Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: Thermodynamic assessment and experimental validation
In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in the...
Saved in:
Published in | Journal of alloys and compounds Vol. 842; p. 155726 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in these alloy systems. Thermodynamic calculations were performed using a self-developed thermodynamic database based on the CALPHAD (Calculation of Phase Diagram) approach. The details of the thermodynamic modelling and particular characteristics of the relevant phases within the Ta-Nb-Cr-Ti-Al system are presented. To verify the new database, the phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally by utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) as well as X-ray powder diffraction (XRD). Both equiatomic alloys reveal a complex microstructure including several intermetallic phases at intermediate temperatures. The alloy NbMoCrTiAl consists of an ordered B2 phase, Al(Mo, Nb)3 and two polytypes (C14 and C15) of the Cr2Nb Laves phase. Precipitations of Cr2Ta Laves phase (C14, C15 and C36-type) in the B2 matrix were observed in the alloy TaMoCrTiAl. Based on the results of thermodynamic calculations, it was concluded that: (i) Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl, (ii) Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys and (iii) the concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction.
•Development of a thermodynamic database based on the CALPHAD approach for the Ta-Nb-Mo-Cr-Ti-Al system.•The phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys.•Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl.•The concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction. |
---|---|
AbstractList | In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in these alloy systems. Thermodynamic calculations were performed using a self-developed thermodynamic database based on the CALPHAD (Calculation of Phase Diagram) approach. The details of the thermodynamic modelling and particular characteristics of the relevant phases within the Ta-Nb-Cr-Ti-Al system are presented. To verify the new database, the phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally by utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) as well as X-ray powder diffraction (XRD). Both equiatomic alloys reveal a complex microstructure including several intermetallic phases at intermediate temperatures. The alloy NbMoCrTiAl consists of an ordered B2 phase, Al(Mo, Nb)3 and two polytypes (C14 and C15) of the Cr2Nb Laves phase. Precipitations of Cr2Ta Laves phase (C14, C15 and C36-type) in the B2 matrix were observed in the alloy TaMoCrTiAl. Based on the results of thermodynamic calculations, it was concluded that: (i) Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl, (ii) Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys and (iii) the concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction. In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl, in the temperature range between 700 and 1500 °C. Particular attention is paid on the constitution of the intermetallic phases stable in these alloy systems. Thermodynamic calculations were performed using a self-developed thermodynamic database based on the CALPHAD (Calculation of Phase Diagram) approach. The details of the thermodynamic modelling and particular characteristics of the relevant phases within the Ta-Nb-Cr-Ti-Al system are presented. To verify the new database, the phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally by utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) as well as X-ray powder diffraction (XRD). Both equiatomic alloys reveal a complex microstructure including several intermetallic phases at intermediate temperatures. The alloy NbMoCrTiAl consists of an ordered B2 phase, Al(Mo, Nb)3 and two polytypes (C14 and C15) of the Cr2Nb Laves phase. Precipitations of Cr2Ta Laves phase (C14, C15 and C36-type) in the B2 matrix were observed in the alloy TaMoCrTiAl. Based on the results of thermodynamic calculations, it was concluded that: (i) Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl, (ii) Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys and (iii) the concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction. •Development of a thermodynamic database based on the CALPHAD approach for the Ta-Nb-Mo-Cr-Ti-Al system.•The phase formation and stability of both quinary alloys in near-equilibrium conditions were studied experimentally Al and Ti play a crucial role in the formation of the ordered B2 phase in both alloys.•Nb stabilizes the AlMo3 A15 phase in the alloy NbMoCrTiAl.•The concentrations of Cr and/or Ta/Nb should be dramatically reduced to decrease the Laves phase volume fraction. |
ArticleNumber | 155726 |
Author | Müller, Franz Chen, Hans Kauffmann, Alexander Laube, Stephan Christ, Hans-Jürgen Heilmaier, Martin Gorr, Bronislava |
Author_xml | – sequence: 1 givenname: Franz surname: Müller fullname: Müller, Franz email: franz.mueller@uni-siegen.de organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 2 givenname: Bronislava surname: Gorr fullname: Gorr, Bronislava organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 3 givenname: Hans-Jürgen surname: Christ fullname: Christ, Hans-Jürgen organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 4 givenname: Hans surname: Chen fullname: Chen, Hans organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany – sequence: 5 givenname: Alexander surname: Kauffmann fullname: Kauffmann, Alexander organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany – sequence: 6 givenname: Stephan surname: Laube fullname: Laube, Stephan organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany – sequence: 7 givenname: Martin surname: Heilmaier fullname: Heilmaier, Martin organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany |
BookMark | eNqFkc1uEzEUhS1UJNLCIyBZYj3Bf_MHC1RFLa1UYBPWluO5Jh557MF2o87j8KY4Sdmw6erqXp3z-fqeS3ThgweE3lOypoQ2H8f1qJzTYVozwsqsrlvWvEIr2rW8Ek3TX6AV6Vlddbzr3qDLlEZCCO05XaE_tyFOKtvgcTC4MGYHT9j6DHGCXLBW43mvEqQyxD4cwOEIJiqdQ1zw3v7aV-BzDPOCizosCX_ffQubuLXXDis_4K36137C233BhmHxaipclQo2TcV-EsLTDNEeW-XwQTk7nPZ6i14b5RK8e65X6OftzXZzVz38-Hq_uX6otCA8V4xx0wwtVVSL1vSaGtKa2jC-E0ZooWG3o4LDALzmjBJFaSlCcAZEQV8P_Ap9OHPnGH4_QspyDI_RlyclE6IT5aiMF9Xns0rHkFK5hNQ2n_bMUVknKZHHTOQonzORx0zkOZPirv9zz-XHKi4v-r6cfVAOcLAQZdIWvIbBRtBZDsG-QPgLsROvUQ |
CitedBy_id | crossref_primary_10_1016_j_ijrmhm_2024_106771 crossref_primary_10_1002_adem_202201614 crossref_primary_10_1007_s12598_021_01926_7 crossref_primary_10_1016_j_jmst_2022_11_054 crossref_primary_10_1016_j_jmrt_2024_05_166 crossref_primary_10_1016_j_actamat_2024_119911 crossref_primary_10_1016_j_rinma_2023_100508 crossref_primary_10_1016_j_jallcom_2022_166741 crossref_primary_10_1016_j_jallcom_2022_167897 crossref_primary_10_1016_j_jallcom_2022_165471 crossref_primary_10_1016_j_actamat_2021_117217 crossref_primary_10_1002_adma_202305192 crossref_primary_10_3390_coatings13111819 crossref_primary_10_1007_s12598_022_01971_w crossref_primary_10_1080_14686996_2022_2132118 crossref_primary_10_1002_adem_202301797 crossref_primary_10_1016_j_surfcoat_2023_130299 crossref_primary_10_1177_09544062211008935 crossref_primary_10_1590_1980_5373_mr_2023_0547 crossref_primary_10_1016_j_jmrt_2025_02_099 crossref_primary_10_2320_matertrans_MT_M2021234 crossref_primary_10_1016_j_jmrt_2023_11_254 crossref_primary_10_1016_j_jmst_2022_08_046 crossref_primary_10_1080_21663831_2022_2109442 crossref_primary_10_1002_adem_202201449 crossref_primary_10_1016_j_commatsci_2023_112249 crossref_primary_10_1016_j_msea_2025_148180 crossref_primary_10_3390_ma17225429 crossref_primary_10_1016_j_scriptamat_2024_115978 crossref_primary_10_1007_s11085_021_10046_7 crossref_primary_10_1016_j_jallcom_2022_167386 crossref_primary_10_1016_j_corsci_2021_109861 crossref_primary_10_1007_s11837_024_06459_9 crossref_primary_10_1016_j_commatsci_2021_110755 crossref_primary_10_1007_s10853_023_09115_w crossref_primary_10_1016_j_actamat_2025_120827 crossref_primary_10_1063_5_0206425 crossref_primary_10_1007_s10853_023_08634_w crossref_primary_10_2139_ssrn_4067190 crossref_primary_10_1063_5_0203536 |
Cites_doi | 10.1038/s41598-019-43819-x 10.1016/j.intermet.2009.06.015 10.1016/j.scriptamat.2009.11.002 10.1038/ncomms7529 10.1016/S1359-6454(00)00118-X 10.1016/j.intermet.2013.03.001 10.1007/BF02671963 10.1016/j.scriptamat.2017.10.027 10.1016/j.jallcom.2020.153805 10.1016/j.calphad.2018.02.004 10.1016/j.scriptamat.2015.10.025 10.1016/j.jallcom.2015.08.224 10.1557/JMR.2010.0265 10.1016/j.scriptamat.2011.01.032 10.1016/j.intermet.2010.10.002 10.1016/j.intermet.2010.05.014 10.1016/j.ultramic.2012.12.015 10.1016/j.intermet.2011.01.004 10.1557/jmr.2018.223 10.1007/s11661-006-0081-3 10.1016/S0921-5093(96)10841-8 10.1016/j.corsci.2019.108161 10.1016/j.jallcom.2015.04.231 10.1016/j.jallcom.2016.07.219 10.1016/j.actamat.2015.08.076 10.1016/j.ijrmhm.2012.08.009 10.1016/j.actamat.2013.04.058 10.1016/j.jallcom.2007.10.061 10.1016/S0966-9795(00)00015-7 10.1016/S1359-6454(99)00377-8 10.1016/j.scriptamat.2011.01.035 10.1557/jmr.2018.153 10.1016/j.actamat.2018.09.040 10.1016/j.msea.2015.09.010 10.3139/146.110420 10.1038/s41598-018-27144-3 10.1016/j.intermet.2011.03.031 10.1016/0001-6160(67)90009-0 10.1016/j.matchar.2018.03.043 10.1016/j.jallcom.2017.07.066 10.1016/j.jallcom.2015.11.050 10.1016/j.intermet.2004.02.017 10.1016/j.matdes.2016.01.033 10.1016/j.jallcom.2008.05.008 10.1016/j.calphad.2004.07.002 10.1016/j.jallcom.2008.08.118 10.1016/j.scriptamat.2018.12.017 10.1016/0040-6031(88)87198-3 10.1557/PROC-1128-U08-07 10.1016/S0925-8388(99)00557-5 10.1007/BF03220163 10.1016/j.scriptamat.2016.04.017 10.1016/S1359-6462(98)00406-0 10.1016/0364-5916(91)90030-N 10.1016/j.actamat.2016.08.081 10.1007/s11837-013-0772-3 10.1179/imr.1993.38.4.193 10.1007/s11837-017-2566-5 10.1016/j.corsci.2020.108475 10.1007/s11669-014-0313-y 10.1016/j.actamat.2019.07.001 10.1007/s11661-017-4386-1 10.3390/e18030102 10.1016/0921-5093(92)90228-S 10.1080/09603409.2017.1389115 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 25, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 25, 2020 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2020.155726 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2020_155726 S0925838820320909 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c403t-223f6d71a1c47f9c1f07f5f23b4f4c4cebb143ede353210a113214432e0ae95d3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Wed Aug 13 09:40:25 EDT 2025 Tue Jul 01 03:58:40 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Complex intermetallic phases Refractory high-entropy alloys Compositionally complex alloys Calphad method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-223f6d71a1c47f9c1f07f5f23b4f4c4cebb143ede353210a113214432e0ae95d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2448457223 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2448457223 crossref_citationtrail_10_1016_j_jallcom_2020_155726 crossref_primary_10_1016_j_jallcom_2020_155726 elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_155726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-25 |
PublicationDateYYYYMMDD | 2020-11-25 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Karati, Guruvidyathri, Hariharan, Murty (bib52) 2019; 162 Aufrecht, Leineweber, Mittemeijer (bib69) 2008; 1128 Senkov, Isheim, Seidman, Pilchak (bib9) 2016; 18 Soni, Gwalani, Senkov, Viswanathan, Alam, Miracle, Banerjee (bib20) 2018; 33 Li, Song, Nurly, Xue, Wen, Wei, Shi (bib58) 2018; 140 Dinsdale (bib35) 1991; 15 Saunders, Ansara, Dinsdale, Rand (bib41) 1997; 2 Darolia (bib55) 1991; 43 Noebe, Bowman, Nathal (bib56) 1993; 38 Manzoni, Daoud, Völkl, Glatzel, Wanderka (bib10) 2013; 132 Pan (bib63) 1961; 12 Senkov, Miracle, Chaput, Couzinie (bib3) 2018; 33 Lee, Kim, Lee (bib40) 2000; 297 Aufrecht, Leineweber, Duppel, Mittemeijer (bib70) 2010; 25 Laplanche, Berglund, Reinhart, Kostka, Fox, George (bib50) 2018; 161 Misra, Petrovic, Mitchell (bib53) 1998; 40 Müller, Gorr, Christ, Müller, Butz, Chen, Kauffmann, Heilmaier (bib24) 2019; 159 Marker, Shang, Zhao, Liu (bib46) 2018; 61 Tsai, Tsai, Yeh (bib30) 2013; 61 Witusiewicz, Bondar, Hecht, Rex, Velikanova (bib47) 2008; 465 Leineweber, Aufrecht, Senyshyn, Mittemeijer (bib68) 2011; 64 Lautenschlager, Hughes, Brittain (bib57) 1967; 15 Gamsjäger, Liu, Rester, Puschnig, Draxl, Clemens, Dehm, Fischer (bib17) 2013; 38 Chen, Niu, Liu, Lu, Wang, Peng, Liu (bib12) 2016; 94 Dupin, Ansara (bib43) 1993; 14 Kornilov, Shakhova, Budberg, Nedumov (bib71) 1963; 149 Xiong, Du, Liu, Huang, Xu, Chen, Pan (bib42) 2004; 28 Senkov, Wilks, Scott, Miracle (bib2) 2011; 19 He, Stein (bib48) 2010; 101 Laube, Chen, Kauffmann, Schellert, Müller, Gorr, Müller, Butz, Christ, Heilmaier (bib26) 2020; 823 Witusiewicz, Bondar, Hecht, Zollinger, Petyukh, Fomichov, Voblikov, Rex (bib36) 2010; 18 Ohnuma, Fujita, Mitsui, Ishikawa, Kainuma, Ishida (bib61) 2000; 48 Cupid, Kriegel, Fabrichnaya, Ebrahimi, Seifert (bib44) 2011; 19 Hunt, Raman (bib54) 1968; 59 (bib21) 2018 Hsieh, Yu, Hsieh, Chiang, Ku, Lai, Tu, Yang (bib8) 2009; 483 Witusiewicz, Bondar, Hecht, Velikanova (bib39) 2015; 644 Shah, Anton (bib28) 1992; 153 Ren, Ouyang, Ding, Zhong, Yu, Ren, Zhou (bib74) 2017; 724 Witusiewicz, Bondar, Hecht, Voblikov, Fomichov, Petyukh, Rex (bib38) 2011; 19 Müller, Gorr, Christ, Chen, Kauffmann, Heilmaier (bib62) 2018; 35 Nie (bib66) 2011; 64 Soni, Senkov, Gwalani, Miracle, Banerjee (bib19) 2018; 8 He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib14) 2016; 102 Gorr, Mueller, Christ, Mueller, Chen, Kauffmann, Heilmaier (bib6) 2016; 688 Senkov, Miller, Miracle, Woodward (bib31) 2015; 6 Pradeep, Tasan, Yao, Deng, Springer, Raabe (bib16) 2015; 648 Witusiewicz, Bondar, Hecht, Velikanova (bib37) 2009; 472 Kainuma, Fujita, Mitsui, Ohnuma, Ishida (bib60) 2000; 8 Senkov, Wilks, Miracle, Chuang, Liaw (bib1) 2010; 18 Pan (bib64) 1961; 4 Lo, Chang, Murakami, Yeh, Yeh (bib73) 2019; 9 Pickering, Muñoz-Moreno, Stone, Jones (bib15) 2016; 113 Schmetterer, Khvan, Jacob, Hallstedt, Markus (bib45) 2014; 35 Huhn, Widom (bib7) 2013; 65 Aufrecht, Leineweber, Senyshyn, Mittemeijer (bib67) 2010; 62 Chen, Kauffmann, Seils, Boll, Liebscher, Harding, Kumar, Szabó, Schlabach, Kauffmann-Weiss, Müller, Gorr, Christ, Heilmaier (bib25) 2019; 176 Chen, Kauffmann, Gorr, Schliephake, Seemüller, Wagner, Christ, Heilmaier (bib22) 2016; 661 Jensen, Welk, Williams, Sosa, Huber, Senkov, Viswanathan, Fraser (bib18) 2016; 121 Zhou, Taylor, Melinte, Shahani, Dharmawardhana, Heinz, Voorhees, Perepezko, Bustillo, Ercius, Miao (bib29) 2018; 8 Miracle, Senkov (bib13) 2017; 122 Lukas, Fries, Sundman (bib33) 2007 Cupid (bib49) 2009 Kumar, Hazzledine (bib65) 2004; 12 Saal, Berglund, Sebastian, Liaw, Olson (bib51) 2018; 146 Chen, Lin, Yeh, Chuang, Chen, Huang (bib11) 2006; 37 Li, Li, Xue, Fu (bib27) 2013; 36 Hillert (bib34) 1988; 129 Kumar, Pang, Liu, Horton, Kenik (bib72) 2000; 48 Stepanov, Yurchenko, Skibin, Tikhonovsky, Salishchev (bib4) 2015; 652 Guruvidyathri, Hari Kumar, Yeh, Murty (bib32) 2017; 69 Jewett, Ahrens, Dahms (bib59) 1997; 225 Chen, Kauffmann, Laube, Choi, Schwaiger, Huang, Lichtenberg, Müller, Gorr, Christ, Heilmaier (bib5) 2018; 49 Gorr, Müller, Schellert, Christ, Chen, Kauffmann, Heilmaier (bib23) 2020; 166 Pickering (10.1016/j.jallcom.2020.155726_bib15) 2016; 113 Laube (10.1016/j.jallcom.2020.155726_bib26) 2020; 823 Senkov (10.1016/j.jallcom.2020.155726_bib1) 2010; 18 Soni (10.1016/j.jallcom.2020.155726_bib19) 2018; 8 Li (10.1016/j.jallcom.2020.155726_bib27) 2013; 36 Senkov (10.1016/j.jallcom.2020.155726_bib3) 2018; 33 Pan (10.1016/j.jallcom.2020.155726_bib64) 1961; 4 Senkov (10.1016/j.jallcom.2020.155726_bib31) 2015; 6 Lee (10.1016/j.jallcom.2020.155726_bib40) 2000; 297 Aufrecht (10.1016/j.jallcom.2020.155726_bib70) 2010; 25 Pradeep (10.1016/j.jallcom.2020.155726_bib16) 2015; 648 Stepanov (10.1016/j.jallcom.2020.155726_bib4) 2015; 652 Gamsjäger (10.1016/j.jallcom.2020.155726_bib17) 2013; 38 He (10.1016/j.jallcom.2020.155726_bib14) 2016; 102 Hsieh (10.1016/j.jallcom.2020.155726_bib8) 2009; 483 (10.1016/j.jallcom.2020.155726_bib21) 2018 Witusiewicz (10.1016/j.jallcom.2020.155726_bib37) 2009; 472 Kornilov (10.1016/j.jallcom.2020.155726_bib71) 1963; 149 Marker (10.1016/j.jallcom.2020.155726_bib46) 2018; 61 Gorr (10.1016/j.jallcom.2020.155726_bib6) 2016; 688 Saal (10.1016/j.jallcom.2020.155726_bib51) 2018; 146 Laplanche (10.1016/j.jallcom.2020.155726_bib50) 2018; 161 Chen (10.1016/j.jallcom.2020.155726_bib11) 2006; 37 Kainuma (10.1016/j.jallcom.2020.155726_bib60) 2000; 8 He (10.1016/j.jallcom.2020.155726_bib48) 2010; 101 Chen (10.1016/j.jallcom.2020.155726_bib22) 2016; 661 Guruvidyathri (10.1016/j.jallcom.2020.155726_bib32) 2017; 69 Soni (10.1016/j.jallcom.2020.155726_bib20) 2018; 33 Müller (10.1016/j.jallcom.2020.155726_bib24) 2019; 159 Cupid (10.1016/j.jallcom.2020.155726_bib44) 2011; 19 Jewett (10.1016/j.jallcom.2020.155726_bib59) 1997; 225 Tsai (10.1016/j.jallcom.2020.155726_bib30) 2013; 61 Saunders (10.1016/j.jallcom.2020.155726_bib41) 1997; 2 Müller (10.1016/j.jallcom.2020.155726_bib62) 2018; 35 Witusiewicz (10.1016/j.jallcom.2020.155726_bib36) 2010; 18 Chen (10.1016/j.jallcom.2020.155726_bib12) 2016; 94 Chen (10.1016/j.jallcom.2020.155726_bib5) 2018; 49 Shah (10.1016/j.jallcom.2020.155726_bib28) 1992; 153 Kumar (10.1016/j.jallcom.2020.155726_bib65) 2004; 12 Senkov (10.1016/j.jallcom.2020.155726_bib9) 2016; 18 Lautenschlager (10.1016/j.jallcom.2020.155726_bib57) 1967; 15 Aufrecht (10.1016/j.jallcom.2020.155726_bib69) 2008; 1128 Dupin (10.1016/j.jallcom.2020.155726_bib43) 1993; 14 Leineweber (10.1016/j.jallcom.2020.155726_bib68) 2011; 64 Huhn (10.1016/j.jallcom.2020.155726_bib7) 2013; 65 Chen (10.1016/j.jallcom.2020.155726_bib25) 2019; 176 Zhou (10.1016/j.jallcom.2020.155726_bib29) 2018; 8 Misra (10.1016/j.jallcom.2020.155726_bib53) 1998; 40 Nie (10.1016/j.jallcom.2020.155726_bib66) 2011; 64 Ohnuma (10.1016/j.jallcom.2020.155726_bib61) 2000; 48 Lo (10.1016/j.jallcom.2020.155726_bib73) 2019; 9 Senkov (10.1016/j.jallcom.2020.155726_bib2) 2011; 19 Dinsdale (10.1016/j.jallcom.2020.155726_bib35) 1991; 15 Hunt (10.1016/j.jallcom.2020.155726_bib54) 1968; 59 Gorr (10.1016/j.jallcom.2020.155726_bib23) 2020; 166 Aufrecht (10.1016/j.jallcom.2020.155726_bib67) 2010; 62 Xiong (10.1016/j.jallcom.2020.155726_bib42) 2004; 28 Schmetterer (10.1016/j.jallcom.2020.155726_bib45) 2014; 35 Lukas (10.1016/j.jallcom.2020.155726_bib33) 2007 Noebe (10.1016/j.jallcom.2020.155726_bib56) 1993; 38 Pan (10.1016/j.jallcom.2020.155726_bib63) 1961; 12 Manzoni (10.1016/j.jallcom.2020.155726_bib10) 2013; 132 Cupid (10.1016/j.jallcom.2020.155726_bib49) 2009 Witusiewicz (10.1016/j.jallcom.2020.155726_bib39) 2015; 644 Witusiewicz (10.1016/j.jallcom.2020.155726_bib47) 2008; 465 Li (10.1016/j.jallcom.2020.155726_bib58) 2018; 140 Miracle (10.1016/j.jallcom.2020.155726_bib13) 2017; 122 Darolia (10.1016/j.jallcom.2020.155726_bib55) 1991; 43 Hillert (10.1016/j.jallcom.2020.155726_bib34) 1988; 129 Witusiewicz (10.1016/j.jallcom.2020.155726_bib38) 2011; 19 Ren (10.1016/j.jallcom.2020.155726_bib74) 2017; 724 Jensen (10.1016/j.jallcom.2020.155726_bib18) 2016; 121 Karati (10.1016/j.jallcom.2020.155726_bib52) 2019; 162 Kumar (10.1016/j.jallcom.2020.155726_bib72) 2000; 48 |
References_xml | – volume: 101 start-page: 1369 year: 2010 end-page: 1375 ident: bib48 article-title: Thermodynamic assessment of the Cr–Al–Nb system publication-title: IJMR – volume: 12 start-page: 763 year: 2004 end-page: 770 ident: bib65 article-title: Polytypic transformations in Laves phases publication-title: Intermetallics – volume: 12 start-page: 455 year: 1961 end-page: 457 ident: bib63 article-title: Polymorphic transformation in NbCr2 publication-title: Fiz. Met. Metalloved. – volume: 35 start-page: 168 year: 2018 end-page: 176 ident: bib62 article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al publication-title: Mater. A. T. High. Temp. – volume: 15 start-page: 317 year: 1991 end-page: 425 ident: bib35 article-title: SGTE data for pure elements publication-title: Calphad – volume: 48 start-page: 3113 year: 2000 end-page: 3123 ident: bib61 article-title: Phase equilibria in the Ti–Al binary system publication-title: Acta Mater. – volume: 8 start-page: 8816 year: 2018 ident: bib19 article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy publication-title: Sci. Rep. – volume: 176 start-page: 123 year: 2019 end-page: 133 ident: bib25 article-title: Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al publication-title: Acta Mater. – volume: 33 start-page: 3092 year: 2018 end-page: 3128 ident: bib3 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib1 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 121 start-page: 1 year: 2016 end-page: 4 ident: bib18 article-title: Characterization of the microstructure of the compositionally complex alloy Al 1 Mo 0.5 Nb 1 Ta 0.5 Ti 1 Zr 1 publication-title: Scripta Mater. – volume: 69 start-page: 2113 year: 2017 end-page: 2124 ident: bib32 article-title: Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results publication-title: JOM – volume: 483 start-page: 209 year: 2009 end-page: 212 ident: bib8 article-title: The microstructure and phase equilibrium of new high performance high-entropy alloys publication-title: J. Alloys Compd. – volume: 132 start-page: 212 year: 2013 end-page: 215 ident: bib10 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy – volume: 19 start-page: 234 year: 2011 end-page: 259 ident: bib38 article-title: Experimental study and thermodynamic modelling of the ternary Al–Ta–Ti system publication-title: Intermetallics – year: 2009 ident: bib49 article-title: Thermodynamic assessment of the Ti-Al-Nb, Ti-Al-Cr, and Ti-Al-Mo systems – volume: 140 start-page: 64 year: 2018 end-page: 71 ident: bib58 article-title: Microstructure evolution and a new mechanism of B2 phase on room temperature mechanical properties of Ti-47Al-2Cr-2Nb alloy prepared by hot isostatic pressing publication-title: Mater. Char. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib2 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics – volume: 225 start-page: 29 year: 1997 end-page: 37 ident: bib59 article-title: Stability of TiAl in the TiAlCr system publication-title: Mater. Sci. Eng. A – volume: 146 start-page: 5 year: 2018 end-page: 8 ident: bib51 article-title: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling publication-title: Scripta Mater. – volume: 648 start-page: 183 year: 2015 end-page: 192 ident: bib16 article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design publication-title: Mater. Sci. Eng. A – volume: 61 start-page: 4887 year: 2013 end-page: 4897 ident: bib30 article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys publication-title: Acta Mater. – volume: 35 start-page: 434 year: 2014 end-page: 444 ident: bib45 article-title: A new theoretical study of the Cr-Nb system publication-title: J. Phase Equilibria Diffus. – volume: 8 year: 2018 ident: bib29 article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy publication-title: Sci. Rep. – volume: 65 start-page: 1772 year: 2013 end-page: 1779 ident: bib7 article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W publication-title: JOM – volume: 28 start-page: 133 year: 2004 end-page: 140 ident: bib42 article-title: Thermodynamic assessment of the Mo–Nb–Ta system publication-title: Calphad – volume: 162 start-page: 465 year: 2019 end-page: 467 ident: bib52 article-title: Thermal stability of AlCoFeMnNi high-entropy alloy publication-title: Scripta Mater. – volume: 652 start-page: 266 year: 2015 end-page: 280 ident: bib4 article-title: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys publication-title: J. Alloys Compd. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib13 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 8 start-page: 855 year: 2000 end-page: 867 ident: bib60 article-title: Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys publication-title: Intermetallics – volume: 166 year: 2020 ident: bib23 article-title: A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures publication-title: Corrosion Sci. – volume: 37 start-page: 1363 year: 2006 end-page: 1369 ident: bib11 article-title: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy publication-title: Metall. Mater. Trans. – year: 2018 ident: bib21 publication-title: TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings – volume: 149 start-page: 1340 year: 1963 end-page: 1342 ident: bib71 article-title: Phase Diagrams in the system TiCr2-NbCr2 publication-title: Dokl. Akad. Nauk SSSR – volume: 9 start-page: 7266 year: 2019 ident: bib73 article-title: An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide publication-title: Sci. Rep. – volume: 688 start-page: 468 year: 2016 end-page: 477 ident: bib6 article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb 20Mo 20Cr 20Ti 20Al with and without Si addition publication-title: J. Alloys Compd. – volume: 159 year: 2019 ident: bib24 article-title: On the oxidation mechanism of refractory high entropy alloys publication-title: Corrosion Sci. – volume: 94 start-page: 39 year: 2016 end-page: 44 ident: bib12 article-title: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy publication-title: Mater. Des. – volume: 297 start-page: 231 year: 2000 end-page: 239 ident: bib40 article-title: Effect of Mo and Nb on the phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region publication-title: J. Alloys Compd. – volume: 40 start-page: 191 year: 1998 end-page: 196 ident: bib53 article-title: Microstructures and mechanical properties of a Mo3Si-Mo5Si3 COMPOSITE publication-title: Scripta Mater. – volume: 129 start-page: 71 year: 1988 end-page: 75 ident: bib34 article-title: Partial Gibbs energies from redlich-kister polynomials publication-title: Thermochim. Acta – volume: 823 year: 2020 ident: bib26 article-title: Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility publication-title: J. Alloys Compd. – volume: 14 start-page: 451 year: 1993 end-page: 456 ident: bib43 article-title: Thermodynamic assessment of the Cr-Ta system publication-title: JPE – volume: 113 start-page: 106 year: 2016 end-page: 109 ident: bib15 article-title: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi publication-title: Scripta Mater. – volume: 1128 start-page: 511 year: 2008 ident: bib69 article-title: Metastable hexagonal modifications of the NbCr 2 Laves phase as function of cooling rate publication-title: MRS Proc – volume: 6 start-page: 6529 year: 2015 ident: bib31 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. – volume: 61 start-page: 72 year: 2018 end-page: 84 ident: bib46 article-title: Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials publication-title: Calphad – volume: 161 start-page: 338 year: 2018 end-page: 351 ident: bib50 article-title: Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys publication-title: Acta Mater. – volume: 62 start-page: 227 year: 2010 end-page: 230 ident: bib67 article-title: The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system publication-title: Scripta Mater. – volume: 59 start-page: 701 year: 1968 end-page: 707 ident: bib54 article-title: Alloy chemistry of sigma (beta)-related phases I. extension of mu- and occurrence of mu-phases in the ternary systems Nb (Ta)--X--Al (X = Fe, Co, Ni, Cu, Cr, Mo) publication-title: Z. Metallkd. – volume: 48 start-page: 911 year: 2000 end-page: 923 ident: bib72 article-title: Structural stability of the Laves phase Cr2Ta in a two-phase Cr–Cr2Ta alloy publication-title: Acta Mater. – volume: 38 start-page: 193 year: 1993 end-page: 232 ident: bib56 article-title: Physical and mechanical properties of the B2 compound NiAl publication-title: Int. Mater. Rev. – volume: 2 start-page: 293 year: 1997 end-page: 296 ident: bib41 article-title: System Ta-Ti publication-title: thermo-chemical database for light metal alloys – volume: 19 start-page: 1222 year: 2011 end-page: 1235 ident: bib44 article-title: Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems publication-title: Intermetallics – volume: 153 start-page: 402 year: 1992 end-page: 409 ident: bib28 article-title: Evaluation of refractory intermetallics with A15 structure for high temperature structural applications publication-title: Mater. Sci. Eng. A – volume: 49 start-page: 772 year: 2018 end-page: 781 ident: bib5 article-title: Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys publication-title: Metall. Mater. Trans. – volume: 4 start-page: 332 year: 1961 end-page: 334 ident: bib64 article-title: Definition of equilibrium Diagrams for Cr-Nb and NbCr2-Ni3Nb systems publication-title: Dopov. Akad. Nauk. Ukr. RSR – volume: 38 start-page: 126 year: 2013 end-page: 138 ident: bib17 article-title: Diffusive and massive phase transformations in Ti–Al–Nb alloys – modelling and experiments publication-title: Intermetallics – volume: 644 start-page: 939 year: 2015 end-page: 958 ident: bib39 article-title: Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description publication-title: J. Alloys Compd. – volume: 465 start-page: 64 year: 2008 end-page: 77 ident: bib47 article-title: The Al–B–Nb–Ti system publication-title: J. Alloys Compd. – volume: 33 start-page: 3235 year: 2018 end-page: 3246 ident: bib20 article-title: Phase stability as a function of temperature in a refractory high-entropy alloy publication-title: J. Mater. Res. – volume: 472 start-page: 133 year: 2009 end-page: 161 ident: bib37 article-title: The Al–B–Nb–Ti system publication-title: J. Alloys Compd. – volume: 724 start-page: 565 year: 2017 end-page: 574 ident: bib74 article-title: The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C publication-title: J. Alloys Compd. – volume: 36 start-page: 154 year: 2013 end-page: 161 ident: bib27 article-title: Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb publication-title: Int. J. Refract. Metals Hard Mater. – year: 2007 ident: bib33 article-title: Computational Thermodynamics: the CALPHAD Method – volume: 15 start-page: 1347 year: 1967 end-page: 1357 ident: bib57 article-title: Slip in hard-sphere CsCl lmodels publication-title: Acta Metall. – volume: 64 start-page: 994 year: 2011 end-page: 997 ident: bib68 article-title: Reply to comments on the absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system publication-title: Scripta Mater. – volume: 661 start-page: 206 year: 2016 end-page: 215 ident: bib22 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J. Alloys Compd. – volume: 25 start-page: 1983 year: 2010 end-page: 1991 ident: bib70 article-title: Transformation–dislocation dipoles in Laves phases: a high-resolution transmission electron microscopy analysis publication-title: J. Mater. Res. – volume: 102 start-page: 187 year: 2016 end-page: 196 ident: bib14 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. – volume: 43 start-page: 44 year: 1991 end-page: 49 ident: bib55 article-title: NiAl alloys for high-temperature structural applications publication-title: JOM – volume: 18 start-page: 102 year: 2016 ident: bib9 article-title: Development of a refractory high entropy superalloy publication-title: Entropy – volume: 64 start-page: 990 year: 2011 end-page: 993 ident: bib66 article-title: Comments on “The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system” publication-title: Scripta Mater. – volume: 18 start-page: 92 year: 2010 end-page: 106 ident: bib36 article-title: Experimental study and thermodynamic re-assessment of the binary Al–Ta system publication-title: Intermetallics – volume: 9 start-page: 7266 year: 2019 ident: 10.1016/j.jallcom.2020.155726_bib73 article-title: An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide publication-title: Sci. Rep. doi: 10.1038/s41598-019-43819-x – volume: 18 start-page: 92 year: 2010 ident: 10.1016/j.jallcom.2020.155726_bib36 article-title: Experimental study and thermodynamic re-assessment of the binary Al–Ta system publication-title: Intermetallics doi: 10.1016/j.intermet.2009.06.015 – volume: 62 start-page: 227 year: 2010 ident: 10.1016/j.jallcom.2020.155726_bib67 article-title: The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2009.11.002 – volume: 6 start-page: 6529 year: 2015 ident: 10.1016/j.jallcom.2020.155726_bib31 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. doi: 10.1038/ncomms7529 – volume: 48 start-page: 3113 year: 2000 ident: 10.1016/j.jallcom.2020.155726_bib61 article-title: Phase equilibria in the Ti–Al binary system publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00118-X – volume: 38 start-page: 126 year: 2013 ident: 10.1016/j.jallcom.2020.155726_bib17 article-title: Diffusive and massive phase transformations in Ti–Al–Nb alloys – modelling and experiments publication-title: Intermetallics doi: 10.1016/j.intermet.2013.03.001 – volume: 14 start-page: 451 year: 1993 ident: 10.1016/j.jallcom.2020.155726_bib43 article-title: Thermodynamic assessment of the Cr-Ta system publication-title: JPE doi: 10.1007/BF02671963 – volume: 146 start-page: 5 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib51 article-title: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.10.027 – volume: 823 year: 2020 ident: 10.1016/j.jallcom.2020.155726_bib26 article-title: Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153805 – volume: 8 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib29 article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy publication-title: Sci. Rep. – volume: 61 start-page: 72 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib46 article-title: Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials publication-title: Calphad doi: 10.1016/j.calphad.2018.02.004 – volume: 113 start-page: 106 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib15 article-title: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2015.10.025 – volume: 652 start-page: 266 year: 2015 ident: 10.1016/j.jallcom.2020.155726_bib4 article-title: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.08.224 – volume: 25 start-page: 1983 year: 2010 ident: 10.1016/j.jallcom.2020.155726_bib70 article-title: Transformation–dislocation dipoles in Laves phases: a high-resolution transmission electron microscopy analysis publication-title: J. Mater. Res. doi: 10.1557/JMR.2010.0265 – volume: 64 start-page: 990 year: 2011 ident: 10.1016/j.jallcom.2020.155726_bib66 article-title: Comments on “The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system” publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2011.01.032 – volume: 19 start-page: 234 year: 2011 ident: 10.1016/j.jallcom.2020.155726_bib38 article-title: Experimental study and thermodynamic modelling of the ternary Al–Ta–Ti system publication-title: Intermetallics doi: 10.1016/j.intermet.2010.10.002 – volume: 18 start-page: 1758 year: 2010 ident: 10.1016/j.jallcom.2020.155726_bib1 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 132 start-page: 212 year: 2013 ident: 10.1016/j.jallcom.2020.155726_bib10 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.015 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.jallcom.2020.155726_bib2 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 33 start-page: 3235 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib20 article-title: Phase stability as a function of temperature in a refractory high-entropy alloy publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.223 – volume: 37 start-page: 1363 year: 2006 ident: 10.1016/j.jallcom.2020.155726_bib11 article-title: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-006-0081-3 – year: 2009 ident: 10.1016/j.jallcom.2020.155726_bib49 – volume: 225 start-page: 29 year: 1997 ident: 10.1016/j.jallcom.2020.155726_bib59 article-title: Stability of TiAl in the TiAlCr system publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(96)10841-8 – volume: 159 year: 2019 ident: 10.1016/j.jallcom.2020.155726_bib24 article-title: On the oxidation mechanism of refractory high entropy alloys publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2019.108161 – volume: 644 start-page: 939 year: 2015 ident: 10.1016/j.jallcom.2020.155726_bib39 article-title: Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.04.231 – volume: 688 start-page: 468 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib6 article-title: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb 20Mo 20Cr 20Ti 20Al with and without Si addition publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.219 – volume: 102 start-page: 187 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib14 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.076 – volume: 4 start-page: 332 year: 1961 ident: 10.1016/j.jallcom.2020.155726_bib64 article-title: Definition of equilibrium Diagrams for Cr-Nb and NbCr2-Ni3Nb systems publication-title: Dopov. Akad. Nauk. Ukr. RSR – volume: 36 start-page: 154 year: 2013 ident: 10.1016/j.jallcom.2020.155726_bib27 article-title: Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb publication-title: Int. J. Refract. Metals Hard Mater. doi: 10.1016/j.ijrmhm.2012.08.009 – volume: 61 start-page: 4887 year: 2013 ident: 10.1016/j.jallcom.2020.155726_bib30 article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.04.058 – volume: 465 start-page: 64 year: 2008 ident: 10.1016/j.jallcom.2020.155726_bib47 article-title: The Al–B–Nb–Ti system publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.10.061 – volume: 8 start-page: 855 year: 2000 ident: 10.1016/j.jallcom.2020.155726_bib60 article-title: Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys publication-title: Intermetallics doi: 10.1016/S0966-9795(00)00015-7 – volume: 48 start-page: 911 year: 2000 ident: 10.1016/j.jallcom.2020.155726_bib72 article-title: Structural stability of the Laves phase Cr2Ta in a two-phase Cr–Cr2Ta alloy publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00377-8 – volume: 64 start-page: 994 year: 2011 ident: 10.1016/j.jallcom.2020.155726_bib68 article-title: Reply to comments on the absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2011.01.035 – volume: 33 start-page: 3092 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib3 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.153 – year: 2007 ident: 10.1016/j.jallcom.2020.155726_bib33 – volume: 161 start-page: 338 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib50 article-title: Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.09.040 – volume: 648 start-page: 183 year: 2015 ident: 10.1016/j.jallcom.2020.155726_bib16 article-title: Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.09.010 – volume: 101 start-page: 1369 year: 2010 ident: 10.1016/j.jallcom.2020.155726_bib48 article-title: Thermodynamic assessment of the Cr–Al–Nb system publication-title: IJMR doi: 10.3139/146.110420 – volume: 8 start-page: 8816 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib19 article-title: Microstructural design for improving ductility of an initially brittle refractory high entropy alloy publication-title: Sci. Rep. doi: 10.1038/s41598-018-27144-3 – volume: 19 start-page: 1222 year: 2011 ident: 10.1016/j.jallcom.2020.155726_bib44 article-title: Thermodynamic assessment of the Cr–Ti and first assessment of the Al–Cr–Ti systems publication-title: Intermetallics doi: 10.1016/j.intermet.2011.03.031 – volume: 15 start-page: 1347 year: 1967 ident: 10.1016/j.jallcom.2020.155726_bib57 article-title: Slip in hard-sphere CsCl lmodels publication-title: Acta Metall. doi: 10.1016/0001-6160(67)90009-0 – volume: 140 start-page: 64 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib58 article-title: Microstructure evolution and a new mechanism of B2 phase on room temperature mechanical properties of Ti-47Al-2Cr-2Nb alloy prepared by hot isostatic pressing publication-title: Mater. Char. doi: 10.1016/j.matchar.2018.03.043 – volume: 724 start-page: 565 year: 2017 ident: 10.1016/j.jallcom.2020.155726_bib74 article-title: The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.07.066 – volume: 661 start-page: 206 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib22 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.11.050 – volume: 12 start-page: 763 year: 2004 ident: 10.1016/j.jallcom.2020.155726_bib65 article-title: Polytypic transformations in Laves phases publication-title: Intermetallics doi: 10.1016/j.intermet.2004.02.017 – volume: 149 start-page: 1340 year: 1963 ident: 10.1016/j.jallcom.2020.155726_bib71 article-title: Phase Diagrams in the system TiCr2-NbCr2 publication-title: Dokl. Akad. Nauk SSSR – volume: 94 start-page: 39 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib12 article-title: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.033 – volume: 472 start-page: 133 year: 2009 ident: 10.1016/j.jallcom.2020.155726_bib37 article-title: The Al–B–Nb–Ti system publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.05.008 – volume: 2 start-page: 293 year: 1997 ident: 10.1016/j.jallcom.2020.155726_bib41 article-title: System Ta-Ti publication-title: thermo-chemical database for light metal alloys – volume: 28 start-page: 133 year: 2004 ident: 10.1016/j.jallcom.2020.155726_bib42 article-title: Thermodynamic assessment of the Mo–Nb–Ta system publication-title: Calphad doi: 10.1016/j.calphad.2004.07.002 – volume: 483 start-page: 209 year: 2009 ident: 10.1016/j.jallcom.2020.155726_bib8 article-title: The microstructure and phase equilibrium of new high performance high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.08.118 – volume: 162 start-page: 465 year: 2019 ident: 10.1016/j.jallcom.2020.155726_bib52 article-title: Thermal stability of AlCoFeMnNi high-entropy alloy publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2018.12.017 – volume: 129 start-page: 71 year: 1988 ident: 10.1016/j.jallcom.2020.155726_bib34 article-title: Partial Gibbs energies from redlich-kister polynomials publication-title: Thermochim. Acta doi: 10.1016/0040-6031(88)87198-3 – volume: 1128 start-page: 511 year: 2008 ident: 10.1016/j.jallcom.2020.155726_bib69 article-title: Metastable hexagonal modifications of the NbCr 2 Laves phase as function of cooling rate publication-title: MRS Proc doi: 10.1557/PROC-1128-U08-07 – volume: 297 start-page: 231 year: 2000 ident: 10.1016/j.jallcom.2020.155726_bib40 article-title: Effect of Mo and Nb on the phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00557-5 – volume: 43 start-page: 44 year: 1991 ident: 10.1016/j.jallcom.2020.155726_bib55 article-title: NiAl alloys for high-temperature structural applications publication-title: JOM doi: 10.1007/BF03220163 – volume: 121 start-page: 1 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib18 article-title: Characterization of the microstructure of the compositionally complex alloy Al 1 Mo 0.5 Nb 1 Ta 0.5 Ti 1 Zr 1 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.04.017 – volume: 40 start-page: 191 year: 1998 ident: 10.1016/j.jallcom.2020.155726_bib53 article-title: Microstructures and mechanical properties of a Mo3Si-Mo5Si3 COMPOSITE publication-title: Scripta Mater. doi: 10.1016/S1359-6462(98)00406-0 – volume: 15 start-page: 317 year: 1991 ident: 10.1016/j.jallcom.2020.155726_bib35 article-title: SGTE data for pure elements publication-title: Calphad doi: 10.1016/0364-5916(91)90030-N – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.jallcom.2020.155726_bib13 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 12 start-page: 455 year: 1961 ident: 10.1016/j.jallcom.2020.155726_bib63 article-title: Polymorphic transformation in NbCr2 publication-title: Fiz. Met. Metalloved. – volume: 65 start-page: 1772 year: 2013 ident: 10.1016/j.jallcom.2020.155726_bib7 article-title: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W publication-title: JOM doi: 10.1007/s11837-013-0772-3 – year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib21 – volume: 38 start-page: 193 year: 1993 ident: 10.1016/j.jallcom.2020.155726_bib56 article-title: Physical and mechanical properties of the B2 compound NiAl publication-title: Int. Mater. Rev. doi: 10.1179/imr.1993.38.4.193 – volume: 69 start-page: 2113 year: 2017 ident: 10.1016/j.jallcom.2020.155726_bib32 article-title: Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results publication-title: JOM doi: 10.1007/s11837-017-2566-5 – volume: 166 year: 2020 ident: 10.1016/j.jallcom.2020.155726_bib23 article-title: A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2020.108475 – volume: 35 start-page: 434 year: 2014 ident: 10.1016/j.jallcom.2020.155726_bib45 article-title: A new theoretical study of the Cr-Nb system publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-014-0313-y – volume: 176 start-page: 123 year: 2019 ident: 10.1016/j.jallcom.2020.155726_bib25 article-title: Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.07.001 – volume: 49 start-page: 772 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib5 article-title: Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-017-4386-1 – volume: 18 start-page: 102 year: 2016 ident: 10.1016/j.jallcom.2020.155726_bib9 article-title: Development of a refractory high entropy superalloy publication-title: Entropy doi: 10.3390/e18030102 – volume: 153 start-page: 402 year: 1992 ident: 10.1016/j.jallcom.2020.155726_bib28 article-title: Evaluation of refractory intermetallics with A15 structure for high temperature structural applications publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(92)90228-S – volume: 59 start-page: 701 year: 1968 ident: 10.1016/j.jallcom.2020.155726_bib54 article-title: Alloy chemistry of sigma (beta)-related phases I. extension of mu- and occurrence of mu-phases in the ternary systems Nb (Ta)--X--Al (X = Fe, Co, Ni, Cu, Cr, Mo) publication-title: Z. Metallkd. – volume: 35 start-page: 168 year: 2018 ident: 10.1016/j.jallcom.2020.155726_bib62 article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al publication-title: Mater. A. T. High. Temp. doi: 10.1080/09603409.2017.1389115 |
SSID | ssj0001931 |
Score | 2.5103457 |
Snippet | In this work, we present the results of the thermodynamic assessment of two equiatomic refractory High Entropy Alloys (HEAs), namely TaMoCrTiAl and NbMoCrTiAl,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 155726 |
SubjectTerms | Alloy systems Alloys Calphad method Complex intermetallic phases Compositionally complex alloys Computer simulation Electron backscatter diffraction Equilibrium conditions High entropy alloys Intermetallic phases Laves phase Molybdenum Niobium Phase diagrams Phase volume fraction Polytypes Quinary systems Refractory alloys Refractory high-entropy alloys Tantalum Thermodynamic models Titanium X ray powder diffraction |
Title | Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: Thermodynamic assessment and experimental validation |
URI | https://dx.doi.org/10.1016/j.jallcom.2020.155726 https://www.proquest.com/docview/2448457223 |
Volume | 842 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrRBwqCCAWijVHrg6sde7fnCLokYB1FxIpd5W-7Jw5NqRExC58F_4p8yu7T4QUiWOu96xLM945lvvzHwAH3IZWcsyjhqwMmBKsUAxQ4NcUhnqhOcydcXJl8tkccU-X_PrA5gNtTAurbL3_Z1P9966n5n0b3OyKcvJ1zCn7swv8xzguS_iYyx1Vj7-dZfmgQDFs-bh4sCtvqvimazHa1lVLmmEImgaY2RNXY-Ff8envzy1Dz_zF3Dc40Yy7R7tJRzYegRPZwNd2wie3-ssOIInPrNTb1_B7_lQnkiagvgMcvuTuC4R7Y1F5F2Vmmy-YSzb4iSpmx-2IvhUrefh2RPXzjhwf4CbzZ64Q_r9lizVZTNrV-W0IrI2ZCWH4UeCVtfeNKajuSfytu2nX3ifTYCghZcdn9NruJpfrGaLoOdlCDQL412AiKJITBrJSLO0yHVUhGnBCxorVjDNtFUKUZg1NuauQkg6Mnvct8XUhtLm3MRv4LBuansCBM1Eh4kxKkJhamLFlckobpwNup5E8lNggzaE7puWO-6MSgzZaWvRK1E4JYpOiacwvhXbdF07HhPIBlWLB-YnMLI8Jno2mIbov_-tQNCUMbxK47f_f-d38MyNXOUj5WdwuGu_2_cIgXbq3Nv4ORxNP31ZLP8AiTcJkA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VqVDhgCCAWiiwB65O7PWuH9yiiCilTS6kUm-rfVk4cu3ICVXzc_inzPgRCkKqxNG7O9bKM5qZ9c58HyGfUhU4xxMBGnDK41pzT3PLvFQx5ZtIpCrG5uTFMppf86834uaITPteGCyr7Hx_69Mbb92NjLuvOd7k-fibnzK880saDvAUm_iOEZ1KDMjx5OJyvjw4ZMhRGuI8WO-hwO9GnvF6tFZFgXUjDPKmEQTXGGEW_h2i_nLWTQSavSDPu9SRTtrdvSRHrhySk2nP2DYkzx6ACw7Jk6a402xfkZ-zvkORVhltisjdPUWgiPrWQfJd5IZuvkM428IgLas7V1DYVd1Q8ewpIhp7-BO42uwp3tPvt3SpF9W0XuWTgqrS0pXqHz9TMLz6trIt0z1VB-TPZuFDQgEKRp63lE6vyfXsy2o69zpqBs9wP9x5kFRkkY0DFRgeZ6kJMj_ORMZCzTNuuHFaQyLmrAsFNgkp5LOHo1vInK9cKmz4hgzKqnSnhIKlGD-yVgcgzGyohbYJg7OzBe8TKXFGeK8NaTrccqTPKGRfoLaWnRIlKlG2Sjwjo4PYpgXueEwg6VUt_7BACcHlMdHz3jRk5wK2EvKmhMMsC9_-_5s_kpP5anElry6Wl-_IU5zBRkgmzslgV_9w7yEj2ukPncX_ApF6DEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+complex+intermetallic+phases+in+novel+refractory+high-entropy+alloys+NbMoCrTiAl+and+TaMoCrTiAl%3A+Thermodynamic+assessment+and+experimental+validation&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=M%C3%BCller%2C+Franz&rft.au=Gorr%2C+Bronislava&rft.au=Christ%2C+Hans-J%C3%BCrgen&rft.au=Chen%2C+Hans&rft.date=2020-11-25&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=842&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2020.155726&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |