Mechanical properties and peculiarities of molecular crystals
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecu...
Saved in:
Published in | Chemical Society reviews Vol. 52; no. 9; pp. 398 - 3169 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
09.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures
via
X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.
Molecular crystals have shown remarkable adaptability in response to a range of external stimuli. Here, we survey this emerging field and provide a critical overview of the experimental, computational and instrumental tools being used to design and apply such materials. |
---|---|
AbstractList | In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals—jumping, twisting, fracturing, delaminating, rocking, and rolling—has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals—jumping, twisting, fracturing, delaminating, rocking, and rolling—has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. Molecular crystals have shown remarkable adaptability in response to a range of external stimuli. Here, we survey this emerging field and provide a critical overview of the experimental, computational and instrumental tools being used to design and apply such materials. |
Author | Mohamed, Sharmarke Naumov, Pan e Diao, Ying Shtukenberg, Alexander G Chandrasekar, Rajadurai Bardeen, Christopher Karothu, Durga Prasad Al-Handawi, Marieh B Tahir, Ibrahim Zhang, Hongyu Mahmoud Halabi, Jad Alkhidir, Tamador Tong, Fei Hagiwara, Yuki Hasebe, Shodai Kitagawa, Daichi Al-Kaysi, Rabih O Sun, Changquan Calvin Koshima, Hideko Almehairbi, Mubarak Davies, Daniel W Awad, Wegood M Lan, Linfeng Kobatake, Seiya Campillo-Alvarado, Gonzalo Kahr, Bart |
AuthorAffiliation | Khalifa University of Science and Technology Department of Chemistry and Bioengineering Jilin University University of Illinois at Urbana-Champaign Smart Materials Lab Feringa Nobel Prize Scientist Joint Research Center Ministry of National Guard Health Affairs State Key Laboratory of Supramolecular Structure and Materials East China University of Science and Technology Macedonian Academy of Sciences and Arts University of California Riverside College of Pharmacy Pharmaceutical Materials Science and Engineering Laboratory Department of Chemistry Department of Chemistry/Molecular Design Institute University of Hyderabad King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS) & King Abdullah International Medical Research Center (KAIMRC) Frontiers Science Center for Materiobiology and Dynamic Chemistry Osaka Metropolitan University Center for Smart Engineering Materials Advanced Materials Chemistry Center (AMCC) Advanced Organic Photonic Materials and Technology Laboratory at School of Chemistry Gree |
AuthorAffiliation_xml | – sequence: 0 name: Macedonian Academy of Sciences and Arts – sequence: 0 name: University of Minnesota – sequence: 0 name: College of Science and Health Professions – sequence: 0 name: Feringa Nobel Prize Scientist Joint Research Center – sequence: 0 name: Pharmaceutical Materials Science and Engineering Laboratory – sequence: 0 name: Graduate School of Advanced Science and Engineering – sequence: 0 name: King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS) & King Abdullah International Medical Research Center (KAIMRC) – sequence: 0 name: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering – sequence: 0 name: Department of Chemistry – sequence: 0 name: Advanced Materials Chemistry Center (AMCC) – sequence: 0 name: Frontiers Science Center for Materiobiology and Dynamic Chemistry – sequence: 0 name: University of Illinois at Urbana-Champaign – sequence: 0 name: Khalifa University of Science and Technology – sequence: 0 name: Department of Pharmaceutics – sequence: 0 name: University of California Riverside – sequence: 0 name: Department of Chemistry and Bioengineering – sequence: 0 name: College of Pharmacy – sequence: 0 name: Research Center for Environment and Materials – sequence: 0 name: School of Chemistry and Molecular Engineering – sequence: 0 name: East China University of Science and Technology – sequence: 0 name: Waseda University – sequence: 0 name: Osaka Metropolitan University – sequence: 0 name: Green Chemistry & Materials Modelling Laboratory – sequence: 0 name: Advanced Organic Photonic Materials and Technology Laboratory at School of Chemistry – sequence: 0 name: Department of Chemistry/Molecular Design Institute – sequence: 0 name: Institute of Fine Chemicals – sequence: 0 name: New York University Abu Dhabi – sequence: 0 name: University of Hyderabad – sequence: 0 name: State Key Laboratory of Supramolecular Structure and Materials – sequence: 0 name: Smart Materials Lab – sequence: 0 name: Department of Chemical and Biomolecular Engineering – sequence: 0 name: Graduate School of Engineering – sequence: 0 name: Ministry of National Guard Health Affairs – sequence: 0 name: Jilin University – sequence: 0 name: Research Organization for Nano and Life Innovation – sequence: 0 name: New York University – sequence: 0 name: Center for Smart Engineering Materials |
Author_xml | – sequence: 1 givenname: Wegood M surname: Awad fullname: Awad, Wegood M – sequence: 2 givenname: Daniel W surname: Davies fullname: Davies, Daniel W – sequence: 3 givenname: Daichi surname: Kitagawa fullname: Kitagawa, Daichi – sequence: 4 givenname: Jad surname: Mahmoud Halabi fullname: Mahmoud Halabi, Jad – sequence: 5 givenname: Marieh B surname: Al-Handawi fullname: Al-Handawi, Marieh B – sequence: 6 givenname: Ibrahim surname: Tahir fullname: Tahir, Ibrahim – sequence: 7 givenname: Fei surname: Tong fullname: Tong, Fei – sequence: 8 givenname: Gonzalo surname: Campillo-Alvarado fullname: Campillo-Alvarado, Gonzalo – sequence: 9 givenname: Alexander G surname: Shtukenberg fullname: Shtukenberg, Alexander G – sequence: 10 givenname: Tamador surname: Alkhidir fullname: Alkhidir, Tamador – sequence: 11 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki – sequence: 12 givenname: Mubarak surname: Almehairbi fullname: Almehairbi, Mubarak – sequence: 13 givenname: Linfeng surname: Lan fullname: Lan, Linfeng – sequence: 14 givenname: Shodai surname: Hasebe fullname: Hasebe, Shodai – sequence: 15 givenname: Durga Prasad surname: Karothu fullname: Karothu, Durga Prasad – sequence: 16 givenname: Sharmarke surname: Mohamed fullname: Mohamed, Sharmarke – sequence: 17 givenname: Hideko surname: Koshima fullname: Koshima, Hideko – sequence: 18 givenname: Seiya surname: Kobatake fullname: Kobatake, Seiya – sequence: 19 givenname: Ying surname: Diao fullname: Diao, Ying – sequence: 20 givenname: Rajadurai surname: Chandrasekar fullname: Chandrasekar, Rajadurai – sequence: 21 givenname: Hongyu surname: Zhang fullname: Zhang, Hongyu – sequence: 22 givenname: Changquan Calvin surname: Sun fullname: Sun, Changquan Calvin – sequence: 23 givenname: Christopher surname: Bardeen fullname: Bardeen, Christopher – sequence: 24 givenname: Rabih O surname: Al-Kaysi fullname: Al-Kaysi, Rabih O – sequence: 25 givenname: Bart surname: Kahr fullname: Kahr, Bart – sequence: 26 givenname: Pan e surname: Naumov fullname: Naumov, Pan e |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37070570$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UtLxDAQB_AgivvQi3el4EWE6uTVtAcPsr5Z8aCeS5qkmKWPNWkP--3NPlxh8TRh-M0w_DNC-03bGIROMFxhoNm1JsoDsBTP9tAQswRiJhjbR0OgkMQAmAzQyPtZeGGRkEM0oAIEcAFDdPNq1JdsrJJVNHft3LjOGh_JRkdzo_rKSmdXnbaM6rZatqSLlFv4Tlb-CB2UoZjjTR2jz4f7j8lTPH17fJ7cTmPFgHYxwVTpjCtKCBRKMpxxnQgORJuUE2GooFQKXGLNZakzhXWiTIELykXGZcLoGF2s94YTv3vju7y2Xpmqko1pe5-TFEiaipQt6fkOnbW9a8J1QWGMEyZ4FtTZRvVFbXQ-d7aWbpH_BhPA5Roo13rvTLklGPJl6vkdmbyvUn8JGHawsp3sbNt0Ttrq_5HT9Yjzarv67yPpDzohi_M |
CitedBy_id | crossref_primary_10_1002_anie_202502107 crossref_primary_10_1002_adom_202401922 crossref_primary_10_1002_chem_202403293 crossref_primary_10_1016_j_heliyon_2024_e38483 crossref_primary_10_1002_smll_202401317 crossref_primary_10_1002_anie_202403397 crossref_primary_10_1021_acs_cgd_4c00996 crossref_primary_10_1039_D5SC01260K crossref_primary_10_1177_00952443251325718 crossref_primary_10_1016_j_dyepig_2023_111531 crossref_primary_10_1039_D4QM01095G crossref_primary_10_1002_ange_202404700 crossref_primary_10_1016_j_seppur_2024_127856 crossref_primary_10_1246_bcsj_20230121 crossref_primary_10_1021_acs_molpharmaceut_4c01307 crossref_primary_10_1002_ange_202417459 crossref_primary_10_1021_jacs_4c15519 crossref_primary_10_1002_ange_202320223 crossref_primary_10_1002_chem_202401023 crossref_primary_10_1039_D4CC02655A crossref_primary_10_1002_ange_202311348 crossref_primary_10_1021_acs_chemmater_3c02740 crossref_primary_10_1103_PhysRevLett_133_137001 crossref_primary_10_1002_anie_202415821 crossref_primary_10_1039_D3CS00506B crossref_primary_10_1039_D5TC00891C crossref_primary_10_1515_revce_2024_0059 crossref_primary_10_1021_acs_cgd_4c00226 crossref_primary_10_1021_acs_cgd_4c00501 crossref_primary_10_1021_jacs_5c01140 crossref_primary_10_3390_cryst14060492 crossref_primary_10_1002_anie_202424496 crossref_primary_10_1039_D5TC00047E crossref_primary_10_1002_ange_202411405 crossref_primary_10_1016_j_chempr_2024_01_019 crossref_primary_10_1039_D4CE00638K crossref_primary_10_1038_s41467_024_51625_x crossref_primary_10_1002_adfm_202415400 crossref_primary_10_1002_ange_202320173 crossref_primary_10_1021_jacs_3c07060 crossref_primary_10_1021_acs_cgd_4c01552 crossref_primary_10_1021_jacs_3c13416 crossref_primary_10_1002_sstr_202300134 crossref_primary_10_1039_D4CC01765J crossref_primary_10_1002_adma_202416160 crossref_primary_10_1039_D3CE01321A crossref_primary_10_1002_anie_202311348 crossref_primary_10_1016_j_chempr_2024_06_033 crossref_primary_10_1039_D3SC06462J crossref_primary_10_1016_j_jct_2024_107350 crossref_primary_10_1002_cplu_202300428 crossref_primary_10_1039_D3SC03267A crossref_primary_10_1039_D4CE00233D crossref_primary_10_1002_anie_202503136 crossref_primary_10_1007_s40843_024_2890_1 crossref_primary_10_1021_jacs_4c05566 crossref_primary_10_1107_S2053229624008283 crossref_primary_10_1039_D4SC02152E crossref_primary_10_3390_molecules28124631 crossref_primary_10_1002_ange_202424496 crossref_primary_10_1002_ange_202403397 crossref_primary_10_1039_D4CE00827H crossref_primary_10_1002_cplu_202300383 crossref_primary_10_1002_smll_202406184 crossref_primary_10_1039_D4QI01511H crossref_primary_10_1002_anie_202320173 crossref_primary_10_1016_j_cherd_2024_08_042 crossref_primary_10_1002_smll_202307756 crossref_primary_10_1039_D3TC03060A crossref_primary_10_1002_adma_202415856 crossref_primary_10_1021_jacs_4c10507 crossref_primary_10_1039_D4TC02511C crossref_primary_10_1002_ange_202503136 crossref_primary_10_1002_anie_202416856 crossref_primary_10_1007_s40843_024_3249_x crossref_primary_10_1021_acs_jpclett_4c01797 crossref_primary_10_1021_acs_cgd_3c01185 crossref_primary_10_1021_jacs_4c11289 crossref_primary_10_1021_jacs_4c12532 crossref_primary_10_1002_chem_202401715 crossref_primary_10_1021_jacs_4c08320 crossref_primary_10_1016_j_cej_2024_157905 crossref_primary_10_1002_ange_202415821 crossref_primary_10_3390_molecules29194744 crossref_primary_10_1021_acs_cgd_3c00653 crossref_primary_10_1021_acs_chemmater_4c00418 crossref_primary_10_1021_acs_cgd_3c01464 crossref_primary_10_1039_D4CE00571F crossref_primary_10_1002_anie_202320223 crossref_primary_10_3390_cryst15020124 crossref_primary_10_1016_j_mtadv_2024_100523 crossref_primary_10_1039_D3CE00483J crossref_primary_10_1016_j_dwt_2024_100569 crossref_primary_10_1021_acs_cgd_3c00989 crossref_primary_10_1107_S2052252524012326 crossref_primary_10_1021_acs_cgd_3c00866 crossref_primary_10_1039_D4SC05684A crossref_primary_10_1016_j_ccr_2024_216035 crossref_primary_10_1016_j_physb_2024_416545 crossref_primary_10_1016_j_mtcomm_2024_108537 crossref_primary_10_1002_chem_202400779 crossref_primary_10_1016_j_mtchem_2024_102309 crossref_primary_10_1002_anie_202418570 crossref_primary_10_1016_j_cscee_2024_101061 crossref_primary_10_1039_D4SC02918F crossref_primary_10_1039_D4SC03060E crossref_primary_10_1002_anie_202416950 crossref_primary_10_1002_smo_20230031 crossref_primary_10_1016_j_cclet_2023_109085 crossref_primary_10_1016_j_dyepig_2024_112313 crossref_primary_10_1002_anie_202417409 crossref_primary_10_1021_acs_cgd_4c00827 crossref_primary_10_1002_ange_202502107 crossref_primary_10_1021_acs_accounts_3c00578 crossref_primary_10_1039_D4SC05005C crossref_primary_10_1038_s41598_025_95316_z crossref_primary_10_1002_adfm_202410671 crossref_primary_10_1039_D3NJ02174B crossref_primary_10_1002_anie_202404700 crossref_primary_10_1016_j_molstruc_2024_140235 crossref_primary_10_1002_ange_202416856 crossref_primary_10_1007_s40843_023_2668_y crossref_primary_10_1039_D3CE00928A crossref_primary_10_1002_adfm_202305916 crossref_primary_10_1107_S2052252524006055 crossref_primary_10_1002_anie_202417459 crossref_primary_10_1002_anie_202409472 crossref_primary_10_1016_j_jmst_2024_11_055 crossref_primary_10_1007_s40242_024_4153_y crossref_primary_10_1039_D4CC02898H crossref_primary_10_1016_j_rinp_2025_108150 crossref_primary_10_1039_D4MH00455H crossref_primary_10_1039_D3TC04272C crossref_primary_10_1002_adma_202311762 crossref_primary_10_1039_D4SC04157G crossref_primary_10_1021_acs_cgd_4c00694 crossref_primary_10_1021_acs_cgd_4c00291 crossref_primary_10_1021_acs_cgd_4c01260 crossref_primary_10_1021_jacs_4c00191 crossref_primary_10_1021_jacs_3c05545 crossref_primary_10_1021_jacs_5c00598 crossref_primary_10_1002_smll_202306175 crossref_primary_10_1038_s44160_024_00718_y crossref_primary_10_1021_acs_cgd_3c00855 crossref_primary_10_1002_anie_202411405 crossref_primary_10_1002_ange_202409472 crossref_primary_10_1021_acs_organomet_3c00249 crossref_primary_10_1039_D3SC03903J crossref_primary_10_1016_j_rechem_2024_101952 crossref_primary_10_1039_D4CC03746D crossref_primary_10_1021_jacs_4c03190 crossref_primary_10_1039_D3CS00116D crossref_primary_10_1039_D3CP04691E crossref_primary_10_1021_jacs_4c09334 crossref_primary_10_1002_ange_202417409 crossref_primary_10_1016_j_molstruc_2024_139436 crossref_primary_10_1002_ange_202418570 crossref_primary_10_1002_chem_202401590 crossref_primary_10_1002_ange_202416950 crossref_primary_10_1039_D3SC06800E crossref_primary_10_1002_adfm_202313990 crossref_primary_10_1039_D4CE00672K crossref_primary_10_1039_D3SC04796B |
Cites_doi | 10.1063/5.0059919 10.1039/D1CE00453K 10.1002/smll.202006795 10.1016/j.ijpharm.2011.03.039 10.1021/acs.jpclett.9b02315 10.1002/ange.201706684 10.1007/s11095-016-1858-8 10.1021/jp048137p 10.1039/C7CS00490G 10.1155/2012/328520 10.1021/acs.cgd.0c00521 10.1002/adom.202101808 10.1002/ijch.202100093 10.1021/jacs.8b00772 10.1038/nchem.2848 10.1016/j.jcrysgro.2017.03.014 10.1364/JOSAB.36.000F72 10.1021/ja054263a 10.1002/anie.201802785 10.1021/ja412216z 10.1021/jacs.0c03990 10.2174/1874842201502010007 10.1063/1.4812819 10.1021/jp4083079 10.1002/anie.201205002 10.1109/JLT.2006.885782 10.1021/ja101491n 10.1063/1.4812323 10.1039/C8SC05563G 10.1021/ja026564f 10.1021/ja9043449 10.1016/j.dyepig.2011.05.003 10.1021/j100389a010 10.1016/j.ajps.2016.09.002 10.1002/chem.201600355 10.1021/jacs.7b10998 10.1021/acs.cgd.5b00245 10.1002/ijch.201600002 10.1016/0022-0248(80)90075-5 10.1021/cg101300n 10.1021/acsami.8b07563 10.1002/anie.202004083 10.1163/016942410X525678 10.1021/acs.chemmater.9b00040 10.1038/s41467-021-21324-y 10.1039/C7SC00168A 10.1039/D1CS00469G 10.1021/acs.cgd.9b00917 10.1021/acs.cgd.8b01890 10.1002/anie.202011857 10.1002/chem.201900811 10.1021/ja205159u 10.1021/acs.cgd.1c01017 10.1016/j.trechm.2021.08.007 10.1021/jacs.6b01120 10.1002/ange.201712524 10.1038/nphoton.2010.136 10.1002/ange.201509319 10.1002/adom.202101335 10.1021/acs.jpcc.8b08261 10.1039/C9CE01874C 10.1016/j.jcis.2008.07.040 10.1021/ma301446t 10.1039/C8FD00039E 10.1364/OE.15.000629 10.1126/science.1203874 10.1002/anie.201802423 10.1021/acs.macromol.9b01526 10.1038/nchem.2123 10.1038/ncomms13260 10.1211/0022357023691 10.1073/pnas.092143399 10.1002/adma.201300540 10.1021/acs.chemmater.7b02532 10.1039/D2CC00044J 10.31635/ccschem.020.202000565 10.1002/anie.201402560 10.1038/s41467-019-13250-x 10.1038/s41467-018-06431-7 10.1021/ja4056323 10.1039/D0TC00007H 10.1038/s41586-019-1308-y 10.1021/jacs.0c07830 10.1002/chem.201505149 10.1002/anie.202113988 10.1002/asia.201800380 10.3389/frobt.2021.684287 10.1021/cr500249p 10.1002/jps.24178 10.1039/C5NR01118C 10.1021/acs.cgd.8b00202 10.1039/D1CE00086A 10.1016/j.jeurceramsoc.2004.07.012 10.1039/D0CE01394C 10.1002/adom.202101481 10.1002/1097-4636(200110)57:1<108::AID-JBM1148>3.0.CO;2-6 10.1021/acsami.8b05804 10.1038/sdata.2015.9 10.1021/jacs.9b07645 10.1038/srep29610 10.1021/acsnano.5b03367 10.1002/chem.202103228 10.1021/cg400675r 10.1038/nchem.2092 10.1021/acs.chemmater.5b00021 10.1016/0032-3861(69)90039-1 10.1016/j.xphs.2017.04.059 10.1021/acs.nanolett.6b03499 10.1073/pnas.1718965115 10.1002/cphc.201000963 10.1021/cr050152i 10.1021/acsanm.0c00131 10.1002/9783527822201 10.1039/C4CE02387K 10.1002/adom.201900927 10.1039/C7NR08931G 10.1021/acs.chemmater.8b01543 10.1021/jacs.6b07406 10.1039/C4SC00987H 10.1002/smll.200900895 10.1021/ma800994g 10.1021/jacs.6b11835 10.1039/C9CE00848A 10.1021/ar700145r 10.1021/acs.cgd.0c00492 10.1039/C4TC01999G 10.1016/j.cclet.2017.08.045 10.1107/S2052520616007447 10.1039/D0MA00019A 10.1002/anie.201303757 10.1021/acs.chemmater.1c04003 10.1038/204876b0 10.1002/anie.201511444 10.1002/anie.201301223 10.1039/b516732a 10.1021/acs.cgd.0c00908 10.1021/jacs.7b13605 10.1021/acs.chemmater.9b00441 10.1021/ja201925p 10.1021/jacs.6b09633 10.1246/cl.200693 10.1021/ja400833r 10.1016/j.powtec.2004.01.024 10.1038/nmat3115 10.1039/C3TC32581D 10.1021/acsami.0c03686 10.1002/jps.20587 10.1039/C6TC02517J 10.1016/S0032-3861(02)00724-3 10.1021/acs.chemmater.0c04560 10.1039/C9TC01084J 10.1038/nature05669 10.1002/smll.202100277 10.1039/C7CC02970E 10.1155/2009/436375 10.1021/acs.cgd.9b00247 10.1073/pnas.1917952117 10.1002/adom.201500106 10.1023/A:1014276917363 10.1021/ja5013382 10.3390/cryst7110324 10.1002/advs.201901824 10.31635/ccschem.021.202000663 10.1039/b415912h 10.1016/j.xphs.2016.07.015 10.1295/polymj.PJ2007191 10.1016/j.ejpb.2005.08.002 10.1021/ja209815f 10.1021/acs.cgd.0c01041 10.1002/anie.201411447 10.1002/ijch.202000095 10.1002/ange.202005738 10.1021/ja02086a003 10.1039/C5CS00841G 10.1016/j.commatsci.2004.03.017 10.1021/acs.cgd.7b01153 10.1002/anie.201301207 10.7210/jrsj.13.189 10.1021/acs.accounts.6b00209 10.1021/acs.chemrev.6b00415 10.1021/acs.jpca.9b10365 10.1039/c3tc31576b 10.1021/acs.jpclett.6b00704 10.1021/jacs.0c09577 10.1039/C9TC06689F 10.1016/j.actbio.2017.05.034 10.1021/cg700843s 10.1021/ja8098596 10.3390/cryst9090437 10.1002/anie.201800137 10.1021/acs.cgd.9b00910 10.1007/s00894-016-2909-0 10.1007/b98730 10.1002/chem.202002641 10.1039/c1cc14288g 10.1002/anie.201503914 10.1021/acs.jpclett.0c02623 10.1002/adfm.202105415 10.1039/c003466e 10.1246/cl.2000.756 10.1021/acs.cgd.8b00704 10.3139/146.101488 10.1021/ja300257m 10.1021/ja078301x 10.1039/C5SC04057D 10.1021/cg500305n 10.1021/acs.cgd.8b01867 10.1002/anie.201804589 10.1039/C8QM00363G 10.1002/anie.201907454 10.1002/adfm.201706506 10.1039/C5RA11656B 10.1039/C6CC02616H 10.1103/PhysRevLett.113.055701 10.1039/C3CS60181A 10.1039/C5TC04390E 10.1039/C6CE00848H 10.1002/adma.200600634 10.1021/ja4063019 10.1021/jacs.1c01549 10.1002/adma.201100827 10.1002/chem.201705586 10.1002/anie.201311014 10.1021/acs.macromol.9b01567 10.1002/adom.201600823 10.1002/cphc.201300906 10.1002/anie.202200196 10.1021/op0300241 10.1021/acs.molpharmaceut.7b00124 10.1002/admt.201800182 10.1002/adom.202001768 10.1002/adfm.202004116 10.1039/C4TC02070G 10.1021/ol702000s 10.1039/C6CC08999B 10.1039/C5CC00355E 10.1039/C9CC03826D 10.1039/c3cp54994a 10.1002/chir.20768 10.1002/anie.200702443 10.1002/anie.201702359 10.1039/C7SC04863G 10.5059/yukigoseikyokaishi.74.1217 10.1002/ange.201706517 10.1038/nchem.2513 10.1039/C8SC03135E 10.1021/acs.accounts.8b00425 10.1107/S0365110X55000121 10.1039/c0cp02376k 10.1021/cm502866e 10.1021/cen-v088n022.p013 10.1021/acs.cgd.9b00260 10.1016/S0022-5096(03)00066-8 10.1002/anie.201701972 10.1039/c2ce25100k 10.1007/s00289-012-0792-0 10.1016/j.powtec.2008.05.009 10.1016/j.xphs.2018.04.029 10.1039/C9CC06016B 10.1002/anie.199523111 10.1021/ja061810z 10.1039/C9CC01702J 10.1039/C9SC02444A 10.1002/anie.201304670 10.1021/jp110646n 10.1021/acs.cgd.0c00770 10.1038/ncomms7948 10.1107/S2052252515017297 10.1038/s41467-017-02607-9 10.1038/nchem.2547 10.1039/c1ra00424g 10.1039/C5CC08590J 10.1039/C6CE00742B 10.1021/ar900288m 10.1021/acs.cgd.8b00261 10.1016/j.addr.2016.01.011 10.1021/ja105508b 10.1021/ma702267e 10.1002/anie.202001060 10.1021/acs.cgd.9b00473 10.1557/JMR.1992.1564 10.1021/cg200375t 10.1002/anie.201802020 10.1021/mp0600182 10.1246/cl.2012.107 10.1002/adma.201404121 10.1002/anie.201705325 10.1557/JMR.2002.0339 10.1039/c3cc45646c 10.1039/D0CC01958E 10.1021/nn3011398 10.1016/0040-4020(92)85002-V 10.1021/js9701061 10.1186/s43074-021-00024-2 10.1002/smll.201804102 10.1002/anie.202110676 10.1021/nl050469y 10.1021/jacs.5b07806 10.1557/jmr.2004.19.1.3 10.1002/ange.202000570 10.1021/acs.jpclett.9b00196 10.1002/9780470446836 10.1002/anie.201914954 10.1039/c0cs00183j 10.1002/cplu.201600451 10.1016/S0022-0248(98)00034-7 10.1021/acs.langmuir.7b03848 10.1002/anie.201900501 10.1039/D0SC05118G 10.1002/adom.201800343 10.1021/acs.organomet.0c00258 10.1002/adom.201901317 10.1039/C7NR09571F 10.1038/s41467-019-11731-7 10.1002/adom.201500531 10.1021/jacs.6b06278 10.1007/978-4-431-54291-9_1 10.1002/anie.202102285 10.1039/C7SC04665K 10.1039/c2ce25811k 10.1002/adma.201703554 10.1073/pnas.0401918101 10.1021/ja507179d 10.1021/ja105356w 10.1038/nature21419 10.1002/chem.201603020 10.1038/ncomms15546 10.1111/j.1151-2916.1979.tb19075.x 10.1021/ja0719125 10.1039/C6CE00738D 10.1016/j.matt.2019.06.018 10.1002/anie.201105585 10.1021/ja00341a065 10.1002/cnma.201800196 10.1038/nmat852 10.1002/admi.202001662 10.1016/S0022-0248(97)00370-9 10.1021/jz502271c 10.1103/PhysRevLett.68.1148 10.1021/ol502223u 10.1103/PhysRevB.67.115408 10.1038/nmat3568 10.1021/acs.cgd.7b00755 10.1021/acs.jpclett.6b01459 10.1021/acsnano.0c05367 10.1039/c3ce41313f 10.1039/C5CE00195A 10.1002/chem.202103286 10.1002/anie.202012417 10.1039/c3tc32206h 10.1039/C7CE02107K 10.1016/j.msea.2011.08.061 10.1021/jacs.8b01997 10.1021/ma048959k 10.1021/ma961219u 10.1039/c2jm35394f 10.1016/j.powtec.2021.117066 10.1002/asia.202100807 10.1038/ncomms10270 10.1002/adma.201401114 10.1002/anie.201814441 10.1021/ja00037a027 10.1021/acs.cgd.9b01530 10.31635/ccschem.020.202000350 10.1039/C4NR04661G 10.1021/ja800353u 10.1557/JMR.1999.0490 10.1107/S2052252519014581 10.1038/s41467-019-11612-z 10.1109/JSTQE.2014.2318271 10.1038/ncomms12094 10.1021/jacs.9b03932 10.1002/adom.202100550 10.1002/anie.201703028 10.1002/ange.201810422 10.1039/C9TC06946A 10.1021/jacs.7b06410 10.1021/acs.jpcc.0c04258 10.1002/adma.201800814 10.1039/D0CS00638F 10.1016/j.chempr.2020.08.007 10.1002/anie.201810514 10.1038/nature04594 10.1016/j.jphotochemrev.2005.12.002 10.1021/acs.chemmater.8b04800 10.1039/C1CP22663K 10.1002/anie.201814387 10.1002/aelm.201700271 10.1039/C8CC10051A 10.1021/acs.jpclett.0c01545 10.1039/C9SC05640H 10.1039/D1CC01431E 10.1039/C6CP04459J 10.1039/D1TC04027H 10.1021/acs.molpharmaceut.9b00082 10.1039/D0CS00475H 10.1039/C8TC04631J 10.1021/acs.cgd.0c01119 10.1021/cr200297f 10.1021/jacs.6b05118 10.1039/C7CC06374A 10.1021/ja4101497 10.1016/j.dyepig.2017.10.008 10.1002/anie.202114089 10.1039/D0CS00037J 10.1007/12_2016_352 10.1002/aenm.201703491 10.1038/ncomms11156 10.1002/anie.202003820 10.1021/ja064535p 10.1021/acs.chemmater.9b01738 10.1021/acs.cgd.1c00270 10.1002/anie.200902929 10.1002/adom.202000959 10.1021/cr980070c 10.1002/adma.200602741 10.1002/anie.200460986 10.1016/j.biomaterials.2009.12.026 10.1007/s11665-012-0469-8 10.1021/ja993181h 10.1039/C3RA46688D 10.1002/adom.201200067 10.1002/adfm.202100642 10.1021/acs.chemmater.8b04568 10.1016/j.powtec.2015.04.004 10.1039/C4CC09074H 10.1021/jacs.0c05440 10.1002/anie.202009906 10.1021/jo010117l 10.1016/j.progpolymsci.2015.11.006 10.1351/pac197127040647 10.1002/anie.201505813 10.1002/ange.201914026 10.1038/s42004-019-0121-8 10.1002/ijch.202100056 10.3390/sym12091478 10.1038/s41467-020-15663-5 10.1002/anie.201302323 10.1021/ja065139+ 10.1021/ja512817f 10.1021/ma501733n 10.1038/ncomms5811 10.1016/0022-5096(94)90033-7 10.1021/acs.inorgchem.1c00881 10.1007/978-1-4684-2082-1 10.1002/anie.202002627 10.1021/acs.cgd.0c00798 10.1016/j.mechmat.2006.06.004 10.1246/cl.130797 10.1021/jacs.0c03643 10.1038/s41467-017-02549-2 10.1021/acs.chemrev.5b00398 10.1002/adma.19970091512 10.1016/0040-6090(95)06875-9 10.1126/science.1190239 10.1021/ja052940v 10.1002/adom.201500362 10.1002/anie.200350961 10.1002/jps.21552 10.1016/j.addr.2010.12.007 10.1088/0034-4885/76/12/126502 10.1021/cg200640g 10.1021/cg200883b 10.1002/adfm.201902396 10.1021/acs.chemmater.6b02017 10.1038/272710a0 10.1021/ma0717082 10.1039/c1jm10228a 10.1021/ar400003q 10.1038/ncomms8310 10.1039/D0CC05904H 10.1021/acs.molpharmaceut.9b00247 10.1002/adma.201605260 10.1002/adma.201204831 10.1039/D1CE00846C 10.1021/acs.accounts.7b00124 10.1002/anie.201814439 10.1039/C8SM01290C 10.1021/ja0671161 10.1021/acs.chemmater.0c00433 10.1021/cg3010882 10.1002/adom.202002264 10.1039/C6CC06235K 10.1021/jp037321s 10.1002/adma.201902765 10.1039/C8RA06639F |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cs00481j |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 3169 |
ExternalDocumentID | 37070570 10_1039_D2CS00481J d2cs00481j |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-213cd95c3220bca4195d67502de8527e3733a71f1d5afd9c1d6ceb1b35795a643 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 10:03:37 EDT 2025 Sun Jun 29 16:15:13 EDT 2025 Thu Apr 03 07:03:25 EDT 2025 Tue Jul 01 04:28:19 EDT 2025 Thu Apr 24 22:54:37 EDT 2025 Tue Dec 17 20:58:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-213cd95c3220bca4195d67502de8527e3733a71f1d5afd9c1d6ceb1b35795a643 |
Notes | Durga Prasad Karothu obtained his PhD with T. N. Guru Row from the Indian Institute of Science, Bangalore. He has been a visiting researcher with P. Coppens at the University of Buffalo (USA) and with R. E. Dinnebier at the Max Planck Institute for Solid State Research in Stuttgart (Germany). He was the recipient of the Rising Star Award from the Asian Crystallographic Association (AsCA) for the year 2022. He is currently a senior research scientist in the Naumov Group at New York University Abu Dhabi. His research focuses on the development of organic-based smart materials, organic solid-state chemistry, photocrystallography, and electron diffraction. Shodai Hasebe obtained his BSc degree from Waseda University in 2020. He is currently a graduate student in the research group of Dr Hideko Koshima at Waseda University. His research focuses on mechanically responsive molecular crystals and the application of mechanical crystals to actuators and soft robots. Changquan Calvin Sun is a professor of pharmaceutics at the University of Minnesota, USA. Professor Sun's research focuses on the efficient formulation and design of high-quality tablet products through the appropriate application of materials science and engineering principles. Two main areas of his current research are: (1) crystal and particle engineering for superior pharmaceutical properties; and (2) fundamental understanding of pharmaceutical processes, including powder compaction. He is a Fellow of the American Association for the Advancement of Science (AAAS), the American Association of Pharmaceutical Scientists (AAPS), and the Royal Society of Chemistry (RSC). Rajadurai Chandrasekar is a professor of chemistry and associated with the Center for Nanotechnology at the University of Hyderabad, India. He earned a PhD from the Max Planck Institute for Polymer Research at Mainz. He worked as a postdoctoral researcher in the Institute of Nanotechnology at the Karlsruhe Institute of Technology. His research currently focuses on organic- and polymer-based optically linear and nonlinear photonic components and their integrated circuits. His recent research interests include the micromanipulation of photonic structures using atomic force microscopy (mechanophotonics). Daichi Kitagawa received his PhD degree from Osaka City University in 2014. In 2014-2015, he was engaged as a postdoctoral researcher at JSPS. In 2015, he was promoted to an assistant professor at Osaka City University, and he was promoted to a senior professor in 2019. His current research focuses on the fabrication of novel photochromic molecules, photomechanical crystalline materials, and photoreaction dynamics in crystalline states. Christopher J. Bardeen received his PhD degree from UC Berkeley in 1995. After a postdoctoral fellowship at University of California, San Diego, he became an assistant professor at the University of Illinois, Urbana-Champaign, in 1998. In 2005, he moved to the University of California, Riverside. His current research interest focuses on spectroscopy, photochemistry, and mechanical dynamics in organic materials. Mr Linfeng Lan received his BS degree in chemistry from Jilin University in 2019. Currently, he is a PhD student at Jilin University under the supervision of Prof. Dr Hongyu Zhang. His research interests focus on the optical and mechanical properties of organic crystals and the application of organic crystalline materials in combination with polymers. Marieh Al-Handawi earned her PhD in chemistry and materials science from New York University's Graduate School of Arts and Sciences in 2022. She is currently working as a postdoctoral associate in Naumov's Smart Materials Lab at New York University Abu Dhabi, where she is involved in various interdisciplinary projects related to the design, fabrication, and characterization of materials. Her main research interest is focused on the intersection between materials science and biology, where she investigates natural phenomena with possible applications to materials science, such as biomineralization, water harvesting technologies, and bioluminescence, and applies the underlying principles to bioinspired artificial materials. Pan e Naumov is a tenured professor at New York University Abu Dhabi, with a cross-appointment at NYU's Molecular Design Institute, and a director of the Center for Smart Engineering Materials. He is a native of Macedonia, where he got a BSc degree from Ss. Cyril and Methodius University. After acquiring his PhD in chemistry and materials science from the Tokyo Institute of Technology in 2004, Dr Naumov continued his research at the National Institute for Materials Science, Osaka University and Kyoto University. The research in his group is related to materials science, focusing on smart materials, crystallography, bioluminescence, and petroleomics. Alexander G. Shtukenberg received a specialist degree in 1993 from the Geological Faculty of Saint Petersburg State University, Russia. Under the supervision of Yuri Punin, he received a Candidate of Science degree in 1997 and continued to work at the Geological Faculty as a researcher and faculty member. In 2009, he earned the Doctor of Science degree, and in 2010, he became a professor at the same university. Since 2010, he has been associated with the Molecular Design Institute in the Department of Chemistry at New York University and is currently a research professor. Dr Hideko Koshima was a professor at Ehime University, and in 2014, she moved to Waseda University. Her research interests are in solid-state organic photochemistry, chiral chemistry, and microwave chemistry. Over the last decade, her research had focused on mechanical molecular crystals that are actuated by light and heat. In 2001, she received the Japanese Woman Scientists Association Award, and in 2014, she received the Japanese Photochemistry Association Award for Distinguished Contribution to Photochemistry. Ying Diao is an associate professor, I. C. Gunsalus Scholar and Dow Chemical Company Faculty Scholar at the University of Illinois at Urbana-Champaign. She received PhD from MIT in 2011, and pursued postdoctoral training at Stanford University from 2011 to 2014. Her research group, started in 2015 at Illinois, focuses on understanding the assembly of organic functional materials and innovating printing approaches that enable structural control down to a molecular and nanoscale. She was named an MIT Technology Review Innovators Under 35, a recipient of the NSF CAREER Award, NASA Early Career Faculty Award, and Sloan Fellowship in Chemistry. Tamador Alkhidir is a visiting researcher in the Advanced Materials Chemistry Center (AMCC) at Khalifa University and also works as a curriculum specialist in the UAE Ministry of Education. She received her PhD from Khalifa University in 2020. Her research interests are focused on the applications of computational materials modelling for gaining a better understanding of structure-property correlations. She is an expert in the simulation of the electrical and mechanical properties of organic and inorganic materials using DFT methods. Gonzalo Campillo-Alvarado is an assistant professor of chemistry at Reed College in Portland, OR, USA. His research focuses on designing dynamic crystalline materials with an emphasis on boron for applications in chemical separations, pharmaceutics, and electronics. Before joining Reed, he was an Illinois Distinguished Postdoctoral Research Associate at the University of Illinois at Urbana-Champaign, mentored by Prof. Ying Diao. He received his PhD in chemistry from the University of Iowa (advisor: Prof. Leonard R. MacGillivray), his MSc in chemistry at Universidad Autónoma del Estado de Morelos, and his BSc in biopharmaceutical chemistry at Universidad Veracruzana. Prof. Dr Hongyu Zhang received his PhD in 2006 at Jilin University, majoring in organic chemistry. He joined Prof. Shigehiro Yamaguchi's group at Nagoya University as a JSPS postdoctoral fellow (2006-2008). In 2008, he joined the faculty of Jilin University as an associate professor of chemistry and was promoted to full professor in 2014. His main research interests focus on the design and synthesis of organic functional materials and their applications in optoelectronics. He received a number of awards and honors, including the NSFC outstanding Young Scholar Award (2017) and the CCS Lectureship Award for Creative Young Supramolecular Chemists (2020). Sharmarke Mohamed is an Associate Professor of Chemistry, theme leader in the Advanced Materials Chemistry Center (AMCC), and PI of the Green Chemistry and Materials Modelling Laboratory at Khalifa University. In 2011, he received his PhD from UCL. His PhD research focused on small molecule X-ray crystallography and computational methods of crystal structure prediction. He has worked in the pharmaceutical industry as an experimental drug development chemist and is an inventor on a number of patents. Since joining the faculty at Khalifa University in 2014, he has widened his research interests to cover mechanochemistry, multiscale materials modeling and green chemistry. Mubarak Almehairbi is an MSc student in the Applied Chemistry program at Khalifa University. He completed his BSc chemistry capstone project under the supervision of Prof. Sharmarke Mohamed. During this capstone project, he was successful in developing a code to better understand and predict the mechanical properties of organic molecular crystals using DFT methods. In his current role as an MSc student, his research is focused on the computational prediction of the vibrational-rotational spectra of diatomic radicals found in the Martian atmosphere. Mubarak has an ongoing passion for code development and in the application of machine learning methods to better understand and predict materials properties. Seiya Kobatake is professor of materials chemistry at Osaka Metropolitan University in Japan. He received his PhD degree from Osaka City Universit ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3527-3984 0000-0001-9231-9809 0000-0001-5705-119X 0000-0001-7051-9332 0000-0001-5170-4559 0000-0002-1868-8523 0000-0002-1994-3047 0000-0002-1526-4629 0000-0001-8429-2802 0000-0002-5755-9476 0000-0002-5195-2533 0000-0001-5956-6496 0000-0002-0061-5545 0000-0001-9642-6740 0000-0002-2537-5453 0000-0002-7005-4464 0000-0002-5590-4758 0000-0001-7284-5334 0000-0003-4545-2230 0000-0002-3489-6357 0000-0002-8984-0051 0000-0003-2416-6569 0000-0002-0834-6263 0000-0002-0219-3948 |
PMID | 37070570 |
PQID | 2811164759 |
PQPubID | 2047503 |
PageCount | 72 |
ParticipantIDs | crossref_primary_10_1039_D2CS00481J proquest_miscellaneous_2802887844 rsc_primary_d2cs00481j crossref_citationtrail_10_1039_D2CS00481J proquest_journals_2811164759 pubmed_primary_37070570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-09 |
PublicationDateYYYYMMDD | 2023-05-09 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mutai (D2CS00481J/cit101/1) 2020; 11 Annadhasan (D2CS00481J/cit378/1) 2020; 59 Chen (D2CS00481J/cit456/1) 1992; 48 Nakamura (D2CS00481J/cit22/1) 2007; 39 Swadener (D2CS00481J/cit23/1) 2001; 57 Khan (D2CS00481J/cit192/1) 2021; 16 Shtukenberg (D2CS00481J/cit38/1) 2014; 53 Ritchie (D2CS00481J/cit1/1) 2011; 10 Ohkata (D2CS00481J/cit98/1) 1995; 13 Shtukenberg (D2CS00481J/cit121/1) 2015; 17 Maier (D2CS00481J/cit399/1) 2003; 2 Chen (D2CS00481J/cit375/1) 2021; 2 Halme (D2CS00481J/cit476/1) 2019; 19 Campillo-Alvarado (D2CS00481J/cit88/1) 2020; 39 Iwaso (D2CS00481J/cit445/1) 2016; 8 Lusi (D2CS00481J/cit57/1) 2013; 49 Naumov (D2CS00481J/cit30/1) 2020; 142 Hui (D2CS00481J/cit423/1) 2013; 25 Siegel (D2CS00481J/cit301/1) 2010; 329 Klajn (D2CS00481J/cit201/1) 2014; 43 Irie (D2CS00481J/cit219/1) 2014; 114 Naumov (D2CS00481J/cit60/1) 2013; 52 Good (D2CS00481J/cit278/1) 2009; 5 Kubo (D2CS00481J/cit348/1) 2016; 7 Zhu (D2CS00481J/cit109/1) 2016; 55 Wang (D2CS00481J/cit317/1) 2018; 18 Mattia (D2CS00481J/cit273/1) 2014; 6 Hayashi (D2CS00481J/cit376/1) 2018; 130 Liu (D2CS00481J/cit502/1) 2020; 32 Bernauer (D2CS00481J/cit86/1) 1929 Tong (D2CS00481J/cit208/1) 2018; 57 Hirano (D2CS00481J/cit242/1) 2017; 17 Kitagawa (D2CS00481J/cit249/1) 2013; 52 Desta (D2CS00481J/cit241/1) 2020; 124 de Jong (D2CS00481J/cit331/1) 2015; 2 Jacobs (D2CS00481J/cit468/1) 2002; 19 Liu (D2CS00481J/cit67/1) 2018; 18 Yadava (D2CS00481J/cit239/1) 2019; 19 Hao (D2CS00481J/cit178/1) 2019; 7 Ashby (D2CS00481J/cit28/1) 2011 Shima (D2CS00481J/cit459/1) 2014; 53 Taniguchi (D2CS00481J/cit181/1) 2016; 22 Mohamed (D2CS00481J/cit499/1) 2015; 5 Tong (D2CS00481J/cit61/1) 2016; 18 Hatano (D2CS00481J/cit222/1) 2017; 129 Bushuyev (D2CS00481J/cit182/1) 2016; 52 Campione (D2CS00481J/cit282/1) 2005; 15 Donnay (D2CS00481J/cit322/1) 1937; 22 Kjelstrup-Hansen (D2CS00481J/cit384/1) 2013; 76 Labonte (D2CS00481J/cit25/1) 2017; 57 Kuzmanich (D2CS00481J/cit232/1) 2008; 130 Mondal (D2CS00481J/cit3/1) 2020; 59 Al-Kaysi (D2CS00481J/cit248/1) 2017; 53 Worthy (D2CS00481J/cit85/1) 2018; 10 Ye (D2CS00481J/cit131/1) 2019; 52 Cheng (D2CS00481J/cit411/1) 2018; 28 Abouhakim (D2CS00481J/cit482/1) 2020; 20 Kloc (D2CS00481J/cit270/1) 1997; 182 Taguchi (D2CS00481J/cit351/1) 2021; 8 Kitagawa (D2CS00481J/cit221/1) 2018; 140 Saha (D2CS00481J/cit32/1) 2018; 51 Turner (D2CS00481J/cit312/1) 2014; 5 Kahr (D2CS00481J/cit113/1) 2019; 19 Wu (D2CS00481J/cit350/1) 2016; 7 Tang (D2CS00481J/cit415/1) 2016; 52 Yao (D2CS00481J/cit460/1) 2014; 6 Tsao (D2CS00481J/cit233/1) 2004; 108 Kahr (D2CS00481J/cit123/1) 2010; 43 Haddad (D2CS00481J/cit156/1) 2019; 15 Ravi (D2CS00481J/cit41/1) 2018; 57 Fang (D2CS00481J/cit420/1) 2012; 22 Matthews (D2CS00481J/cit281/1) 2018; 30 Colin-Molina (D2CS00481J/cit96/1) 2019; 1 Abendroth (D2CS00481J/cit297/1) 2015; 9 Mannepalli (D2CS00481J/cit73/1) 2017; 7 Jain (D2CS00481J/cit329/1) 2013; 1 Qian (D2CS00481J/cit284/1) 2019; 4 Sajimon (D2CS00481J/cit457/1) 2007; 129 Venkatakrishnarao (D2CS00481J/cit443/1) 2016; 4 Frost (D2CS00481J/cit160/1) 1982 Stevens (D2CS00481J/cit210/1) 1964; 204 Toda (D2CS00481J/cit143/1) 2008; 41 Bentham (D2CS00481J/cit474/1) 2004; 141 Nath (D2CS00481J/cit194/1) 2015; 137 Armon (D2CS00481J/cit157/1) 2011; 333 Gately (D2CS00481J/cit215/1) 2021; 23 Sun (D2CS00481J/cit492/1) 2008; 8 Wang (D2CS00481J/cit105/1) 2017; 56 Oliver (D2CS00481J/cit14/1) 2004; 19 Liu (D2CS00481J/cit387/1) 2019; 10 Takamizawa (D2CS00481J/cit103/1) 2016; 7 Yang (D2CS00481J/cit138/1) 2018; 20 Yang (D2CS00481J/cit114/1) 2022; 34 Hu (D2CS00481J/cit506/1) 2019; 31 Liu (D2CS00481J/cit418/1) 2018; 149 Kuzmanich (D2CS00481J/cit230/1) 2009; 131 Lai (D2CS00481J/cit354/1) 2018; 4 Huang (D2CS00481J/cit377/1) 2019; 7 Patravale (D2CS00481J/cit473/1) 2004; 56 Crist (D2CS00481J/cit141/1) 2016; 56 Morimoto (D2CS00481J/cit245/1) 2010; 132 Tian (D2CS00481J/cit373/1) 2021; 9 Hill (D2CS00481J/cit24/1) 1950 Etter (D2CS00481J/cit55/1) 1983; 105 Chandrasekar (D2CS00481J/cit359/1) 2014; 16 Irie (D2CS00481J/cit266/1) 2000; 122 Ahmed (D2CS00481J/cit79/1) 2020; 142 Yadav (D2CS00481J/cit315/1) 2019; 19 Chung (D2CS00481J/cit50/1) 2018; 9 Zhi (D2CS00481J/cit274/1) 2005; 44 Basile (D2CS00481J/cit36/1) 2018; 8 Krishna (D2CS00481J/cit4/1) 2016; 138 Ahmed (D2CS00481J/cit33/1) 2018; 57 Landenberger (D2CS00481J/cit66/1) 2010; 10 Koshima (D2CS00481J/cit212/1) 2016; 18 Sahoo (D2CS00481J/cit240/1) 2014; 4 Pastore (D2CS00481J/cit302/1) 2012; 14 Tang (D2CS00481J/cit379/1) 2020; 30 Zhang (D2CS00481J/cit419/1) 2016; 49 Mayo (D2CS00481J/cit328/1) 1990; 94 Takamizawa (D2CS00481J/cit52/1) 2018; 9 Rosenthal (D2CS00481J/cit151/1) 2012; 45 Ma (D2CS00481J/cit374/1) 2021; 9 Sasaki (D2CS00481J/cit53/1) 2020; 20 Mishra (D2CS00481J/cit505/1) 2020; 20 Kim (D2CS00481J/cit207/1) 2014; 136 Hasebe (D2CS00481J/cit465/1) 2021; 8 (D2CS00481J/cit356/1) 1975 Sakai (D2CS00481J/cit26/1) 1999; 14 Noyes (D2CS00481J/cit470/1) 1897; 19 Zhang (D2CS00481J/cit250/1) 2019; 15 Chandrasekhar (D2CS00481J/cit426/1) 2013; 1 Descamps (D2CS00481J/cit483/1) 2016; 100 Wang (D2CS00481J/cit195/1) 2021; 3 (D2CS00481J/cit451/1) 2004 Tong (D2CS00481J/cit188/1) 2018; 34 Huang (D2CS00481J/cit382/1) 2018; 30 Chiba (D2CS00481J/cit172/1) 2021; 50 Reilly (D2CS00481J/cit325/1) 2016; 72 Bozhevolnyi (D2CS00481J/cit397/1) 2006; 440 Al-Kaysi (D2CS00481J/cit94/1) 2015; 17 Skoko (D2CS00481J/cit234/1) 2010; 132 Wang (D2CS00481J/cit406/1) 2014; 26 Bushuyev (D2CS00481J/cit183/1) 2014; 5 Yokoyama (D2CS00481J/cit453/1) 2000; 100 Wang (D2CS00481J/cit504/1) 2019; 31 Norikane (D2CS00481J/cit107/1) 2016; 18 Norikane (D2CS00481J/cit259/1) 2014; 16 Punin (D2CS00481J/cit153/1) 2008 Zhu (D2CS00481J/cit214/1) 2014; 26 Venkatakrishnarao (D2CS00481J/cit427/1) 2018; 6 Sasaki (D2CS00481J/cit51/1) 2019; 19 Resendiz (D2CS00481J/cit231/1) 2007; 9 Shtukenberg (D2CS00481J/cit132/1) 2012; 134 Schiffmann (D2CS00481J/cit16/1) 2007; 98 Reddy (D2CS00481J/cit13/1) 2010; 12 Saha (D2CS00481J/cit48/1) 2017; 53 Liu (D2CS00481J/cit158/1) 2019; 570 Kaupp (D2CS00481J/cit202/1) 2016 Terao (D2CS00481J/cit170/1) 2012; 51 Yang (D2CS00481J/cit271/1) 2011; 115 Gong (D2CS00481J/cit257/1) 2020; 132 Mohamed (D2CS00481J/cit159/1) 2015; 15 Sun (D2CS00481J/cit200/1) 2013; 52 Turner (D2CS00481J/cit313/1) 2015; 51 Merino (D2CS00481J/cit180/1) 2011; 40 Yadava (D2CS00481J/cit63/1) 2020; 7 Koshima (D2CS00481J/cit104/1) 2020 Gupta (D2CS00481J/cit6/1) 2020; 20 Chu (D2CS00481J/cit391/1) 2020; 11 Kitagawa (D2CS00481J/cit167/1) 2020; 12 Nath (D2CS00481J/cit244/1) 2014; 136 Panda (D2CS00481J/cit45/1) 2015; 7 Efrati (D2CS00481J/cit136/1) 2014; 4 Abumaree (D2CS00481J/cit276/1) 2011; 1 Kreiza (D2CS00481J/cit405/1) 2017; 5 Rai (D2CS00481J/cit90/1) 2018; 115 Koshima (D2CS00481J/cit223/1) 2012 Sun (D2CS00481J/cit487/1) 2015; 279 Meng (D2CS00481J/cit145/1) 2013; 46 Saito (D2CS00481J/cit258/1) 2019; 55 Ye (D2CS00481J/cit292/1) 2020; 22 Cole (D2CS00481J/cit78/1) 2019; 31 Shtukenberg (D2CS00481J/cit111/1) 2011; 12 Kim (D2CS00481J/cit49/1) 2013; 52 Liu (D2CS00481J/cit390/1) 2020; 11 Varughese (D2CS00481J/cit2/1) 2013; 52 Zhong (D2CS00481J/cit148/1) 2021; 57 Shi (D2CS00481J/cit366/1) 2020; 3 Olson (D2CS00481J/cit147/1) 2016; 7 Zhang (D2CS00481J/cit76/1) 2015; 27 Bucar (D2CS00481J/cit272/1) 2007; 129 Shtukenberg (D2CS00481J/cit122/1) 2012; 112 Jiang (D2CS00481J/cit358/1) 2020; 59 Tan (D2CS00481J/cit118/1) 2018; 211 Al-Kaysi (D2CS00481J/cit262/1) 2009; 2009 Vlassak (D2CS00481J/cit19/1) 2003; 51 Schultz (D2CS00481J/cit149/1) 1969; 10 Khedhiri (D2CS00481J/cit454/1) 2004; 108 De (D2CS00481J/cit256/1) 2020; 12 Thayer (D2CS00481J/cit472/1) 2010; 88 Xu (D2CS00481J/cit346/1) 2014; 2 Sato (D2CS00481J/cit39/1) 2016; 8 Rohrs (D2CS00481J/cit466/1) 2006; 95 Koshima (D2CS00481J/cit82/1) 2012; 92 Perrot (D2CS00481J/cit168/1) 2021; 3 Peng (D2CS00481J/cit186/1) 2018; 13 Vlassak (D2CS00481J/cit10/1) 1994; 42 Cui (D2CS00481J/cit127/1) 2016; 138 Taniguchi (D2CS00481J/cit106/1) 2018; 9 Li (D2CS00481J/cit146/1) 2018; 122 Johnson (D2CS00481J/cit467/1) 1972; 47 Toda (D2CS00481J/cit142/1) 2008; 41 Gilman (D2CS00481J/cit7/1) 2009 Bhandary (D2CS00481J/cit74/1) 2020; 56 Tang (D2CS00481J/cit394/1) 2022; 10 Wu (D2CS00481J/cit340/1) 2004; 31 Zhu (D2CS00481J/cit203/1) 2011; 21 Bolton (D2CS00481J/cit65/1) 2012; 12 Fu (D2CS00481J/cit285/1) 2003; 42 Sun (D2CS00481J/cit327/1) 2016; 22 Catalano (D2CS00481J/cit381/1) 2018; 57 Zhang (D2CS00481J/cit288/1) 2017; 50 Al-Kaysi (D2CS00481J/cit263/1) 2006 Reilly (D2CS00481J/cit337/1) 2013; 139 Dutta (D2CS00481J/cit238/1) 2019; 55 Thompson (D2CS00481J/cit503/1) 2021; 50 Medishetty (D2CS00481J/cit235/1) 2015; 27 Kitagawa (D2CS00481J/cit298/1) 2015; 51 Wu (D2CS00481J/cit362/1) 2021; 9 Annadhasan (D2CS00481J/cit80/1) 2020; 59 Zhao (D2CS00481J/cit432/1) 2014 Cohen (D2CS00481J/cit209/1) 1971; 324 Rath (D2CS00481J/cit198/1) 2020; 142 Al-Kaysi (D2CS00481J/cit206/1) 2007; 40 Azuri (D2CS00481J/cit310/1) 2015; 54 Amimoto (D2CS00481J/cit450/1) 2005; 6 Choi (D2CS00481J/cit349/1) 2020; 7 Mutter (D2CS00481J/cit363/1) 2007; 15 Hartman (D2CS00481J/cit323/1) 1955; 8 Lan (D2CS00481J/cit173/1) 2022; 61 Halabi (D2CS00481J/cit309/1) 2019; 141 Yamada (D2CS00481J/cit267/1) 2001; 66 Saito (D2CS00481J/cit261/1) 2016; 7 Briseno (D2CS00481J/cit341/1) 2006; 18 Lu (D2CS00481J/cit385/1) 2020; 132 Mishra (D2CS00481J/cit501/1) 2015; 137 Zhu (D2CS00481J/cit89/1) 2011; 133 Evans (D2CS00481J/cit307/1) 2017; 29 Commins (D2CS00481J/cit5/1) 2019; 58 Huang (D2CS00481J/cit291/1) 2019; 58 Nakagawa (D2CS00481J/cit236/1) 2019; 25 Lin (D2CS00481J/cit287/1) 2012; 6 Chen (D2CS00481J/cit484/1) 2014; 103 Chalek (D2CS00481J/cit264/1) 2020; 12 Colmenero (D2CS00481J/cit332/1) 2020; 1 Shu (D2CS00481J/cit197/1) 2021; 27 Chandrasekar (D2CS00481J/cit439/1) 2021; 17 Shtukenberg (D2CS00481J/cit112/1) 2020; 20 Zügner (D2CS00481J/cit478/1) 2006; 62 Freudenthal (D2CS00481J/cit128/1) 2009; 21 Kitagawa (D2CS00481J/cit40/1) 2016; 28 Takamizawa (D2CS00481J/cit100/1) 2015; 54 Costa (D2CS00481J/cit17/1) 2004 Callister (D2CS00481J/cit343/1) 2020 Gupta (D2CS00481J/cit91/1) 2018; 57 Dong (D2CS00481J/cit409/1) 2017; 17 Uchida (D2CS00481J/cit108/1) 2015; 6 Al-Kaysi (D2CS00481J/cit174/1) 2008; 327 Jiang (D2CS00481J/cit404/1) 2020; 49 Commins (D2CS00481J/cit92/1) 2020; 11 Dong (D2CS00481J/cit296/1) 2020; 30 Karothu (D2CS00481J/cit367/1) 2021; 12 Hunsperger (D2CS00481J/cit357/1) 2009 Takagi (D2CS00481J/cit47 |
References_xml | – issn: 2004 publication-title: Determination of the Compliance of an Instrumented Indentation Testing Machine, HARDMEKO 2004 doi: Costa Shuman Machado Andrade – issn: 2011 publication-title: Materials Selection in Mechanical Design doi: Ashby – issn: 2020 publication-title: Materials Science and Engineering: An Introduction doi: Callister Rethwisch – issn: 2009 publication-title: Chemistry and Physics of Mechanical Hardness doi: Gilman – issn: 1929 publication-title: "Gedrillte" Kristalle; Verbreitung, Entstehungsweise und Beziehungen zu optischer Aktivität und Molekülasymmetrie doi: Bernauer – issn: 2020 publication-title: Mechanically Responsive Materials for Soft Robotics doi: Koshima – issn: 2004 publication-title: Chiral Photochemistry – issn: 1950 publication-title: The Mathematical Theory of Plasticity doi: Hill – issn: 2009 publication-title: Nanophotonics and Nanofabrication – issn: 1982 publication-title: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics doi: Frost Ashby – issn: 2014 publication-title: Organic Nanophotonics: Fundamentals and Applications doi: Zhao – issn: 2013 volume-title: Photomechanical Response of Diarylethene Single Crystals end-page: p 3-19 publication-title: New Frontiers in Photochromism doi: Irie – issn: 1998 publication-title: Fundamentals of Nanoindentation and Nanotribology (No. CONF-980405-) doi: Moody Gerberich Burnham Baker – issn: 2016 volume-title: Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering end-page: p 95-126 publication-title: Polymer Crystallization II doi: Ivanov Rosenthal – issn: 2009 publication-title: Integrated Optics: Theory and Technology doi: Hunsperger – issn: 1975 publication-title: Integrated Optics – issn: 2011 publication-title: Functional Materials: Preparation, Processing and Applications – issn: 2008 publication-title: Autodeformation Defects in Crystals doi: Punin Shtukenberg – issn: 1974 volume-title: Optical Directional Couplers publication-title: Introduction to Integrated Optics doi: Barnoski – volume: 8 start-page: 041310 year: 2021 ident: D2CS00481J/cit165/1 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0059919 – volume: 23 start-page: 5697 year: 2021 ident: D2CS00481J/cit339/1 publication-title: CrystEngComm doi: 10.1039/D1CE00453K – volume: 17 start-page: e2006795 year: 2021 ident: D2CS00481J/cit383/1 publication-title: Small doi: 10.1002/smll.202006795 – volume: 411 start-page: 49 year: 2011 ident: D2CS00481J/cit481/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.03.039 – volume: 10 start-page: 5997 year: 2019 ident: D2CS00481J/cit361/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02315 – volume: 129 start-page: 12750 year: 2017 ident: D2CS00481J/cit222/1 publication-title: Angew. Chem. doi: 10.1002/ange.201706684 – volume: 33 start-page: 1126 year: 2016 ident: D2CS00481J/cit488/1 publication-title: Pharm. Res. doi: 10.1007/s11095-016-1858-8 – volume: 108 start-page: 7473 year: 2004 ident: D2CS00481J/cit454/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp048137p – volume-title: The Mathematical Theory of Plasticity year: 1950 ident: D2CS00481J/cit24/1 – volume: 47 start-page: 422 year: 2018 ident: D2CS00481J/cit290/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00490G – volume: 2012 start-page: 1 year: 2012 ident: D2CS00481J/cit277/1 publication-title: J. Nanomater. doi: 10.1155/2012/328520 – volume: 20 start-page: 4764 year: 2020 ident: D2CS00481J/cit505/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00521 – volume: 10 start-page: 2101808 year: 2022 ident: D2CS00481J/cit392/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202101808 – volume: 61 start-page: 683 year: 2021 ident: D2CS00481J/cit164/1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.202100093 – volume: 140 start-page: 6186 year: 2018 ident: D2CS00481J/cit84/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00772 – volume: 10 start-page: 65 year: 2018 ident: D2CS00481J/cit85/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2848 – volume: 467 start-page: 47 year: 2017 ident: D2CS00481J/cit320/1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2017.03.014 – volume: 36 start-page: F72 year: 2019 ident: D2CS00481J/cit124/1 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.36.000F72 – volume: 127 start-page: 12792 year: 2005 ident: D2CS00481J/cit275/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054263a – volume: 57 start-page: 8498 year: 2018 ident: D2CS00481J/cit91/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802785 – volume: 136 start-page: 6617 year: 2014 ident: D2CS00481J/cit207/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412216z – volume: 142 start-page: 11219 year: 2020 ident: D2CS00481J/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03990 – volume: 2 start-page: 7 year: 2015 ident: D2CS00481J/cit228/1 publication-title: Open Chem. J. doi: 10.2174/1874842201502010007 – volume: 139 start-page: 024705 year: 2013 ident: D2CS00481J/cit337/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4812819 – volume: 117 start-page: 20887 year: 2013 ident: D2CS00481J/cit243/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp4083079 – volume: 52 start-page: 2701 year: 2013 ident: D2CS00481J/cit2/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205002 – volume: 24 start-page: 4600 year: 2006 ident: D2CS00481J/cit441/1 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2006.885782 – volume: 132 start-page: 9341 year: 2010 ident: D2CS00481J/cit134/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101491n – volume: 1 start-page: 011002 year: 2013 ident: D2CS00481J/cit329/1 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 10 start-page: 4185 year: 2019 ident: D2CS00481J/cit44/1 publication-title: Chem. Sci. doi: 10.1039/C8SC05563G – volume: 124 start-page: 10944 year: 2002 ident: D2CS00481J/cit64/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026564f – volume-title: “Gedrillte” Kristalle; Verbreitung, Entstehungsweise und Beziehungen zu optischer Aktivität und Molekülasymmetrie year: 1929 ident: D2CS00481J/cit86/1 – volume: 131 start-page: 11606 year: 2009 ident: D2CS00481J/cit230/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9043449 – volume: 92 start-page: 798 year: 2012 ident: D2CS00481J/cit82/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2011.05.003 – volume: 94 start-page: 8897 year: 1990 ident: D2CS00481J/cit328/1 publication-title: J. Phys. Chem. doi: 10.1021/j100389a010 – volume: 12 start-page: 59 year: 2017 ident: D2CS00481J/cit475/1 publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2016.09.002 – volume: 22 start-page: 4899 year: 2016 ident: D2CS00481J/cit407/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201600355 – volume: 140 start-page: 90 year: 2018 ident: D2CS00481J/cit184/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10998 – volume: 15 start-page: 2474 year: 2015 ident: D2CS00481J/cit159/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b00245 – volume: 57 start-page: 31 year: 2017 ident: D2CS00481J/cit110/1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.201600002 – volume: 49 start-page: 145 year: 1980 ident: D2CS00481J/cit324/1 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(80)90075-5 – volume: 10 start-page: 5341 year: 2010 ident: D2CS00481J/cit66/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg101300n – volume: 10 start-page: 25689 year: 2018 ident: D2CS00481J/cit252/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07563 – volume: 59 start-page: 13004 year: 2020 ident: D2CS00481J/cit97/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004083 – volume: 25 start-page: 483 year: 2011 ident: D2CS00481J/cit489/1 publication-title: J. Adhes. Sci. Technol. doi: 10.1163/016942410X525678 – volume: 31 start-page: 1794 year: 2019 ident: D2CS00481J/cit504/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00040 – volume: 12 start-page: 1326 year: 2021 ident: D2CS00481J/cit367/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21324-y – volume: 8 start-page: 4926 year: 2017 ident: D2CS00481J/cit117/1 publication-title: Chem. Sci. doi: 10.1039/C7SC00168A – volume: 50 start-page: 11725 year: 2021 ident: D2CS00481J/cit503/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00469G – volume: 19 start-page: 5491 year: 2019 ident: D2CS00481J/cit51/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00917 – volume: 19 start-page: 1912 year: 2019 ident: D2CS00481J/cit54/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01890 – volume: 59 start-page: 23117 year: 2020 ident: D2CS00481J/cit386/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202011857 – volume-title: Fundamentals of Nanoindentation and Nanotribology (No. CONF-980405-) year: 1998 ident: D2CS00481J/cit15/1 – volume: 25 start-page: 7874 year: 2019 ident: D2CS00481J/cit236/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201900811 – volume: 133 start-page: 13848 year: 2011 ident: D2CS00481J/cit129/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205159u – volume: 12 start-page: 6655 year: 2021 ident: D2CS00481J/cit494/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.1c01017 – volume: 3 start-page: 926 year: 2021 ident: D2CS00481J/cit168/1 publication-title: Trends Chem. doi: 10.1016/j.trechm.2021.08.007 – volume: 138 start-page: 4881 year: 2016 ident: D2CS00481J/cit137/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01120 – volume: 130 start-page: 3162 year: 2018 ident: D2CS00481J/cit410/1 publication-title: Angew. Chem. doi: 10.1002/ange.201712524 – volume-title: Chiral Photochemistry year: 2004 ident: D2CS00481J/cit451/1 – volume: 4 start-page: 402 year: 2010 ident: D2CS00481J/cit433/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.136 – volume: 128 start-page: 2751 year: 2016 ident: D2CS00481J/cit93/1 publication-title: Angew. Chem. doi: 10.1002/ange.201509319 – volume: 10 start-page: 2101335 year: 2022 ident: D2CS00481J/cit394/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202101335 – volume: 122 start-page: 25085 year: 2018 ident: D2CS00481J/cit146/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b08261 – volume: 22 start-page: 1149 year: 2020 ident: D2CS00481J/cit27/1 publication-title: CrystEngComm doi: 10.1039/C9CE01874C – volume: 327 start-page: 102 year: 2008 ident: D2CS00481J/cit174/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.07.040 – volume: 45 start-page: 7454 year: 2012 ident: D2CS00481J/cit151/1 publication-title: Macromolecules doi: 10.1021/ma301446t – volume: 211 start-page: 477 year: 2018 ident: D2CS00481J/cit118/1 publication-title: Faraday Discuss. doi: 10.1039/C8FD00039E – volume: 15 start-page: 629 year: 2007 ident: D2CS00481J/cit363/1 publication-title: Opt. Express doi: 10.1364/OE.15.000629 – volume: 333 start-page: 1726 year: 2011 ident: D2CS00481J/cit157/1 publication-title: Science doi: 10.1126/science.1203874 – volume: 57 start-page: 7080 year: 2018 ident: D2CS00481J/cit208/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802423 – volume: 52 start-page: 8514 year: 2019 ident: D2CS00481J/cit131/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01526 – volume: 7 start-page: 65 year: 2015 ident: D2CS00481J/cit45/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2123 – volume: 7 start-page: 13260 year: 2016 ident: D2CS00481J/cit253/1 publication-title: Nat. Commun. doi: 10.1038/ncomms13260 – volume: 56 start-page: 827 year: 2004 ident: D2CS00481J/cit473/1 publication-title: J. Pharm. Pharmacol. doi: 10.1211/0022357023691 – volume: 99 start-page: 5804 year: 2002 ident: D2CS00481J/cit344/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.092143399 – volume: 25 start-page: 2963 year: 2013 ident: D2CS00481J/cit423/1 publication-title: Adv. Mater. doi: 10.1002/adma.201300540 – volume: 29 start-page: 7833 year: 2017 ident: D2CS00481J/cit307/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02532 – volume: 58 start-page: 3415 year: 2022 ident: D2CS00481J/cit440/1 publication-title: Chem. Commun. doi: 10.1039/D2CC00044J – volume: 3 start-page: 2569 year: 2021 ident: D2CS00481J/cit388/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000565 – volume: 53 start-page: 7173 year: 2014 ident: D2CS00481J/cit459/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402560 – volume: 10 start-page: 5256 year: 2019 ident: D2CS00481J/cit334/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13250-x – volume: 9 start-page: 3984 year: 2018 ident: D2CS00481J/cit52/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06431-7 – volume: 135 start-page: 13843 year: 2013 ident: D2CS00481J/cit72/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4056323 – volume: 8 start-page: 4876 year: 2020 ident: D2CS00481J/cit447/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00007H – volume: 570 start-page: 358 year: 2019 ident: D2CS00481J/cit158/1 publication-title: Nature doi: 10.1038/s41586-019-1308-y – volume: 142 start-page: 18565 year: 2020 ident: D2CS00481J/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07830 – volume: 22 start-page: 7950 year: 2016 ident: D2CS00481J/cit181/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201505149 – volume: 61 start-page: e202113988 year: 2022 ident: D2CS00481J/cit169/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202113988 – volume: 13 start-page: 1719 year: 2018 ident: D2CS00481J/cit186/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201800380 – volume: 8 start-page: 684287 year: 2021 ident: D2CS00481J/cit465/1 publication-title: Front. Robot. AI doi: 10.3389/frobt.2021.684287 – volume: 114 start-page: 12174 year: 2014 ident: D2CS00481J/cit219/1 publication-title: Chem. Rev. doi: 10.1021/cr500249p – volume: 103 start-page: 3879 year: 2014 ident: D2CS00481J/cit484/1 publication-title: J. Pharm. Sci. doi: 10.1002/jps.24178 – volume: 7 start-page: 6457 year: 2015 ident: D2CS00481J/cit299/1 publication-title: Nanoscale doi: 10.1039/C5NR01118C – volume: 18 start-page: 1909 year: 2018 ident: D2CS00481J/cit317/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00202 – volume: 23 start-page: 5856 year: 2021 ident: D2CS00481J/cit193/1 publication-title: CrystEngComm doi: 10.1039/D1CE00086A – volume: 25 start-page: 163 year: 2005 ident: D2CS00481J/cit308/1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2004.07.012 – volume: 22 start-page: 8045 year: 2020 ident: D2CS00481J/cit292/1 publication-title: CrystEngComm doi: 10.1039/D0CE01394C – volume: 9 start-page: 2101481 year: 2021 ident: D2CS00481J/cit374/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202101481 – volume: 57 start-page: 108 year: 2001 ident: D2CS00481J/cit23/1 publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(200110)57:1<108::AID-JBM1148>3.0.CO;2-6 – volume: 10 start-page: 22703 year: 2018 ident: D2CS00481J/cit293/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05804 – volume-title: Materials Science and Engineering: An Introduction year: 2020 ident: D2CS00481J/cit343/1 – volume: 2 start-page: 150009 year: 2015 ident: D2CS00481J/cit331/1 publication-title: Sci. Data doi: 10.1038/sdata.2015.9 – volume: 141 start-page: 14966 year: 2019 ident: D2CS00481J/cit309/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07645 – volume: 6 start-page: 29610 year: 2016 ident: D2CS00481J/cit56/1 publication-title: Sci. Rep. doi: 10.1038/srep29610 – volume: 9 start-page: 7746 year: 2015 ident: D2CS00481J/cit297/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b03367 – volume: 27 start-page: 17960 year: 2021 ident: D2CS00481J/cit197/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202103228 – volume: 13 start-page: 4330 year: 2013 ident: D2CS00481J/cit452/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg400675r – volume: 6 start-page: 1079 year: 2014 ident: D2CS00481J/cit460/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2092 – volume: 27 start-page: 1821 year: 2015 ident: D2CS00481J/cit235/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00021 – volume: 10 start-page: 271 year: 1969 ident: D2CS00481J/cit149/1 publication-title: Polymer doi: 10.1016/0032-3861(69)90039-1 – volume: 106 start-page: 2060 year: 2017 ident: D2CS00481J/cit495/1 publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2017.04.059 – volume: 17 start-page: 91 year: 2017 ident: D2CS00481J/cit409/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03499 – volume: 115 start-page: 2896 year: 2018 ident: D2CS00481J/cit90/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1718965115 – volume: 12 start-page: 1558 year: 2011 ident: D2CS00481J/cit111/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201000963 – volume: 107 start-page: 1272 year: 2007 ident: D2CS00481J/cit401/1 publication-title: Chem. Rev. doi: 10.1021/cr050152i – volume: 3 start-page: 1080 year: 2020 ident: D2CS00481J/cit366/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00131 – volume-title: Mechanically Responsive Materials for Soft Robotics year: 2020 ident: D2CS00481J/cit104/1 doi: 10.1002/9783527822201 – volume: 17 start-page: 8835 year: 2015 ident: D2CS00481J/cit94/1 publication-title: CrystEngComm doi: 10.1039/C4CE02387K – volume: 7 start-page: 1900927 year: 2019 ident: D2CS00481J/cit377/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900927 – volume: 10 start-page: 5140 year: 2018 ident: D2CS00481J/cit368/1 publication-title: Nanoscale doi: 10.1039/C7NR08931G – volume: 30 start-page: 3571 year: 2018 ident: D2CS00481J/cit281/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01543 – volume: 138 start-page: 13298 year: 2016 ident: D2CS00481J/cit62/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07406 – volume: 5 start-page: 3158 year: 2014 ident: D2CS00481J/cit183/1 publication-title: Chem. Sci. doi: 10.1039/C4SC00987H – volume: 5 start-page: 2902 year: 2009 ident: D2CS00481J/cit278/1 publication-title: Small doi: 10.1002/smll.200900895 – volume: 41 start-page: 7505 year: 2008 ident: D2CS00481J/cit143/1 publication-title: Macromolecules doi: 10.1021/ma800994g – volume: 139 start-page: 1975 year: 2017 ident: D2CS00481J/cit87/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11835 – volume: 21 start-page: 4910 year: 2019 ident: D2CS00481J/cit321/1 publication-title: CrystEngComm doi: 10.1039/C9CE00848A – volume: 41 start-page: 280 year: 2008 ident: D2CS00481J/cit289/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar700145r – volume: 20 start-page: 4217 year: 2020 ident: D2CS00481J/cit333/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00492 – volume: 2 start-page: 9695 year: 2014 ident: D2CS00481J/cit364/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01999G – volume: 28 start-page: 2129 year: 2017 ident: D2CS00481J/cit412/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.08.045 – volume: 72 start-page: 439 year: 2016 ident: D2CS00481J/cit325/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. doi: 10.1107/S2052520616007447 – volume: 1 start-page: 1399 year: 2020 ident: D2CS00481J/cit332/1 publication-title: Mater. Adv. doi: 10.1039/D0MA00019A – volume: 52 start-page: 9990 year: 2013 ident: D2CS00481J/cit60/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303757 – volume: 34 start-page: 1778 year: 2022 ident: D2CS00481J/cit114/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c04003 – volume: 204 start-page: 876 year: 1964 ident: D2CS00481J/cit210/1 publication-title: Nature doi: 10.1038/204876b0 – volume: 55 start-page: 7073 year: 2016 ident: D2CS00481J/cit109/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511444 – volume: 2021 start-page: 9816535 year: 2021 ident: D2CS00481J/cit163/1 publication-title: Research – volume: 53 start-page: 672 year: 2014 ident: D2CS00481J/cit38/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301223 – start-page: 1224 year: 2006 ident: D2CS00481J/cit263/1 publication-title: Chem. Commun. doi: 10.1039/b516732a – volume-title: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics year: 1982 ident: D2CS00481J/cit160/1 – volume: 20 start-page: 6186 year: 2020 ident: D2CS00481J/cit112/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00908 – volume: 140 start-page: 4208 year: 2018 ident: D2CS00481J/cit221/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13605 – volume: 31 start-page: 3818 year: 2019 ident: D2CS00481J/cit506/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00441 – volume: 133 start-page: 12569 year: 2011 ident: D2CS00481J/cit89/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201925p – volume: 138 start-page: 15066 year: 2016 ident: D2CS00481J/cit229/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09633 – volume: 50 start-page: 84 year: 2021 ident: D2CS00481J/cit172/1 publication-title: Chem. Lett. doi: 10.1246/cl.200693 – volume: 135 start-page: 3395 year: 2013 ident: D2CS00481J/cit119/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400833r – volume: 141 start-page: 233 year: 2004 ident: D2CS00481J/cit474/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2004.01.024 – volume: 10 start-page: 817 year: 2011 ident: D2CS00481J/cit1/1 publication-title: Nat. Mater. doi: 10.1038/nmat3115 – volume: 2 start-page: 2985 year: 2014 ident: D2CS00481J/cit346/1 publication-title: J. Mater. Chem. C doi: 10.1039/C3TC32581D – volume: 12 start-page: 27493 year: 2020 ident: D2CS00481J/cit256/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03686 – volume: 95 start-page: 1049 year: 2006 ident: D2CS00481J/cit466/1 publication-title: J. Pharm. Sci. doi: 10.1002/jps.20587 – volume: 4 start-page: 8245 year: 2016 ident: D2CS00481J/cit187/1 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02517J – volume: 44 start-page: 433 year: 2003 ident: D2CS00481J/cit140/1 publication-title: Polymer doi: 10.1016/S0032-3861(02)00724-3 – volume: 33 start-page: 1053 year: 2021 ident: D2CS00481J/cit319/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c04560 – volume: 7 start-page: 5433 year: 2019 ident: D2CS00481J/cit83/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01084J – volume: 446 start-page: 778 year: 2007 ident: D2CS00481J/cit220/1 publication-title: Nature doi: 10.1038/nature05669 – volume: 17 start-page: 2100277 year: 2021 ident: D2CS00481J/cit439/1 publication-title: Small doi: 10.1002/smll.202100277 – volume: 53 start-page: 6371 year: 2017 ident: D2CS00481J/cit48/1 publication-title: Chem. Commun. doi: 10.1039/C7CC02970E – volume: 2009 start-page: 1 year: 2009 ident: D2CS00481J/cit262/1 publication-title: J. Nanomater. doi: 10.1155/2009/436375 – volume: 19 start-page: 4465 year: 2019 ident: D2CS00481J/cit315/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00247 – volume: 117 start-page: 5125 year: 2020 ident: D2CS00481J/cit255/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1917952117 – volume: 3 start-page: 1035 year: 2015 ident: D2CS00481J/cit430/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500106 – volume: 19 start-page: 189 year: 2002 ident: D2CS00481J/cit468/1 publication-title: Pharm. Res. doi: 10.1023/A:1014276917363 – volume: 136 start-page: 5481 year: 2014 ident: D2CS00481J/cit126/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5013382 – volume: 7 start-page: 324 year: 2017 ident: D2CS00481J/cit73/1 publication-title: Crystals doi: 10.3390/cryst7110324 – volume: 7 start-page: 1901824 year: 2020 ident: D2CS00481J/cit349/1 publication-title: Adv. Sci. doi: 10.1002/advs.201901824 – volume: 4 start-page: 205 year: 2022 ident: D2CS00481J/cit175/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202000663 – volume: 15 start-page: 2437 year: 2005 ident: D2CS00481J/cit282/1 publication-title: J. Mater. Chem. doi: 10.1039/b415912h – volume: 106 start-page: 151 year: 2017 ident: D2CS00481J/cit497/1 publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2016.07.015 – volume: 40 start-page: 905 year: 2008 ident: D2CS00481J/cit144/1 publication-title: Polym. J. doi: 10.1295/polymj.PJ2007191 – volume: 62 start-page: 194 year: 2006 ident: D2CS00481J/cit478/1 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2005.08.002 – volume: 134 start-page: 2880 year: 2012 ident: D2CS00481J/cit371/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209815f – volume: 20 start-page: 6990 year: 2020 ident: D2CS00481J/cit53/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01041 – volume: 54 start-page: 4815 year: 2015 ident: D2CS00481J/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411447 – volume: 60 start-page: 1185 year: 2020 ident: D2CS00481J/cit155/1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.202000095 – volume: 132 start-page: 14701 year: 2020 ident: D2CS00481J/cit120/1 publication-title: Angew. Chem. doi: 10.1002/ange.202005738 – volume: 19 start-page: 930 year: 1897 ident: D2CS00481J/cit470/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02086a003 – volume: 45 start-page: 6138 year: 2016 ident: D2CS00481J/cit304/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00841G – volume: 31 start-page: 287 year: 2004 ident: D2CS00481J/cit340/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2004.03.017 – volume: 17 start-page: 6030 year: 2017 ident: D2CS00481J/cit493/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01153 – volume: 52 start-page: 6653 year: 2013 ident: D2CS00481J/cit200/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301207 – volume: 13 start-page: 189 year: 1995 ident: D2CS00481J/cit98/1 publication-title: J. Robot. Soc. Jpn. doi: 10.7210/jrsj.13.189 – volume: 49 start-page: 1691 year: 2016 ident: D2CS00481J/cit419/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00209 – volume: 116 start-page: 15089 year: 2016 ident: D2CS00481J/cit161/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00415 – volume: 124 start-page: 300 year: 2020 ident: D2CS00481J/cit241/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b10365 – volume: 2 start-page: 1404 year: 2014 ident: D2CS00481J/cit400/1 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc31576b – volume: 7 start-page: 1697 year: 2016 ident: D2CS00481J/cit417/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00704 – volume: 142 start-page: 20117 year: 2020 ident: D2CS00481J/cit198/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09577 – volume: 8 start-page: 3165 year: 2020 ident: D2CS00481J/cit196/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06689F – volume: 57 start-page: 373 year: 2017 ident: D2CS00481J/cit25/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.05.034 – volume: 8 start-page: 1575 year: 2008 ident: D2CS00481J/cit492/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg700843s – volume: 131 start-page: 6890 year: 2009 ident: D2CS00481J/cit179/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8098596 – volume: 9 start-page: 437 year: 2019 ident: D2CS00481J/cit176/1 publication-title: Crystals doi: 10.3390/cryst9090437 – volume: 57 start-page: 8837 year: 2018 ident: D2CS00481J/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800137 – volume: 19 start-page: 5999 year: 2019 ident: D2CS00481J/cit113/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00910 – volume: 22 start-page: 47 year: 2016 ident: D2CS00481J/cit327/1 publication-title: J. Mol. Model. doi: 10.1007/s00894-016-2909-0 – volume-title: Integrated Optics: Theory and Technology year: 2009 ident: D2CS00481J/cit357/1 doi: 10.1007/b98730 – volume: 26 start-page: 11979 year: 2020 ident: D2CS00481J/cit389/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202002641 – volume: 47 start-page: 11423 year: 2011 ident: D2CS00481J/cit268/1 publication-title: Chem. Commun. doi: 10.1039/c1cc14288g – volume: 54 start-page: 8369 year: 2015 ident: D2CS00481J/cit413/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503914 – volume: 11 start-page: 9178 year: 2020 ident: D2CS00481J/cit390/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02623 – volume: 31 start-page: 2105415 year: 2021 ident: D2CS00481J/cit395/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105415 – volume: 12 start-page: 2296 year: 2010 ident: D2CS00481J/cit13/1 publication-title: CrystEngComm doi: 10.1039/c003466e – start-page: 756 year: 2000 ident: D2CS00481J/cit227/1 publication-title: Chem. Lett. doi: 10.1246/cl.2000.756 – volume: 18 start-page: 4174 year: 2018 ident: D2CS00481J/cit67/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00704 – volume: 98 start-page: 424 year: 2007 ident: D2CS00481J/cit16/1 publication-title: Int. J. Mater. Res. doi: 10.3139/146.101488 – volume: 134 start-page: 6354 year: 2012 ident: D2CS00481J/cit132/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300257m – volume: 130 start-page: 1140 year: 2008 ident: D2CS00481J/cit232/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja078301x – volume: 7 start-page: 1527 year: 2016 ident: D2CS00481J/cit103/1 publication-title: Chem. Sci. doi: 10.1039/C5SC04057D – volume: 14 start-page: 3054 year: 2014 ident: D2CS00481J/cit500/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg500305n – volume: 19 start-page: 3670 year: 2019 ident: D2CS00481J/cit476/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01867 – volume: 57 start-page: 9362 year: 2018 ident: D2CS00481J/cit41/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804589 – volume: 2 start-page: 1932 year: 2018 ident: D2CS00481J/cit449/1 publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00363G – volume: 58 start-page: 15429 year: 2019 ident: D2CS00481J/cit189/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907454 – volume: 28 start-page: 1706506 year: 2018 ident: D2CS00481J/cit411/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706506 – volume: 5 start-page: 64156 year: 2015 ident: D2CS00481J/cit499/1 publication-title: RSC Adv. doi: 10.1039/C5RA11656B – volume: 52 start-page: 6577 year: 2016 ident: D2CS00481J/cit415/1 publication-title: Chem. Commun. doi: 10.1039/C6CC02616H – volume: 113 start-page: 055701 year: 2014 ident: D2CS00481J/cit338/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.055701 – volume: 43 start-page: 148 year: 2014 ident: D2CS00481J/cit201/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60181A – volume: 4 start-page: 3915 year: 2016 ident: D2CS00481J/cit347/1 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04390E – volume: 18 start-page: 7305 year: 2016 ident: D2CS00481J/cit212/1 publication-title: CrystEngComm doi: 10.1039/C6CE00848H – volume: 18 start-page: 2320 year: 2006 ident: D2CS00481J/cit341/1 publication-title: Adv. Mater. doi: 10.1002/adma.200600634 – volume: 135 start-page: 12556 year: 2013 ident: D2CS00481J/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4063019 – volume: 143 start-page: 5951 year: 2021 ident: D2CS00481J/cit355/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01549 – volume: 23 start-page: 3659 year: 2011 ident: D2CS00481J/cit434/1 publication-title: Adv. Mater. doi: 10.1002/adma.201100827 – volume: 24 start-page: 4133 year: 2018 ident: D2CS00481J/cit59/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201705586 – volume: 53 start-page: 6970 year: 2014 ident: D2CS00481J/cit99/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311014 – volume: 53 start-page: 741 year: 2020 ident: D2CS00481J/cit150/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01567 – volume: 5 start-page: 1600823 year: 2017 ident: D2CS00481J/cit405/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600823 – volume: 15 start-page: 400 year: 2014 ident: D2CS00481J/cit166/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201300906 – volume: 61 start-page: e202200196 year: 2022 ident: D2CS00481J/cit173/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202200196 – volume: 8 start-page: 674 year: 2004 ident: D2CS00481J/cit480/1 publication-title: Org. Process Res. Dev. doi: 10.1021/op0300241 – volume: 14 start-page: 2047 year: 2017 ident: D2CS00481J/cit491/1 publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00124 – volume: 4 start-page: 1800182 year: 2019 ident: D2CS00481J/cit284/1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800182 – volume: 9 start-page: 2001768 year: 2021 ident: D2CS00481J/cit362/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202001768 – volume: 30 start-page: 2004116 year: 2020 ident: D2CS00481J/cit379/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004116 – volume: 3 start-page: 499 year: 2015 ident: D2CS00481J/cit414/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02070G – volume: 9 start-page: 4351 year: 2007 ident: D2CS00481J/cit231/1 publication-title: Org. Lett. doi: 10.1021/ol702000s – volume: 53 start-page: 2622 year: 2017 ident: D2CS00481J/cit248/1 publication-title: Chem. Commun. doi: 10.1039/C6CC08999B – volume: 51 start-page: 4421 year: 2015 ident: D2CS00481J/cit298/1 publication-title: Chem. Commun. doi: 10.1039/C5CC00355E – volume: 55 start-page: 9303 year: 2019 ident: D2CS00481J/cit258/1 publication-title: Chem. Commun. doi: 10.1039/C9CC03826D – volume: 16 start-page: 7173 year: 2014 ident: D2CS00481J/cit359/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54994a – volume: 21 start-page: E20 year: 2009 ident: D2CS00481J/cit128/1 publication-title: Chirality doi: 10.1002/chir.20768 – volume: 46 start-page: 8945 year: 2007 ident: D2CS00481J/cit162/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702443 – volume: 56 start-page: 8104 year: 2017 ident: D2CS00481J/cit171/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702359 – volume: 9 start-page: 2319 year: 2018 ident: D2CS00481J/cit217/1 publication-title: Chem. Sci. doi: 10.1039/C7SC04863G – volume: 74 start-page: 1217 year: 2016 ident: D2CS00481J/cit300/1 publication-title: J. Synth. Org. Chem. Jpn. doi: 10.5059/yukigoseikyokaishi.74.1217 – volume: 129 start-page: 12717 year: 2017 ident: D2CS00481J/cit408/1 publication-title: Angew. Chem. doi: 10.1002/ange.201706517 – volume: 8 start-page: 625 year: 2016 ident: D2CS00481J/cit445/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2513 – volume-title: Determination of the Compliance of an Instrumented Indentation Testing Machine, HARDMEKO 2004 year: 2004 ident: D2CS00481J/cit17/1 – volume: 10 start-page: 227 year: 2019 ident: D2CS00481J/cit380/1 publication-title: Chem. Sci. doi: 10.1039/C8SC03135E – volume: 51 start-page: 2957 year: 2018 ident: D2CS00481J/cit32/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00425 – volume: 8 start-page: 49 year: 1955 ident: D2CS00481J/cit323/1 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X55000121 – volume: 13 start-page: 9060 year: 2011 ident: D2CS00481J/cit360/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02376k – volume: 26 start-page: 6007 year: 2014 ident: D2CS00481J/cit214/1 publication-title: Chem. Mater. doi: 10.1021/cm502866e – volume: 88 start-page: 13 year: 2010 ident: D2CS00481J/cit472/1 publication-title: Chem. Eng. News Archive doi: 10.1021/cen-v088n022.p013 – volume: 19 start-page: 2542 year: 2019 ident: D2CS00481J/cit239/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00260 – volume: 51 start-page: 1701 year: 2003 ident: D2CS00481J/cit19/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(03)00066-8 – volume: 56 start-page: 8468 year: 2017 ident: D2CS00481J/cit316/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701972 – volume: 14 start-page: 3865 year: 2012 ident: D2CS00481J/cit490/1 publication-title: CrystEngComm doi: 10.1039/c2ce25100k – volume: 69 start-page: 967 year: 2012 ident: D2CS00481J/cit185/1 publication-title: Polym. Bull. doi: 10.1007/s00289-012-0792-0 – volume: 188 start-page: 301 year: 2009 ident: D2CS00481J/cit479/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2008.05.009 – volume: 107 start-page: 2267 year: 2018 ident: D2CS00481J/cit496/1 publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2018.04.029 – volume: 55 start-page: 11049 year: 2019 ident: D2CS00481J/cit238/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06016B – volume: 34 start-page: 2311 year: 1995 ident: D2CS00481J/cit311/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.199523111 – volume: 128 start-page: 7390 year: 2006 ident: D2CS00481J/cit279/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061810z – volume: 55 start-page: 4921 year: 2019 ident: D2CS00481J/cit425/1 publication-title: Chem. Commun. doi: 10.1039/C9CC01702J – volume: 10 start-page: 7327 year: 2019 ident: D2CS00481J/cit95/1 publication-title: Chem. Sci. doi: 10.1039/C9SC02444A – volume: 52 start-page: 9320 year: 2013 ident: D2CS00481J/cit249/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304670 – volume: 115 start-page: 9171 year: 2011 ident: D2CS00481J/cit271/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp110646n – volume: 20 start-page: 6057 year: 2020 ident: D2CS00481J/cit482/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00770 – volume: 6 start-page: 6948 year: 2015 ident: D2CS00481J/cit352/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7948 – volume: 2 start-page: 653 year: 2015 ident: D2CS00481J/cit43/1 publication-title: IUCrJ doi: 10.1107/S2052252515017297 – volume: 9 start-page: 278 year: 2018 ident: D2CS00481J/cit50/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02607-9 – volume: 8 start-page: 644 year: 2016 ident: D2CS00481J/cit39/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2547 – volume: 1 start-page: 884 year: 2011 ident: D2CS00481J/cit276/1 publication-title: RSC Adv. doi: 10.1039/c1ra00424g – volume: 52 start-page: 2103 year: 2016 ident: D2CS00481J/cit182/1 publication-title: Chem. Commun. doi: 10.1039/C5CC08590J – volume: 18 start-page: 7319 year: 2016 ident: D2CS00481J/cit205/1 publication-title: CrystEngComm doi: 10.1039/C6CE00742B – volume: 43 start-page: 684 year: 2010 ident: D2CS00481J/cit123/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar900288m – volume: 18 start-page: 3927 year: 2018 ident: D2CS00481J/cit314/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00261 – volume: 100 start-page: 51 year: 2016 ident: D2CS00481J/cit483/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2016.01.011 – volume-title: Organic Nanophotonics: Fundamentals and Applications year: 2014 ident: D2CS00481J/cit432/1 – volume: 132 start-page: 14191 year: 2010 ident: D2CS00481J/cit234/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105508b – volume: 41 start-page: 2484 year: 2008 ident: D2CS00481J/cit142/1 publication-title: Macromolecules doi: 10.1021/ma702267e – volume: 59 start-page: 10971 year: 2020 ident: D2CS00481J/cit3/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202001060 – volume: 19 start-page: 4070 year: 2019 ident: D2CS00481J/cit115/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00473 – volume: 7 start-page: 1564 year: 1992 ident: D2CS00481J/cit18/1 publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 11 start-page: 2070 year: 2011 ident: D2CS00481J/cit133/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg200375t – volume: 57 start-page: 8448 year: 2018 ident: D2CS00481J/cit370/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802020 – volume: 3 start-page: 631 year: 2006 ident: D2CS00481J/cit471/1 publication-title: Mol. Pharm. doi: 10.1021/mp0600182 – start-page: 107 year: 2012 ident: D2CS00481J/cit223/1 publication-title: Chem. Lett. doi: 10.1246/cl.2012.107 – volume: 27 start-page: 320 year: 2015 ident: D2CS00481J/cit76/1 publication-title: Adv. Mater. doi: 10.1002/adma.201404121 – volume: 56 start-page: 9463 year: 2017 ident: D2CS00481J/cit105/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705325 – volume: 17 start-page: 2314 year: 2002 ident: D2CS00481J/cit21/1 publication-title: J. Mater. Res. doi: 10.1557/JMR.2002.0339 – volume: 49 start-page: 9293 year: 2013 ident: D2CS00481J/cit57/1 publication-title: Chem. Commun. doi: 10.1039/c3cc45646c – volume: 56 start-page: 7353 year: 2020 ident: D2CS00481J/cit130/1 publication-title: Chem. Commun. doi: 10.1039/D0CC01958E – volume: 47 start-page: 546 year: 1972 ident: D2CS00481J/cit467/1 publication-title: Pharm. Acta Helv. – volume: 6 start-page: 5309 year: 2012 ident: D2CS00481J/cit287/1 publication-title: ACS Nano doi: 10.1021/nn3011398 – volume: 48 start-page: 3251 year: 1992 ident: D2CS00481J/cit456/1 publication-title: Tetrahedron doi: 10.1016/0040-4020(92)85002-V – volume: 86 start-page: 985 year: 1997 ident: D2CS00481J/cit486/1 publication-title: J. Pharm. Sci. doi: 10.1021/js9701061 – volume: 2 start-page: 1 year: 2021 ident: D2CS00481J/cit375/1 publication-title: PhotoniX doi: 10.1186/s43074-021-00024-2 – volume: 15 start-page: 1804102 year: 2019 ident: D2CS00481J/cit250/1 publication-title: Small doi: 10.1002/smll.201804102 – volume: 60 start-page: 26151 year: 2021 ident: D2CS00481J/cit369/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110676 – volume: 5 start-page: 1293 year: 2005 ident: D2CS00481J/cit424/1 publication-title: Nano Lett. doi: 10.1021/nl050469y – volume: 137 start-page: 13866 year: 2015 ident: D2CS00481J/cit194/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07806 – volume: 19 start-page: 3 year: 2004 ident: D2CS00481J/cit14/1 publication-title: J. Mater. Res. doi: 10.1557/jmr.2004.19.1.3 – volume: 132 start-page: 10423 year: 2020 ident: D2CS00481J/cit257/1 publication-title: Angew. Chem. doi: 10.1002/ange.202000570 – volume: 10 start-page: 1437 year: 2019 ident: D2CS00481J/cit387/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00196 – volume-title: Chemistry and Physics of Mechanical Hardness year: 2009 ident: D2CS00481J/cit7/1 doi: 10.1002/9780470446836 – volume: 59 start-page: 4340 year: 2020 ident: D2CS00481J/cit102/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914954 – volume: 40 start-page: 3835 year: 2011 ident: D2CS00481J/cit180/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00183j – volume: 1 start-page: 1320 year: 2016 ident: D2CS00481J/cit416/1 publication-title: ChemPlusChem doi: 10.1002/cplu.201600451 – volume: 187 start-page: 449 year: 1998 ident: D2CS00481J/cit269/1 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)00034-7 – volume: 34 start-page: 1627 year: 2018 ident: D2CS00481J/cit188/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03848 – volume: 58 start-page: 9696 year: 2019 ident: D2CS00481J/cit291/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900501 – volume: 4 start-page: 011003 year: 2014 ident: D2CS00481J/cit136/1 publication-title: Phys. Rev. X – volume: 12 start-page: 453 year: 2020 ident: D2CS00481J/cit264/1 publication-title: Chem. Sci. doi: 10.1039/D0SC05118G – volume: 6 start-page: 1800343 year: 2018 ident: D2CS00481J/cit427/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800343 – volume: 39 start-page: 2197 year: 2020 ident: D2CS00481J/cit88/1 publication-title: Organometallics doi: 10.1021/acs.organomet.0c00258 – volume: 8 start-page: 1901317 year: 2020 ident: D2CS00481J/cit428/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201901317 – volume: 10 start-page: 3393 year: 2018 ident: D2CS00481J/cit246/1 publication-title: Nanoscale doi: 10.1039/C7NR09571F – volume: 10 start-page: 3839 year: 2019 ident: D2CS00481J/cit372/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11731-7 – volume: 4 start-page: 348 year: 2016 ident: D2CS00481J/cit403/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500531 – volume: 138 start-page: 12211 year: 2016 ident: D2CS00481J/cit127/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06278 – start-page: 3 volume-title: New Frontiers in Photochromism year: 2013 ident: D2CS00481J/cit435/1 doi: 10.1007/978-4-431-54291-9_1 – volume: 60 start-page: 11283 year: 2021 ident: D2CS00481J/cit396/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202102285 – volume: 9 start-page: 1289 year: 2018 ident: D2CS00481J/cit306/1 publication-title: Chem. Sci. doi: 10.1039/C7SC04665K – volume: 14 start-page: 7792 year: 2012 ident: D2CS00481J/cit70/1 publication-title: CrystEngComm doi: 10.1039/c2ce25811k – volume: 30 start-page: 1703554 year: 2018 ident: D2CS00481J/cit254/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703554 – volume: 101 start-page: 9966 year: 2004 ident: D2CS00481J/cit342/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0401918101 – volume: 136 start-page: 17046 year: 2014 ident: D2CS00481J/cit345/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507179d – volume: 132 start-page: 14172 year: 2010 ident: D2CS00481J/cit245/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105356w – volume: 543 start-page: 657 year: 2017 ident: D2CS00481J/cit326/1 publication-title: Nature doi: 10.1038/nature21419 – volume: 22 start-page: 12680 year: 2016 ident: D2CS00481J/cit237/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201603020 – volume: 118 start-page: e54651 year: 2016 ident: D2CS00481J/cit353/1 publication-title: J. Visualized Exp. – volume: 8 start-page: 15546 year: 2017 ident: D2CS00481J/cit446/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15546 – volume: 62 start-page: 347 year: 1979 ident: D2CS00481J/cit9/1 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1979.tb19075.x – volume: 129 start-page: 9439 year: 2007 ident: D2CS00481J/cit457/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0719125 – volume: 18 start-page: 7225 year: 2016 ident: D2CS00481J/cit107/1 publication-title: CrystEngComm doi: 10.1039/C6CE00738D – volume: 1 start-page: 1033 year: 2019 ident: D2CS00481J/cit96/1 publication-title: Matter doi: 10.1016/j.matt.2019.06.018 – volume: 51 start-page: 901 year: 2012 ident: D2CS00481J/cit170/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105585 – volume: 105 start-page: 641 year: 1983 ident: D2CS00481J/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00341a065 – volume: 4 start-page: 764 year: 2018 ident: D2CS00481J/cit429/1 publication-title: ChemNanoMat doi: 10.1002/cnma.201800196 – volume: 2 start-page: 229 year: 2003 ident: D2CS00481J/cit399/1 publication-title: Nat. Mater. doi: 10.1038/nmat852 – volume: 324 start-page: 459 year: 1971 ident: D2CS00481J/cit209/1 publication-title: Proc. R. Soc. London – start-page: 1 year: 2016 ident: D2CS00481J/cit202/1 publication-title: Encyclopedia of Physical Organic Chemistry – volume: 8 start-page: 2001662 year: 2021 ident: D2CS00481J/cit351/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202001662 – volume: 182 start-page: 416 year: 1997 ident: D2CS00481J/cit270/1 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(97)00370-9 – volume: 5 start-page: 4249 year: 2014 ident: D2CS00481J/cit312/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502271c – volume: 68 start-page: 1148 year: 1992 ident: D2CS00481J/cit463/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1148 – volume: 16 start-page: 5012 year: 2014 ident: D2CS00481J/cit259/1 publication-title: Org. Lett. doi: 10.1021/ol502223u – volume: 67 start-page: 115408 year: 2003 ident: D2CS00481J/cit436/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.67.115408 – volume: 12 start-page: 191 year: 2013 ident: D2CS00481J/cit303/1 publication-title: Nat. Mater. doi: 10.1038/nmat3568 – volume: 17 start-page: 4819 year: 2017 ident: D2CS00481J/cit242/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b00755 – volume: 7 start-page: 3112 year: 2016 ident: D2CS00481J/cit147/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01459 – volume: 14 start-page: 10704 year: 2020 ident: D2CS00481J/cit365/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c05367 – volume: 16 start-page: 1850 year: 2014 ident: D2CS00481J/cit37/1 publication-title: CrystEngComm doi: 10.1039/c3ce41313f – volume: 17 start-page: 8817 year: 2015 ident: D2CS00481J/cit121/1 publication-title: CrystEngComm doi: 10.1039/C5CE00195A – volume: 27 start-page: 16036 year: 2021 ident: D2CS00481J/cit393/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202103286 – volume: 60 start-page: 2414 year: 2021 ident: D2CS00481J/cit190/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202012417 – volume: 2 start-page: 2827 year: 2014 ident: D2CS00481J/cit421/1 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc32206h – volume: 20 start-page: 1383 year: 2018 ident: D2CS00481J/cit138/1 publication-title: CrystEngComm doi: 10.1039/C7CE02107K – volume: 529 start-page: 62 year: 2011 ident: D2CS00481J/cit12/1 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.08.061 – volume: 140 start-page: 5339 year: 2018 ident: D2CS00481J/cit283/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01997 – volume: 37 start-page: 7418 year: 2004 ident: D2CS00481J/cit69/1 publication-title: Macromolecules doi: 10.1021/ma048959k – volume: 29 start-page: 8330 year: 1996 ident: D2CS00481J/cit42/1 publication-title: Macromolecules doi: 10.1021/ma961219u – volume: 22 start-page: 24139 year: 2012 ident: D2CS00481J/cit420/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm35394f – volume: 398 start-page: 117066 year: 2022 ident: D2CS00481J/cit485/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.117066 – volume: 16 start-page: 2806 year: 2021 ident: D2CS00481J/cit192/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.202100807 – volume: 7 start-page: 10270 year: 2016 ident: D2CS00481J/cit350/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10270 – volume: 26 start-page: 6168 year: 2014 ident: D2CS00481J/cit406/1 publication-title: Adv. Mater. doi: 10.1002/adma.201401114 – volume: 58 start-page: 9712 year: 2019 ident: D2CS00481J/cit260/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814441 – volume: 114 start-page: 4220 year: 1992 ident: D2CS00481J/cit216/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00037a027 – volume: 20 start-page: 2847 year: 2020 ident: D2CS00481J/cit6/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01530 – volume: 3 start-page: 1491 year: 2021 ident: D2CS00481J/cit195/1 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000350 – volume: 6 start-page: 13952 year: 2014 ident: D2CS00481J/cit273/1 publication-title: Nanoscale doi: 10.1039/C4NR04661G – volume: 130 start-page: 7085 year: 2008 ident: D2CS00481J/cit455/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800353u – volume: 14 start-page: 3630 year: 1999 ident: D2CS00481J/cit26/1 publication-title: J. Mater. Res. doi: 10.1557/JMR.1999.0490 – volume: 7 start-page: 83 year: 2020 ident: D2CS00481J/cit63/1 publication-title: IUCrJ doi: 10.1107/S2052252519014581 – volume: 10 start-page: 3723 year: 2019 ident: D2CS00481J/cit75/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11612-z – volume: 20 start-page: 189 year: 2014 ident: D2CS00481J/cit442/1 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2014.2318271 – volume: 7 start-page: 12094 year: 2016 ident: D2CS00481J/cit261/1 publication-title: Nat. Commun. doi: 10.1038/ncomms12094 – volume: 141 start-page: 8364 year: 2019 ident: D2CS00481J/cit225/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03932 – volume: 9 start-page: 2100550 year: 2021 ident: D2CS00481J/cit444/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202100550 – volume: 56 start-page: 10165 year: 2017 ident: D2CS00481J/cit116/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703028 – volume: 130 start-page: 17248 year: 2018 ident: D2CS00481J/cit376/1 publication-title: Angew. Chem. doi: 10.1002/ange.201810422 – volume: 8 start-page: 5036 year: 2020 ident: D2CS00481J/cit199/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06946A – volume: 139 start-page: 11333 year: 2017 ident: D2CS00481J/cit448/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06410 – volume: 124 start-page: 15616 year: 2020 ident: D2CS00481J/cit154/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c04258 – volume: 30 start-page: e1800814 year: 2018 ident: D2CS00481J/cit382/1 publication-title: Adv. Mater. doi: 10.1002/adma.201800814 – volume: 49 start-page: 8287 year: 2020 ident: D2CS00481J/cit34/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00638F – volume: 6 start-page: 2162 year: 2020 ident: D2CS00481J/cit226/1 publication-title: Chem doi: 10.1016/j.chempr.2020.08.007 – volume: 57 start-page: 17254 year: 2018 ident: D2CS00481J/cit381/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810514 – volume-title: Functional Materials: Preparation, Processing and Applications year: 2011 ident: D2CS00481J/cit8/1 – volume: 440 start-page: 508 year: 2006 ident: D2CS00481J/cit397/1 publication-title: Nature doi: 10.1038/nature04594 – volume: 6 start-page: 207 year: 2005 ident: D2CS00481J/cit450/1 publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2005.12.002 – volume: 31 start-page: 1391 year: 2019 ident: D2CS00481J/cit318/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04800 – volume: 14 start-page: 920 year: 2012 ident: D2CS00481J/cit302/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22663K – volume: 58 start-page: 10052 year: 2019 ident: D2CS00481J/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814387 – volume: 4 start-page: 1700271 year: 2018 ident: D2CS00481J/cit354/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700271 – volume: 55 start-page: 3709 year: 2019 ident: D2CS00481J/cit46/1 publication-title: Chem. Commun. doi: 10.1039/C8CC10051A – ident: D2CS00481J/cit330/1 – volume: 11 start-page: 5433 year: 2020 ident: D2CS00481J/cit391/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01545 – volume: 11 start-page: 2606 year: 2020 ident: D2CS00481J/cit92/1 publication-title: Chem. Sci. doi: 10.1039/C9SC05640H – volume: 57 start-page: 5538 year: 2021 ident: D2CS00481J/cit148/1 publication-title: Chem. Commun. doi: 10.1039/D1CC01431E – volume: 18 start-page: 31936 year: 2016 ident: D2CS00481J/cit61/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04459J – volume: 9 start-page: 16762 year: 2021 ident: D2CS00481J/cit211/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC04027H – volume: 16 start-page: 1732 year: 2019 ident: D2CS00481J/cit335/1 publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b00082 – volume: 49 start-page: 8878 year: 2020 ident: D2CS00481J/cit35/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00475H – volume: 7 start-page: 503 year: 2019 ident: D2CS00481J/cit178/1 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04631J – volume: 21 start-page: 1931 year: 2021 ident: D2CS00481J/cit81/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01119 – volume: 112 start-page: 1805 year: 2012 ident: D2CS00481J/cit122/1 publication-title: Chem. Rev. doi: 10.1021/cr200297f – volume: 138 start-page: 13561 year: 2016 ident: D2CS00481J/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05118 – volume: 53 start-page: 12630 year: 2017 ident: D2CS00481J/cit224/1 publication-title: Chem. Commun. doi: 10.1039/C7CC06374A – volume: 136 start-page: 2757 year: 2014 ident: D2CS00481J/cit244/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4101497 – volume: 149 start-page: 284 year: 2018 ident: D2CS00481J/cit418/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2017.10.008 – volume: 61 start-page: e202114089 year: 2022 ident: D2CS00481J/cit265/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202114089 – volume: 49 start-page: 5885 year: 2020 ident: D2CS00481J/cit404/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00037J – start-page: 95 volume-title: Polymer Crystallization II year: 2016 ident: D2CS00481J/cit152/1 doi: 10.1007/12_2016_352 – volume: 8 start-page: 1703491 year: 2018 ident: D2CS00481J/cit36/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703491 – volume: 7 start-page: 11156 year: 2016 ident: D2CS00481J/cit348/1 publication-title: Nat. Commun. doi: 10.1038/ncomms11156 – volume: 59 start-page: 13852 year: 2020 ident: D2CS00481J/cit378/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003820 – volume: 128 start-page: 15938 year: 2006 ident: D2CS00481J/cit204/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064535p – volume: 31 start-page: 4927 year: 2019 ident: D2CS00481J/cit78/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01738 – volume: 21 start-page: 3093 year: 2021 ident: D2CS00481J/cit251/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.1c00270 – volume: 48 start-page: 9121 year: 2009 ident: D2CS00481J/cit286/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200902929 – volume-title: Autodeformation Defects in Crystals year: 2008 ident: D2CS00481J/cit153/1 – volume: 8 start-page: 2000959 year: 2020 ident: D2CS00481J/cit422/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000959 – volume: 100 start-page: 1717 year: 2000 ident: D2CS00481J/cit453/1 publication-title: Chem. Rev. doi: 10.1021/cr980070c – volume: 19 start-page: 1276 year: 2007 ident: D2CS00481J/cit247/1 publication-title: Adv. Mater. doi: 10.1002/adma.200602741 – volume: 44 start-page: 2120 year: 2005 ident: D2CS00481J/cit274/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460986 – volume: 31 start-page: 2926 year: 2010 ident: D2CS00481J/cit68/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.026 – volume: 22 start-page: 1694 year: 2013 ident: D2CS00481J/cit11/1 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-012-0469-8 – volume: 122 start-page: 4871 year: 2000 ident: D2CS00481J/cit266/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993181h – volume: 4 start-page: 7640 year: 2014 ident: D2CS00481J/cit240/1 publication-title: RSC Adv. doi: 10.1039/C3RA46688D – volume-title: Integrated Optics year: 1975 ident: D2CS00481J/cit356/1 – volume: 1 start-page: 305 year: 2013 ident: D2CS00481J/cit426/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201200067 – volume: 31 start-page: 2100642 year: 2021 ident: D2CS00481J/cit438/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100642 – volume: 31 start-page: 1016 year: 2019 ident: D2CS00481J/cit295/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04568 – volume: 279 start-page: 123 year: 2015 ident: D2CS00481J/cit487/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.04.004 – volume: 51 start-page: 3735 year: 2015 ident: D2CS00481J/cit313/1 publication-title: Chem. Commun. doi: 10.1039/C4CC09074H – volume: 142 start-page: 13256 year: 2020 ident: D2CS00481J/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05440 – volume: 59 start-page: 23035 year: 2020 ident: D2CS00481J/cit294/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009906 – volume: 66 start-page: 6164 year: 2001 ident: D2CS00481J/cit267/1 publication-title: J. Org. Chem. doi: 10.1021/jo010117l – volume: 56 start-page: 1 year: 2016 ident: D2CS00481J/cit141/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.11.006 – volume: 27 start-page: 647 year: 1971 ident: D2CS00481J/cit191/1 publication-title: Pure Appl. Chem. doi: 10.1351/pac197127040647 – volume: 54 start-page: 13566 year: 2015 ident: D2CS00481J/cit310/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505813 – volume: 132 start-page: 4329 year: 2020 ident: D2CS00481J/cit385/1 publication-title: Angew. Chem. doi: 10.1002/ange.201914026 – volume: 2 start-page: 19 year: 2019 ident: D2CS00481J/cit462/1 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0121-8 – volume: 61 start-page: 557 year: 2021 ident: D2CS00481J/cit58/1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.202100056 – volume: 12 start-page: 1478 year: 2020 ident: D2CS00481J/cit167/1 publication-title: Symmetry doi: 10.3390/sym12091478 – volume: 11 start-page: 1824 year: 2020 ident: D2CS00481J/cit101/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15663-5 – volume: 52 start-page: 6889 year: 2013 ident: D2CS00481J/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302323 – volume: 128 start-page: 14234 year: 2006 ident: D2CS00481J/cit125/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065139+ – volume: 137 start-page: 1794 year: 2015 ident: D2CS00481J/cit501/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512817f – volume: 47 start-page: 8295 year: 2014 ident: D2CS00481J/cit135/1 publication-title: Macromolecules doi: 10.1021/ma501733n – volume: 5 start-page: 4811 year: 2014 ident: D2CS00481J/cit461/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5811 – volume: 42 start-page: 1223 year: 1994 ident: D2CS00481J/cit10/1 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(94)90033-7 – volume: 60 start-page: 10849 year: 2021 ident: D2CS00481J/cit218/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00881 – volume-title: Introduction to Integrated Optics year: 1974 ident: D2CS00481J/cit437/1 doi: 10.1007/978-1-4684-2082-1 – volume: 59 start-page: 13821 year: 2020 ident: D2CS00481J/cit80/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002627 – volume: 22 start-page: 446 year: 1937 ident: D2CS00481J/cit322/1 publication-title: American Mineralogist – volume: 20 start-page: 6093 year: 2020 ident: D2CS00481J/cit336/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00798 – volume: 39 start-page: 340 year: 2007 ident: D2CS00481J/cit22/1 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2006.06.004 – volume: 42 start-page: 1517 year: 2013 ident: D2CS00481J/cit464/1 publication-title: Chem. Lett. doi: 10.1246/cl.130797 – volume: 142 start-page: 12651 year: 2020 ident: D2CS00481J/cit71/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03643 – volume: 9 start-page: 538 year: 2018 ident: D2CS00481J/cit106/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02549-2 – volume: 115 start-page: 12440 year: 2015 ident: D2CS00481J/cit29/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00398 – volume: 9 start-page: 1178 year: 1997 ident: D2CS00481J/cit402/1 publication-title: Adv. Mater. doi: 10.1002/adma.19970091512 – volume: 271 start-page: 108 year: 1995 ident: D2CS00481J/cit20/1 publication-title: Thin Solid Films doi: 10.1016/0040-6090(95)06875-9 – volume: 329 start-page: 309 year: 2010 ident: D2CS00481J/cit301/1 publication-title: Science doi: 10.1126/science.1190239 – volume: 127 start-page: 10496 year: 2005 ident: D2CS00481J/cit280/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052940v – volume: 4 start-page: 112 year: 2016 ident: D2CS00481J/cit443/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500362 – volume: 42 start-page: 2883 year: 2003 ident: D2CS00481J/cit285/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200350961 – volume: 98 start-page: 1671 year: 2009 ident: D2CS00481J/cit507/1 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21552 – volume: 63 start-page: 427 year: 2011 ident: D2CS00481J/cit469/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.12.007 – volume: 76 start-page: 126502 year: 2013 ident: D2CS00481J/cit384/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/12/126502 – volume: 11 start-page: 4458 year: 2011 ident: D2CS00481J/cit139/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg200640g – volume: 11 start-page: 4975 year: 2011 ident: D2CS00481J/cit213/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg200883b – volume: 30 start-page: 1902396 year: 2020 ident: D2CS00481J/cit296/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902396 – volume: 28 start-page: 4889 year: 2016 ident: D2CS00481J/cit40/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02017 – volume: 272 start-page: 710 year: 1978 ident: D2CS00481J/cit477/1 publication-title: Nature doi: 10.1038/272710a0 – volume: 40 start-page: 9040 year: 2007 ident: D2CS00481J/cit206/1 publication-title: Macromolecules doi: 10.1021/ma0717082 – volume: 21 start-page: 6258 year: 2011 ident: D2CS00481J/cit203/1 publication-title: J. Mater. Chem. doi: 10.1039/c1jm10228a – volume: 46 start-page: 1616 year: 2013 ident: D2CS00481J/cit145/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar400003q – volume-title: Nanophotonics and Nanofabrication year: 2009 ident: D2CS00481J/cit398/1 – volume: 6 start-page: 7310 year: 2015 ident: D2CS00481J/cit108/1 publication-title: Nat. Commun. doi: 10.1038/ncomms8310 – volume: 56 start-page: 12841 year: 2020 ident: D2CS00481J/cit74/1 publication-title: Chem. Commun. doi: 10.1039/D0CC05904H – volume-title: Materials Selection in Mechanical Design year: 2011 ident: D2CS00481J/cit28/1 – volume: 16 start-page: 2700 year: 2019 ident: D2CS00481J/cit498/1 publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b00247 – volume: 29 start-page: 1605260 year: 2017 ident: D2CS00481J/cit431/1 publication-title: Adv. Mater. doi: 10.1002/adma.201605260 – volume: 25 start-page: 1796 year: 2013 ident: D2CS00481J/cit177/1 publication-title: Adv. Mater. doi: 10.1002/adma.201204831 – volume: 23 start-page: 5931 year: 2021 ident: D2CS00481J/cit215/1 publication-title: CrystEngComm doi: 10.1039/D1CE00846C – volume: 50 start-page: 1654 year: 2017 ident: D2CS00481J/cit288/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00124 – volume: 59 start-page: 1408 year: 2020 ident: D2CS00481J/cit358/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814439 – volume: 15 start-page: 116 year: 2019 ident: D2CS00481J/cit156/1 publication-title: Soft Matter doi: 10.1039/C8SM01290C – volume: 129 start-page: 32 year: 2007 ident: D2CS00481J/cit272/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0671161 – volume: 32 start-page: 3952 year: 2020 ident: D2CS00481J/cit502/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00433 – volume: 12 start-page: 4311 year: 2012 ident: D2CS00481J/cit65/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg3010882 – volume: 9 start-page: 2002264 year: 2021 ident: D2CS00481J/cit373/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202002264 – volume: 52 start-page: 13941 year: 2016 ident: D2CS00481J/cit31/1 publication-title: Chem. Commun. doi: 10.1039/C6CC06235K – volume: 108 start-page: 1169 year: 2004 ident: D2CS00481J/cit233/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp037321s – volume: 31 start-page: e1902765 year: 2019 ident: D2CS00481J/cit305/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902765 – volume: 8 start-page: 34314 year: 2018 ident: D2CS00481J/cit458/1 publication-title: RSC Adv. doi: 10.1039/C8RA06639F |
SSID | ssj0011762 |
Score | 2.7042258 |
SecondaryResourceType | review_article |
Snippet | In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures
via
X-ray diffraction, albeit as the... In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures X-ray diffraction, albeit as the century... In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 398 |
SubjectTerms | Actuators Algorithms Crystal growth Crystallography Delamination Density functional theory Fracture toughness Machine learning Magnetic properties Measurement techniques Mechanical properties Milling (machining) Modulus of elasticity Molecular dynamics Molecular structure Photochemistry Physical properties Single crystals Switches |
Title | Mechanical properties and peculiarities of molecular crystals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37070570 https://www.proquest.com/docview/2811164759 https://www.proquest.com/docview/2802887844 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgK0EviFchUFAQXNAqNPEjiY_VUrQUyoWt6G3l2E4b1O6usllV8OsZ23GS0iIBlyhynESa-TL5_JhvEHqDSwpkCJhbwTiPqEjKSMRcw5hHFsDOAUG2aN_Rl3R6TA9P2ElfbdRmlzTFO_nzxryS__EqtIFfTZbsP3i2eyg0wDn4F47gYTj-lY-PtMnbtWZemUn12qijutR_U_O2ErXVS7Vr6L4M7ljWP4ARnq-HtLSTDfCbOFuR0g4Olw4J3_SpUUEezG9Dt3Wfqj7uZmw-VY04FZduNUlU8qzq577PLpYbNZ4KAGDlduqq4eQDdlv9XIjTLmDSNI5o5jQcfURleIAcPgiPJHYlp6_F7ZgY2VOF5doK2HwfdgKbry6sB0kGAYq5QiO_qWT7S7fRFoYBAx6hrf2D2cfP3YpSAlHfy9MSvte_ahvd8Tdf5SbXBhxAP2pfFsbSj9l9dK8dN4T7DgQP0C29eIjuTny5vkdoAIawB0MIYAivgCFclmEHhtCD4TE6_nAwm0yjtjZGJGlMmggnRCrOJMTjuJCCJpwpGPvFWOmc4UyTjBCRJWWimCgVl4lKJfyWC8IyzgTQ0B00WiwX-ikKhZZZrHKlU6ZprooCEzgtiKQaC65VgN56q8xlKxxv6pecz-0GBsLn7_HkqzXmYYBed31XTi7lxl673rjz9nNaz3EOv93UyE8G6FV3GYxoVrDEQi83pg_Q4TzLKQ3QE-eU7jXeiQHaAS91zb2jn_3xludouwf3Lho19Ua_AK7ZFC9bGP0CEsp-kA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+properties+and+peculiarities+of+molecular+crystals&rft.jtitle=Chemical+Society+reviews&rft.au=Awad%2C+Wegood+M&rft.au=Davies%2C+Daniel+W&rft.au=Kitagawa%2C+Daichi&rft.au=Mahmoud+Halabi%2C+Jad&rft.date=2023-05-09&rft.eissn=1460-4744&rft.volume=52&rft.issue=9&rft.spage=3098&rft_id=info:doi/10.1039%2Fd2cs00481j&rft_id=info%3Apmid%2F37070570&rft.externalDocID=37070570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |