b57bf4807c1de96b043ce491aa32c21bf0393 |
IEDL.DBID | DOA |
ISSN | 2314-4920 |
IngestDate | Mon Nov 04 19:57:53 EST 2024 Thu Oct 10 15:45:25 EDT 2024 Thu Sep 26 18:10:52 EDT 2024 Sun Jun 02 18:48:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-29a324b87212fb87ec3d73e30860b57bf4807c1de96b043ce491aa32c21bf0393 |
ORCID | 0000-0001-5352-2476 0000-0002-6700-4984 |
OpenAccessLink | https://doaj.org/article/a328ff2dfdd74d7a8edd7d18fb946fc2 |
PQID | 2611358702 |
PQPubID | 2069521 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a328ff2dfdd74d7a8edd7d18fb946fc2 proquest_journals_2611358702 crossref_primary_10_1155_2021_5845422 hindawi_primary_10_1155_2021_5845422 |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of spectroscopy (Hindawi) |
PublicationYear | 2021 |
Publisher | Hindawi Hindawi Limited |
Publisher_xml | – name: Hindawi – name: Hindawi Limited |
References | 44 23 45 24 25 26 G. D. Miner (40) 2012 27 28 H. P. Bhavsar (32) 2012 29 A. Tosato (3) 2021 J. A. Park (11) 2021; 34 N. Cristianini (39) 2002; 23 30 A. Nawrocka (18) 2013 10 33 12 34 13 35 14 36 15 37 16 17 19 1 4 I. T. Jolliffe (31) 2002 5 6 S. Suthaharan (38) 2021 7 V. Federal University of Juiz De Fora (22) 2020; 3 8 9 R. Johnson (2) 2014 41 20 42 21 43 |
References_xml | – ident: 10 doi: 10.3168/jds.2008-1624 – ident: 20 doi: 10.1016/j.jfoodeng.2021.110643 – volume-title: Principal Component Analysis year: 2002 ident: 31 contributor: fullname: I. T. Jolliffe – ident: 24 doi: 10.1186/s40104-020-00455-0 – ident: 37 doi: 10.3390/e17041795 – ident: 41 doi: 10.3389/fnut.2021.680627 – ident: 16 doi: 10.1155/2020/8816249 – ident: 25 doi: 10.1016/j.lwt.2016.08.053 – ident: 12 doi: 10.1155/2020/8860161 – volume-title: Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients year: 2014 ident: 2 contributor: fullname: R. Johnson – volume: 23 year: 2002 ident: 39 article-title: Support vector machines and kernel methods: the new generation of learning machines publication-title: AI Magazine contributor: fullname: N. Cristianini – ident: 43 doi: 10.1039/b804439b – ident: 9 doi: 10.3168/jds.2015-9769 – ident: 21 doi: 10.1016/j.talanta.2018.02.097 – year: 2013 ident: 18 article-title: Determination of food quality by using spectroscopic methods publication-title: IntechOpen contributor: fullname: A. Nawrocka – ident: 34 doi: 10.1002/jsfa.11335 – ident: 6 doi: 10.1016/j.tifs.2018.09.025 – ident: 35 doi: 10.1007/bfb0062108 – ident: 30 doi: 10.1109/iccca.2012.6179181 – ident: 42 doi: 10.1016/b0-12-227410-5/00164-2 – ident: 4 doi: 10.1007/s12161-015-0308-2 – ident: 29 doi: 10.1039/c3ay41907j – ident: 14 doi: 10.1111/1541-4337.12436 – ident: 45 doi: 10.1007/s11306-007-0099-6 – ident: 1 doi: 10.1002/jsfa.10534 – ident: 8 doi: 10.1016/j.foodchem.2016.07.035 – volume: 3 start-page: 1 year: 2020 ident: 22 article-title: Anjos, near and mid infrared spectroscopy to assess milk products quality: a review of recent applications publication-title: J. Dairy Res. Technol. doi: 10.24966/DRT-9315/100014 contributor: fullname: V. Federal University of Juiz De Fora – ident: 23 doi: 10.3168/jds.s0022-0302(06)72409-2 – ident: 17 doi: 10.1155/2020/9317350 – volume-title: Support Vector Machine year: 2021 ident: 38 contributor: fullname: S. Suthaharan – volume-title: European Law Journal year: 2021 ident: 3 article-title: The protection of traditional foods in the eu: traditional specialities guaranteed contributor: fullname: A. Tosato – start-page: 929 volume-title: Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications year: 2012 ident: 40 article-title: Feature selection and dimensionality reduction contributor: fullname: G. D. Miner – ident: 26 doi: 10.3168/jds.2015-10342 – ident: 33 doi: 10.1039/c3ay40582f – ident: 13 doi: 10.3390/toxins10090375 – ident: 15 doi: 10.1016/j.tifs.2018.04.001 – ident: 5 doi: 10.3390/foods9040489 – ident: 19 doi: 10.1016/j.foodcont.2021.108418 – ident: 36 doi: 10.1016/j.aca.2007.03.001 – ident: 28 doi: 10.3168/jds.2018-14885 – year: 2012 ident: 32 article-title: A review on support vector machine for data classification contributor: fullname: H. P. Bhavsar – ident: 44 doi: 10.1016/j.idairyj.2010.12.012 – volume: 34 year: 2021 ident: 11 article-title: Determination of the authenticity of dairy products on the basis of fatty acids and triacylglycerols content using gc analysis publication-title: Korean Journal of Food Science of Animal Resources contributor: fullname: J. A. Park – ident: 7 doi: 10.1016/j.envint.2020.105545 – ident: 27 doi: 10.1080/10942912.2011.583706 |
SSID | ssj0001542495 ssib044745750 |
Score | 2.29235 |
Snippet | One of the significant challenges in the food industry is the determination of the geographical origin, since products from different regions can lead to great... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Chromatography Classification Data analysis Discriminant analysis Fatty acids Feature extraction Food products Machine learning Methods Milk Nondestructive testing Principal components analysis Support vector machines |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access Journals dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aELyIT6xWyaEeF_eR7CZHrUoRqlCs9LbkqWJpxVbEf-DPdiZNFfWgp32QzS4zmcz3ZSczhLR5pQx4KTAkkfqESSsTaaxNvAWFm6wUyuPm5N5V2R2wyyEfxiRJ09-_8MHbIT3PjsFPcpbDXLssBNpfvztcDBvGKgagI_1aWoGWLNRbAfDC4APydBHy_qO7b84o5OwHGHyPZPj14dfkHDzOxTpZi1CRnsx1u0GW3HiTrISQTTPdIu-dzxKCdOJpL0RFOhoTpt7RUO4SA4GC7GkvlIqeUgCp9CzGwGAzAIA0VkLHqIwRvQ6lsrDLvnqlvYfRIw1xBfQWmfV86ZBi2foZJsKcPL1tk8HF-U2nm8S6ColhaTFLcqkARmkB5C_3cHCmsFXhCmA3qeaV9rjN3GTWyRKkWxjHZKbgEZNn2uNe3h3SGE_GbpfQwijpgZJ4VXFWSSu8ZbJ03GqjtNWsSY4WAq6f5ukz6kA7OK9REXVURJOcovQ_22DS63ADBkIdbaiGTxDe59ZbWzFbKeHgxGbCa8lKb6CTdtTdH-9qLRRbR4Od1kAks4LD5JXv_a-XfbKKl_PVmBZpzJ5f3AHgk5k-DKPzA4n_3RY priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS90wFA9OGexlTLcxPyZ5cI_Fpk2a5kmc8yrCVRi7w7eSTyfK7dV2iP_B_uydk6ZeZDCfWto0LTknOR_95fwI2RNSW7BSMJHqPGRcOZUp61wWHAjcsqrWATcnT8-r0xk_uxSXKeHWJVjluCbGhdq1FnPk--Dps1KAdhUHi7sMWaPw72qi0HhF1lghJUK66snJqE-cSw7eSL7MuQiOVMuRb45x-LIiH7HwQmAagO2DPYZGxTMrFYv5g3_8C6Pkh-t_Vu1oiibvyNvkQ9LDQejrZMXPN8jriOW03Xvy5-iJW5C2gU4jXNLTVEn1ikYeTEQIRaHQaeSQ7ih4r_RbAsdgM_AMaaJIR7jGLb2IHFrY5Xf9QKfXtzc0Ag7oTwy5h5wiRT77HitktovHD2Q2Of5xdJolwoXM8rzss0Jp8K9MDVFhEeDgbelk6UsIe3IjpAm4_9wy51UFo1tazxXT8IgtmAm4yfcjWZ23c_-J0NJqFSBWCVoKLpWrg-Oq8sIZq40zfJN8GQe4WQx1NZoYjwjRoCCaJIhN8hVH_6kNVsOOF9r7qyZNrgY-oQ6hcME5yZ3UtYcTx-pgFK-ChU72kuxeeNfOKNgmzeSuWerd1v9vb5M32NmQntkhq_39b_8ZHJbe7Eat_As63OdR priority: 102 providerName: ProQuest |
Title | Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy |
URI | https://dx.doi.org/10.1155/2021/5845422 https://www.proquest.com/docview/2611358702 https://doaj.org/article/a328ff2dfdd74d7a8edd7d18fb946fc2 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58IHgRn1gfZQ_1GMxjN8kefdUitEqx0lvYp4rSiq2I_8Cf7cxmWxQPXrwkIdlkl5nNznzLzHyEtHghNVgp-JHK2EVMGBEJbUzkDChcJ3kpHSYnd3t5Z8Cuhnz4jeoLY8Lq8sC14I5llpbOpcYZUzBTyNLChUlKpwTLna5X31h8A1N1fjBDUuVZpDvnCPKTY7C28CD9YYN8qX7wfh8QA78__lqTvaFpr5O14CHSk3pkG2TBjjbJio_U1JMt8nk2Zw6kY0e7PhjS0lAn9Z56lkuM__Eip13PED2h4JvS8xD6gs3A76OBAB2DMZ7ptWfIwk_25TvtPj4_UR9OQO8QUNc7hhTZ6qdY_3L88rFNBu2L27NOFOgUIs3ibBqlAmTJVAmYL3VwsjozRWYzADWx4oVymF2uE2NFrmKWactEIuEVnSbKYQrvDlkajUd2l9BMS-EAiThZcFYIUzrDRG65UVoqo1iDHM0EXL3UVTMqjzY4r1ARVVBEg5yi9OdtsNa1vwEzoAozoPprBjRIK-juj74OZoqtwn86qQA_JhmHNSvd-4-h7JNV7LLeojkgS9PXN3sITstUNcli2b5skuXTi95Nv-lnKxz7neEXa43wIA |
link.rule.ids | 315,783,787,866,867,880,881,2109,4032,12778,21401,27936,27937,27938,33386,33757,43613,43818,74370,74637 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELbaRahcEI9WUKD4QI8RedhJfEI8tS1kixBU3Cw_AYE2C7sV4h_ws5nxOiBUqT0lShwn8ow930zG8xGyxStlwErBRKpTnzBhRSKMtYm3IHCTlbXyuDm5GZT9C_bzkl_GgNs4plV2a2JYqG1rMEa-DUg_KzhoV74zuk-QNQr_rkYKjY9kBktV1T0ys3c4OD3rNIqxigEeSd-iLpwh2XJgnMsYfFuedtnwnGMgINsGiwyN8nd2KpTzB4R8jX7y481f63YwRkcLZD6iSLo7Ffsi-eCGS2Q2ZHOa8TJ53n9lF6Stp01ImHQ01lK9ooEJE3OEglhoE1ikxxTwKz2I6THYDLAhjSTpmLBxR38FFi3s8kw90ubm7paGlAP6G53uaVSRIqP9BGtktqOnz-Ti6PB8v59EyoXEsLSYJLlQgLB0DX5h7uHgTGGrwhXg-KSaV9rjDnSTWSdKGN3COCYyBY-YPNMet_l-Ib1hO3QrhBZGCQ_eilcVZ5WwtbdMlI5bbZS2mq2S790Ay9G0soYMHgnnEgUhoyBWyR6O_msbrIcdLrQPVzJOLwmfUHufW29txWylagcnNqu9Fqz0BjrZirL7z7vWO8HKOJfH8k3zvv779ib51D9vTuTJj8HxGpnDjqfBmnXSmzz8cRsAXyb6W9TRFy-X66I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYKqIhL1dIinq0P9BhtHnYcnxCvFW3ZLUJQcbP8pKhos7CLUP8BP5sZrwNClegpUeI4kWfseeTzfIRsc6EtWCmYSE0eMiadzKR1LgsOBG6LutEBNycPhvXROft-wS8S_mmSYJXdmhgXatdazJH3wNMvKg7aVfZCgkWcHPR3xjcZMkjhn9ZEpzFHFgSrKwjEFvYOhyennXYxJhj4JvlzBoYzJF6O7HMFg-8s8w4ZzzkmBYoeWGdoVL6wWbG0P3jLvzFmvr_6Zw2Phqn_nrxLHiXdnanAB_LGj5bJ24jstJOP5GH_iWmQtoEOInjS01RX9ZJGVkzEC0UR0UFklJ5Q8GXpQYLKYDPwE2kiTEfwxjX9GRm1sMtTfU8HV9d_aIQf0F8YgM8yjBTZ7adYL7Md__1EzvuHZ_tHWaJfyCzLq2lWSg3elmkgRiwDHLytnKh8BUFQbrgwAXej28J5WcPoVtYzWWh4xJaFCbjld4XMj9qRXyW0sloGiFyCFpwJ6ZrgmKw9d8Zq4wxbI1-7AVbjWZUNFaMTzhUKQiVBrJE9HP2nNlgbO15oby9VmmoKPqEJoXTBOcGc0I2HE1c0wUhWBwudbCfZ_eddm51gVZrXE_Wsheuv3_5CFkE91fG34Y8NsoT9zvI2m2R-envnt8CTmZrPSUUfAVIQ79Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning+Classification+Methods+for+Determining+the+Geographical+Origin+of+Raw+Milk+Using+Vibrational+Spectroscopy&rft.jtitle=Journal+of+spectroscopy+%28Hindawi%29&rft.au=El+Orche%2C+Aimen&rft.au=Mamad%2C+Amine&rft.au=Elhamdaoui%2C+Omar&rft.au=Cheikh%2C+Amine&rft.date=2021&rft.issn=2314-4920&rft.eissn=2314-4939&rft.volume=2021&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1155%2F2021%2F5845422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_5845422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-4920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-4920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-4920&client=summon |