Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: Thermodynamic assessment and experimental validation

In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in the...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 842; p. 155726
Main Authors Müller, Franz, Gorr, Bronislava, Christ, Hans-Jürgen, Chen, Hans, Kauffmann, Alexander, Laube, Stephan, Heilmaier, Martin
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in these alloy systems. Thermodynamic calculations were performed using a self-developed thermodynamic database based on the CALPHAD (Calculation of Phase Diagram) approach. The details of the thermodynamic modelling and particular characteristics of the relevant phases within the Ta-Nb-Cr-Ti-Al system are presented. To verify the new database, the phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally by utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) as well as X-ray powder diffraction (XRD). Both equiatomic alloys reveal a complex microstructure including several intermetallic phases at intermediate temperatures. The alloy NbMoCrTiAl consists of an ordered B2 phase, Al(Mo, Nb)3 and two polytypes (C14 and C15) of the Cr2Nb Laves phase. Precipitations of Cr2Ta Laves phase (C14, C15 and C36-type) in the B2 matrix were observed in the alloy TaMoCrTiAl. Based on the results of thermodynamic calculations, it was concluded that: (i) Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl, (ii) Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys and (iii) the concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction. •Development of a thermodynamic database based on the CALPHAD approach for the Ta-Nb-Mo-Cr-Ti-Al system.•The phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys.•Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl.•The concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction.
AbstractList In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in these alloy systems. Thermodynamic calculations were performed using a self-developed thermodynamic database based on the CALPHAD (Calculation of Phase Diagram) approach. The details of the thermodynamic modelling and particular characteristics of the relevant phases within the Ta-Nb-Cr-Ti-Al system are presented. To verify the new database, the phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally by utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) as well as X-ray powder diffraction (XRD). Both equiatomic alloys reveal a complex microstructure including several intermetallic phases at intermediate temperatures. The alloy NbMoCrTiAl consists of an ordered B2 phase, Al(Mo, Nb)3 and two polytypes (C14 and C15) of the Cr2Nb Laves phase. Precipitations of Cr2Ta Laves phase (C14, C15 and C36-type) in the B2 matrix were observed in the alloy TaMoCrTiAl. Based on the results of thermodynamic calculations, it was concluded that: (i) Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl, (ii) Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys and (iii) the concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction.
In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in these alloy systems. Thermodynamic calculations were performed using a self-developed thermodynamic database based on the CALPHAD (Calculation of Phase Diagram) approach. The details of the thermodynamic modelling and particular characteristics of the relevant phases within the Ta-Nb-Cr-Ti-Al system are presented. To verify the new database, the phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally by utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) as well as X-ray powder diffraction (XRD). Both equiatomic alloys reveal a complex microstructure including several intermetallic phases at intermediate temperatures. The alloy NbMoCrTiAl consists of an ordered B2 phase, Al(Mo, Nb)3 and two polytypes (C14 and C15) of the Cr2Nb Laves phase. Precipitations of Cr2Ta Laves phase (C14, C15 and C36-type) in the B2 matrix were observed in the alloy TaMoCrTiAl. Based on the results of thermodynamic calculations, it was concluded that: (i) Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl, (ii) Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys and (iii) the concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction. •Development of a thermodynamic database based on the CALPHAD approach for the Ta-Nb-Mo-Cr-Ti-Al system.•The phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys.•Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl.•The concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction.
ArticleNumber 155726
Author Müller, Franz
Chen, Hans
Kauffmann, Alexander
Laube, Stephan
Christ, Hans-Jürgen
Heilmaier, Martin
Gorr, Bronislava
Author_xml – sequence: 1
  givenname: Franz
  surname: Müller
  fullname: Müller, Franz
  email: franz.mueller@uni-siegen.de
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 2
  givenname: Bronislava
  surname: Gorr
  fullname: Gorr, Bronislava
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 3
  givenname: Hans-Jürgen
  surname: Christ
  fullname: Christ, Hans-Jürgen
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 4
  givenname: Hans
  surname: Chen
  fullname: Chen, Hans
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
– sequence: 5
  givenname: Alexander
  surname: Kauffmann
  fullname: Kauffmann, Alexander
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
– sequence: 6
  givenname: Stephan
  surname: Laube
  fullname: Laube, Stephan
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
– sequence: 7
  givenname: Martin
  surname: Heilmaier
  fullname: Heilmaier, Martin
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
BookMark eNqFkc1uEzEUhS1UJNLCIyBZYj3Bf_MHC1RFLa1UYBPWluO5Jh557MF2o87j8KY4Sdmw6erqXp3z-fqeS3ThgweE3lOypoQ2H8f1qJzTYVozwsqsrlvWvEIr2rW8Ek3TX6AV6Vlddbzr3qDLlEZCCO05XaE_tyFOKtvgcTC4MGYHT9j6DHGCXLBW43mvEqQyxD4cwOEIJiqdQ1zw3v7aV-BzDPOCizosCX_ffQubuLXXDis_4K36137C233BhmHxaipclQo2TcV-EsLTDNEeW-XwQTk7nPZ6i14b5RK8e65X6OftzXZzVz38-Hq_uX6otCA8V4xx0wwtVVSL1vSaGtKa2jC-E0ZooWG3o4LDALzmjBJFaSlCcAZEQV8P_Ap9OHPnGH4_QspyDI_RlyclE6IT5aiMF9Xns0rHkFK5hNQ2n_bMUVknKZHHTOQonzORx0zkOZPirv9zz-XHKi4v-r6cfVAOcLAQZdIWvIbBRtBZDsG-QPgLsROvUQ
CitedBy_id crossref_primary_10_1016_j_ijrmhm_2024_106771
crossref_primary_10_1002_adem_202201614
crossref_primary_10_1007_s12598_021_01926_7
crossref_primary_10_1016_j_jmst_2022_11_054
crossref_primary_10_1016_j_jmrt_2024_05_166
crossref_primary_10_1016_j_actamat_2024_119911
crossref_primary_10_1016_j_rinma_2023_100508
crossref_primary_10_1016_j_jallcom_2022_166741
crossref_primary_10_1016_j_jallcom_2022_167897
crossref_primary_10_1016_j_jallcom_2022_165471
crossref_primary_10_1016_j_actamat_2021_117217
crossref_primary_10_1002_adma_202305192
crossref_primary_10_3390_coatings13111819
crossref_primary_10_1007_s12598_022_01971_w
crossref_primary_10_1080_14686996_2022_2132118
crossref_primary_10_1002_adem_202301797
crossref_primary_10_1016_j_surfcoat_2023_130299
crossref_primary_10_1177_09544062211008935
crossref_primary_10_1590_1980_5373_mr_2023_0547
crossref_primary_10_1016_j_jmrt_2025_02_099
crossref_primary_10_2320_matertrans_MT_M2021234
crossref_primary_10_1016_j_jmrt_2023_11_254
crossref_primary_10_1016_j_jmst_2022_08_046
crossref_primary_10_1080_21663831_2022_2109442
crossref_primary_10_1002_adem_202201449
crossref_primary_10_1016_j_commatsci_2023_112249
crossref_primary_10_1016_j_msea_2025_148180
crossref_primary_10_3390_ma17225429
crossref_primary_10_1016_j_scriptamat_2024_115978
crossref_primary_10_1007_s11085_021_10046_7
crossref_primary_10_1016_j_jallcom_2022_167386
crossref_primary_10_1016_j_corsci_2021_109861
crossref_primary_10_1007_s11837_024_06459_9
crossref_primary_10_1016_j_commatsci_2021_110755
crossref_primary_10_1007_s10853_023_09115_w
crossref_primary_10_1016_j_actamat_2025_120827
crossref_primary_10_1063_5_0206425
crossref_primary_10_1007_s10853_023_08634_w
crossref_primary_10_2139_ssrn_4067190
crossref_primary_10_1063_5_0203536
Cites_doi 10.1038/s41598-019-43819-x
10.1016/j.intermet.2009.06.015
10.1016/j.scriptamat.2009.11.002
10.1038/ncomms7529
10.1016/S1359-6454(00)00118-X
10.1016/j.intermet.2013.03.001
10.1007/BF02671963
10.1016/j.scriptamat.2017.10.027
10.1016/j.jallcom.2020.153805
10.1016/j.calphad.2018.02.004
10.1016/j.scriptamat.2015.10.025
10.1016/j.jallcom.2015.08.224
10.1557/JMR.2010.0265
10.1016/j.scriptamat.2011.01.032
10.1016/j.intermet.2010.10.002
10.1016/j.intermet.2010.05.014
10.1016/j.ultramic.2012.12.015
10.1016/j.intermet.2011.01.004
10.1557/jmr.2018.223
10.1007/s11661-006-0081-3
10.1016/S0921-5093(96)10841-8
10.1016/j.corsci.2019.108161
10.1016/j.jallcom.2015.04.231
10.1016/j.jallcom.2016.07.219
10.1016/j.actamat.2015.08.076
10.1016/j.ijrmhm.2012.08.009
10.1016/j.actamat.2013.04.058
10.1016/j.jallcom.2007.10.061
10.1016/S0966-9795(00)00015-7
10.1016/S1359-6454(99)00377-8
10.1016/j.scriptamat.2011.01.035
10.1557/jmr.2018.153
10.1016/j.actamat.2018.09.040
10.1016/j.msea.2015.09.010
10.3139/146.110420
10.1038/s41598-018-27144-3
10.1016/j.intermet.2011.03.031
10.1016/0001-6160(67)90009-0
10.1016/j.matchar.2018.03.043
10.1016/j.jallcom.2017.07.066
10.1016/j.jallcom.2015.11.050
10.1016/j.intermet.2004.02.017
10.1016/j.matdes.2016.01.033
10.1016/j.jallcom.2008.05.008
10.1016/j.calphad.2004.07.002
10.1016/j.jallcom.2008.08.118
10.1016/j.scriptamat.2018.12.017
10.1016/0040-6031(88)87198-3
10.1557/PROC-1128-U08-07
10.1016/S0925-8388(99)00557-5
10.1007/BF03220163
10.1016/j.scriptamat.2016.04.017
10.1016/S1359-6462(98)00406-0
10.1016/0364-5916(91)90030-N
10.1016/j.actamat.2016.08.081
10.1007/s11837-013-0772-3
10.1179/imr.1993.38.4.193
10.1007/s11837-017-2566-5
10.1016/j.corsci.2020.108475
10.1007/s11669-014-0313-y
10.1016/j.actamat.2019.07.001
10.1007/s11661-017-4386-1
10.3390/e18030102
10.1016/0921-5093(92)90228-S
10.1080/09603409.2017.1389115
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 25, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 25, 2020
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2020.155726
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2020_155726
S0925838820320909
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c403t-223f6d71a1c47f9c1f07f5f23b4f4c4cebb143ede353210a113214432e0ae95d3
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Wed Aug 13 09:40:25 EDT 2025
Tue Jul 01 03:58:40 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
Fri Feb 23 02:47:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Complex intermetallic phases
Refractory high-entropy alloys
Compositionally complex alloys
Calphad method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-223f6d71a1c47f9c1f07f5f23b4f4c4cebb143ede353210a113214432e0ae95d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2448457223
PQPubID 2045454
ParticipantIDs proquest_journals_2448457223
crossref_citationtrail_10_1016_j_jallcom_2020_155726
crossref_primary_10_1016_j_jallcom_2020_155726
elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_155726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-25
PublicationDateYYYYMMDD 2020-11-25
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Karati, Guruvidyathri, Hariharan, Murty (bib52) 2019; 162
Aufrecht, Leineweber, Mittemeijer (bib69) 2008; 1128
Senkov, Isheim, Seidman, Pilchak (bib9) 2016; 18
Soni, Gwalani, Senkov, Viswanathan, Alam, Miracle, Banerjee (bib20) 2018; 33
Li, Song, Nurly, Xue, Wen, Wei, Shi (bib58) 2018; 140
Dinsdale (bib35) 1991; 15
Saunders, Ansara, Dinsdale, Rand (bib41) 1997; 2
Darolia (bib55) 1991; 43
Noebe, Bowman, Nathal (bib56) 1993; 38
Manzoni, Daoud, Völkl, Glatzel, Wanderka (bib10) 2013; 132
Pan (bib63) 1961; 12
Senkov, Miracle, Chaput, Couzinie (bib3) 2018; 33
Lee, Kim, Lee (bib40) 2000; 297
Aufrecht, Leineweber, Duppel, Mittemeijer (bib70) 2010; 25
Laplanche, Berglund, Reinhart, Kostka, Fox, George (bib50) 2018; 161
Misra, Petrovic, Mitchell (bib53) 1998; 40
Müller, Gorr, Christ, Müller, Butz, Chen, Kauffmann, Heilmaier (bib24) 2019; 159
Marker, Shang, Zhao, Liu (bib46) 2018; 61
Tsai, Tsai, Yeh (bib30) 2013; 61
Witusiewicz, Bondar, Hecht, Rex, Velikanova (bib47) 2008; 465
Leineweber, Aufrecht, Senyshyn, Mittemeijer (bib68) 2011; 64
Lautenschlager, Hughes, Brittain (bib57) 1967; 15
Gamsjäger, Liu, Rester, Puschnig, Draxl, Clemens, Dehm, Fischer (bib17) 2013; 38
Chen, Niu, Liu, Lu, Wang, Peng, Liu (bib12) 2016; 94
Dupin, Ansara (bib43) 1993; 14
Kornilov, Shakhova, Budberg, Nedumov (bib71) 1963; 149
Xiong, Du, Liu, Huang, Xu, Chen, Pan (bib42) 2004; 28
Senkov, Wilks, Scott, Miracle (bib2) 2011; 19
He, Stein (bib48) 2010; 101
Laube, Chen, Kauffmann, Schellert, Müller, Gorr, Müller, Butz, Christ, Heilmaier (bib26) 2020; 823
Witusiewicz, Bondar, Hecht, Zollinger, Petyukh, Fomichov, Voblikov, Rex (bib36) 2010; 18
Ohnuma, Fujita, Mitsui, Ishikawa, Kainuma, Ishida (bib61) 2000; 48
Cupid, Kriegel, Fabrichnaya, Ebrahimi, Seifert (bib44) 2011; 19
Hunt, Raman (bib54) 1968; 59
(bib21) 2018
Hsieh, Yu, Hsieh, Chiang, Ku, Lai, Tu, Yang (bib8) 2009; 483
Witusiewicz, Bondar, Hecht, Velikanova (bib39) 2015; 644
Shah, Anton (bib28) 1992; 153
Ren, Ouyang, Ding, Zhong, Yu, Ren, Zhou (bib74) 2017; 724
Witusiewicz, Bondar, Hecht, Voblikov, Fomichov, Petyukh, Rex (bib38) 2011; 19
Müller, Gorr, Christ, Chen, Kauffmann, Heilmaier (bib62) 2018; 35
Nie (bib66) 2011; 64
Soni, Senkov, Gwalani, Miracle, Banerjee (bib19) 2018; 8
He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib14) 2016; 102
Gorr, Mueller, Christ, Mueller, Chen, Kauffmann, Heilmaier (bib6) 2016; 688
Senkov, Miller, Miracle, Woodward (bib31) 2015; 6
Pradeep, Tasan, Yao, Deng, Springer, Raabe (bib16) 2015; 648
Witusiewicz, Bondar, Hecht, Velikanova (bib37) 2009; 472
Kainuma, Fujita, Mitsui, Ohnuma, Ishida (bib60) 2000; 8
Senkov, Wilks, Miracle, Chuang, Liaw (bib1) 2010; 18
Pan (bib64) 1961; 4
Lo, Chang, Murakami, Yeh, Yeh (bib73) 2019; 9
Pickering, Muñoz-Moreno, Stone, Jones (bib15) 2016; 113
Schmetterer, Khvan, Jacob, Hallstedt, Markus (bib45) 2014; 35
Huhn, Widom (bib7) 2013; 65
Aufrecht, Leineweber, Senyshyn, Mittemeijer (bib67) 2010; 62
Chen, Kauffmann, Seils, Boll, Liebscher, Harding, Kumar, Szabó, Schlabach, Kauffmann-Weiss, Müller, Gorr, Christ, Heilmaier (bib25) 2019; 176
Chen, Kauffmann, Gorr, Schliephake, Seemüller, Wagner, Christ, Heilmaier (bib22) 2016; 661
Jensen, Welk, Williams, Sosa, Huber, Senkov, Viswanathan, Fraser (bib18) 2016; 121
Zhou, Taylor, Melinte, Shahani, Dharmawardhana, Heinz, Voorhees, Perepezko, Bustillo, Ercius, Miao (bib29) 2018; 8
Miracle, Senkov (bib13) 2017; 122
Lukas, Fries, Sundman (bib33) 2007
Cupid (bib49) 2009
Kumar, Hazzledine (bib65) 2004; 12
Saal, Berglund, Sebastian, Liaw, Olson (bib51) 2018; 146
Chen, Lin, Yeh, Chuang, Chen, Huang (bib11) 2006; 37
Li, Li, Xue, Fu (bib27) 2013; 36
Hillert (bib34) 1988; 129
Kumar, Pang, Liu, Horton, Kenik (bib72) 2000; 48
Stepanov, Yurchenko, Skibin, Tikhonovsky, Salishchev (bib4) 2015; 652
Guruvidyathri, Hari Kumar, Yeh, Murty (bib32) 2017; 69
Jewett, Ahrens, Dahms (bib59) 1997; 225
Chen, Kauffmann, Laube, Choi, Schwaiger, Huang, Lichtenberg, Müller, Gorr, Christ, Heilmaier (bib5) 2018; 49
Gorr, Müller, Schellert, Christ, Chen, Kauffmann, Heilmaier (bib23) 2020; 166
Pickering (10.1016/j.jallcom.2020.155726_bib15) 2016; 113
Laube (10.1016/j.jallcom.2020.155726_bib26) 2020; 823
Senkov (10.1016/j.jallcom.2020.155726_bib1) 2010; 18
Soni (10.1016/j.jallcom.2020.155726_bib19) 2018; 8
Li (10.1016/j.jallcom.2020.155726_bib27) 2013; 36
Senkov (10.1016/j.jallcom.2020.155726_bib3) 2018; 33
Pan (10.1016/j.jallcom.2020.155726_bib64) 1961; 4
Senkov (10.1016/j.jallcom.2020.155726_bib31) 2015; 6
Lee (10.1016/j.jallcom.2020.155726_bib40) 2000; 297
Aufrecht (10.1016/j.jallcom.2020.155726_bib70) 2010; 25
Pradeep (10.1016/j.jallcom.2020.155726_bib16) 2015; 648
Stepanov (10.1016/j.jallcom.2020.155726_bib4) 2015; 652
Gamsjäger (10.1016/j.jallcom.2020.155726_bib17) 2013; 38
He (10.1016/j.jallcom.2020.155726_bib14) 2016; 102
Hsieh (10.1016/j.jallcom.2020.155726_bib8) 2009; 483
(10.1016/j.jallcom.2020.155726_bib21) 2018
Witusiewicz (10.1016/j.jallcom.2020.155726_bib37) 2009; 472
Kornilov (10.1016/j.jallcom.2020.155726_bib71) 1963; 149
Marker (10.1016/j.jallcom.2020.155726_bib46) 2018; 61
Gorr (10.1016/j.jallcom.2020.155726_bib6) 2016; 688
Saal (10.1016/j.jallcom.2020.155726_bib51) 2018; 146
Laplanche (10.1016/j.jallcom.2020.155726_bib50) 2018; 161
Chen (10.1016/j.jallcom.2020.155726_bib11) 2006; 37
Kainuma (10.1016/j.jallcom.2020.155726_bib60) 2000; 8
He (10.1016/j.jallcom.2020.155726_bib48) 2010; 101
Chen (10.1016/j.jallcom.2020.155726_bib22) 2016; 661
Guruvidyathri (10.1016/j.jallcom.2020.155726_bib32) 2017; 69
Soni (10.1016/j.jallcom.2020.155726_bib20) 2018; 33
Müller (10.1016/j.jallcom.2020.155726_bib24) 2019; 159
Cupid (10.1016/j.jallcom.2020.155726_bib44) 2011; 19
Jewett (10.1016/j.jallcom.2020.155726_bib59) 1997; 225
Tsai (10.1016/j.jallcom.2020.155726_bib30) 2013; 61
Saunders (10.1016/j.jallcom.2020.155726_bib41) 1997; 2
Müller (10.1016/j.jallcom.2020.155726_bib62) 2018; 35
Witusiewicz (10.1016/j.jallcom.2020.155726_bib36) 2010; 18
Chen (10.1016/j.jallcom.2020.155726_bib12) 2016; 94
Chen (10.1016/j.jallcom.2020.155726_bib5) 2018; 49
Shah (10.1016/j.jallcom.2020.155726_bib28) 1992; 153
Kumar (10.1016/j.jallcom.2020.155726_bib65) 2004; 12
Senkov (10.1016/j.jallcom.2020.155726_bib9) 2016; 18
Lautenschlager (10.1016/j.jallcom.2020.155726_bib57) 1967; 15
Aufrecht (10.1016/j.jallcom.2020.155726_bib69) 2008; 1128
Dupin (10.1016/j.jallcom.2020.155726_bib43) 1993; 14
Leineweber (10.1016/j.jallcom.2020.155726_bib68) 2011; 64
Huhn (10.1016/j.jallcom.2020.155726_bib7) 2013; 65
Chen (10.1016/j.jallcom.2020.155726_bib25) 2019; 176
Zhou (10.1016/j.jallcom.2020.155726_bib29) 2018; 8
Misra (10.1016/j.jallcom.2020.155726_bib53) 1998; 40
Nie (10.1016/j.jallcom.2020.155726_bib66) 2011; 64
Ohnuma (10.1016/j.jallcom.2020.155726_bib61) 2000; 48
Lo (10.1016/j.jallcom.2020.155726_bib73) 2019; 9
Senkov (10.1016/j.jallcom.2020.155726_bib2) 2011; 19
Dinsdale (10.1016/j.jallcom.2020.155726_bib35) 1991; 15
Hunt (10.1016/j.jallcom.2020.155726_bib54) 1968; 59
Gorr (10.1016/j.jallcom.2020.155726_bib23) 2020; 166
Aufrecht (10.1016/j.jallcom.2020.155726_bib67) 2010; 62
Xiong (10.1016/j.jallcom.2020.155726_bib42) 2004; 28
Schmetterer (10.1016/j.jallcom.2020.155726_bib45) 2014; 35
Lukas (10.1016/j.jallcom.2020.155726_bib33) 2007
Noebe (10.1016/j.jallcom.2020.155726_bib56) 1993; 38
Pan (10.1016/j.jallcom.2020.155726_bib63) 1961; 12
Manzoni (10.1016/j.jallcom.2020.155726_bib10) 2013; 132
Cupid (10.1016/j.jallcom.2020.155726_bib49) 2009
Witusiewicz (10.1016/j.jallcom.2020.155726_bib39) 2015; 644
Witusiewicz (10.1016/j.jallcom.2020.155726_bib47) 2008; 465
Li (10.1016/j.jallcom.2020.155726_bib58) 2018; 140
Miracle (10.1016/j.jallcom.2020.155726_bib13) 2017; 122
Darolia (10.1016/j.jallcom.2020.155726_bib55) 1991; 43
Hillert (10.1016/j.jallcom.2020.155726_bib34) 1988; 129
Witusiewicz (10.1016/j.jallcom.2020.155726_bib38) 2011; 19
Ren (10.1016/j.jallcom.2020.155726_bib74) 2017; 724
Jensen (10.1016/j.jallcom.2020.155726_bib18) 2016; 121
Karati (10.1016/j.jallcom.2020.155726_bib52) 2019; 162
Kumar (10.1016/j.jallcom.2020.155726_bib72) 2000; 48
References_xml – volume: 101
  start-page: 1369
  year: 2010
  end-page: 1375
  ident: bib48
  article-title: Thermodynamic assessment of the Cr–Al–Nb system
  publication-title: IJMR
– volume: 12
  start-page: 763
  year: 2004
  end-page: 770
  ident: bib65
  article-title: Polytypic transformations in Laves phases
  publication-title: Intermetallics
– volume: 12
  start-page: 455
  year: 1961
  end-page: 457
  ident: bib63
  article-title: Polymorphic transformation in NbCr2
  publication-title: Fiz. Met. Metalloved.
– volume: 35
  start-page: 168
  year: 2018
  end-page: 176
  ident: bib62
  article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al
  publication-title: Mater. A. T. High. Temp.
– volume: 15
  start-page: 317
  year: 1991
  end-page: 425
  ident: bib35
  article-title: SGTE data for pure elements
  publication-title: Calphad
– volume: 48
  start-page: 3113
  year: 2000
  end-page: 3123
  ident: bib61
  article-title: Phase equilibria in the Ti–Al binary system
  publication-title: Acta Mater.
– volume: 8
  start-page: 8816
  year: 2018
  ident: bib19
  article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy
  publication-title: Sci. Rep.
– volume: 176
  start-page: 123
  year: 2019
  end-page: 133
  ident: bib25
  article-title: Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al
  publication-title: Acta Mater.
– volume: 33
  start-page: 3092
  year: 2018
  end-page: 3128
  ident: bib3
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J. Mater. Res.
– volume: 18
  start-page: 1758
  year: 2010
  end-page: 1765
  ident: bib1
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 121
  start-page: 1
  year: 2016
  end-page: 4
  ident: bib18
  article-title: Characterization of the microstructure of the compositionally complex alloy Al 1 Mo 0.5 Nb 1 Ta 0.5 Ti 1 Zr 1
  publication-title: Scripta Mater.
– volume: 69
  start-page: 2113
  year: 2017
  end-page: 2124
  ident: bib32
  article-title: Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results
  publication-title: JOM
– volume: 483
  start-page: 209
  year: 2009
  end-page: 212
  ident: bib8
  article-title: The microstructure and phase equilibrium of new high performance high-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 132
  start-page: 212
  year: 2013
  end-page: 215
  ident: bib10
  article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy
  publication-title: Ultramicroscopy
– volume: 19
  start-page: 234
  year: 2011
  end-page: 259
  ident: bib38
  article-title: Experimental study and thermodynamic modelling of the ternary Al–Ta–Ti system
  publication-title: Intermetallics
– year: 2009
  ident: bib49
  article-title: Thermodynamic assessment of the Ti-Al-Nb, Ti-Al-Cr, and Ti-Al-Mo systems
– volume: 140
  start-page: 64
  year: 2018
  end-page: 71
  ident: bib58
  article-title: Microstructure evolution and a new mechanism of B2 phase on room temperature mechanical properties of Ti-47Al-2Cr-2Nb alloy prepared by hot isostatic pressing
  publication-title: Mater. Char.
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib2
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
– volume: 225
  start-page: 29
  year: 1997
  end-page: 37
  ident: bib59
  article-title: Stability of TiAl in the TiAlCr system
  publication-title: Mater. Sci. Eng. A
– volume: 146
  start-page: 5
  year: 2018
  end-page: 8
  ident: bib51
  article-title: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
  publication-title: Scripta Mater.
– volume: 648
  start-page: 183
  year: 2015
  end-page: 192
  ident: bib16
  article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design
  publication-title: Mater. Sci. Eng. A
– volume: 61
  start-page: 4887
  year: 2013
  end-page: 4897
  ident: bib30
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta Mater.
– volume: 35
  start-page: 434
  year: 2014
  end-page: 444
  ident: bib45
  article-title: A new theoretical study of the Cr-Nb system
  publication-title: J. Phase Equilibria Diffus.
– volume: 8
  year: 2018
  ident: bib29
  article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy
  publication-title: Sci. Rep.
– volume: 65
  start-page: 1772
  year: 2013
  end-page: 1779
  ident: bib7
  article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W
  publication-title: JOM
– volume: 28
  start-page: 133
  year: 2004
  end-page: 140
  ident: bib42
  article-title: Thermodynamic assessment of the Mo–Nb–Ta system
  publication-title: Calphad
– volume: 162
  start-page: 465
  year: 2019
  end-page: 467
  ident: bib52
  article-title: Thermal stability of AlCoFeMnNi high-entropy alloy
  publication-title: Scripta Mater.
– volume: 652
  start-page: 266
  year: 2015
  end-page: 280
  ident: bib4
  article-title: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys
  publication-title: J. Alloys Compd.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib13
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 8
  start-page: 855
  year: 2000
  end-page: 867
  ident: bib60
  article-title: Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys
  publication-title: Intermetallics
– volume: 166
  year: 2020
  ident: bib23
  article-title: A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures
  publication-title: Corrosion Sci.
– volume: 37
  start-page: 1363
  year: 2006
  end-page: 1369
  ident: bib11
  article-title: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy
  publication-title: Metall. Mater. Trans.
– year: 2018
  ident: bib21
  publication-title: TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings
– volume: 149
  start-page: 1340
  year: 1963
  end-page: 1342
  ident: bib71
  article-title: Phase Diagrams in the system TiCr2-NbCr2
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 9
  start-page: 7266
  year: 2019
  ident: bib73
  article-title: An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide
  publication-title: Sci. Rep.
– volume: 688
  start-page: 468
  year: 2016
  end-page: 477
  ident: bib6
  article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb 20Mo 20Cr 20Ti 20Al with and without Si addition
  publication-title: J. Alloys Compd.
– volume: 159
  year: 2019
  ident: bib24
  article-title: On the oxidation mechanism of refractory high entropy alloys
  publication-title: Corrosion Sci.
– volume: 94
  start-page: 39
  year: 2016
  end-page: 44
  ident: bib12
  article-title: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy
  publication-title: Mater. Des.
– volume: 297
  start-page: 231
  year: 2000
  end-page: 239
  ident: bib40
  article-title: Effect of Mo and Nb on the phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region
  publication-title: J. Alloys Compd.
– volume: 40
  start-page: 191
  year: 1998
  end-page: 196
  ident: bib53
  article-title: Microstructures and mechanical properties of a Mo3Si-Mo5Si3 COMPOSITE
  publication-title: Scripta Mater.
– volume: 129
  start-page: 71
  year: 1988
  end-page: 75
  ident: bib34
  article-title: Partial Gibbs energies from redlich-kister polynomials
  publication-title: Thermochim. Acta
– volume: 823
  year: 2020
  ident: bib26
  article-title: Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility
  publication-title: J. Alloys Compd.
– volume: 14
  start-page: 451
  year: 1993
  end-page: 456
  ident: bib43
  article-title: Thermodynamic assessment of the Cr-Ta system
  publication-title: JPE
– volume: 113
  start-page: 106
  year: 2016
  end-page: 109
  ident: bib15
  article-title: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi
  publication-title: Scripta Mater.
– volume: 1128
  start-page: 511
  year: 2008
  ident: bib69
  article-title: Metastable hexagonal modifications of the NbCr 2 Laves phase as function of cooling rate
  publication-title: MRS Proc
– volume: 6
  start-page: 6529
  year: 2015
  ident: bib31
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
– volume: 61
  start-page: 72
  year: 2018
  end-page: 84
  ident: bib46
  article-title: Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials
  publication-title: Calphad
– volume: 161
  start-page: 338
  year: 2018
  end-page: 351
  ident: bib50
  article-title: Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys
  publication-title: Acta Mater.
– volume: 62
  start-page: 227
  year: 2010
  end-page: 230
  ident: bib67
  article-title: The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system
  publication-title: Scripta Mater.
– volume: 59
  start-page: 701
  year: 1968
  end-page: 707
  ident: bib54
  article-title: Alloy chemistry of sigma (beta)-related phases I. extension of mu- and occurrence of mu-phases in the ternary systems Nb (Ta)--X--Al (X = Fe, Co, Ni, Cu, Cr, Mo)
  publication-title: Z. Metallkd.
– volume: 48
  start-page: 911
  year: 2000
  end-page: 923
  ident: bib72
  article-title: Structural stability of the Laves phase Cr2Ta in a two-phase Cr–Cr2Ta alloy
  publication-title: Acta Mater.
– volume: 38
  start-page: 193
  year: 1993
  end-page: 232
  ident: bib56
  article-title: Physical and mechanical properties of the B2 compound NiAl
  publication-title: Int. Mater. Rev.
– volume: 2
  start-page: 293
  year: 1997
  end-page: 296
  ident: bib41
  article-title: System Ta-Ti
  publication-title: thermo-chemical database for light metal alloys
– volume: 19
  start-page: 1222
  year: 2011
  end-page: 1235
  ident: bib44
  article-title: Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems
  publication-title: Intermetallics
– volume: 153
  start-page: 402
  year: 1992
  end-page: 409
  ident: bib28
  article-title: Evaluation of refractory intermetallics with A15 structure for high temperature structural applications
  publication-title: Mater. Sci. Eng. A
– volume: 49
  start-page: 772
  year: 2018
  end-page: 781
  ident: bib5
  article-title: Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys
  publication-title: Metall. Mater. Trans.
– volume: 4
  start-page: 332
  year: 1961
  end-page: 334
  ident: bib64
  article-title: Definition of equilibrium Diagrams for Cr-Nb and NbCr2-Ni3Nb systems
  publication-title: Dopov. Akad. Nauk. Ukr. RSR
– volume: 38
  start-page: 126
  year: 2013
  end-page: 138
  ident: bib17
  article-title: Diffusive and massive phase transformations in Ti–Al–Nb alloys – modelling and experiments
  publication-title: Intermetallics
– volume: 644
  start-page: 939
  year: 2015
  end-page: 958
  ident: bib39
  article-title: Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description
  publication-title: J. Alloys Compd.
– volume: 465
  start-page: 64
  year: 2008
  end-page: 77
  ident: bib47
  article-title: The Al–B–Nb–Ti system
  publication-title: J. Alloys Compd.
– volume: 33
  start-page: 3235
  year: 2018
  end-page: 3246
  ident: bib20
  article-title: Phase stability as a function of temperature in a refractory high-entropy alloy
  publication-title: J. Mater. Res.
– volume: 472
  start-page: 133
  year: 2009
  end-page: 161
  ident: bib37
  article-title: The Al–B–Nb–Ti system
  publication-title: J. Alloys Compd.
– volume: 724
  start-page: 565
  year: 2017
  end-page: 574
  ident: bib74
  article-title: The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C
  publication-title: J. Alloys Compd.
– volume: 36
  start-page: 154
  year: 2013
  end-page: 161
  ident: bib27
  article-title: Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb
  publication-title: Int. J. Refract. Metals Hard Mater.
– year: 2007
  ident: bib33
  article-title: Computational Thermodynamics: the CALPHAD Method
– volume: 15
  start-page: 1347
  year: 1967
  end-page: 1357
  ident: bib57
  article-title: Slip in hard-sphere CsCl lmodels
  publication-title: Acta Metall.
– volume: 64
  start-page: 994
  year: 2011
  end-page: 997
  ident: bib68
  article-title: Reply to comments on the absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system
  publication-title: Scripta Mater.
– volume: 661
  start-page: 206
  year: 2016
  end-page: 215
  ident: bib22
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J. Alloys Compd.
– volume: 25
  start-page: 1983
  year: 2010
  end-page: 1991
  ident: bib70
  article-title: Transformation–dislocation dipoles in Laves phases: a high-resolution transmission electron microscopy analysis
  publication-title: J. Mater. Res.
– volume: 102
  start-page: 187
  year: 2016
  end-page: 196
  ident: bib14
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
– volume: 43
  start-page: 44
  year: 1991
  end-page: 49
  ident: bib55
  article-title: NiAl alloys for high-temperature structural applications
  publication-title: JOM
– volume: 18
  start-page: 102
  year: 2016
  ident: bib9
  article-title: Development of a refractory high entropy superalloy
  publication-title: Entropy
– volume: 64
  start-page: 990
  year: 2011
  end-page: 993
  ident: bib66
  article-title: Comments on “The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system”
  publication-title: Scripta Mater.
– volume: 18
  start-page: 92
  year: 2010
  end-page: 106
  ident: bib36
  article-title: Experimental study and thermodynamic re-assessment of the binary Al–Ta system
  publication-title: Intermetallics
– volume: 9
  start-page: 7266
  year: 2019
  ident: 10.1016/j.jallcom.2020.155726_bib73
  article-title: An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43819-x
– volume: 18
  start-page: 92
  year: 2010
  ident: 10.1016/j.jallcom.2020.155726_bib36
  article-title: Experimental study and thermodynamic re-assessment of the binary Al–Ta system
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2009.06.015
– volume: 62
  start-page: 227
  year: 2010
  ident: 10.1016/j.jallcom.2020.155726_bib67
  article-title: The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2009.11.002
– volume: 6
  start-page: 6529
  year: 2015
  ident: 10.1016/j.jallcom.2020.155726_bib31
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7529
– volume: 48
  start-page: 3113
  year: 2000
  ident: 10.1016/j.jallcom.2020.155726_bib61
  article-title: Phase equilibria in the Ti–Al binary system
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00118-X
– volume: 38
  start-page: 126
  year: 2013
  ident: 10.1016/j.jallcom.2020.155726_bib17
  article-title: Diffusive and massive phase transformations in Ti–Al–Nb alloys – modelling and experiments
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.03.001
– volume: 14
  start-page: 451
  year: 1993
  ident: 10.1016/j.jallcom.2020.155726_bib43
  article-title: Thermodynamic assessment of the Cr-Ta system
  publication-title: JPE
  doi: 10.1007/BF02671963
– volume: 146
  start-page: 5
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib51
  article-title: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.10.027
– volume: 823
  year: 2020
  ident: 10.1016/j.jallcom.2020.155726_bib26
  article-title: Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153805
– volume: 8
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib29
  article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy
  publication-title: Sci. Rep.
– volume: 61
  start-page: 72
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib46
  article-title: Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials
  publication-title: Calphad
  doi: 10.1016/j.calphad.2018.02.004
– volume: 113
  start-page: 106
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib15
  article-title: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2015.10.025
– volume: 652
  start-page: 266
  year: 2015
  ident: 10.1016/j.jallcom.2020.155726_bib4
  article-title: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.08.224
– volume: 25
  start-page: 1983
  year: 2010
  ident: 10.1016/j.jallcom.2020.155726_bib70
  article-title: Transformation–dislocation dipoles in Laves phases: a high-resolution transmission electron microscopy analysis
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2010.0265
– volume: 64
  start-page: 990
  year: 2011
  ident: 10.1016/j.jallcom.2020.155726_bib66
  article-title: Comments on “The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system”
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2011.01.032
– volume: 19
  start-page: 234
  year: 2011
  ident: 10.1016/j.jallcom.2020.155726_bib38
  article-title: Experimental study and thermodynamic modelling of the ternary Al–Ta–Ti system
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.10.002
– volume: 18
  start-page: 1758
  year: 2010
  ident: 10.1016/j.jallcom.2020.155726_bib1
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.05.014
– volume: 132
  start-page: 212
  year: 2013
  ident: 10.1016/j.jallcom.2020.155726_bib10
  article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2012.12.015
– volume: 19
  start-page: 698
  year: 2011
  ident: 10.1016/j.jallcom.2020.155726_bib2
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 33
  start-page: 3235
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib20
  article-title: Phase stability as a function of temperature in a refractory high-entropy alloy
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.223
– volume: 37
  start-page: 1363
  year: 2006
  ident: 10.1016/j.jallcom.2020.155726_bib11
  article-title: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-006-0081-3
– year: 2009
  ident: 10.1016/j.jallcom.2020.155726_bib49
– volume: 225
  start-page: 29
  year: 1997
  ident: 10.1016/j.jallcom.2020.155726_bib59
  article-title: Stability of TiAl in the TiAlCr system
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(96)10841-8
– volume: 159
  year: 2019
  ident: 10.1016/j.jallcom.2020.155726_bib24
  article-title: On the oxidation mechanism of refractory high entropy alloys
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2019.108161
– volume: 644
  start-page: 939
  year: 2015
  ident: 10.1016/j.jallcom.2020.155726_bib39
  article-title: Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.04.231
– volume: 688
  start-page: 468
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib6
  article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb 20Mo 20Cr 20Ti 20Al with and without Si addition
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.219
– volume: 102
  start-page: 187
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib14
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.076
– volume: 4
  start-page: 332
  year: 1961
  ident: 10.1016/j.jallcom.2020.155726_bib64
  article-title: Definition of equilibrium Diagrams for Cr-Nb and NbCr2-Ni3Nb systems
  publication-title: Dopov. Akad. Nauk. Ukr. RSR
– volume: 36
  start-page: 154
  year: 2013
  ident: 10.1016/j.jallcom.2020.155726_bib27
  article-title: Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb
  publication-title: Int. J. Refract. Metals Hard Mater.
  doi: 10.1016/j.ijrmhm.2012.08.009
– volume: 61
  start-page: 4887
  year: 2013
  ident: 10.1016/j.jallcom.2020.155726_bib30
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.058
– volume: 465
  start-page: 64
  year: 2008
  ident: 10.1016/j.jallcom.2020.155726_bib47
  article-title: The Al–B–Nb–Ti system
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.10.061
– volume: 8
  start-page: 855
  year: 2000
  ident: 10.1016/j.jallcom.2020.155726_bib60
  article-title: Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(00)00015-7
– volume: 48
  start-page: 911
  year: 2000
  ident: 10.1016/j.jallcom.2020.155726_bib72
  article-title: Structural stability of the Laves phase Cr2Ta in a two-phase Cr–Cr2Ta alloy
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00377-8
– volume: 64
  start-page: 994
  year: 2011
  ident: 10.1016/j.jallcom.2020.155726_bib68
  article-title: Reply to comments on the absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2011.01.035
– volume: 33
  start-page: 3092
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib3
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.153
– year: 2007
  ident: 10.1016/j.jallcom.2020.155726_bib33
– volume: 161
  start-page: 338
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib50
  article-title: Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.09.040
– volume: 648
  start-page: 183
  year: 2015
  ident: 10.1016/j.jallcom.2020.155726_bib16
  article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.09.010
– volume: 101
  start-page: 1369
  year: 2010
  ident: 10.1016/j.jallcom.2020.155726_bib48
  article-title: Thermodynamic assessment of the Cr–Al–Nb system
  publication-title: IJMR
  doi: 10.3139/146.110420
– volume: 8
  start-page: 8816
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib19
  article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27144-3
– volume: 19
  start-page: 1222
  year: 2011
  ident: 10.1016/j.jallcom.2020.155726_bib44
  article-title: Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.03.031
– volume: 15
  start-page: 1347
  year: 1967
  ident: 10.1016/j.jallcom.2020.155726_bib57
  article-title: Slip in hard-sphere CsCl lmodels
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(67)90009-0
– volume: 140
  start-page: 64
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib58
  article-title: Microstructure evolution and a new mechanism of B2 phase on room temperature mechanical properties of Ti-47Al-2Cr-2Nb alloy prepared by hot isostatic pressing
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2018.03.043
– volume: 724
  start-page: 565
  year: 2017
  ident: 10.1016/j.jallcom.2020.155726_bib74
  article-title: The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.07.066
– volume: 661
  start-page: 206
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib22
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.11.050
– volume: 12
  start-page: 763
  year: 2004
  ident: 10.1016/j.jallcom.2020.155726_bib65
  article-title: Polytypic transformations in Laves phases
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2004.02.017
– volume: 149
  start-page: 1340
  year: 1963
  ident: 10.1016/j.jallcom.2020.155726_bib71
  article-title: Phase Diagrams in the system TiCr2-NbCr2
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 94
  start-page: 39
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib12
  article-title: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.033
– volume: 472
  start-page: 133
  year: 2009
  ident: 10.1016/j.jallcom.2020.155726_bib37
  article-title: The Al–B–Nb–Ti system
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.05.008
– volume: 2
  start-page: 293
  year: 1997
  ident: 10.1016/j.jallcom.2020.155726_bib41
  article-title: System Ta-Ti
  publication-title: thermo-chemical database for light metal alloys
– volume: 28
  start-page: 133
  year: 2004
  ident: 10.1016/j.jallcom.2020.155726_bib42
  article-title: Thermodynamic assessment of the Mo–Nb–Ta system
  publication-title: Calphad
  doi: 10.1016/j.calphad.2004.07.002
– volume: 483
  start-page: 209
  year: 2009
  ident: 10.1016/j.jallcom.2020.155726_bib8
  article-title: The microstructure and phase equilibrium of new high performance high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.08.118
– volume: 162
  start-page: 465
  year: 2019
  ident: 10.1016/j.jallcom.2020.155726_bib52
  article-title: Thermal stability of AlCoFeMnNi high-entropy alloy
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2018.12.017
– volume: 129
  start-page: 71
  year: 1988
  ident: 10.1016/j.jallcom.2020.155726_bib34
  article-title: Partial Gibbs energies from redlich-kister polynomials
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(88)87198-3
– volume: 1128
  start-page: 511
  year: 2008
  ident: 10.1016/j.jallcom.2020.155726_bib69
  article-title: Metastable hexagonal modifications of the NbCr 2 Laves phase as function of cooling rate
  publication-title: MRS Proc
  doi: 10.1557/PROC-1128-U08-07
– volume: 297
  start-page: 231
  year: 2000
  ident: 10.1016/j.jallcom.2020.155726_bib40
  article-title: Effect of Mo and Nb on the phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00557-5
– volume: 43
  start-page: 44
  year: 1991
  ident: 10.1016/j.jallcom.2020.155726_bib55
  article-title: NiAl alloys for high-temperature structural applications
  publication-title: JOM
  doi: 10.1007/BF03220163
– volume: 121
  start-page: 1
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib18
  article-title: Characterization of the microstructure of the compositionally complex alloy Al 1 Mo 0.5 Nb 1 Ta 0.5 Ti 1 Zr 1
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.04.017
– volume: 40
  start-page: 191
  year: 1998
  ident: 10.1016/j.jallcom.2020.155726_bib53
  article-title: Microstructures and mechanical properties of a Mo3Si-Mo5Si3 COMPOSITE
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(98)00406-0
– volume: 15
  start-page: 317
  year: 1991
  ident: 10.1016/j.jallcom.2020.155726_bib35
  article-title: SGTE data for pure elements
  publication-title: Calphad
  doi: 10.1016/0364-5916(91)90030-N
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.jallcom.2020.155726_bib13
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 12
  start-page: 455
  year: 1961
  ident: 10.1016/j.jallcom.2020.155726_bib63
  article-title: Polymorphic transformation in NbCr2
  publication-title: Fiz. Met. Metalloved.
– volume: 65
  start-page: 1772
  year: 2013
  ident: 10.1016/j.jallcom.2020.155726_bib7
  article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W
  publication-title: JOM
  doi: 10.1007/s11837-013-0772-3
– year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib21
– volume: 38
  start-page: 193
  year: 1993
  ident: 10.1016/j.jallcom.2020.155726_bib56
  article-title: Physical and mechanical properties of the B2 compound NiAl
  publication-title: Int. Mater. Rev.
  doi: 10.1179/imr.1993.38.4.193
– volume: 69
  start-page: 2113
  year: 2017
  ident: 10.1016/j.jallcom.2020.155726_bib32
  article-title: Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results
  publication-title: JOM
  doi: 10.1007/s11837-017-2566-5
– volume: 166
  year: 2020
  ident: 10.1016/j.jallcom.2020.155726_bib23
  article-title: A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2020.108475
– volume: 35
  start-page: 434
  year: 2014
  ident: 10.1016/j.jallcom.2020.155726_bib45
  article-title: A new theoretical study of the Cr-Nb system
  publication-title: J. Phase Equilibria Diffus.
  doi: 10.1007/s11669-014-0313-y
– volume: 176
  start-page: 123
  year: 2019
  ident: 10.1016/j.jallcom.2020.155726_bib25
  article-title: Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.07.001
– volume: 49
  start-page: 772
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib5
  article-title: Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-017-4386-1
– volume: 18
  start-page: 102
  year: 2016
  ident: 10.1016/j.jallcom.2020.155726_bib9
  article-title: Development of a refractory high entropy superalloy
  publication-title: Entropy
  doi: 10.3390/e18030102
– volume: 153
  start-page: 402
  year: 1992
  ident: 10.1016/j.jallcom.2020.155726_bib28
  article-title: Evaluation of refractory intermetallics with A15 structure for high temperature structural applications
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(92)90228-S
– volume: 59
  start-page: 701
  year: 1968
  ident: 10.1016/j.jallcom.2020.155726_bib54
  article-title: Alloy chemistry of sigma (beta)-related phases I. extension of mu- and occurrence of mu-phases in the ternary systems Nb (Ta)--X--Al (X = Fe, Co, Ni, Cu, Cr, Mo)
  publication-title: Z. Metallkd.
– volume: 35
  start-page: 168
  year: 2018
  ident: 10.1016/j.jallcom.2020.155726_bib62
  article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al
  publication-title: Mater. A. T. High. Temp.
  doi: 10.1080/09603409.2017.1389115
SSID ssj0001931
Score 2.5103457
Snippet In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155726
SubjectTerms Alloy systems
Alloys
Calphad method
Complex intermetallic phases
Compositionally complex alloys
Computer simulation
Electron backscatter diffraction
Equilibrium conditions
High entropy alloys
Intermetallic phases
Laves phase
Molybdenum
Niobium
Phase diagrams
Phase volume fraction
Polytypes
Quinary systems
Refractory alloys
Refractory high-entropy alloys
Tantalum
Thermodynamic models
Titanium
X ray powder diffraction
Title Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: Thermodynamic assessment and experimental validation
URI https://dx.doi.org/10.1016/j.jallcom.2020.155726
https://www.proquest.com/docview/2448457223
Volume 842
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrRBwqCCAWijVHrg6sde7fnCLokYB1FxIpd5W-7Jw5NqRExC58F_4p8yu7T4QUiWOu96xLM945lvvzHwAH3IZWcsyjhqwMmBKsUAxQ4NcUhnqhOcydcXJl8tkccU-X_PrA5gNtTAurbL3_Z1P9966n5n0b3OyKcvJ1zCn7swv8xzguS_iYyx1Vj7-dZfmgQDFs-bh4sCtvqvimazHa1lVLmmEImgaY2RNXY-Ff8envzy1Dz_zF3Dc40Yy7R7tJRzYegRPZwNd2wie3-ssOIInPrNTb1_B7_lQnkiagvgMcvuTuC4R7Y1F5F2Vmmy-YSzb4iSpmx-2IvhUrefh2RPXzjhwf4CbzZ64Q_r9lizVZTNrV-W0IrI2ZCWH4UeCVtfeNKajuSfytu2nX3ifTYCghZcdn9NruJpfrGaLoOdlCDQL412AiKJITBrJSLO0yHVUhGnBCxorVjDNtFUKUZg1NuauQkg6Mnvct8XUhtLm3MRv4LBuansCBM1Eh4kxKkJhamLFlckobpwNup5E8lNggzaE7puWO-6MSgzZaWvRK1E4JYpOiacwvhXbdF07HhPIBlWLB-YnMLI8Jno2mIbov_-tQNCUMbxK47f_f-d38MyNXOUj5WdwuGu_2_cIgXbq3Nv4ORxNP31ZLP8AiTcJkA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VqVDhgCCAWiiwB65O7PWuH9yiiCilTS6kUm-rfVk4cu3ICVXzc_inzPgRCkKqxNG7O9bKM5qZ9c58HyGfUhU4xxMBGnDK41pzT3PLvFQx5ZtIpCrG5uTFMppf86834uaITPteGCyr7Hx_69Mbb92NjLuvOd7k-fibnzK880saDvAUm_iOEZ1KDMjx5OJyvjw4ZMhRGuI8WO-hwO9GnvF6tFZFgXUjDPKmEQTXGGEW_h2i_nLWTQSavSDPu9SRTtrdvSRHrhySk2nP2DYkzx6ACw7Jk6a402xfkZ-zvkORVhltisjdPUWgiPrWQfJd5IZuvkM428IgLas7V1DYVd1Q8ewpIhp7-BO42uwp3tPvt3SpF9W0XuWTgqrS0pXqHz9TMLz6trIt0z1VB-TPZuFDQgEKRp63lE6vyfXsy2o69zpqBs9wP9x5kFRkkY0DFRgeZ6kJMj_ORMZCzTNuuHFaQyLmrAsFNgkp5LOHo1vInK9cKmz4hgzKqnSnhIKlGD-yVgcgzGyohbYJg7OzBe8TKXFGeK8NaTrccqTPKGRfoLaWnRIlKlG2Sjwjo4PYpgXueEwg6VUt_7BACcHlMdHz3jRk5wK2EvKmhMMsC9_-_5s_kpP5anElry6Wl-_IU5zBRkgmzslgV_9w7yEj2ukPncX_ApF6DEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+complex+intermetallic+phases+in+novel+refractory+high-entropy+alloys+NbMoCrTiAl+and+TaMoCrTiAl%3A+Thermodynamic+assessment+and+experimental+validation&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=M%C3%BCller%2C+Franz&rft.au=Gorr%2C+Bronislava&rft.au=Christ%2C+Hans-J%C3%BCrgen&rft.au=Chen%2C+Hans&rft.date=2020-11-25&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=842&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2020.155726&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon