PC-ILP: A Fast and Intuitive Method to Place Electric Vehicle Charging Stations in Smart Cities
The widespread use of electric vehicles necessitates meticulous planning for the placement of charging stations (CSs) in already crowded cities so that they can efficiently meet the charging demand while adhering to various real-world constraints such as the total budget, queuing time, electrical re...
Saved in:
Published in | Smart cities (Basel) Vol. 6; no. 6; pp. 3060 - 3092 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread use of electric vehicles necessitates meticulous planning for the placement of charging stations (CSs) in already crowded cities so that they can efficiently meet the charging demand while adhering to various real-world constraints such as the total budget, queuing time, electrical regulations, etc. Many classical and metaheuristic-based approaches provide good solutions, but they are not intuitive, and they do not scale well for large cities and complex constraints. Many classical solution techniques often require prohibitive amounts of memory and their solutions are not easily explainable. We analyzed the layouts of the 50 most populous cities of the world and observed that any city can be represented as a composition of five basic primitive shapes (stretched to different extents). Based on this insight, we use results from classical topology to design a new charging station placement algorithm. The first step is a topological clustering algorithm to partition a large city into small clusters and then use precomputed solutions for each basic shape to arrive at a solution for each cluster. These cluster-level solutions are very intuitive and explainable. Then, the next step is to combine the small solutions to arrive at a full solution to the problem. Here, we use a surrogate function and repair-based technique to fix any resultant constraint violations (after all the solutions are combined). The third step is optional, where we show that the second step can be extended to incorporate complex constraints and secondary objective functions. Along with creating a full software suite, we perform an extensive evaluation of the top 50 cities and demonstrate that our method is not only 30 times faster but its solution quality is also 36.62% better than the gold standard in this area—an integer linear programming (ILP) approach with a practical timeout limit. |
---|---|
AbstractList | The widespread use of electric vehicles necessitates meticulous planning for the placement of charging stations (CSs) in already crowded cities so that they can efficiently meet the charging demand while adhering to various real-world constraints such as the total budget, queuing time, electrical regulations, etc. Many classical and metaheuristic-based approaches provide good solutions, but they are not intuitive, and they do not scale well for large cities and complex constraints. Many classical solution techniques often require prohibitive amounts of memory and their solutions are not easily explainable. We analyzed the layouts of the 50 most populous cities of the world and observed that any city can be represented as a composition of five basic primitive shapes (stretched to different extents). Based on this insight, we use results from classical topology to design a new charging station placement algorithm. The first step is a topological clustering algorithm to partition a large city into small clusters and then use precomputed solutions for each basic shape to arrive at a solution for each cluster. These cluster-level solutions are very intuitive and explainable. Then, the next step is to combine the small solutions to arrive at a full solution to the problem. Here, we use a surrogate function and repair-based technique to fix any resultant constraint violations (after all the solutions are combined). The third step is optional, where we show that the second step can be extended to incorporate complex constraints and secondary objective functions. Along with creating a full software suite, we perform an extensive evaluation of the top 50 cities and demonstrate that our method is not only 30 times faster but its solution quality is also 36.62% better than the gold standard in this area—an integer linear programming (ILP) approach with a practical timeout limit. |
Author | Bose, Mehul Dutta, Bivas Ranjan Shrivastava, Nivedita Sarangi, Smruti R. |
Author_xml | – sequence: 1 givenname: Mehul surname: Bose fullname: Bose, Mehul – sequence: 2 givenname: Bivas Ranjan surname: Dutta fullname: Dutta, Bivas Ranjan – sequence: 3 givenname: Nivedita orcidid: 0000-0001-8378-3634 surname: Shrivastava fullname: Shrivastava, Nivedita – sequence: 4 givenname: Smruti R. orcidid: 0000-0002-1657-8523 surname: Sarangi fullname: Sarangi, Smruti R. |
BookMark | eNplkdtKAzEQhoNUsB5ewKuA16uTTXaz8a4srRYqFjzchjSHNqVuapIKvr1bKyJ4NcPw880H_ykadKGzCF0SuKZUwE16UzFrn71NNdRAKD9Cw7IuWVFXhAz-7CfoIqU1AJRcsIrDEMl5W0xn81s8whOVMladwdMu73rah8UPNq-CwTng-UZpi8cbq3P0Gr_aldcbi9uVikvfLfFTVtmHLmHf4ae9D26_hc7RsVObZC9-5hl6mYyf2_ti9ng3bUezQjOguSjLRtsFY6TRRCwoJU3tQBNKwSyIqZwwtOJEiUo5owXnlaLECVpbTZhqAOgZmh64Jqi13EbfO3zKoLz8PoS4lL3U3lnWjROWOF5a4ZgBteCGU2N5UzWCg2h61tWBtY3hfWdTluuwi12vL0sBTBDCOOtT5SGlY0gpWvf7lYDc9yL_90K_ADWFgu8 |
Cites_doi | 10.1016/0031-3203(80)90031-X 10.1109/TSG.2017.2735636 10.1016/j.procs.2019.09.446 10.1109/TSG.2018.2860783 10.1007/s00009-023-02533-9 10.1049/joe.2017.0655 10.1016/j.tra.2019.01.002 10.1109/TPAMI.1982.4767267 10.1016/j.est.2022.104136 10.1016/j.asoc.2017.07.060 10.1016/j.rser.2012.03.071 10.1109/SmartGridComm.2013.6688009 10.1109/TSG.2014.2344684 10.1007/978-3-642-03070-3_28 10.1109/TSG.2016.2517026 10.1109/ISIE45552.2021.9576448 10.1109/APEC.2018.8341082 10.1016/j.trd.2021.102769 10.1155/2023/6103796 10.1016/j.rse.2005.08.006 10.1007/s00357-018-9296-4 10.1049/iet-stg.2019.0220 10.1155/2020/9864935 10.3390/en11102752 10.1016/j.isprsjprs.2020.12.010 10.1109/ICPS48983.2019.9067587 10.1287/trsc.2019.0931 10.1080/0233193021000030760 10.1016/S0925-7721(01)00017-7 10.1007/s40565-018-0493-2 10.1109/ICECENG.2011.6057636 10.1038/s41560-019-0405-3 10.1016/j.est.2022.104092 10.1007/s41468-018-0012-6 10.1109/TITS.2020.2990694 10.1109/TITS.2020.2983385 10.3389/frai.2021.667963 10.1016/j.landurbplan.2018.03.010 10.1111/j.1467-8667.2009.00595.x 10.1145/3219819.3220032 10.1145/235815.235821 10.1080/13658810500161179 10.1016/j.energy.2021.120106 10.1016/j.apenergy.2014.03.077 10.1016/j.energy.2017.05.094 10.1049/enc2.12030 10.1109/ICEES57979.2023.10110213 10.1145/2739480.2754658 10.1016/j.renene.2004.09.020 10.1145/304181.304187 10.1016/j.procs.2015.08.169 10.1016/j.enpol.2019.111103 10.1109/TITS.2020.3045241 10.1080/13658816.2011.575074 10.1109/ESARS.2012.6387434 10.1145/2535927 10.1007/s12083-022-01306-7 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/smartcities6060137 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2624-6511 |
EndPage | 3092 |
ExternalDocumentID | oai_doaj_org_article_68f9e1f72e9f4d0ab7d73de785897098 10_3390_smartcities6060137 |
GroupedDBID | 2XV AADQD AAYXX ABJCF ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BAAKF BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD IOF ITC M7S MODMG M~E N95 OK1 PHGZM PHGZT PIMPY PTHSS 8FE 8FG ABUWG AZQEC DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-228ceb4418c19b33186f0c1330db1d5f9d3571a95afdc9775a31f936ec14a8003 |
IEDL.DBID | BENPR |
ISSN | 2624-6511 |
IngestDate | Wed Aug 27 01:25:15 EDT 2025 Fri Jul 25 09:54:39 EDT 2025 Tue Jul 01 04:23:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-228ceb4418c19b33186f0c1330db1d5f9d3571a95afdc9775a31f936ec14a8003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1657-8523 0000-0001-8378-3634 |
OpenAccessLink | https://www.proquest.com/docview/2904911474?pq-origsite=%requestingapplication% |
PQID | 2904911474 |
PQPubID | 5046858 |
PageCount | 33 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68f9e1f72e9f4d0ab7d73de785897098 proquest_journals_2904911474 crossref_primary_10_3390_smartcities6060137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Smart cities (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Sachan (ref_14) 2021; 2 Panakkat (ref_61) 2009; 24 Zhang (ref_49) 2017; 8 Kapustin (ref_1) 2020; 137 Patel (ref_34) 2018; 1 Wu (ref_7) 2021; 224 Bilal (ref_10) 2020; 3 Lee (ref_40) 1982; PAMI-4 ref_54 Bagheri (ref_30) 2017; 61 Chen (ref_20) 2021; 22 (ref_59) 2005; 30 ref_18 ref_17 Fang (ref_9) 2020; 22 ref_16 Zhao (ref_52) 2020; 2020 ref_15 Ullah (ref_2) 2023; 2023 (ref_76) 2017; 66 Ma (ref_58) 2018; 175 Lam (ref_72) 2014; 5 Emelichev (ref_23) 2002; 51 ref_69 ref_24 ref_68 Chen (ref_48) 2019; 10 ref_67 ref_22 ref_66 ref_21 ref_65 Sester (ref_53) 2005; 19 Zhong (ref_3) 2022; 15 Sklansky (ref_57) 1980; 12 Kavianipour (ref_13) 2021; 93 ref_29 ref_26 Kattenborn (ref_32) 2021; 173 (ref_75) 2014; 125 Zhu (ref_51) 2017; 2017 ref_71 Yuan (ref_55) 2005; 98 Ouammi (ref_62) 2012; 16 Fredriksson (ref_27) 2019; 160 ref_36 Yang (ref_56) 2018; 10 ref_35 Zhang (ref_8) 2021; 22 Vazifeh (ref_11) 2019; 121 ref_31 Barber (ref_63) 1996; 22 Chazal (ref_39) 2013; 60 Chazal (ref_41) 2021; 4 Chaieb (ref_28) 2015; 60 ref_37 Ankerst (ref_38) 1999; 28 Jiang (ref_60) 2012; 26 Rao (ref_46) 2016; 7 Battapothula (ref_74) 2019; 7 Khan (ref_12) 2019; 22 Shafiei (ref_4) 2022; 49 Zhang (ref_25) 2022; 49 ref_47 ref_45 ref_44 ref_43 ref_42 Leitner (ref_70) 2020; 54 Rezaei (ref_64) 2020; 37 Amenta (ref_33) 2001; 19 ref_5 Liu (ref_19) 2019; 4 Awasthi (ref_73) 2017; 133 ref_6 |
References_xml | – volume: 7 start-page: 19 year: 2016 ident: ref_46 article-title: Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems publication-title: Int. J. Ind. Eng. Comput. – volume: 12 start-page: 327 year: 1980 ident: ref_57 article-title: Fast polygonal approximation of digitized curves publication-title: Pattern Recognit. doi: 10.1016/0031-3203(80)90031-X – ident: ref_5 – volume: 10 start-page: 173 year: 2019 ident: ref_48 article-title: Design and Planning of a Multiple-Charger Multiple-Port Charging System for PEV Charging Station publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2735636 – volume: 160 start-page: 77 year: 2019 ident: ref_27 article-title: Optimal placement of charging stations for electric vehicles in large-scale transportation networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.09.446 – ident: ref_26 – volume: 66 start-page: 45 year: 2017 ident: ref_76 article-title: Optimal Zonal Fast-Charging Station Placement Considering Urban Traffic Circulation publication-title: IEEE Trans. Veh. Technol. – volume: 10 start-page: 4457 year: 2018 ident: ref_56 article-title: Optimal sizing of PEV fast charging stations with Markovian demand characterization publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2860783 – ident: ref_44 doi: 10.1007/s00009-023-02533-9 – volume: 2017 start-page: 1867 year: 2017 ident: ref_51 article-title: Planning of electric vehicle charging station based on queuing theory publication-title: J. Eng. doi: 10.1049/joe.2017.0655 – volume: 121 start-page: 75 year: 2019 ident: ref_11 article-title: Optimizing the deployment of electric vehicle charging stations using pervasive mobility data publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2019.01.002 – ident: ref_65 – volume: PAMI-4 start-page: 363 year: 1982 ident: ref_40 article-title: Medial Axis Transformation of a Planar Shape publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1982.4767267 – volume: 49 start-page: 104136 year: 2022 ident: ref_4 article-title: Fast-charging station for electric vehicles, challenges and issues: A comprehensive review publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104136 – ident: ref_42 – volume: 61 start-page: 377 year: 2017 ident: ref_30 article-title: Self-adjusting parameter control for surrogate-assisted constrained optimization under limited budgets publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.060 – ident: ref_35 – volume: 16 start-page: 4876 year: 2012 ident: ref_62 article-title: Artificial neural network analysis of Moroccan solar potential publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.03.071 – ident: ref_68 doi: 10.1109/SmartGridComm.2013.6688009 – volume: 5 start-page: 2846 year: 2014 ident: ref_72 article-title: Electric Vehicle Charging Station Placement: Formulation, Complexity, and Solutions publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2344684 – ident: ref_71 – ident: ref_54 doi: 10.1007/978-3-642-03070-3_28 – volume: 8 start-page: 2119 year: 2017 ident: ref_49 article-title: Optimal Planning of PEV Charging Station with Single Output Multiple Cables Charging Spots publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2517026 – ident: ref_6 doi: 10.1109/ISIE45552.2021.9576448 – ident: ref_31 – ident: ref_18 doi: 10.1109/APEC.2018.8341082 – volume: 93 start-page: 102769 year: 2021 ident: ref_13 article-title: Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior publication-title: Transp. Res. Part D Transp. Environ. doi: 10.1016/j.trd.2021.102769 – ident: ref_66 – volume: 2023 start-page: 6103796 year: 2023 ident: ref_2 article-title: Optimal Deployment of Electric Vehicles’ Fast-Charging Stations publication-title: J. Adv. Transp. doi: 10.1155/2023/6103796 – volume: 98 start-page: 317 year: 2005 ident: ref_55 article-title: Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.08.006 – ident: ref_17 – ident: ref_45 – volume: 37 start-page: 352 year: 2020 ident: ref_64 article-title: Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering publication-title: J. Classif. doi: 10.1007/s00357-018-9296-4 – volume: 3 start-page: 267 year: 2020 ident: ref_10 article-title: Electric vehicles in a smart grid: A comprehensive survey on optimal location of charging station publication-title: IET Smart Grid doi: 10.1049/iet-stg.2019.0220 – volume: 2020 start-page: 9864935 year: 2020 ident: ref_52 article-title: Distribution route optimization for electric vehicles in urban cold chain logistics for fresh products under time-varying traffic conditions publication-title: Math. Probl. Eng. doi: 10.1155/2020/9864935 – ident: ref_16 doi: 10.3390/en11102752 – volume: 173 start-page: 24 year: 2021 ident: ref_32 article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.12.010 – ident: ref_47 – ident: ref_50 doi: 10.1109/ICPS48983.2019.9067587 – volume: 54 start-page: 1408 year: 2020 ident: ref_70 article-title: Location of charging stations in electric car sharing systems publication-title: Transp. Sci. doi: 10.1287/trsc.2019.0931 – volume: 51 start-page: 645 year: 2002 ident: ref_23 article-title: Stability and Regularization of Vector Problems of Integer Linear Programming publication-title: Optimization doi: 10.1080/0233193021000030760 – volume: 19 start-page: 127 year: 2001 ident: ref_33 article-title: The power crust, unions of balls, and the medial axis transform publication-title: Comput. Geom. doi: 10.1016/S0925-7721(01)00017-7 – volume: 7 start-page: 923 year: 2019 ident: ref_74 article-title: Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-018-0493-2 – ident: ref_21 doi: 10.1109/ICECENG.2011.6057636 – volume: 4 start-page: 540 year: 2019 ident: ref_19 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 – volume: 49 start-page: 104092 year: 2022 ident: ref_25 article-title: Research on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104092 – volume: 1 start-page: 397 year: 2018 ident: ref_34 article-title: Generalized persistence diagrams publication-title: J. Appl. Comput. Topol. doi: 10.1007/s41468-018-0012-6 – ident: ref_67 – ident: ref_37 – volume: 22 start-page: 6654 year: 2021 ident: ref_8 article-title: Efficient Deployment of Electric Vehicle Charging Infrastructure: Simultaneous Optimization of Charging Station Placement and Charging Pile Assignment publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2990694 – volume: 22 start-page: 143 year: 2019 ident: ref_12 article-title: Fast EV charging station integration with grid ensuring optimal and quality power exchange publication-title: Eng. Sci. Technol. Int. J. – volume: 22 start-page: 531 year: 2020 ident: ref_9 article-title: Dynamic Pricing for Electric Vehicle Extreme Fast Charging publication-title: Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2020.2983385 – volume: 4 start-page: 108 year: 2021 ident: ref_41 article-title: An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists publication-title: Front. Artif. Intell. doi: 10.3389/frai.2021.667963 – volume: 175 start-page: 50 year: 2018 ident: ref_58 article-title: Spatial scaling of urban impervious surfaces across evolving landscapes: From cities to urban regions publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2018.03.010 – volume: 24 start-page: 280 year: 2009 ident: ref_61 article-title: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2009.00595.x – ident: ref_22 doi: 10.1145/3219819.3220032 – volume: 22 start-page: 469 year: 1996 ident: ref_63 article-title: The Quickhull Algorithm for Convex Hulls publication-title: ACM Trans. Math. Softw. doi: 10.1145/235815.235821 – volume: 19 start-page: 871 year: 2005 ident: ref_53 article-title: Optimization approaches for generalization and data abstraction publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810500161179 – volume: 224 start-page: 120106 year: 2021 ident: ref_7 article-title: A novel fast-charging stations locational planning model for electric bus transit system publication-title: Energy doi: 10.1016/j.energy.2021.120106 – volume: 125 start-page: 289 year: 2014 ident: ref_75 article-title: Optimal fast charging station placing and sizing publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.077 – volume: 133 start-page: 70 year: 2017 ident: ref_73 article-title: Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2017.05.094 – volume: 2 start-page: 91 year: 2021 ident: ref_14 article-title: Planning and operation of EV charging stations by chicken swarm optimization driven heuristics publication-title: Energy Convers. Econ. doi: 10.1049/enc2.12030 – ident: ref_24 doi: 10.1109/ICEES57979.2023.10110213 – ident: ref_29 doi: 10.1145/2739480.2754658 – volume: 30 start-page: 1075 year: 2005 ident: ref_59 article-title: Forecasting based on neural network approach of solar potential in Turkey publication-title: Renew. Energy doi: 10.1016/j.renene.2004.09.020 – ident: ref_15 – volume: 28 start-page: 49 year: 1999 ident: ref_38 article-title: OPTICS: Ordering Points to Identify the Clustering Structure publication-title: SIGMOD Rec. doi: 10.1145/304181.304187 – volume: 60 start-page: 478 year: 2015 ident: ref_28 article-title: A hierarchical decomposition framework for modeling combinatorial optimization problems publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.169 – volume: 137 start-page: 111103 year: 2020 ident: ref_1 article-title: Long-term electric vehicles outlook and their potential impact on electric grid publication-title: Energy Policy doi: 10.1016/j.enpol.2019.111103 – volume: 22 start-page: 466 year: 2021 ident: ref_20 article-title: Enabling Extreme Fast Charging Technology for Electric Vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3045241 – volume: 26 start-page: 215 year: 2012 ident: ref_60 article-title: Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2011.575074 – ident: ref_69 doi: 10.1109/ESARS.2012.6387434 – ident: ref_36 – ident: ref_43 – volume: 60 start-page: 1 year: 2013 ident: ref_39 article-title: Persistence-Based Clustering in Riemannian Manifolds publication-title: J. ACM doi: 10.1145/2535927 – volume: 15 start-page: 1486 year: 2022 ident: ref_3 article-title: An optimal deployment scheme for extremely fast charging stations publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-022-01306-7 |
SSID | ssj0002794570 |
Score | 2.2441864 |
Snippet | The widespread use of electric vehicles necessitates meticulous planning for the placement of charging stations (CSs) in already crowded cities so that they... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3060 |
SubjectTerms | Accuracy Algorithms Approximation Cities Clustering convolutional neural network Electric vehicle charging electric vehicle charging station placement Electric vehicles Heuristic methods Integer programming Linear programming Optimization persistent homology Placement Queueing topological data analysis Topology |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidkoM3KWubpGm8zeHYRGUwJ7uV_MQJdmLr_-9L2slgBy9eS5uG95K-9_XlfR9C10ZboWOZRZ7pJKIQASKRMh0Z7jzFD4VVFNg-n7PxnD4s2GJD6sufCWvogRvD9bPcCZs4nlrhqIml4oYTY3nOcsFjEdp8IeZtgKn3UE4TlPG46ZIhgOv71QeMqANLaeY5SLzw-UYkCoT9W9_jEGRGB2i_zQ7xoJnVIdqx5RHa2-AMPEbFdBhNHqe3eIBHsqqxLA2eQOAIZ4DwUxCExvUKT_3_cXwfVG6WGr_aNz8k9uV1r0uEZ00NvsLLEs_8rPEwTPsEzUf3L8Nx1KokRJrGpI7SNNdWQVaT60QoAns0c7EG6BkblRjmhCGMJ1Iw6YyGbI9JkjhBMqsTKiFdJKeoU65Ke4awVvCgIJbHVlDOjTBUO6VkrhgAcJl30c3aYsVnQ4ZRAIjw9i227dtFd96ov3d6IutwAdxbtO4t_nJvF_XWLina3VUVqQBcA0CO0_P_eMcF2vUi8k2HYQ916q9vewmpRq2uwqr6Ab7X0Uc priority: 102 providerName: Directory of Open Access Journals |
Title | PC-ILP: A Fast and Intuitive Method to Place Electric Vehicle Charging Stations in Smart Cities |
URI | https://www.proquest.com/docview/2904911474 https://doaj.org/article/68f9e1f72e9f4d0ab7d73de785897098 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R3QscEE9RKCsfuCGrSWzHNhe0XXZpUVutWIp6i_yEHsiWJvx_xk62VKrENU9rPJ6n_X0A77wL2hWmpgnphHL0AFRXwlEvY4L44ahFGe3zvD6-4F8uxeVYcOvGbZU7m5gNtd-6VCM_rDTGshi8S_7x-jdNrFGpuzpSaOzBFE2wUhOYHi3P119vqywVqpuQxXBahmF-f9j9wilxGa20TlgkiQD9jkfKwP337HJ2Nqsn8HiMEsl8mNan8CC0z-DRHezA59CsF_TkdP2BzMnKdD0xrScn6EDyXiBylomhSb8l61QnJ8vMdnPlyPfwM32SpDZ74icim6EX35GrlmzSqMkiD_sFXKyW3xbHdGRLoI4XrKdVpVywGN0oV2rLcK3WsXCYghbell5E7ZmQpdHCRO8w6hOGlVGzOriSGwwb2UuYtNs2vALiLL6oWZBF0FxKrz130VqjrMBE3Kh9eL-TWHM9gGI0mEwk-Tb35bsPR0mot08mQOt8YXvzoxnXR1OrqEMZZRV05L4wVnrJfJBKKC0Ljb882E1JM66yrvmnE6__f_sNPEw08cMZwgOY9Dd_wlsMJno7gz21-jyD6fzT2elmNurPLKfmfwEPg82O |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALxFOUFvACVsiqE9txjISqMnSYodNqpLaoO9dP6IJM2wQhfqrfyLUzKZUqses2Thzr-tj3Xj_OQeitd0E5aiqSmE4IBw9AVCkc8TImih8OKMpsn_vV5Ih_PRbHK-hyuAuTjlUOc2KeqP3CpTXyzVJBLAvBu-RbZ-ckqUal3dVBQqOHxW748xtStvbj9DP077uyHO8cjiZkqSpAHKesI2VZu2AhCqhdoSwDTFeROkjVqLeFF1F5JmRhlDDRO4iOhGFFVKwKruAGwisG9d5BdzkDT55upo-_XK3plABuIWl_NwfK6Wb7EwDgMjdqlZhPktz6Nf-XZQJueIHs2saP0MNlTIq3exA9RiuheYIeXGMqfIr0fESms_kHvI3Hpu2waTyegrvKJ4_wXpahxt0Cz9OqPN7J2jqnDn8LP1KVOG3qJzUkfNDv_Lf4tMEHqdV4lJv9DB3dihWfo9Vm0YQXCDsLHyoWJA2KS-mV5y5aa2orIO039Rp6P1hMn_UUHBpSl2RffdO-a-hTMurVm4k-Oz9YXHzXy9GoqzqqUERZBhW5p8ZKL5kPsha1klTBLzeGLtHLMd3qfwh8-f_iN-je5HBvpmfT_d11dD8J1Pe3FzfQanfxK7yCMKazrzN2MDq5bbD-BcW3BJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDxFoYAPcELRJrEdx0gItdtddWlZRZSi3oKf0APZ0gQh_hq_jhknKZUqces1Dycaf_bM2OPvI-Sls17ZVBcJMp0kHDxAonJhEycDUvxwQFFk-1wV-8f8_Yk42SB_xrMwWFY5zolxonZri2vk01xBLAvBu-TTMJRFVHuLd2c_ElSQwp3WUU6jh8iB__0L0rf27XIP-vpVni_mn2b7yaAwkFiesi7J89J6AxFBaTNlGOC7CKmFtC11JnMiKMeEzLQSOjgLkZLQLAuKFd5mXEOoxaDdG2RTYlY0IZu781X18WKFJweoC5n2J3UYU-m0_Q5wsJEptUAeFBRfv-QNo2jAFZ8QHd3iLrkzRKh0p4fUPbLhm_vk9iXewgekrmbJ8rB6Q3foQrcd1Y2jS3BesQ6Jfoii1LRb0wrX6Ok8Ku2cWvrZf8MmKW7xozYSPerrAFp62tAj_Gs6i7_9kBxfix0fkUmzbvxjQq2BFxXzMvWKS-mU4zYYo0sjvMl1uUVejxarz3pCjhoSGbRvfdW-W2QXjXrxJJJpxwvr86_1MDbrogzKZ0HmXgXuUm2kk8x5WYpSyVTBJ7fHLqmHEd7W__D45P-3X5CbANT6cLk6eEpuoVp9f5Rxm0y685_-GcQ0nXk-gIeSL9eN178Rjgom |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PC-ILP%3A+A+Fast+and+Intuitive+Method+to+Place+Electric+Vehicle+Charging+Stations+in+Smart+Cities&rft.jtitle=Smart+cities+%28Basel%29&rft.au=Bose%2C+Mehul&rft.au=Dutta%2C+Bivas+Ranjan&rft.au=Shrivastava%2C+Nivedita&rft.au=Sarangi%2C+Smruti+R&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2624-6511&rft.volume=6&rft.issue=6&rft.spage=3060&rft_id=info:doi/10.3390%2Fsmartcities6060137&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-6511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-6511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-6511&client=summon |