Mechanical properties and peculiarities of molecular crystals

In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecu...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 52; no. 9; pp. 398 - 3169
Main Authors Awad, Wegood M, Davies, Daniel W, Kitagawa, Daichi, Mahmoud Halabi, Jad, Al-Handawi, Marieh B, Tahir, Ibrahim, Tong, Fei, Campillo-Alvarado, Gonzalo, Shtukenberg, Alexander G, Alkhidir, Tamador, Hagiwara, Yuki, Almehairbi, Mubarak, Lan, Linfeng, Hasebe, Shodai, Karothu, Durga Prasad, Mohamed, Sharmarke, Koshima, Hideko, Kobatake, Seiya, Diao, Ying, Chandrasekar, Rajadurai, Zhang, Hongyu, Sun, Changquan Calvin, Bardeen, Christopher, Al-Kaysi, Rabih O, Kahr, Bart, Naumov, Pan e
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 09.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. Molecular crystals have shown remarkable adaptability in response to a range of external stimuli. Here, we survey this emerging field and provide a critical overview of the experimental, computational and instrumental tools being used to design and apply such materials.
AbstractList In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals—jumping, twisting, fracturing, delaminating, rocking, and rolling—has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals—jumping, twisting, fracturing, delaminating, rocking, and rolling—has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout. Molecular crystals have shown remarkable adaptability in response to a range of external stimuli. Here, we survey this emerging field and provide a critical overview of the experimental, computational and instrumental tools being used to design and apply such materials.
Author Mohamed, Sharmarke
Naumov, Pan e
Diao, Ying
Shtukenberg, Alexander G
Chandrasekar, Rajadurai
Bardeen, Christopher
Karothu, Durga Prasad
Al-Handawi, Marieh B
Tahir, Ibrahim
Zhang, Hongyu
Mahmoud Halabi, Jad
Alkhidir, Tamador
Tong, Fei
Hagiwara, Yuki
Hasebe, Shodai
Kitagawa, Daichi
Al-Kaysi, Rabih O
Sun, Changquan Calvin
Koshima, Hideko
Almehairbi, Mubarak
Davies, Daniel W
Awad, Wegood M
Lan, Linfeng
Kobatake, Seiya
Campillo-Alvarado, Gonzalo
Kahr, Bart
AuthorAffiliation Khalifa University of Science and Technology
Department of Chemistry and Bioengineering
Jilin University
University of Illinois at Urbana-Champaign
Smart Materials Lab
Feringa Nobel Prize Scientist Joint Research Center
Ministry of National Guard Health Affairs
State Key Laboratory of Supramolecular Structure and Materials
East China University of Science and Technology
Macedonian Academy of Sciences and Arts
University of California Riverside
College of Pharmacy
Pharmaceutical Materials Science and Engineering Laboratory
Department of Chemistry
Department of Chemistry/Molecular Design Institute
University of Hyderabad
King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS) & King Abdullah International Medical Research Center (KAIMRC)
Frontiers Science Center for Materiobiology and Dynamic Chemistry
Osaka Metropolitan University
Center for Smart Engineering Materials
Advanced Materials Chemistry Center (AMCC)
Advanced Organic Photonic Materials and Technology Laboratory at School of Chemistry
Gree
AuthorAffiliation_xml – sequence: 0
  name: Macedonian Academy of Sciences and Arts
– sequence: 0
  name: University of Minnesota
– sequence: 0
  name: College of Science and Health Professions
– sequence: 0
  name: Feringa Nobel Prize Scientist Joint Research Center
– sequence: 0
  name: Pharmaceutical Materials Science and Engineering Laboratory
– sequence: 0
  name: Graduate School of Advanced Science and Engineering
– sequence: 0
  name: King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS) & King Abdullah International Medical Research Center (KAIMRC)
– sequence: 0
  name: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Advanced Materials Chemistry Center (AMCC)
– sequence: 0
  name: Frontiers Science Center for Materiobiology and Dynamic Chemistry
– sequence: 0
  name: University of Illinois at Urbana-Champaign
– sequence: 0
  name: Khalifa University of Science and Technology
– sequence: 0
  name: Department of Pharmaceutics
– sequence: 0
  name: University of California Riverside
– sequence: 0
  name: Department of Chemistry and Bioengineering
– sequence: 0
  name: College of Pharmacy
– sequence: 0
  name: Research Center for Environment and Materials
– sequence: 0
  name: School of Chemistry and Molecular Engineering
– sequence: 0
  name: East China University of Science and Technology
– sequence: 0
  name: Waseda University
– sequence: 0
  name: Osaka Metropolitan University
– sequence: 0
  name: Green Chemistry & Materials Modelling Laboratory
– sequence: 0
  name: Advanced Organic Photonic Materials and Technology Laboratory at School of Chemistry
– sequence: 0
  name: Department of Chemistry/Molecular Design Institute
– sequence: 0
  name: Institute of Fine Chemicals
– sequence: 0
  name: New York University Abu Dhabi
– sequence: 0
  name: University of Hyderabad
– sequence: 0
  name: State Key Laboratory of Supramolecular Structure and Materials
– sequence: 0
  name: Smart Materials Lab
– sequence: 0
  name: Department of Chemical and Biomolecular Engineering
– sequence: 0
  name: Graduate School of Engineering
– sequence: 0
  name: Ministry of National Guard Health Affairs
– sequence: 0
  name: Jilin University
– sequence: 0
  name: Research Organization for Nano and Life Innovation
– sequence: 0
  name: New York University
– sequence: 0
  name: Center for Smart Engineering Materials
Author_xml – sequence: 1
  givenname: Wegood M
  surname: Awad
  fullname: Awad, Wegood M
– sequence: 2
  givenname: Daniel W
  surname: Davies
  fullname: Davies, Daniel W
– sequence: 3
  givenname: Daichi
  surname: Kitagawa
  fullname: Kitagawa, Daichi
– sequence: 4
  givenname: Jad
  surname: Mahmoud Halabi
  fullname: Mahmoud Halabi, Jad
– sequence: 5
  givenname: Marieh B
  surname: Al-Handawi
  fullname: Al-Handawi, Marieh B
– sequence: 6
  givenname: Ibrahim
  surname: Tahir
  fullname: Tahir, Ibrahim
– sequence: 7
  givenname: Fei
  surname: Tong
  fullname: Tong, Fei
– sequence: 8
  givenname: Gonzalo
  surname: Campillo-Alvarado
  fullname: Campillo-Alvarado, Gonzalo
– sequence: 9
  givenname: Alexander G
  surname: Shtukenberg
  fullname: Shtukenberg, Alexander G
– sequence: 10
  givenname: Tamador
  surname: Alkhidir
  fullname: Alkhidir, Tamador
– sequence: 11
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
– sequence: 12
  givenname: Mubarak
  surname: Almehairbi
  fullname: Almehairbi, Mubarak
– sequence: 13
  givenname: Linfeng
  surname: Lan
  fullname: Lan, Linfeng
– sequence: 14
  givenname: Shodai
  surname: Hasebe
  fullname: Hasebe, Shodai
– sequence: 15
  givenname: Durga Prasad
  surname: Karothu
  fullname: Karothu, Durga Prasad
– sequence: 16
  givenname: Sharmarke
  surname: Mohamed
  fullname: Mohamed, Sharmarke
– sequence: 17
  givenname: Hideko
  surname: Koshima
  fullname: Koshima, Hideko
– sequence: 18
  givenname: Seiya
  surname: Kobatake
  fullname: Kobatake, Seiya
– sequence: 19
  givenname: Ying
  surname: Diao
  fullname: Diao, Ying
– sequence: 20
  givenname: Rajadurai
  surname: Chandrasekar
  fullname: Chandrasekar, Rajadurai
– sequence: 21
  givenname: Hongyu
  surname: Zhang
  fullname: Zhang, Hongyu
– sequence: 22
  givenname: Changquan Calvin
  surname: Sun
  fullname: Sun, Changquan Calvin
– sequence: 23
  givenname: Christopher
  surname: Bardeen
  fullname: Bardeen, Christopher
– sequence: 24
  givenname: Rabih O
  surname: Al-Kaysi
  fullname: Al-Kaysi, Rabih O
– sequence: 25
  givenname: Bart
  surname: Kahr
  fullname: Kahr, Bart
– sequence: 26
  givenname: Pan e
  surname: Naumov
  fullname: Naumov, Pan e
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37070570$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLxDAQB_AgivvQi3el4EWE6uTVtAcPsr5Z8aCeS5qkmKWPNWkP--3NPlxh8TRh-M0w_DNC-03bGIROMFxhoNm1JsoDsBTP9tAQswRiJhjbR0OgkMQAmAzQyPtZeGGRkEM0oAIEcAFDdPNq1JdsrJJVNHft3LjOGh_JRkdzo_rKSmdXnbaM6rZatqSLlFv4Tlb-CB2UoZjjTR2jz4f7j8lTPH17fJ7cTmPFgHYxwVTpjCtKCBRKMpxxnQgORJuUE2GooFQKXGLNZakzhXWiTIELykXGZcLoGF2s94YTv3vju7y2Xpmqko1pe5-TFEiaipQt6fkOnbW9a8J1QWGMEyZ4FtTZRvVFbXQ-d7aWbpH_BhPA5Roo13rvTLklGPJl6vkdmbyvUn8JGHawsp3sbNt0Ttrq_5HT9Yjzarv67yPpDzohi_M
CitedBy_id crossref_primary_10_1002_anie_202502107
crossref_primary_10_1002_adom_202401922
crossref_primary_10_1002_chem_202403293
crossref_primary_10_1016_j_heliyon_2024_e38483
crossref_primary_10_1002_smll_202401317
crossref_primary_10_1002_anie_202403397
crossref_primary_10_1021_acs_cgd_4c00996
crossref_primary_10_1039_D5SC01260K
crossref_primary_10_1177_00952443251325718
crossref_primary_10_1016_j_dyepig_2023_111531
crossref_primary_10_1039_D4QM01095G
crossref_primary_10_1002_ange_202404700
crossref_primary_10_1016_j_seppur_2024_127856
crossref_primary_10_1246_bcsj_20230121
crossref_primary_10_1021_acs_molpharmaceut_4c01307
crossref_primary_10_1002_ange_202417459
crossref_primary_10_1021_jacs_4c15519
crossref_primary_10_1002_ange_202320223
crossref_primary_10_1002_chem_202401023
crossref_primary_10_1039_D4CC02655A
crossref_primary_10_1002_ange_202311348
crossref_primary_10_1021_acs_chemmater_3c02740
crossref_primary_10_1103_PhysRevLett_133_137001
crossref_primary_10_1002_anie_202415821
crossref_primary_10_1039_D3CS00506B
crossref_primary_10_1039_D5TC00891C
crossref_primary_10_1515_revce_2024_0059
crossref_primary_10_1021_acs_cgd_4c00226
crossref_primary_10_1021_acs_cgd_4c00501
crossref_primary_10_1021_jacs_5c01140
crossref_primary_10_3390_cryst14060492
crossref_primary_10_1002_anie_202424496
crossref_primary_10_1039_D5TC00047E
crossref_primary_10_1002_ange_202411405
crossref_primary_10_1016_j_chempr_2024_01_019
crossref_primary_10_1039_D4CE00638K
crossref_primary_10_1038_s41467_024_51625_x
crossref_primary_10_1002_adfm_202415400
crossref_primary_10_1002_ange_202320173
crossref_primary_10_1021_jacs_3c07060
crossref_primary_10_1021_acs_cgd_4c01552
crossref_primary_10_1021_jacs_3c13416
crossref_primary_10_1002_sstr_202300134
crossref_primary_10_1039_D4CC01765J
crossref_primary_10_1002_adma_202416160
crossref_primary_10_1039_D3CE01321A
crossref_primary_10_1002_anie_202311348
crossref_primary_10_1016_j_chempr_2024_06_033
crossref_primary_10_1039_D3SC06462J
crossref_primary_10_1016_j_jct_2024_107350
crossref_primary_10_1002_cplu_202300428
crossref_primary_10_1039_D3SC03267A
crossref_primary_10_1039_D4CE00233D
crossref_primary_10_1002_anie_202503136
crossref_primary_10_1007_s40843_024_2890_1
crossref_primary_10_1021_jacs_4c05566
crossref_primary_10_1107_S2053229624008283
crossref_primary_10_1039_D4SC02152E
crossref_primary_10_3390_molecules28124631
crossref_primary_10_1002_ange_202424496
crossref_primary_10_1002_ange_202403397
crossref_primary_10_1039_D4CE00827H
crossref_primary_10_1002_cplu_202300383
crossref_primary_10_1002_smll_202406184
crossref_primary_10_1039_D4QI01511H
crossref_primary_10_1002_anie_202320173
crossref_primary_10_1016_j_cherd_2024_08_042
crossref_primary_10_1002_smll_202307756
crossref_primary_10_1039_D3TC03060A
crossref_primary_10_1002_adma_202415856
crossref_primary_10_1021_jacs_4c10507
crossref_primary_10_1039_D4TC02511C
crossref_primary_10_1002_ange_202503136
crossref_primary_10_1002_anie_202416856
crossref_primary_10_1007_s40843_024_3249_x
crossref_primary_10_1021_acs_jpclett_4c01797
crossref_primary_10_1021_acs_cgd_3c01185
crossref_primary_10_1021_jacs_4c11289
crossref_primary_10_1021_jacs_4c12532
crossref_primary_10_1002_chem_202401715
crossref_primary_10_1021_jacs_4c08320
crossref_primary_10_1016_j_cej_2024_157905
crossref_primary_10_1002_ange_202415821
crossref_primary_10_3390_molecules29194744
crossref_primary_10_1021_acs_cgd_3c00653
crossref_primary_10_1021_acs_chemmater_4c00418
crossref_primary_10_1021_acs_cgd_3c01464
crossref_primary_10_1039_D4CE00571F
crossref_primary_10_1002_anie_202320223
crossref_primary_10_3390_cryst15020124
crossref_primary_10_1016_j_mtadv_2024_100523
crossref_primary_10_1039_D3CE00483J
crossref_primary_10_1016_j_dwt_2024_100569
crossref_primary_10_1021_acs_cgd_3c00989
crossref_primary_10_1107_S2052252524012326
crossref_primary_10_1021_acs_cgd_3c00866
crossref_primary_10_1039_D4SC05684A
crossref_primary_10_1016_j_ccr_2024_216035
crossref_primary_10_1016_j_physb_2024_416545
crossref_primary_10_1016_j_mtcomm_2024_108537
crossref_primary_10_1002_chem_202400779
crossref_primary_10_1016_j_mtchem_2024_102309
crossref_primary_10_1002_anie_202418570
crossref_primary_10_1016_j_cscee_2024_101061
crossref_primary_10_1039_D4SC02918F
crossref_primary_10_1039_D4SC03060E
crossref_primary_10_1002_anie_202416950
crossref_primary_10_1002_smo_20230031
crossref_primary_10_1016_j_cclet_2023_109085
crossref_primary_10_1016_j_dyepig_2024_112313
crossref_primary_10_1002_anie_202417409
crossref_primary_10_1021_acs_cgd_4c00827
crossref_primary_10_1002_ange_202502107
crossref_primary_10_1021_acs_accounts_3c00578
crossref_primary_10_1039_D4SC05005C
crossref_primary_10_1038_s41598_025_95316_z
crossref_primary_10_1002_adfm_202410671
crossref_primary_10_1039_D3NJ02174B
crossref_primary_10_1002_anie_202404700
crossref_primary_10_1016_j_molstruc_2024_140235
crossref_primary_10_1002_ange_202416856
crossref_primary_10_1007_s40843_023_2668_y
crossref_primary_10_1039_D3CE00928A
crossref_primary_10_1002_adfm_202305916
crossref_primary_10_1107_S2052252524006055
crossref_primary_10_1002_anie_202417459
crossref_primary_10_1002_anie_202409472
crossref_primary_10_1016_j_jmst_2024_11_055
crossref_primary_10_1007_s40242_024_4153_y
crossref_primary_10_1039_D4CC02898H
crossref_primary_10_1016_j_rinp_2025_108150
crossref_primary_10_1039_D4MH00455H
crossref_primary_10_1039_D3TC04272C
crossref_primary_10_1002_adma_202311762
crossref_primary_10_1039_D4SC04157G
crossref_primary_10_1021_acs_cgd_4c00694
crossref_primary_10_1021_acs_cgd_4c00291
crossref_primary_10_1021_acs_cgd_4c01260
crossref_primary_10_1021_jacs_4c00191
crossref_primary_10_1021_jacs_3c05545
crossref_primary_10_1021_jacs_5c00598
crossref_primary_10_1002_smll_202306175
crossref_primary_10_1038_s44160_024_00718_y
crossref_primary_10_1021_acs_cgd_3c00855
crossref_primary_10_1002_anie_202411405
crossref_primary_10_1002_ange_202409472
crossref_primary_10_1021_acs_organomet_3c00249
crossref_primary_10_1039_D3SC03903J
crossref_primary_10_1016_j_rechem_2024_101952
crossref_primary_10_1039_D4CC03746D
crossref_primary_10_1021_jacs_4c03190
crossref_primary_10_1039_D3CS00116D
crossref_primary_10_1039_D3CP04691E
crossref_primary_10_1021_jacs_4c09334
crossref_primary_10_1002_ange_202417409
crossref_primary_10_1016_j_molstruc_2024_139436
crossref_primary_10_1002_ange_202418570
crossref_primary_10_1002_chem_202401590
crossref_primary_10_1002_ange_202416950
crossref_primary_10_1039_D3SC06800E
crossref_primary_10_1002_adfm_202313990
crossref_primary_10_1039_D4CE00672K
crossref_primary_10_1039_D3SC04796B
Cites_doi 10.1063/5.0059919
10.1039/D1CE00453K
10.1002/smll.202006795
10.1016/j.ijpharm.2011.03.039
10.1021/acs.jpclett.9b02315
10.1002/ange.201706684
10.1007/s11095-016-1858-8
10.1021/jp048137p
10.1039/C7CS00490G
10.1155/2012/328520
10.1021/acs.cgd.0c00521
10.1002/adom.202101808
10.1002/ijch.202100093
10.1021/jacs.8b00772
10.1038/nchem.2848
10.1016/j.jcrysgro.2017.03.014
10.1364/JOSAB.36.000F72
10.1021/ja054263a
10.1002/anie.201802785
10.1021/ja412216z
10.1021/jacs.0c03990
10.2174/1874842201502010007
10.1063/1.4812819
10.1021/jp4083079
10.1002/anie.201205002
10.1109/JLT.2006.885782
10.1021/ja101491n
10.1063/1.4812323
10.1039/C8SC05563G
10.1021/ja026564f
10.1021/ja9043449
10.1016/j.dyepig.2011.05.003
10.1021/j100389a010
10.1016/j.ajps.2016.09.002
10.1002/chem.201600355
10.1021/jacs.7b10998
10.1021/acs.cgd.5b00245
10.1002/ijch.201600002
10.1016/0022-0248(80)90075-5
10.1021/cg101300n
10.1021/acsami.8b07563
10.1002/anie.202004083
10.1163/016942410X525678
10.1021/acs.chemmater.9b00040
10.1038/s41467-021-21324-y
10.1039/C7SC00168A
10.1039/D1CS00469G
10.1021/acs.cgd.9b00917
10.1021/acs.cgd.8b01890
10.1002/anie.202011857
10.1002/chem.201900811
10.1021/ja205159u
10.1021/acs.cgd.1c01017
10.1016/j.trechm.2021.08.007
10.1021/jacs.6b01120
10.1002/ange.201712524
10.1038/nphoton.2010.136
10.1002/ange.201509319
10.1002/adom.202101335
10.1021/acs.jpcc.8b08261
10.1039/C9CE01874C
10.1016/j.jcis.2008.07.040
10.1021/ma301446t
10.1039/C8FD00039E
10.1364/OE.15.000629
10.1126/science.1203874
10.1002/anie.201802423
10.1021/acs.macromol.9b01526
10.1038/nchem.2123
10.1038/ncomms13260
10.1211/0022357023691
10.1073/pnas.092143399
10.1002/adma.201300540
10.1021/acs.chemmater.7b02532
10.1039/D2CC00044J
10.31635/ccschem.020.202000565
10.1002/anie.201402560
10.1038/s41467-019-13250-x
10.1038/s41467-018-06431-7
10.1021/ja4056323
10.1039/D0TC00007H
10.1038/s41586-019-1308-y
10.1021/jacs.0c07830
10.1002/chem.201505149
10.1002/anie.202113988
10.1002/asia.201800380
10.3389/frobt.2021.684287
10.1021/cr500249p
10.1002/jps.24178
10.1039/C5NR01118C
10.1021/acs.cgd.8b00202
10.1039/D1CE00086A
10.1016/j.jeurceramsoc.2004.07.012
10.1039/D0CE01394C
10.1002/adom.202101481
10.1002/1097-4636(200110)57:1<108::AID-JBM1148>3.0.CO;2-6
10.1021/acsami.8b05804
10.1038/sdata.2015.9
10.1021/jacs.9b07645
10.1038/srep29610
10.1021/acsnano.5b03367
10.1002/chem.202103228
10.1021/cg400675r
10.1038/nchem.2092
10.1021/acs.chemmater.5b00021
10.1016/0032-3861(69)90039-1
10.1016/j.xphs.2017.04.059
10.1021/acs.nanolett.6b03499
10.1073/pnas.1718965115
10.1002/cphc.201000963
10.1021/cr050152i
10.1021/acsanm.0c00131
10.1002/9783527822201
10.1039/C4CE02387K
10.1002/adom.201900927
10.1039/C7NR08931G
10.1021/acs.chemmater.8b01543
10.1021/jacs.6b07406
10.1039/C4SC00987H
10.1002/smll.200900895
10.1021/ma800994g
10.1021/jacs.6b11835
10.1039/C9CE00848A
10.1021/ar700145r
10.1021/acs.cgd.0c00492
10.1039/C4TC01999G
10.1016/j.cclet.2017.08.045
10.1107/S2052520616007447
10.1039/D0MA00019A
10.1002/anie.201303757
10.1021/acs.chemmater.1c04003
10.1038/204876b0
10.1002/anie.201511444
10.1002/anie.201301223
10.1039/b516732a
10.1021/acs.cgd.0c00908
10.1021/jacs.7b13605
10.1021/acs.chemmater.9b00441
10.1021/ja201925p
10.1021/jacs.6b09633
10.1246/cl.200693
10.1021/ja400833r
10.1016/j.powtec.2004.01.024
10.1038/nmat3115
10.1039/C3TC32581D
10.1021/acsami.0c03686
10.1002/jps.20587
10.1039/C6TC02517J
10.1016/S0032-3861(02)00724-3
10.1021/acs.chemmater.0c04560
10.1039/C9TC01084J
10.1038/nature05669
10.1002/smll.202100277
10.1039/C7CC02970E
10.1155/2009/436375
10.1021/acs.cgd.9b00247
10.1073/pnas.1917952117
10.1002/adom.201500106
10.1023/A:1014276917363
10.1021/ja5013382
10.3390/cryst7110324
10.1002/advs.201901824
10.31635/ccschem.021.202000663
10.1039/b415912h
10.1016/j.xphs.2016.07.015
10.1295/polymj.PJ2007191
10.1016/j.ejpb.2005.08.002
10.1021/ja209815f
10.1021/acs.cgd.0c01041
10.1002/anie.201411447
10.1002/ijch.202000095
10.1002/ange.202005738
10.1021/ja02086a003
10.1039/C5CS00841G
10.1016/j.commatsci.2004.03.017
10.1021/acs.cgd.7b01153
10.1002/anie.201301207
10.7210/jrsj.13.189
10.1021/acs.accounts.6b00209
10.1021/acs.chemrev.6b00415
10.1021/acs.jpca.9b10365
10.1039/c3tc31576b
10.1021/acs.jpclett.6b00704
10.1021/jacs.0c09577
10.1039/C9TC06689F
10.1016/j.actbio.2017.05.034
10.1021/cg700843s
10.1021/ja8098596
10.3390/cryst9090437
10.1002/anie.201800137
10.1021/acs.cgd.9b00910
10.1007/s00894-016-2909-0
10.1007/b98730
10.1002/chem.202002641
10.1039/c1cc14288g
10.1002/anie.201503914
10.1021/acs.jpclett.0c02623
10.1002/adfm.202105415
10.1039/c003466e
10.1246/cl.2000.756
10.1021/acs.cgd.8b00704
10.3139/146.101488
10.1021/ja300257m
10.1021/ja078301x
10.1039/C5SC04057D
10.1021/cg500305n
10.1021/acs.cgd.8b01867
10.1002/anie.201804589
10.1039/C8QM00363G
10.1002/anie.201907454
10.1002/adfm.201706506
10.1039/C5RA11656B
10.1039/C6CC02616H
10.1103/PhysRevLett.113.055701
10.1039/C3CS60181A
10.1039/C5TC04390E
10.1039/C6CE00848H
10.1002/adma.200600634
10.1021/ja4063019
10.1021/jacs.1c01549
10.1002/adma.201100827
10.1002/chem.201705586
10.1002/anie.201311014
10.1021/acs.macromol.9b01567
10.1002/adom.201600823
10.1002/cphc.201300906
10.1002/anie.202200196
10.1021/op0300241
10.1021/acs.molpharmaceut.7b00124
10.1002/admt.201800182
10.1002/adom.202001768
10.1002/adfm.202004116
10.1039/C4TC02070G
10.1021/ol702000s
10.1039/C6CC08999B
10.1039/C5CC00355E
10.1039/C9CC03826D
10.1039/c3cp54994a
10.1002/chir.20768
10.1002/anie.200702443
10.1002/anie.201702359
10.1039/C7SC04863G
10.5059/yukigoseikyokaishi.74.1217
10.1002/ange.201706517
10.1038/nchem.2513
10.1039/C8SC03135E
10.1021/acs.accounts.8b00425
10.1107/S0365110X55000121
10.1039/c0cp02376k
10.1021/cm502866e
10.1021/cen-v088n022.p013
10.1021/acs.cgd.9b00260
10.1016/S0022-5096(03)00066-8
10.1002/anie.201701972
10.1039/c2ce25100k
10.1007/s00289-012-0792-0
10.1016/j.powtec.2008.05.009
10.1016/j.xphs.2018.04.029
10.1039/C9CC06016B
10.1002/anie.199523111
10.1021/ja061810z
10.1039/C9CC01702J
10.1039/C9SC02444A
10.1002/anie.201304670
10.1021/jp110646n
10.1021/acs.cgd.0c00770
10.1038/ncomms7948
10.1107/S2052252515017297
10.1038/s41467-017-02607-9
10.1038/nchem.2547
10.1039/c1ra00424g
10.1039/C5CC08590J
10.1039/C6CE00742B
10.1021/ar900288m
10.1021/acs.cgd.8b00261
10.1016/j.addr.2016.01.011
10.1021/ja105508b
10.1021/ma702267e
10.1002/anie.202001060
10.1021/acs.cgd.9b00473
10.1557/JMR.1992.1564
10.1021/cg200375t
10.1002/anie.201802020
10.1021/mp0600182
10.1246/cl.2012.107
10.1002/adma.201404121
10.1002/anie.201705325
10.1557/JMR.2002.0339
10.1039/c3cc45646c
10.1039/D0CC01958E
10.1021/nn3011398
10.1016/0040-4020(92)85002-V
10.1021/js9701061
10.1186/s43074-021-00024-2
10.1002/smll.201804102
10.1002/anie.202110676
10.1021/nl050469y
10.1021/jacs.5b07806
10.1557/jmr.2004.19.1.3
10.1002/ange.202000570
10.1021/acs.jpclett.9b00196
10.1002/9780470446836
10.1002/anie.201914954
10.1039/c0cs00183j
10.1002/cplu.201600451
10.1016/S0022-0248(98)00034-7
10.1021/acs.langmuir.7b03848
10.1002/anie.201900501
10.1039/D0SC05118G
10.1002/adom.201800343
10.1021/acs.organomet.0c00258
10.1002/adom.201901317
10.1039/C7NR09571F
10.1038/s41467-019-11731-7
10.1002/adom.201500531
10.1021/jacs.6b06278
10.1007/978-4-431-54291-9_1
10.1002/anie.202102285
10.1039/C7SC04665K
10.1039/c2ce25811k
10.1002/adma.201703554
10.1073/pnas.0401918101
10.1021/ja507179d
10.1021/ja105356w
10.1038/nature21419
10.1002/chem.201603020
10.1038/ncomms15546
10.1111/j.1151-2916.1979.tb19075.x
10.1021/ja0719125
10.1039/C6CE00738D
10.1016/j.matt.2019.06.018
10.1002/anie.201105585
10.1021/ja00341a065
10.1002/cnma.201800196
10.1038/nmat852
10.1002/admi.202001662
10.1016/S0022-0248(97)00370-9
10.1021/jz502271c
10.1103/PhysRevLett.68.1148
10.1021/ol502223u
10.1103/PhysRevB.67.115408
10.1038/nmat3568
10.1021/acs.cgd.7b00755
10.1021/acs.jpclett.6b01459
10.1021/acsnano.0c05367
10.1039/c3ce41313f
10.1039/C5CE00195A
10.1002/chem.202103286
10.1002/anie.202012417
10.1039/c3tc32206h
10.1039/C7CE02107K
10.1016/j.msea.2011.08.061
10.1021/jacs.8b01997
10.1021/ma048959k
10.1021/ma961219u
10.1039/c2jm35394f
10.1016/j.powtec.2021.117066
10.1002/asia.202100807
10.1038/ncomms10270
10.1002/adma.201401114
10.1002/anie.201814441
10.1021/ja00037a027
10.1021/acs.cgd.9b01530
10.31635/ccschem.020.202000350
10.1039/C4NR04661G
10.1021/ja800353u
10.1557/JMR.1999.0490
10.1107/S2052252519014581
10.1038/s41467-019-11612-z
10.1109/JSTQE.2014.2318271
10.1038/ncomms12094
10.1021/jacs.9b03932
10.1002/adom.202100550
10.1002/anie.201703028
10.1002/ange.201810422
10.1039/C9TC06946A
10.1021/jacs.7b06410
10.1021/acs.jpcc.0c04258
10.1002/adma.201800814
10.1039/D0CS00638F
10.1016/j.chempr.2020.08.007
10.1002/anie.201810514
10.1038/nature04594
10.1016/j.jphotochemrev.2005.12.002
10.1021/acs.chemmater.8b04800
10.1039/C1CP22663K
10.1002/anie.201814387
10.1002/aelm.201700271
10.1039/C8CC10051A
10.1021/acs.jpclett.0c01545
10.1039/C9SC05640H
10.1039/D1CC01431E
10.1039/C6CP04459J
10.1039/D1TC04027H
10.1021/acs.molpharmaceut.9b00082
10.1039/D0CS00475H
10.1039/C8TC04631J
10.1021/acs.cgd.0c01119
10.1021/cr200297f
10.1021/jacs.6b05118
10.1039/C7CC06374A
10.1021/ja4101497
10.1016/j.dyepig.2017.10.008
10.1002/anie.202114089
10.1039/D0CS00037J
10.1007/12_2016_352
10.1002/aenm.201703491
10.1038/ncomms11156
10.1002/anie.202003820
10.1021/ja064535p
10.1021/acs.chemmater.9b01738
10.1021/acs.cgd.1c00270
10.1002/anie.200902929
10.1002/adom.202000959
10.1021/cr980070c
10.1002/adma.200602741
10.1002/anie.200460986
10.1016/j.biomaterials.2009.12.026
10.1007/s11665-012-0469-8
10.1021/ja993181h
10.1039/C3RA46688D
10.1002/adom.201200067
10.1002/adfm.202100642
10.1021/acs.chemmater.8b04568
10.1016/j.powtec.2015.04.004
10.1039/C4CC09074H
10.1021/jacs.0c05440
10.1002/anie.202009906
10.1021/jo010117l
10.1016/j.progpolymsci.2015.11.006
10.1351/pac197127040647
10.1002/anie.201505813
10.1002/ange.201914026
10.1038/s42004-019-0121-8
10.1002/ijch.202100056
10.3390/sym12091478
10.1038/s41467-020-15663-5
10.1002/anie.201302323
10.1021/ja065139+
10.1021/ja512817f
10.1021/ma501733n
10.1038/ncomms5811
10.1016/0022-5096(94)90033-7
10.1021/acs.inorgchem.1c00881
10.1007/978-1-4684-2082-1
10.1002/anie.202002627
10.1021/acs.cgd.0c00798
10.1016/j.mechmat.2006.06.004
10.1246/cl.130797
10.1021/jacs.0c03643
10.1038/s41467-017-02549-2
10.1021/acs.chemrev.5b00398
10.1002/adma.19970091512
10.1016/0040-6090(95)06875-9
10.1126/science.1190239
10.1021/ja052940v
10.1002/adom.201500362
10.1002/anie.200350961
10.1002/jps.21552
10.1016/j.addr.2010.12.007
10.1088/0034-4885/76/12/126502
10.1021/cg200640g
10.1021/cg200883b
10.1002/adfm.201902396
10.1021/acs.chemmater.6b02017
10.1038/272710a0
10.1021/ma0717082
10.1039/c1jm10228a
10.1021/ar400003q
10.1038/ncomms8310
10.1039/D0CC05904H
10.1021/acs.molpharmaceut.9b00247
10.1002/adma.201605260
10.1002/adma.201204831
10.1039/D1CE00846C
10.1021/acs.accounts.7b00124
10.1002/anie.201814439
10.1039/C8SM01290C
10.1021/ja0671161
10.1021/acs.chemmater.0c00433
10.1021/cg3010882
10.1002/adom.202002264
10.1039/C6CC06235K
10.1021/jp037321s
10.1002/adma.201902765
10.1039/C8RA06639F
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cs00481j
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 3169
ExternalDocumentID 37070570
10_1039_D2CS00481J
d2cs00481j
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-213cd95c3220bca4195d67502de8527e3733a71f1d5afd9c1d6ceb1b35795a643
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 10:03:37 EDT 2025
Sun Jun 29 16:15:13 EDT 2025
Thu Apr 03 07:03:25 EDT 2025
Tue Jul 01 04:28:19 EDT 2025
Thu Apr 24 22:54:37 EDT 2025
Tue Dec 17 20:58:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-213cd95c3220bca4195d67502de8527e3733a71f1d5afd9c1d6ceb1b35795a643
Notes Durga Prasad Karothu obtained his PhD with T. N. Guru Row from the Indian Institute of Science, Bangalore. He has been a visiting researcher with P. Coppens at the University of Buffalo (USA) and with R. E. Dinnebier at the Max Planck Institute for Solid State Research in Stuttgart (Germany). He was the recipient of the Rising Star Award from the Asian Crystallographic Association (AsCA) for the year 2022. He is currently a senior research scientist in the Naumov Group at New York University Abu Dhabi. His research focuses on the development of organic-based smart materials, organic solid-state chemistry, photocrystallography, and electron diffraction.
Shodai Hasebe obtained his BSc degree from Waseda University in 2020. He is currently a graduate student in the research group of Dr Hideko Koshima at Waseda University. His research focuses on mechanically responsive molecular crystals and the application of mechanical crystals to actuators and soft robots.
Changquan Calvin Sun is a professor of pharmaceutics at the University of Minnesota, USA. Professor Sun's research focuses on the efficient formulation and design of high-quality tablet products through the appropriate application of materials science and engineering principles. Two main areas of his current research are: (1) crystal and particle engineering for superior pharmaceutical properties; and (2) fundamental understanding of pharmaceutical processes, including powder compaction. He is a Fellow of the American Association for the Advancement of Science (AAAS), the American Association of Pharmaceutical Scientists (AAPS), and the Royal Society of Chemistry (RSC).
Rajadurai Chandrasekar is a professor of chemistry and associated with the Center for Nanotechnology at the University of Hyderabad, India. He earned a PhD from the Max Planck Institute for Polymer Research at Mainz. He worked as a postdoctoral researcher in the Institute of Nanotechnology at the Karlsruhe Institute of Technology. His research currently focuses on organic- and polymer-based optically linear and nonlinear photonic components and their integrated circuits. His recent research interests include the micromanipulation of photonic structures using atomic force microscopy (mechanophotonics).
Daichi Kitagawa received his PhD degree from Osaka City University in 2014. In 2014-2015, he was engaged as a postdoctoral researcher at JSPS. In 2015, he was promoted to an assistant professor at Osaka City University, and he was promoted to a senior professor in 2019. His current research focuses on the fabrication of novel photochromic molecules, photomechanical crystalline materials, and photoreaction dynamics in crystalline states.
Christopher J. Bardeen received his PhD degree from UC Berkeley in 1995. After a postdoctoral fellowship at University of California, San Diego, he became an assistant professor at the University of Illinois, Urbana-Champaign, in 1998. In 2005, he moved to the University of California, Riverside. His current research interest focuses on spectroscopy, photochemistry, and mechanical dynamics in organic materials.
Mr Linfeng Lan received his BS degree in chemistry from Jilin University in 2019. Currently, he is a PhD student at Jilin University under the supervision of Prof. Dr Hongyu Zhang. His research interests focus on the optical and mechanical properties of organic crystals and the application of organic crystalline materials in combination with polymers.
Marieh Al-Handawi earned her PhD in chemistry and materials science from New York University's Graduate School of Arts and Sciences in 2022. She is currently working as a postdoctoral associate in Naumov's Smart Materials Lab at New York University Abu Dhabi, where she is involved in various interdisciplinary projects related to the design, fabrication, and characterization of materials. Her main research interest is focused on the intersection between materials science and biology, where she investigates natural phenomena with possible applications to materials science, such as biomineralization, water harvesting technologies, and bioluminescence, and applies the underlying principles to bioinspired artificial materials.
Pan e Naumov is a tenured professor at New York University Abu Dhabi, with a cross-appointment at NYU's Molecular Design Institute, and a director of the Center for Smart Engineering Materials. He is a native of Macedonia, where he got a BSc degree from Ss. Cyril and Methodius University. After acquiring his PhD in chemistry and materials science from the Tokyo Institute of Technology in 2004, Dr Naumov continued his research at the National Institute for Materials Science, Osaka University and Kyoto University. The research in his group is related to materials science, focusing on smart materials, crystallography, bioluminescence, and petroleomics.
Alexander G. Shtukenberg received a specialist degree in 1993 from the Geological Faculty of Saint Petersburg State University, Russia. Under the supervision of Yuri Punin, he received a Candidate of Science degree in 1997 and continued to work at the Geological Faculty as a researcher and faculty member. In 2009, he earned the Doctor of Science degree, and in 2010, he became a professor at the same university. Since 2010, he has been associated with the Molecular Design Institute in the Department of Chemistry at New York University and is currently a research professor.
Dr Hideko Koshima was a professor at Ehime University, and in 2014, she moved to Waseda University. Her research interests are in solid-state organic photochemistry, chiral chemistry, and microwave chemistry. Over the last decade, her research had focused on mechanical molecular crystals that are actuated by light and heat. In 2001, she received the Japanese Woman Scientists Association Award, and in 2014, she received the Japanese Photochemistry Association Award for Distinguished Contribution to Photochemistry.
Ying Diao is an associate professor, I. C. Gunsalus Scholar and Dow Chemical Company Faculty Scholar at the University of Illinois at Urbana-Champaign. She received PhD from MIT in 2011, and pursued postdoctoral training at Stanford University from 2011 to 2014. Her research group, started in 2015 at Illinois, focuses on understanding the assembly of organic functional materials and innovating printing approaches that enable structural control down to a molecular and nanoscale. She was named an MIT Technology Review Innovators Under 35, a recipient of the NSF CAREER Award, NASA Early Career Faculty Award, and Sloan Fellowship in Chemistry.
Tamador Alkhidir is a visiting researcher in the Advanced Materials Chemistry Center (AMCC) at Khalifa University and also works as a curriculum specialist in the UAE Ministry of Education. She received her PhD from Khalifa University in 2020. Her research interests are focused on the applications of computational materials modelling for gaining a better understanding of structure-property correlations. She is an expert in the simulation of the electrical and mechanical properties of organic and inorganic materials using DFT methods.
Gonzalo Campillo-Alvarado is an assistant professor of chemistry at Reed College in Portland, OR, USA. His research focuses on designing dynamic crystalline materials with an emphasis on boron for applications in chemical separations, pharmaceutics, and electronics. Before joining Reed, he was an Illinois Distinguished Postdoctoral Research Associate at the University of Illinois at Urbana-Champaign, mentored by Prof. Ying Diao. He received his PhD in chemistry from the University of Iowa (advisor: Prof. Leonard R. MacGillivray), his MSc in chemistry at Universidad Autónoma del Estado de Morelos, and his BSc in biopharmaceutical chemistry at Universidad Veracruzana.
Prof. Dr Hongyu Zhang received his PhD in 2006 at Jilin University, majoring in organic chemistry. He joined Prof. Shigehiro Yamaguchi's group at Nagoya University as a JSPS postdoctoral fellow (2006-2008). In 2008, he joined the faculty of Jilin University as an associate professor of chemistry and was promoted to full professor in 2014. His main research interests focus on the design and synthesis of organic functional materials and their applications in optoelectronics. He received a number of awards and honors, including the NSFC outstanding Young Scholar Award (2017) and the CCS Lectureship Award for Creative Young Supramolecular Chemists (2020).
Sharmarke Mohamed is an Associate Professor of Chemistry, theme leader in the Advanced Materials Chemistry Center (AMCC), and PI of the Green Chemistry and Materials Modelling Laboratory at Khalifa University. In 2011, he received his PhD from UCL. His PhD research focused on small molecule X-ray crystallography and computational methods of crystal structure prediction. He has worked in the pharmaceutical industry as an experimental drug development chemist and is an inventor on a number of patents. Since joining the faculty at Khalifa University in 2014, he has widened his research interests to cover mechanochemistry, multiscale materials modeling and green chemistry.
Mubarak Almehairbi is an MSc student in the Applied Chemistry program at Khalifa University. He completed his BSc chemistry capstone project under the supervision of Prof. Sharmarke Mohamed. During this capstone project, he was successful in developing a code to better understand and predict the mechanical properties of organic molecular crystals using DFT methods. In his current role as an MSc student, his research is focused on the computational prediction of the vibrational-rotational spectra of diatomic radicals found in the Martian atmosphere. Mubarak has an ongoing passion for code development and in the application of machine learning methods to better understand and predict materials properties.
Seiya Kobatake is professor of materials chemistry at Osaka Metropolitan University in Japan. He received his PhD degree from Osaka City Universit
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3527-3984
0000-0001-9231-9809
0000-0001-5705-119X
0000-0001-7051-9332
0000-0001-5170-4559
0000-0002-1868-8523
0000-0002-1994-3047
0000-0002-1526-4629
0000-0001-8429-2802
0000-0002-5755-9476
0000-0002-5195-2533
0000-0001-5956-6496
0000-0002-0061-5545
0000-0001-9642-6740
0000-0002-2537-5453
0000-0002-7005-4464
0000-0002-5590-4758
0000-0001-7284-5334
0000-0003-4545-2230
0000-0002-3489-6357
0000-0002-8984-0051
0000-0003-2416-6569
0000-0002-0834-6263
0000-0002-0219-3948
PMID 37070570
PQID 2811164759
PQPubID 2047503
PageCount 72
ParticipantIDs crossref_primary_10_1039_D2CS00481J
proquest_miscellaneous_2802887844
rsc_primary_d2cs00481j
crossref_citationtrail_10_1039_D2CS00481J
proquest_journals_2811164759
pubmed_primary_37070570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mutai (D2CS00481J/cit101/1) 2020; 11
Annadhasan (D2CS00481J/cit378/1) 2020; 59
Chen (D2CS00481J/cit456/1) 1992; 48
Nakamura (D2CS00481J/cit22/1) 2007; 39
Swadener (D2CS00481J/cit23/1) 2001; 57
Khan (D2CS00481J/cit192/1) 2021; 16
Shtukenberg (D2CS00481J/cit38/1) 2014; 53
Ritchie (D2CS00481J/cit1/1) 2011; 10
Ohkata (D2CS00481J/cit98/1) 1995; 13
Shtukenberg (D2CS00481J/cit121/1) 2015; 17
Maier (D2CS00481J/cit399/1) 2003; 2
Chen (D2CS00481J/cit375/1) 2021; 2
Halme (D2CS00481J/cit476/1) 2019; 19
Campillo-Alvarado (D2CS00481J/cit88/1) 2020; 39
Iwaso (D2CS00481J/cit445/1) 2016; 8
Lusi (D2CS00481J/cit57/1) 2013; 49
Naumov (D2CS00481J/cit30/1) 2020; 142
Hui (D2CS00481J/cit423/1) 2013; 25
Siegel (D2CS00481J/cit301/1) 2010; 329
Klajn (D2CS00481J/cit201/1) 2014; 43
Irie (D2CS00481J/cit219/1) 2014; 114
Naumov (D2CS00481J/cit60/1) 2013; 52
Good (D2CS00481J/cit278/1) 2009; 5
Kubo (D2CS00481J/cit348/1) 2016; 7
Zhu (D2CS00481J/cit109/1) 2016; 55
Wang (D2CS00481J/cit317/1) 2018; 18
Mattia (D2CS00481J/cit273/1) 2014; 6
Hayashi (D2CS00481J/cit376/1) 2018; 130
Liu (D2CS00481J/cit502/1) 2020; 32
Bernauer (D2CS00481J/cit86/1) 1929
Tong (D2CS00481J/cit208/1) 2018; 57
Hirano (D2CS00481J/cit242/1) 2017; 17
Kitagawa (D2CS00481J/cit249/1) 2013; 52
Desta (D2CS00481J/cit241/1) 2020; 124
de Jong (D2CS00481J/cit331/1) 2015; 2
Jacobs (D2CS00481J/cit468/1) 2002; 19
Liu (D2CS00481J/cit67/1) 2018; 18
Yadava (D2CS00481J/cit239/1) 2019; 19
Hao (D2CS00481J/cit178/1) 2019; 7
Ashby (D2CS00481J/cit28/1) 2011
Shima (D2CS00481J/cit459/1) 2014; 53
Taniguchi (D2CS00481J/cit181/1) 2016; 22
Mohamed (D2CS00481J/cit499/1) 2015; 5
Tong (D2CS00481J/cit61/1) 2016; 18
Hatano (D2CS00481J/cit222/1) 2017; 129
Bushuyev (D2CS00481J/cit182/1) 2016; 52
Campione (D2CS00481J/cit282/1) 2005; 15
Donnay (D2CS00481J/cit322/1) 1937; 22
Kjelstrup-Hansen (D2CS00481J/cit384/1) 2013; 76
Labonte (D2CS00481J/cit25/1) 2017; 57
Kuzmanich (D2CS00481J/cit232/1) 2008; 130
Mondal (D2CS00481J/cit3/1) 2020; 59
Al-Kaysi (D2CS00481J/cit248/1) 2017; 53
Worthy (D2CS00481J/cit85/1) 2018; 10
Ye (D2CS00481J/cit131/1) 2019; 52
Cheng (D2CS00481J/cit411/1) 2018; 28
Abouhakim (D2CS00481J/cit482/1) 2020; 20
Kloc (D2CS00481J/cit270/1) 1997; 182
Taguchi (D2CS00481J/cit351/1) 2021; 8
Kitagawa (D2CS00481J/cit221/1) 2018; 140
Saha (D2CS00481J/cit32/1) 2018; 51
Turner (D2CS00481J/cit312/1) 2014; 5
Kahr (D2CS00481J/cit113/1) 2019; 19
Wu (D2CS00481J/cit350/1) 2016; 7
Tang (D2CS00481J/cit415/1) 2016; 52
Yao (D2CS00481J/cit460/1) 2014; 6
Tsao (D2CS00481J/cit233/1) 2004; 108
Kahr (D2CS00481J/cit123/1) 2010; 43
Haddad (D2CS00481J/cit156/1) 2019; 15
Ravi (D2CS00481J/cit41/1) 2018; 57
Fang (D2CS00481J/cit420/1) 2012; 22
Matthews (D2CS00481J/cit281/1) 2018; 30
Colin-Molina (D2CS00481J/cit96/1) 2019; 1
Abendroth (D2CS00481J/cit297/1) 2015; 9
Mannepalli (D2CS00481J/cit73/1) 2017; 7
Jain (D2CS00481J/cit329/1) 2013; 1
Qian (D2CS00481J/cit284/1) 2019; 4
Sajimon (D2CS00481J/cit457/1) 2007; 129
Venkatakrishnarao (D2CS00481J/cit443/1) 2016; 4
Frost (D2CS00481J/cit160/1) 1982
Stevens (D2CS00481J/cit210/1) 1964; 204
Toda (D2CS00481J/cit143/1) 2008; 41
Bentham (D2CS00481J/cit474/1) 2004; 141
Nath (D2CS00481J/cit194/1) 2015; 137
Armon (D2CS00481J/cit157/1) 2011; 333
Gately (D2CS00481J/cit215/1) 2021; 23
Sun (D2CS00481J/cit492/1) 2008; 8
Wang (D2CS00481J/cit105/1) 2017; 56
Oliver (D2CS00481J/cit14/1) 2004; 19
Liu (D2CS00481J/cit387/1) 2019; 10
Takamizawa (D2CS00481J/cit103/1) 2016; 7
Yang (D2CS00481J/cit138/1) 2018; 20
Yang (D2CS00481J/cit114/1) 2022; 34
Hu (D2CS00481J/cit506/1) 2019; 31
Liu (D2CS00481J/cit418/1) 2018; 149
Kuzmanich (D2CS00481J/cit230/1) 2009; 131
Lai (D2CS00481J/cit354/1) 2018; 4
Huang (D2CS00481J/cit377/1) 2019; 7
Patravale (D2CS00481J/cit473/1) 2004; 56
Crist (D2CS00481J/cit141/1) 2016; 56
Morimoto (D2CS00481J/cit245/1) 2010; 132
Tian (D2CS00481J/cit373/1) 2021; 9
Hill (D2CS00481J/cit24/1) 1950
Etter (D2CS00481J/cit55/1) 1983; 105
Chandrasekar (D2CS00481J/cit359/1) 2014; 16
Irie (D2CS00481J/cit266/1) 2000; 122
Ahmed (D2CS00481J/cit79/1) 2020; 142
Yadav (D2CS00481J/cit315/1) 2019; 19
Chung (D2CS00481J/cit50/1) 2018; 9
Zhi (D2CS00481J/cit274/1) 2005; 44
Basile (D2CS00481J/cit36/1) 2018; 8
Krishna (D2CS00481J/cit4/1) 2016; 138
Ahmed (D2CS00481J/cit33/1) 2018; 57
Landenberger (D2CS00481J/cit66/1) 2010; 10
Koshima (D2CS00481J/cit212/1) 2016; 18
Sahoo (D2CS00481J/cit240/1) 2014; 4
Pastore (D2CS00481J/cit302/1) 2012; 14
Tang (D2CS00481J/cit379/1) 2020; 30
Zhang (D2CS00481J/cit419/1) 2016; 49
Mayo (D2CS00481J/cit328/1) 1990; 94
Takamizawa (D2CS00481J/cit52/1) 2018; 9
Rosenthal (D2CS00481J/cit151/1) 2012; 45
Ma (D2CS00481J/cit374/1) 2021; 9
Sasaki (D2CS00481J/cit53/1) 2020; 20
Mishra (D2CS00481J/cit505/1) 2020; 20
Kim (D2CS00481J/cit207/1) 2014; 136
Hasebe (D2CS00481J/cit465/1) 2021; 8
(D2CS00481J/cit356/1) 1975
Sakai (D2CS00481J/cit26/1) 1999; 14
Noyes (D2CS00481J/cit470/1) 1897; 19
Zhang (D2CS00481J/cit250/1) 2019; 15
Chandrasekhar (D2CS00481J/cit426/1) 2013; 1
Descamps (D2CS00481J/cit483/1) 2016; 100
Wang (D2CS00481J/cit195/1) 2021; 3
(D2CS00481J/cit451/1) 2004
Tong (D2CS00481J/cit188/1) 2018; 34
Huang (D2CS00481J/cit382/1) 2018; 30
Chiba (D2CS00481J/cit172/1) 2021; 50
Reilly (D2CS00481J/cit325/1) 2016; 72
Bozhevolnyi (D2CS00481J/cit397/1) 2006; 440
Al-Kaysi (D2CS00481J/cit94/1) 2015; 17
Skoko (D2CS00481J/cit234/1) 2010; 132
Wang (D2CS00481J/cit406/1) 2014; 26
Bushuyev (D2CS00481J/cit183/1) 2014; 5
Yokoyama (D2CS00481J/cit453/1) 2000; 100
Wang (D2CS00481J/cit504/1) 2019; 31
Norikane (D2CS00481J/cit107/1) 2016; 18
Norikane (D2CS00481J/cit259/1) 2014; 16
Punin (D2CS00481J/cit153/1) 2008
Zhu (D2CS00481J/cit214/1) 2014; 26
Venkatakrishnarao (D2CS00481J/cit427/1) 2018; 6
Sasaki (D2CS00481J/cit51/1) 2019; 19
Resendiz (D2CS00481J/cit231/1) 2007; 9
Shtukenberg (D2CS00481J/cit132/1) 2012; 134
Schiffmann (D2CS00481J/cit16/1) 2007; 98
Reddy (D2CS00481J/cit13/1) 2010; 12
Saha (D2CS00481J/cit48/1) 2017; 53
Liu (D2CS00481J/cit158/1) 2019; 570
Kaupp (D2CS00481J/cit202/1) 2016
Terao (D2CS00481J/cit170/1) 2012; 51
Yang (D2CS00481J/cit271/1) 2011; 115
Gong (D2CS00481J/cit257/1) 2020; 132
Mohamed (D2CS00481J/cit159/1) 2015; 15
Sun (D2CS00481J/cit200/1) 2013; 52
Turner (D2CS00481J/cit313/1) 2015; 51
Merino (D2CS00481J/cit180/1) 2011; 40
Yadava (D2CS00481J/cit63/1) 2020; 7
Koshima (D2CS00481J/cit104/1) 2020
Gupta (D2CS00481J/cit6/1) 2020; 20
Chu (D2CS00481J/cit391/1) 2020; 11
Kitagawa (D2CS00481J/cit167/1) 2020; 12
Nath (D2CS00481J/cit244/1) 2014; 136
Panda (D2CS00481J/cit45/1) 2015; 7
Efrati (D2CS00481J/cit136/1) 2014; 4
Abumaree (D2CS00481J/cit276/1) 2011; 1
Kreiza (D2CS00481J/cit405/1) 2017; 5
Rai (D2CS00481J/cit90/1) 2018; 115
Koshima (D2CS00481J/cit223/1) 2012
Sun (D2CS00481J/cit487/1) 2015; 279
Meng (D2CS00481J/cit145/1) 2013; 46
Saito (D2CS00481J/cit258/1) 2019; 55
Ye (D2CS00481J/cit292/1) 2020; 22
Cole (D2CS00481J/cit78/1) 2019; 31
Shtukenberg (D2CS00481J/cit111/1) 2011; 12
Kim (D2CS00481J/cit49/1) 2013; 52
Liu (D2CS00481J/cit390/1) 2020; 11
Varughese (D2CS00481J/cit2/1) 2013; 52
Zhong (D2CS00481J/cit148/1) 2021; 57
Shi (D2CS00481J/cit366/1) 2020; 3
Olson (D2CS00481J/cit147/1) 2016; 7
Zhang (D2CS00481J/cit76/1) 2015; 27
Bucar (D2CS00481J/cit272/1) 2007; 129
Shtukenberg (D2CS00481J/cit122/1) 2012; 112
Jiang (D2CS00481J/cit358/1) 2020; 59
Tan (D2CS00481J/cit118/1) 2018; 211
Al-Kaysi (D2CS00481J/cit262/1) 2009; 2009
Vlassak (D2CS00481J/cit19/1) 2003; 51
Schultz (D2CS00481J/cit149/1) 1969; 10
Khedhiri (D2CS00481J/cit454/1) 2004; 108
De (D2CS00481J/cit256/1) 2020; 12
Thayer (D2CS00481J/cit472/1) 2010; 88
Xu (D2CS00481J/cit346/1) 2014; 2
Sato (D2CS00481J/cit39/1) 2016; 8
Rohrs (D2CS00481J/cit466/1) 2006; 95
Koshima (D2CS00481J/cit82/1) 2012; 92
Perrot (D2CS00481J/cit168/1) 2021; 3
Peng (D2CS00481J/cit186/1) 2018; 13
Vlassak (D2CS00481J/cit10/1) 1994; 42
Cui (D2CS00481J/cit127/1) 2016; 138
Taniguchi (D2CS00481J/cit106/1) 2018; 9
Li (D2CS00481J/cit146/1) 2018; 122
Johnson (D2CS00481J/cit467/1) 1972; 47
Toda (D2CS00481J/cit142/1) 2008; 41
Gilman (D2CS00481J/cit7/1) 2009
Bhandary (D2CS00481J/cit74/1) 2020; 56
Tang (D2CS00481J/cit394/1) 2022; 10
Wu (D2CS00481J/cit340/1) 2004; 31
Zhu (D2CS00481J/cit203/1) 2011; 21
Bolton (D2CS00481J/cit65/1) 2012; 12
Fu (D2CS00481J/cit285/1) 2003; 42
Sun (D2CS00481J/cit327/1) 2016; 22
Catalano (D2CS00481J/cit381/1) 2018; 57
Zhang (D2CS00481J/cit288/1) 2017; 50
Al-Kaysi (D2CS00481J/cit263/1) 2006
Reilly (D2CS00481J/cit337/1) 2013; 139
Dutta (D2CS00481J/cit238/1) 2019; 55
Thompson (D2CS00481J/cit503/1) 2021; 50
Medishetty (D2CS00481J/cit235/1) 2015; 27
Kitagawa (D2CS00481J/cit298/1) 2015; 51
Wu (D2CS00481J/cit362/1) 2021; 9
Annadhasan (D2CS00481J/cit80/1) 2020; 59
Zhao (D2CS00481J/cit432/1) 2014
Cohen (D2CS00481J/cit209/1) 1971; 324
Rath (D2CS00481J/cit198/1) 2020; 142
Al-Kaysi (D2CS00481J/cit206/1) 2007; 40
Azuri (D2CS00481J/cit310/1) 2015; 54
Amimoto (D2CS00481J/cit450/1) 2005; 6
Choi (D2CS00481J/cit349/1) 2020; 7
Mutter (D2CS00481J/cit363/1) 2007; 15
Hartman (D2CS00481J/cit323/1) 1955; 8
Lan (D2CS00481J/cit173/1) 2022; 61
Halabi (D2CS00481J/cit309/1) 2019; 141
Yamada (D2CS00481J/cit267/1) 2001; 66
Saito (D2CS00481J/cit261/1) 2016; 7
Briseno (D2CS00481J/cit341/1) 2006; 18
Lu (D2CS00481J/cit385/1) 2020; 132
Mishra (D2CS00481J/cit501/1) 2015; 137
Zhu (D2CS00481J/cit89/1) 2011; 133
Evans (D2CS00481J/cit307/1) 2017; 29
Commins (D2CS00481J/cit5/1) 2019; 58
Huang (D2CS00481J/cit291/1) 2019; 58
Nakagawa (D2CS00481J/cit236/1) 2019; 25
Lin (D2CS00481J/cit287/1) 2012; 6
Chen (D2CS00481J/cit484/1) 2014; 103
Chalek (D2CS00481J/cit264/1) 2020; 12
Colmenero (D2CS00481J/cit332/1) 2020; 1
Shu (D2CS00481J/cit197/1) 2021; 27
Chandrasekar (D2CS00481J/cit439/1) 2021; 17
Shtukenberg (D2CS00481J/cit112/1) 2020; 20
Zügner (D2CS00481J/cit478/1) 2006; 62
Freudenthal (D2CS00481J/cit128/1) 2009; 21
Kitagawa (D2CS00481J/cit40/1) 2016; 28
Takamizawa (D2CS00481J/cit100/1) 2015; 54
Costa (D2CS00481J/cit17/1) 2004
Callister (D2CS00481J/cit343/1) 2020
Gupta (D2CS00481J/cit91/1) 2018; 57
Dong (D2CS00481J/cit409/1) 2017; 17
Uchida (D2CS00481J/cit108/1) 2015; 6
Al-Kaysi (D2CS00481J/cit174/1) 2008; 327
Jiang (D2CS00481J/cit404/1) 2020; 49
Commins (D2CS00481J/cit92/1) 2020; 11
Dong (D2CS00481J/cit296/1) 2020; 30
Karothu (D2CS00481J/cit367/1) 2021; 12
Hunsperger (D2CS00481J/cit357/1) 2009
Takagi (D2CS00481J/cit47
References_xml – issn: 2004
  publication-title: Determination of the Compliance of an Instrumented Indentation Testing Machine, HARDMEKO 2004
  doi: Costa Shuman Machado Andrade
– issn: 2011
  publication-title: Materials Selection in Mechanical Design
  doi: Ashby
– issn: 2020
  publication-title: Materials Science and Engineering: An Introduction
  doi: Callister Rethwisch
– issn: 2009
  publication-title: Chemistry and Physics of Mechanical Hardness
  doi: Gilman
– issn: 1929
  publication-title: "Gedrillte" Kristalle; Verbreitung, Entstehungsweise und Beziehungen zu optischer Aktivität und Molekülasymmetrie
  doi: Bernauer
– issn: 2020
  publication-title: Mechanically Responsive Materials for Soft Robotics
  doi: Koshima
– issn: 2004
  publication-title: Chiral Photochemistry
– issn: 1950
  publication-title: The Mathematical Theory of Plasticity
  doi: Hill
– issn: 2009
  publication-title: Nanophotonics and Nanofabrication
– issn: 1982
  publication-title: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
  doi: Frost Ashby
– issn: 2014
  publication-title: Organic Nanophotonics: Fundamentals and Applications
  doi: Zhao
– issn: 2013
  volume-title: Photomechanical Response of Diarylethene Single Crystals
  end-page: p 3-19
  publication-title: New Frontiers in Photochromism
  doi: Irie
– issn: 1998
  publication-title: Fundamentals of Nanoindentation and Nanotribology (No. CONF-980405-)
  doi: Moody Gerberich Burnham Baker
– issn: 2016
  volume-title: Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering
  end-page: p 95-126
  publication-title: Polymer Crystallization II
  doi: Ivanov Rosenthal
– issn: 2009
  publication-title: Integrated Optics: Theory and Technology
  doi: Hunsperger
– issn: 1975
  publication-title: Integrated Optics
– issn: 2011
  publication-title: Functional Materials: Preparation, Processing and Applications
– issn: 2008
  publication-title: Autodeformation Defects in Crystals
  doi: Punin Shtukenberg
– issn: 1974
  volume-title: Optical Directional Couplers
  publication-title: Introduction to Integrated Optics
  doi: Barnoski
– volume: 8
  start-page: 041310
  year: 2021
  ident: D2CS00481J/cit165/1
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0059919
– volume: 23
  start-page: 5697
  year: 2021
  ident: D2CS00481J/cit339/1
  publication-title: CrystEngComm
  doi: 10.1039/D1CE00453K
– volume: 17
  start-page: e2006795
  year: 2021
  ident: D2CS00481J/cit383/1
  publication-title: Small
  doi: 10.1002/smll.202006795
– volume: 411
  start-page: 49
  year: 2011
  ident: D2CS00481J/cit481/1
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.03.039
– volume: 10
  start-page: 5997
  year: 2019
  ident: D2CS00481J/cit361/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02315
– volume: 129
  start-page: 12750
  year: 2017
  ident: D2CS00481J/cit222/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201706684
– volume: 33
  start-page: 1126
  year: 2016
  ident: D2CS00481J/cit488/1
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-016-1858-8
– volume: 108
  start-page: 7473
  year: 2004
  ident: D2CS00481J/cit454/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp048137p
– volume-title: The Mathematical Theory of Plasticity
  year: 1950
  ident: D2CS00481J/cit24/1
– volume: 47
  start-page: 422
  year: 2018
  ident: D2CS00481J/cit290/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00490G
– volume: 2012
  start-page: 1
  year: 2012
  ident: D2CS00481J/cit277/1
  publication-title: J. Nanomater.
  doi: 10.1155/2012/328520
– volume: 20
  start-page: 4764
  year: 2020
  ident: D2CS00481J/cit505/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00521
– volume: 10
  start-page: 2101808
  year: 2022
  ident: D2CS00481J/cit392/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202101808
– volume: 61
  start-page: 683
  year: 2021
  ident: D2CS00481J/cit164/1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.202100093
– volume: 140
  start-page: 6186
  year: 2018
  ident: D2CS00481J/cit84/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00772
– volume: 10
  start-page: 65
  year: 2018
  ident: D2CS00481J/cit85/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2848
– volume: 467
  start-page: 47
  year: 2017
  ident: D2CS00481J/cit320/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2017.03.014
– volume: 36
  start-page: F72
  year: 2019
  ident: D2CS00481J/cit124/1
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.36.000F72
– volume: 127
  start-page: 12792
  year: 2005
  ident: D2CS00481J/cit275/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054263a
– volume: 57
  start-page: 8498
  year: 2018
  ident: D2CS00481J/cit91/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802785
– volume: 136
  start-page: 6617
  year: 2014
  ident: D2CS00481J/cit207/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412216z
– volume: 142
  start-page: 11219
  year: 2020
  ident: D2CS00481J/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03990
– volume: 2
  start-page: 7
  year: 2015
  ident: D2CS00481J/cit228/1
  publication-title: Open Chem. J.
  doi: 10.2174/1874842201502010007
– volume: 139
  start-page: 024705
  year: 2013
  ident: D2CS00481J/cit337/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812819
– volume: 117
  start-page: 20887
  year: 2013
  ident: D2CS00481J/cit243/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4083079
– volume: 52
  start-page: 2701
  year: 2013
  ident: D2CS00481J/cit2/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205002
– volume: 24
  start-page: 4600
  year: 2006
  ident: D2CS00481J/cit441/1
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.885782
– volume: 132
  start-page: 9341
  year: 2010
  ident: D2CS00481J/cit134/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101491n
– volume: 1
  start-page: 011002
  year: 2013
  ident: D2CS00481J/cit329/1
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 10
  start-page: 4185
  year: 2019
  ident: D2CS00481J/cit44/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05563G
– volume: 124
  start-page: 10944
  year: 2002
  ident: D2CS00481J/cit64/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026564f
– volume-title: “Gedrillte” Kristalle; Verbreitung, Entstehungsweise und Beziehungen zu optischer Aktivität und Molekülasymmetrie
  year: 1929
  ident: D2CS00481J/cit86/1
– volume: 131
  start-page: 11606
  year: 2009
  ident: D2CS00481J/cit230/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9043449
– volume: 92
  start-page: 798
  year: 2012
  ident: D2CS00481J/cit82/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2011.05.003
– volume: 94
  start-page: 8897
  year: 1990
  ident: D2CS00481J/cit328/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100389a010
– volume: 12
  start-page: 59
  year: 2017
  ident: D2CS00481J/cit475/1
  publication-title: Asian J. Pharm. Sci.
  doi: 10.1016/j.ajps.2016.09.002
– volume: 22
  start-page: 4899
  year: 2016
  ident: D2CS00481J/cit407/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201600355
– volume: 140
  start-page: 90
  year: 2018
  ident: D2CS00481J/cit184/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10998
– volume: 15
  start-page: 2474
  year: 2015
  ident: D2CS00481J/cit159/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b00245
– volume: 57
  start-page: 31
  year: 2017
  ident: D2CS00481J/cit110/1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201600002
– volume: 49
  start-page: 145
  year: 1980
  ident: D2CS00481J/cit324/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(80)90075-5
– volume: 10
  start-page: 5341
  year: 2010
  ident: D2CS00481J/cit66/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg101300n
– volume: 10
  start-page: 25689
  year: 2018
  ident: D2CS00481J/cit252/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07563
– volume: 59
  start-page: 13004
  year: 2020
  ident: D2CS00481J/cit97/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202004083
– volume: 25
  start-page: 483
  year: 2011
  ident: D2CS00481J/cit489/1
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/016942410X525678
– volume: 31
  start-page: 1794
  year: 2019
  ident: D2CS00481J/cit504/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00040
– volume: 12
  start-page: 1326
  year: 2021
  ident: D2CS00481J/cit367/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21324-y
– volume: 8
  start-page: 4926
  year: 2017
  ident: D2CS00481J/cit117/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00168A
– volume: 50
  start-page: 11725
  year: 2021
  ident: D2CS00481J/cit503/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00469G
– volume: 19
  start-page: 5491
  year: 2019
  ident: D2CS00481J/cit51/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00917
– volume: 19
  start-page: 1912
  year: 2019
  ident: D2CS00481J/cit54/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b01890
– volume: 59
  start-page: 23117
  year: 2020
  ident: D2CS00481J/cit386/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202011857
– volume-title: Fundamentals of Nanoindentation and Nanotribology (No. CONF-980405-)
  year: 1998
  ident: D2CS00481J/cit15/1
– volume: 25
  start-page: 7874
  year: 2019
  ident: D2CS00481J/cit236/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201900811
– volume: 133
  start-page: 13848
  year: 2011
  ident: D2CS00481J/cit129/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205159u
– volume: 12
  start-page: 6655
  year: 2021
  ident: D2CS00481J/cit494/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.1c01017
– volume: 3
  start-page: 926
  year: 2021
  ident: D2CS00481J/cit168/1
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2021.08.007
– volume: 138
  start-page: 4881
  year: 2016
  ident: D2CS00481J/cit137/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01120
– volume: 130
  start-page: 3162
  year: 2018
  ident: D2CS00481J/cit410/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201712524
– volume-title: Chiral Photochemistry
  year: 2004
  ident: D2CS00481J/cit451/1
– volume: 4
  start-page: 402
  year: 2010
  ident: D2CS00481J/cit433/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.136
– volume: 128
  start-page: 2751
  year: 2016
  ident: D2CS00481J/cit93/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201509319
– volume: 10
  start-page: 2101335
  year: 2022
  ident: D2CS00481J/cit394/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202101335
– volume: 122
  start-page: 25085
  year: 2018
  ident: D2CS00481J/cit146/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b08261
– volume: 22
  start-page: 1149
  year: 2020
  ident: D2CS00481J/cit27/1
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01874C
– volume: 327
  start-page: 102
  year: 2008
  ident: D2CS00481J/cit174/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.07.040
– volume: 45
  start-page: 7454
  year: 2012
  ident: D2CS00481J/cit151/1
  publication-title: Macromolecules
  doi: 10.1021/ma301446t
– volume: 211
  start-page: 477
  year: 2018
  ident: D2CS00481J/cit118/1
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00039E
– volume: 15
  start-page: 629
  year: 2007
  ident: D2CS00481J/cit363/1
  publication-title: Opt. Express
  doi: 10.1364/OE.15.000629
– volume: 333
  start-page: 1726
  year: 2011
  ident: D2CS00481J/cit157/1
  publication-title: Science
  doi: 10.1126/science.1203874
– volume: 57
  start-page: 7080
  year: 2018
  ident: D2CS00481J/cit208/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802423
– volume: 52
  start-page: 8514
  year: 2019
  ident: D2CS00481J/cit131/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01526
– volume: 7
  start-page: 65
  year: 2015
  ident: D2CS00481J/cit45/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2123
– volume: 7
  start-page: 13260
  year: 2016
  ident: D2CS00481J/cit253/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13260
– volume: 56
  start-page: 827
  year: 2004
  ident: D2CS00481J/cit473/1
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/0022357023691
– volume: 99
  start-page: 5804
  year: 2002
  ident: D2CS00481J/cit344/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.092143399
– volume: 25
  start-page: 2963
  year: 2013
  ident: D2CS00481J/cit423/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300540
– volume: 29
  start-page: 7833
  year: 2017
  ident: D2CS00481J/cit307/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02532
– volume: 58
  start-page: 3415
  year: 2022
  ident: D2CS00481J/cit440/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC00044J
– volume: 3
  start-page: 2569
  year: 2021
  ident: D2CS00481J/cit388/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000565
– volume: 53
  start-page: 7173
  year: 2014
  ident: D2CS00481J/cit459/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402560
– volume: 10
  start-page: 5256
  year: 2019
  ident: D2CS00481J/cit334/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13250-x
– volume: 9
  start-page: 3984
  year: 2018
  ident: D2CS00481J/cit52/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06431-7
– volume: 135
  start-page: 13843
  year: 2013
  ident: D2CS00481J/cit72/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4056323
– volume: 8
  start-page: 4876
  year: 2020
  ident: D2CS00481J/cit447/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00007H
– volume: 570
  start-page: 358
  year: 2019
  ident: D2CS00481J/cit158/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1308-y
– volume: 142
  start-page: 18565
  year: 2020
  ident: D2CS00481J/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07830
– volume: 22
  start-page: 7950
  year: 2016
  ident: D2CS00481J/cit181/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201505149
– volume: 61
  start-page: e202113988
  year: 2022
  ident: D2CS00481J/cit169/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202113988
– volume: 13
  start-page: 1719
  year: 2018
  ident: D2CS00481J/cit186/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201800380
– volume: 8
  start-page: 684287
  year: 2021
  ident: D2CS00481J/cit465/1
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2021.684287
– volume: 114
  start-page: 12174
  year: 2014
  ident: D2CS00481J/cit219/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500249p
– volume: 103
  start-page: 3879
  year: 2014
  ident: D2CS00481J/cit484/1
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.24178
– volume: 7
  start-page: 6457
  year: 2015
  ident: D2CS00481J/cit299/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR01118C
– volume: 18
  start-page: 1909
  year: 2018
  ident: D2CS00481J/cit317/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00202
– volume: 23
  start-page: 5856
  year: 2021
  ident: D2CS00481J/cit193/1
  publication-title: CrystEngComm
  doi: 10.1039/D1CE00086A
– volume: 25
  start-page: 163
  year: 2005
  ident: D2CS00481J/cit308/1
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2004.07.012
– volume: 22
  start-page: 8045
  year: 2020
  ident: D2CS00481J/cit292/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01394C
– volume: 9
  start-page: 2101481
  year: 2021
  ident: D2CS00481J/cit374/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202101481
– volume: 57
  start-page: 108
  year: 2001
  ident: D2CS00481J/cit23/1
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(200110)57:1<108::AID-JBM1148>3.0.CO;2-6
– volume: 10
  start-page: 22703
  year: 2018
  ident: D2CS00481J/cit293/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05804
– volume-title: Materials Science and Engineering: An Introduction
  year: 2020
  ident: D2CS00481J/cit343/1
– volume: 2
  start-page: 150009
  year: 2015
  ident: D2CS00481J/cit331/1
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.9
– volume: 141
  start-page: 14966
  year: 2019
  ident: D2CS00481J/cit309/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07645
– volume: 6
  start-page: 29610
  year: 2016
  ident: D2CS00481J/cit56/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep29610
– volume: 9
  start-page: 7746
  year: 2015
  ident: D2CS00481J/cit297/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03367
– volume: 27
  start-page: 17960
  year: 2021
  ident: D2CS00481J/cit197/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202103228
– volume: 13
  start-page: 4330
  year: 2013
  ident: D2CS00481J/cit452/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400675r
– volume: 6
  start-page: 1079
  year: 2014
  ident: D2CS00481J/cit460/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2092
– volume: 27
  start-page: 1821
  year: 2015
  ident: D2CS00481J/cit235/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00021
– volume: 10
  start-page: 271
  year: 1969
  ident: D2CS00481J/cit149/1
  publication-title: Polymer
  doi: 10.1016/0032-3861(69)90039-1
– volume: 106
  start-page: 2060
  year: 2017
  ident: D2CS00481J/cit495/1
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2017.04.059
– volume: 17
  start-page: 91
  year: 2017
  ident: D2CS00481J/cit409/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03499
– volume: 115
  start-page: 2896
  year: 2018
  ident: D2CS00481J/cit90/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1718965115
– volume: 12
  start-page: 1558
  year: 2011
  ident: D2CS00481J/cit111/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201000963
– volume: 107
  start-page: 1272
  year: 2007
  ident: D2CS00481J/cit401/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050152i
– volume: 3
  start-page: 1080
  year: 2020
  ident: D2CS00481J/cit366/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00131
– volume-title: Mechanically Responsive Materials for Soft Robotics
  year: 2020
  ident: D2CS00481J/cit104/1
  doi: 10.1002/9783527822201
– volume: 17
  start-page: 8835
  year: 2015
  ident: D2CS00481J/cit94/1
  publication-title: CrystEngComm
  doi: 10.1039/C4CE02387K
– volume: 7
  start-page: 1900927
  year: 2019
  ident: D2CS00481J/cit377/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900927
– volume: 10
  start-page: 5140
  year: 2018
  ident: D2CS00481J/cit368/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR08931G
– volume: 30
  start-page: 3571
  year: 2018
  ident: D2CS00481J/cit281/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01543
– volume: 138
  start-page: 13298
  year: 2016
  ident: D2CS00481J/cit62/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07406
– volume: 5
  start-page: 3158
  year: 2014
  ident: D2CS00481J/cit183/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00987H
– volume: 5
  start-page: 2902
  year: 2009
  ident: D2CS00481J/cit278/1
  publication-title: Small
  doi: 10.1002/smll.200900895
– volume: 41
  start-page: 7505
  year: 2008
  ident: D2CS00481J/cit143/1
  publication-title: Macromolecules
  doi: 10.1021/ma800994g
– volume: 139
  start-page: 1975
  year: 2017
  ident: D2CS00481J/cit87/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11835
– volume: 21
  start-page: 4910
  year: 2019
  ident: D2CS00481J/cit321/1
  publication-title: CrystEngComm
  doi: 10.1039/C9CE00848A
– volume: 41
  start-page: 280
  year: 2008
  ident: D2CS00481J/cit289/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700145r
– volume: 20
  start-page: 4217
  year: 2020
  ident: D2CS00481J/cit333/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00492
– volume: 2
  start-page: 9695
  year: 2014
  ident: D2CS00481J/cit364/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01999G
– volume: 28
  start-page: 2129
  year: 2017
  ident: D2CS00481J/cit412/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.08.045
– volume: 72
  start-page: 439
  year: 2016
  ident: D2CS00481J/cit325/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
  doi: 10.1107/S2052520616007447
– volume: 1
  start-page: 1399
  year: 2020
  ident: D2CS00481J/cit332/1
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00019A
– volume: 52
  start-page: 9990
  year: 2013
  ident: D2CS00481J/cit60/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303757
– volume: 34
  start-page: 1778
  year: 2022
  ident: D2CS00481J/cit114/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c04003
– volume: 204
  start-page: 876
  year: 1964
  ident: D2CS00481J/cit210/1
  publication-title: Nature
  doi: 10.1038/204876b0
– volume: 55
  start-page: 7073
  year: 2016
  ident: D2CS00481J/cit109/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511444
– volume: 2021
  start-page: 9816535
  year: 2021
  ident: D2CS00481J/cit163/1
  publication-title: Research
– volume: 53
  start-page: 672
  year: 2014
  ident: D2CS00481J/cit38/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301223
– start-page: 1224
  year: 2006
  ident: D2CS00481J/cit263/1
  publication-title: Chem. Commun.
  doi: 10.1039/b516732a
– volume-title: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
  year: 1982
  ident: D2CS00481J/cit160/1
– volume: 20
  start-page: 6186
  year: 2020
  ident: D2CS00481J/cit112/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00908
– volume: 140
  start-page: 4208
  year: 2018
  ident: D2CS00481J/cit221/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13605
– volume: 31
  start-page: 3818
  year: 2019
  ident: D2CS00481J/cit506/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00441
– volume: 133
  start-page: 12569
  year: 2011
  ident: D2CS00481J/cit89/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201925p
– volume: 138
  start-page: 15066
  year: 2016
  ident: D2CS00481J/cit229/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09633
– volume: 50
  start-page: 84
  year: 2021
  ident: D2CS00481J/cit172/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.200693
– volume: 135
  start-page: 3395
  year: 2013
  ident: D2CS00481J/cit119/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400833r
– volume: 141
  start-page: 233
  year: 2004
  ident: D2CS00481J/cit474/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2004.01.024
– volume: 10
  start-page: 817
  year: 2011
  ident: D2CS00481J/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3115
– volume: 2
  start-page: 2985
  year: 2014
  ident: D2CS00481J/cit346/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC32581D
– volume: 12
  start-page: 27493
  year: 2020
  ident: D2CS00481J/cit256/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03686
– volume: 95
  start-page: 1049
  year: 2006
  ident: D2CS00481J/cit466/1
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20587
– volume: 4
  start-page: 8245
  year: 2016
  ident: D2CS00481J/cit187/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02517J
– volume: 44
  start-page: 433
  year: 2003
  ident: D2CS00481J/cit140/1
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00724-3
– volume: 33
  start-page: 1053
  year: 2021
  ident: D2CS00481J/cit319/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04560
– volume: 7
  start-page: 5433
  year: 2019
  ident: D2CS00481J/cit83/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01084J
– volume: 446
  start-page: 778
  year: 2007
  ident: D2CS00481J/cit220/1
  publication-title: Nature
  doi: 10.1038/nature05669
– volume: 17
  start-page: 2100277
  year: 2021
  ident: D2CS00481J/cit439/1
  publication-title: Small
  doi: 10.1002/smll.202100277
– volume: 53
  start-page: 6371
  year: 2017
  ident: D2CS00481J/cit48/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02970E
– volume: 2009
  start-page: 1
  year: 2009
  ident: D2CS00481J/cit262/1
  publication-title: J. Nanomater.
  doi: 10.1155/2009/436375
– volume: 19
  start-page: 4465
  year: 2019
  ident: D2CS00481J/cit315/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00247
– volume: 117
  start-page: 5125
  year: 2020
  ident: D2CS00481J/cit255/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1917952117
– volume: 3
  start-page: 1035
  year: 2015
  ident: D2CS00481J/cit430/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500106
– volume: 19
  start-page: 189
  year: 2002
  ident: D2CS00481J/cit468/1
  publication-title: Pharm. Res.
  doi: 10.1023/A:1014276917363
– volume: 136
  start-page: 5481
  year: 2014
  ident: D2CS00481J/cit126/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5013382
– volume: 7
  start-page: 324
  year: 2017
  ident: D2CS00481J/cit73/1
  publication-title: Crystals
  doi: 10.3390/cryst7110324
– volume: 7
  start-page: 1901824
  year: 2020
  ident: D2CS00481J/cit349/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901824
– volume: 4
  start-page: 205
  year: 2022
  ident: D2CS00481J/cit175/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202000663
– volume: 15
  start-page: 2437
  year: 2005
  ident: D2CS00481J/cit282/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b415912h
– volume: 106
  start-page: 151
  year: 2017
  ident: D2CS00481J/cit497/1
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2016.07.015
– volume: 40
  start-page: 905
  year: 2008
  ident: D2CS00481J/cit144/1
  publication-title: Polym. J.
  doi: 10.1295/polymj.PJ2007191
– volume: 62
  start-page: 194
  year: 2006
  ident: D2CS00481J/cit478/1
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2005.08.002
– volume: 134
  start-page: 2880
  year: 2012
  ident: D2CS00481J/cit371/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209815f
– volume: 20
  start-page: 6990
  year: 2020
  ident: D2CS00481J/cit53/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01041
– volume: 54
  start-page: 4815
  year: 2015
  ident: D2CS00481J/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411447
– volume: 60
  start-page: 1185
  year: 2020
  ident: D2CS00481J/cit155/1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.202000095
– volume: 132
  start-page: 14701
  year: 2020
  ident: D2CS00481J/cit120/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202005738
– volume: 19
  start-page: 930
  year: 1897
  ident: D2CS00481J/cit470/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02086a003
– volume: 45
  start-page: 6138
  year: 2016
  ident: D2CS00481J/cit304/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00841G
– volume: 31
  start-page: 287
  year: 2004
  ident: D2CS00481J/cit340/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2004.03.017
– volume: 17
  start-page: 6030
  year: 2017
  ident: D2CS00481J/cit493/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01153
– volume: 52
  start-page: 6653
  year: 2013
  ident: D2CS00481J/cit200/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301207
– volume: 13
  start-page: 189
  year: 1995
  ident: D2CS00481J/cit98/1
  publication-title: J. Robot. Soc. Jpn.
  doi: 10.7210/jrsj.13.189
– volume: 49
  start-page: 1691
  year: 2016
  ident: D2CS00481J/cit419/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00209
– volume: 116
  start-page: 15089
  year: 2016
  ident: D2CS00481J/cit161/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00415
– volume: 124
  start-page: 300
  year: 2020
  ident: D2CS00481J/cit241/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b10365
– volume: 2
  start-page: 1404
  year: 2014
  ident: D2CS00481J/cit400/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc31576b
– volume: 7
  start-page: 1697
  year: 2016
  ident: D2CS00481J/cit417/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00704
– volume: 142
  start-page: 20117
  year: 2020
  ident: D2CS00481J/cit198/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09577
– volume: 8
  start-page: 3165
  year: 2020
  ident: D2CS00481J/cit196/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06689F
– volume: 57
  start-page: 373
  year: 2017
  ident: D2CS00481J/cit25/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.05.034
– volume: 8
  start-page: 1575
  year: 2008
  ident: D2CS00481J/cit492/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg700843s
– volume: 131
  start-page: 6890
  year: 2009
  ident: D2CS00481J/cit179/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8098596
– volume: 9
  start-page: 437
  year: 2019
  ident: D2CS00481J/cit176/1
  publication-title: Crystals
  doi: 10.3390/cryst9090437
– volume: 57
  start-page: 8837
  year: 2018
  ident: D2CS00481J/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800137
– volume: 19
  start-page: 5999
  year: 2019
  ident: D2CS00481J/cit113/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00910
– volume: 22
  start-page: 47
  year: 2016
  ident: D2CS00481J/cit327/1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-016-2909-0
– volume-title: Integrated Optics: Theory and Technology
  year: 2009
  ident: D2CS00481J/cit357/1
  doi: 10.1007/b98730
– volume: 26
  start-page: 11979
  year: 2020
  ident: D2CS00481J/cit389/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202002641
– volume: 47
  start-page: 11423
  year: 2011
  ident: D2CS00481J/cit268/1
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc14288g
– volume: 54
  start-page: 8369
  year: 2015
  ident: D2CS00481J/cit413/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503914
– volume: 11
  start-page: 9178
  year: 2020
  ident: D2CS00481J/cit390/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02623
– volume: 31
  start-page: 2105415
  year: 2021
  ident: D2CS00481J/cit395/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105415
– volume: 12
  start-page: 2296
  year: 2010
  ident: D2CS00481J/cit13/1
  publication-title: CrystEngComm
  doi: 10.1039/c003466e
– start-page: 756
  year: 2000
  ident: D2CS00481J/cit227/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2000.756
– volume: 18
  start-page: 4174
  year: 2018
  ident: D2CS00481J/cit67/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00704
– volume: 98
  start-page: 424
  year: 2007
  ident: D2CS00481J/cit16/1
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.101488
– volume: 134
  start-page: 6354
  year: 2012
  ident: D2CS00481J/cit132/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300257m
– volume: 130
  start-page: 1140
  year: 2008
  ident: D2CS00481J/cit232/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078301x
– volume: 7
  start-page: 1527
  year: 2016
  ident: D2CS00481J/cit103/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04057D
– volume: 14
  start-page: 3054
  year: 2014
  ident: D2CS00481J/cit500/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg500305n
– volume: 19
  start-page: 3670
  year: 2019
  ident: D2CS00481J/cit476/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b01867
– volume: 57
  start-page: 9362
  year: 2018
  ident: D2CS00481J/cit41/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804589
– volume: 2
  start-page: 1932
  year: 2018
  ident: D2CS00481J/cit449/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00363G
– volume: 58
  start-page: 15429
  year: 2019
  ident: D2CS00481J/cit189/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907454
– volume: 28
  start-page: 1706506
  year: 2018
  ident: D2CS00481J/cit411/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706506
– volume: 5
  start-page: 64156
  year: 2015
  ident: D2CS00481J/cit499/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA11656B
– volume: 52
  start-page: 6577
  year: 2016
  ident: D2CS00481J/cit415/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02616H
– volume: 113
  start-page: 055701
  year: 2014
  ident: D2CS00481J/cit338/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.055701
– volume: 43
  start-page: 148
  year: 2014
  ident: D2CS00481J/cit201/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60181A
– volume: 4
  start-page: 3915
  year: 2016
  ident: D2CS00481J/cit347/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04390E
– volume: 18
  start-page: 7305
  year: 2016
  ident: D2CS00481J/cit212/1
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00848H
– volume: 18
  start-page: 2320
  year: 2006
  ident: D2CS00481J/cit341/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600634
– volume: 135
  start-page: 12556
  year: 2013
  ident: D2CS00481J/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4063019
– volume: 143
  start-page: 5951
  year: 2021
  ident: D2CS00481J/cit355/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01549
– volume: 23
  start-page: 3659
  year: 2011
  ident: D2CS00481J/cit434/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100827
– volume: 24
  start-page: 4133
  year: 2018
  ident: D2CS00481J/cit59/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201705586
– volume: 53
  start-page: 6970
  year: 2014
  ident: D2CS00481J/cit99/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311014
– volume: 53
  start-page: 741
  year: 2020
  ident: D2CS00481J/cit150/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01567
– volume: 5
  start-page: 1600823
  year: 2017
  ident: D2CS00481J/cit405/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600823
– volume: 15
  start-page: 400
  year: 2014
  ident: D2CS00481J/cit166/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201300906
– volume: 61
  start-page: e202200196
  year: 2022
  ident: D2CS00481J/cit173/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202200196
– volume: 8
  start-page: 674
  year: 2004
  ident: D2CS00481J/cit480/1
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op0300241
– volume: 14
  start-page: 2047
  year: 2017
  ident: D2CS00481J/cit491/1
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00124
– volume: 4
  start-page: 1800182
  year: 2019
  ident: D2CS00481J/cit284/1
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800182
– volume: 9
  start-page: 2001768
  year: 2021
  ident: D2CS00481J/cit362/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202001768
– volume: 30
  start-page: 2004116
  year: 2020
  ident: D2CS00481J/cit379/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004116
– volume: 3
  start-page: 499
  year: 2015
  ident: D2CS00481J/cit414/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02070G
– volume: 9
  start-page: 4351
  year: 2007
  ident: D2CS00481J/cit231/1
  publication-title: Org. Lett.
  doi: 10.1021/ol702000s
– volume: 53
  start-page: 2622
  year: 2017
  ident: D2CS00481J/cit248/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08999B
– volume: 51
  start-page: 4421
  year: 2015
  ident: D2CS00481J/cit298/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00355E
– volume: 55
  start-page: 9303
  year: 2019
  ident: D2CS00481J/cit258/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03826D
– volume: 16
  start-page: 7173
  year: 2014
  ident: D2CS00481J/cit359/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54994a
– volume: 21
  start-page: E20
  year: 2009
  ident: D2CS00481J/cit128/1
  publication-title: Chirality
  doi: 10.1002/chir.20768
– volume: 46
  start-page: 8945
  year: 2007
  ident: D2CS00481J/cit162/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702443
– volume: 56
  start-page: 8104
  year: 2017
  ident: D2CS00481J/cit171/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702359
– volume: 9
  start-page: 2319
  year: 2018
  ident: D2CS00481J/cit217/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04863G
– volume: 74
  start-page: 1217
  year: 2016
  ident: D2CS00481J/cit300/1
  publication-title: J. Synth. Org. Chem. Jpn.
  doi: 10.5059/yukigoseikyokaishi.74.1217
– volume: 129
  start-page: 12717
  year: 2017
  ident: D2CS00481J/cit408/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201706517
– volume: 8
  start-page: 625
  year: 2016
  ident: D2CS00481J/cit445/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2513
– volume-title: Determination of the Compliance of an Instrumented Indentation Testing Machine, HARDMEKO 2004
  year: 2004
  ident: D2CS00481J/cit17/1
– volume: 10
  start-page: 227
  year: 2019
  ident: D2CS00481J/cit380/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03135E
– volume: 51
  start-page: 2957
  year: 2018
  ident: D2CS00481J/cit32/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00425
– volume: 8
  start-page: 49
  year: 1955
  ident: D2CS00481J/cit323/1
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X55000121
– volume: 13
  start-page: 9060
  year: 2011
  ident: D2CS00481J/cit360/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02376k
– volume: 26
  start-page: 6007
  year: 2014
  ident: D2CS00481J/cit214/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm502866e
– volume: 88
  start-page: 13
  year: 2010
  ident: D2CS00481J/cit472/1
  publication-title: Chem. Eng. News Archive
  doi: 10.1021/cen-v088n022.p013
– volume: 19
  start-page: 2542
  year: 2019
  ident: D2CS00481J/cit239/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00260
– volume: 51
  start-page: 1701
  year: 2003
  ident: D2CS00481J/cit19/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(03)00066-8
– volume: 56
  start-page: 8468
  year: 2017
  ident: D2CS00481J/cit316/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701972
– volume: 14
  start-page: 3865
  year: 2012
  ident: D2CS00481J/cit490/1
  publication-title: CrystEngComm
  doi: 10.1039/c2ce25100k
– volume: 69
  start-page: 967
  year: 2012
  ident: D2CS00481J/cit185/1
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-012-0792-0
– volume: 188
  start-page: 301
  year: 2009
  ident: D2CS00481J/cit479/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2008.05.009
– volume: 107
  start-page: 2267
  year: 2018
  ident: D2CS00481J/cit496/1
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2018.04.029
– volume: 55
  start-page: 11049
  year: 2019
  ident: D2CS00481J/cit238/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06016B
– volume: 34
  start-page: 2311
  year: 1995
  ident: D2CS00481J/cit311/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.199523111
– volume: 128
  start-page: 7390
  year: 2006
  ident: D2CS00481J/cit279/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061810z
– volume: 55
  start-page: 4921
  year: 2019
  ident: D2CS00481J/cit425/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01702J
– volume: 10
  start-page: 7327
  year: 2019
  ident: D2CS00481J/cit95/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02444A
– volume: 52
  start-page: 9320
  year: 2013
  ident: D2CS00481J/cit249/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304670
– volume: 115
  start-page: 9171
  year: 2011
  ident: D2CS00481J/cit271/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110646n
– volume: 20
  start-page: 6057
  year: 2020
  ident: D2CS00481J/cit482/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00770
– volume: 6
  start-page: 6948
  year: 2015
  ident: D2CS00481J/cit352/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7948
– volume: 2
  start-page: 653
  year: 2015
  ident: D2CS00481J/cit43/1
  publication-title: IUCrJ
  doi: 10.1107/S2052252515017297
– volume: 9
  start-page: 278
  year: 2018
  ident: D2CS00481J/cit50/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02607-9
– volume: 8
  start-page: 644
  year: 2016
  ident: D2CS00481J/cit39/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2547
– volume: 1
  start-page: 884
  year: 2011
  ident: D2CS00481J/cit276/1
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00424g
– volume: 52
  start-page: 2103
  year: 2016
  ident: D2CS00481J/cit182/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08590J
– volume: 18
  start-page: 7319
  year: 2016
  ident: D2CS00481J/cit205/1
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00742B
– volume: 43
  start-page: 684
  year: 2010
  ident: D2CS00481J/cit123/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900288m
– volume: 18
  start-page: 3927
  year: 2018
  ident: D2CS00481J/cit314/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00261
– volume: 100
  start-page: 51
  year: 2016
  ident: D2CS00481J/cit483/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2016.01.011
– volume-title: Organic Nanophotonics: Fundamentals and Applications
  year: 2014
  ident: D2CS00481J/cit432/1
– volume: 132
  start-page: 14191
  year: 2010
  ident: D2CS00481J/cit234/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105508b
– volume: 41
  start-page: 2484
  year: 2008
  ident: D2CS00481J/cit142/1
  publication-title: Macromolecules
  doi: 10.1021/ma702267e
– volume: 59
  start-page: 10971
  year: 2020
  ident: D2CS00481J/cit3/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202001060
– volume: 19
  start-page: 4070
  year: 2019
  ident: D2CS00481J/cit115/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00473
– volume: 7
  start-page: 1564
  year: 1992
  ident: D2CS00481J/cit18/1
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 11
  start-page: 2070
  year: 2011
  ident: D2CS00481J/cit133/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg200375t
– volume: 57
  start-page: 8448
  year: 2018
  ident: D2CS00481J/cit370/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802020
– volume: 3
  start-page: 631
  year: 2006
  ident: D2CS00481J/cit471/1
  publication-title: Mol. Pharm.
  doi: 10.1021/mp0600182
– start-page: 107
  year: 2012
  ident: D2CS00481J/cit223/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.107
– volume: 27
  start-page: 320
  year: 2015
  ident: D2CS00481J/cit76/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404121
– volume: 56
  start-page: 9463
  year: 2017
  ident: D2CS00481J/cit105/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705325
– volume: 17
  start-page: 2314
  year: 2002
  ident: D2CS00481J/cit21/1
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2002.0339
– volume: 49
  start-page: 9293
  year: 2013
  ident: D2CS00481J/cit57/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45646c
– volume: 56
  start-page: 7353
  year: 2020
  ident: D2CS00481J/cit130/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01958E
– volume: 47
  start-page: 546
  year: 1972
  ident: D2CS00481J/cit467/1
  publication-title: Pharm. Acta Helv.
– volume: 6
  start-page: 5309
  year: 2012
  ident: D2CS00481J/cit287/1
  publication-title: ACS Nano
  doi: 10.1021/nn3011398
– volume: 48
  start-page: 3251
  year: 1992
  ident: D2CS00481J/cit456/1
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(92)85002-V
– volume: 86
  start-page: 985
  year: 1997
  ident: D2CS00481J/cit486/1
  publication-title: J. Pharm. Sci.
  doi: 10.1021/js9701061
– volume: 2
  start-page: 1
  year: 2021
  ident: D2CS00481J/cit375/1
  publication-title: PhotoniX
  doi: 10.1186/s43074-021-00024-2
– volume: 15
  start-page: 1804102
  year: 2019
  ident: D2CS00481J/cit250/1
  publication-title: Small
  doi: 10.1002/smll.201804102
– volume: 60
  start-page: 26151
  year: 2021
  ident: D2CS00481J/cit369/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110676
– volume: 5
  start-page: 1293
  year: 2005
  ident: D2CS00481J/cit424/1
  publication-title: Nano Lett.
  doi: 10.1021/nl050469y
– volume: 137
  start-page: 13866
  year: 2015
  ident: D2CS00481J/cit194/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07806
– volume: 19
  start-page: 3
  year: 2004
  ident: D2CS00481J/cit14/1
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2004.19.1.3
– volume: 132
  start-page: 10423
  year: 2020
  ident: D2CS00481J/cit257/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202000570
– volume: 10
  start-page: 1437
  year: 2019
  ident: D2CS00481J/cit387/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00196
– volume-title: Chemistry and Physics of Mechanical Hardness
  year: 2009
  ident: D2CS00481J/cit7/1
  doi: 10.1002/9780470446836
– volume: 59
  start-page: 4340
  year: 2020
  ident: D2CS00481J/cit102/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914954
– volume: 40
  start-page: 3835
  year: 2011
  ident: D2CS00481J/cit180/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00183j
– volume: 1
  start-page: 1320
  year: 2016
  ident: D2CS00481J/cit416/1
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600451
– volume: 187
  start-page: 449
  year: 1998
  ident: D2CS00481J/cit269/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00034-7
– volume: 34
  start-page: 1627
  year: 2018
  ident: D2CS00481J/cit188/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b03848
– volume: 58
  start-page: 9696
  year: 2019
  ident: D2CS00481J/cit291/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900501
– volume: 4
  start-page: 011003
  year: 2014
  ident: D2CS00481J/cit136/1
  publication-title: Phys. Rev. X
– volume: 12
  start-page: 453
  year: 2020
  ident: D2CS00481J/cit264/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05118G
– volume: 6
  start-page: 1800343
  year: 2018
  ident: D2CS00481J/cit427/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800343
– volume: 39
  start-page: 2197
  year: 2020
  ident: D2CS00481J/cit88/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.0c00258
– volume: 8
  start-page: 1901317
  year: 2020
  ident: D2CS00481J/cit428/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201901317
– volume: 10
  start-page: 3393
  year: 2018
  ident: D2CS00481J/cit246/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR09571F
– volume: 10
  start-page: 3839
  year: 2019
  ident: D2CS00481J/cit372/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11731-7
– volume: 4
  start-page: 348
  year: 2016
  ident: D2CS00481J/cit403/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500531
– volume: 138
  start-page: 12211
  year: 2016
  ident: D2CS00481J/cit127/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06278
– start-page: 3
  volume-title: New Frontiers in Photochromism
  year: 2013
  ident: D2CS00481J/cit435/1
  doi: 10.1007/978-4-431-54291-9_1
– volume: 60
  start-page: 11283
  year: 2021
  ident: D2CS00481J/cit396/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202102285
– volume: 9
  start-page: 1289
  year: 2018
  ident: D2CS00481J/cit306/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04665K
– volume: 14
  start-page: 7792
  year: 2012
  ident: D2CS00481J/cit70/1
  publication-title: CrystEngComm
  doi: 10.1039/c2ce25811k
– volume: 30
  start-page: 1703554
  year: 2018
  ident: D2CS00481J/cit254/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703554
– volume: 101
  start-page: 9966
  year: 2004
  ident: D2CS00481J/cit342/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0401918101
– volume: 136
  start-page: 17046
  year: 2014
  ident: D2CS00481J/cit345/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507179d
– volume: 132
  start-page: 14172
  year: 2010
  ident: D2CS00481J/cit245/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105356w
– volume: 543
  start-page: 657
  year: 2017
  ident: D2CS00481J/cit326/1
  publication-title: Nature
  doi: 10.1038/nature21419
– volume: 22
  start-page: 12680
  year: 2016
  ident: D2CS00481J/cit237/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201603020
– volume: 118
  start-page: e54651
  year: 2016
  ident: D2CS00481J/cit353/1
  publication-title: J. Visualized Exp.
– volume: 8
  start-page: 15546
  year: 2017
  ident: D2CS00481J/cit446/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15546
– volume: 62
  start-page: 347
  year: 1979
  ident: D2CS00481J/cit9/1
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1979.tb19075.x
– volume: 129
  start-page: 9439
  year: 2007
  ident: D2CS00481J/cit457/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0719125
– volume: 18
  start-page: 7225
  year: 2016
  ident: D2CS00481J/cit107/1
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00738D
– volume: 1
  start-page: 1033
  year: 2019
  ident: D2CS00481J/cit96/1
  publication-title: Matter
  doi: 10.1016/j.matt.2019.06.018
– volume: 51
  start-page: 901
  year: 2012
  ident: D2CS00481J/cit170/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105585
– volume: 105
  start-page: 641
  year: 1983
  ident: D2CS00481J/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00341a065
– volume: 4
  start-page: 764
  year: 2018
  ident: D2CS00481J/cit429/1
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201800196
– volume: 2
  start-page: 229
  year: 2003
  ident: D2CS00481J/cit399/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat852
– volume: 324
  start-page: 459
  year: 1971
  ident: D2CS00481J/cit209/1
  publication-title: Proc. R. Soc. London
– start-page: 1
  year: 2016
  ident: D2CS00481J/cit202/1
  publication-title: Encyclopedia of Physical Organic Chemistry
– volume: 8
  start-page: 2001662
  year: 2021
  ident: D2CS00481J/cit351/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202001662
– volume: 182
  start-page: 416
  year: 1997
  ident: D2CS00481J/cit270/1
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(97)00370-9
– volume: 5
  start-page: 4249
  year: 2014
  ident: D2CS00481J/cit312/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502271c
– volume: 68
  start-page: 1148
  year: 1992
  ident: D2CS00481J/cit463/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1148
– volume: 16
  start-page: 5012
  year: 2014
  ident: D2CS00481J/cit259/1
  publication-title: Org. Lett.
  doi: 10.1021/ol502223u
– volume: 67
  start-page: 115408
  year: 2003
  ident: D2CS00481J/cit436/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.67.115408
– volume: 12
  start-page: 191
  year: 2013
  ident: D2CS00481J/cit303/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3568
– volume: 17
  start-page: 4819
  year: 2017
  ident: D2CS00481J/cit242/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b00755
– volume: 7
  start-page: 3112
  year: 2016
  ident: D2CS00481J/cit147/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01459
– volume: 14
  start-page: 10704
  year: 2020
  ident: D2CS00481J/cit365/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05367
– volume: 16
  start-page: 1850
  year: 2014
  ident: D2CS00481J/cit37/1
  publication-title: CrystEngComm
  doi: 10.1039/c3ce41313f
– volume: 17
  start-page: 8817
  year: 2015
  ident: D2CS00481J/cit121/1
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00195A
– volume: 27
  start-page: 16036
  year: 2021
  ident: D2CS00481J/cit393/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202103286
– volume: 60
  start-page: 2414
  year: 2021
  ident: D2CS00481J/cit190/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202012417
– volume: 2
  start-page: 2827
  year: 2014
  ident: D2CS00481J/cit421/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc32206h
– volume: 20
  start-page: 1383
  year: 2018
  ident: D2CS00481J/cit138/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE02107K
– volume: 529
  start-page: 62
  year: 2011
  ident: D2CS00481J/cit12/1
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.08.061
– volume: 140
  start-page: 5339
  year: 2018
  ident: D2CS00481J/cit283/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b01997
– volume: 37
  start-page: 7418
  year: 2004
  ident: D2CS00481J/cit69/1
  publication-title: Macromolecules
  doi: 10.1021/ma048959k
– volume: 29
  start-page: 8330
  year: 1996
  ident: D2CS00481J/cit42/1
  publication-title: Macromolecules
  doi: 10.1021/ma961219u
– volume: 22
  start-page: 24139
  year: 2012
  ident: D2CS00481J/cit420/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35394f
– volume: 398
  start-page: 117066
  year: 2022
  ident: D2CS00481J/cit485/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.117066
– volume: 16
  start-page: 2806
  year: 2021
  ident: D2CS00481J/cit192/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.202100807
– volume: 7
  start-page: 10270
  year: 2016
  ident: D2CS00481J/cit350/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10270
– volume: 26
  start-page: 6168
  year: 2014
  ident: D2CS00481J/cit406/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401114
– volume: 58
  start-page: 9712
  year: 2019
  ident: D2CS00481J/cit260/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814441
– volume: 114
  start-page: 4220
  year: 1992
  ident: D2CS00481J/cit216/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00037a027
– volume: 20
  start-page: 2847
  year: 2020
  ident: D2CS00481J/cit6/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01530
– volume: 3
  start-page: 1491
  year: 2021
  ident: D2CS00481J/cit195/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000350
– volume: 6
  start-page: 13952
  year: 2014
  ident: D2CS00481J/cit273/1
  publication-title: Nanoscale
  doi: 10.1039/C4NR04661G
– volume: 130
  start-page: 7085
  year: 2008
  ident: D2CS00481J/cit455/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800353u
– volume: 14
  start-page: 3630
  year: 1999
  ident: D2CS00481J/cit26/1
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1999.0490
– volume: 7
  start-page: 83
  year: 2020
  ident: D2CS00481J/cit63/1
  publication-title: IUCrJ
  doi: 10.1107/S2052252519014581
– volume: 10
  start-page: 3723
  year: 2019
  ident: D2CS00481J/cit75/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11612-z
– volume: 20
  start-page: 189
  year: 2014
  ident: D2CS00481J/cit442/1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2014.2318271
– volume: 7
  start-page: 12094
  year: 2016
  ident: D2CS00481J/cit261/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12094
– volume: 141
  start-page: 8364
  year: 2019
  ident: D2CS00481J/cit225/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03932
– volume: 9
  start-page: 2100550
  year: 2021
  ident: D2CS00481J/cit444/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202100550
– volume: 56
  start-page: 10165
  year: 2017
  ident: D2CS00481J/cit116/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703028
– volume: 130
  start-page: 17248
  year: 2018
  ident: D2CS00481J/cit376/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201810422
– volume: 8
  start-page: 5036
  year: 2020
  ident: D2CS00481J/cit199/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06946A
– volume: 139
  start-page: 11333
  year: 2017
  ident: D2CS00481J/cit448/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06410
– volume: 124
  start-page: 15616
  year: 2020
  ident: D2CS00481J/cit154/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c04258
– volume: 30
  start-page: e1800814
  year: 2018
  ident: D2CS00481J/cit382/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800814
– volume: 49
  start-page: 8287
  year: 2020
  ident: D2CS00481J/cit34/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00638F
– volume: 6
  start-page: 2162
  year: 2020
  ident: D2CS00481J/cit226/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.08.007
– volume: 57
  start-page: 17254
  year: 2018
  ident: D2CS00481J/cit381/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810514
– volume-title: Functional Materials: Preparation, Processing and Applications
  year: 2011
  ident: D2CS00481J/cit8/1
– volume: 440
  start-page: 508
  year: 2006
  ident: D2CS00481J/cit397/1
  publication-title: Nature
  doi: 10.1038/nature04594
– volume: 6
  start-page: 207
  year: 2005
  ident: D2CS00481J/cit450/1
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2005.12.002
– volume: 31
  start-page: 1391
  year: 2019
  ident: D2CS00481J/cit318/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04800
– volume: 14
  start-page: 920
  year: 2012
  ident: D2CS00481J/cit302/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22663K
– volume: 58
  start-page: 10052
  year: 2019
  ident: D2CS00481J/cit5/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814387
– volume: 4
  start-page: 1700271
  year: 2018
  ident: D2CS00481J/cit354/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700271
– volume: 55
  start-page: 3709
  year: 2019
  ident: D2CS00481J/cit46/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC10051A
– ident: D2CS00481J/cit330/1
– volume: 11
  start-page: 5433
  year: 2020
  ident: D2CS00481J/cit391/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01545
– volume: 11
  start-page: 2606
  year: 2020
  ident: D2CS00481J/cit92/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05640H
– volume: 57
  start-page: 5538
  year: 2021
  ident: D2CS00481J/cit148/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC01431E
– volume: 18
  start-page: 31936
  year: 2016
  ident: D2CS00481J/cit61/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04459J
– volume: 9
  start-page: 16762
  year: 2021
  ident: D2CS00481J/cit211/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC04027H
– volume: 16
  start-page: 1732
  year: 2019
  ident: D2CS00481J/cit335/1
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00082
– volume: 49
  start-page: 8878
  year: 2020
  ident: D2CS00481J/cit35/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00475H
– volume: 7
  start-page: 503
  year: 2019
  ident: D2CS00481J/cit178/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04631J
– volume: 21
  start-page: 1931
  year: 2021
  ident: D2CS00481J/cit81/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01119
– volume: 112
  start-page: 1805
  year: 2012
  ident: D2CS00481J/cit122/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200297f
– volume: 138
  start-page: 13561
  year: 2016
  ident: D2CS00481J/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05118
– volume: 53
  start-page: 12630
  year: 2017
  ident: D2CS00481J/cit224/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06374A
– volume: 136
  start-page: 2757
  year: 2014
  ident: D2CS00481J/cit244/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4101497
– volume: 149
  start-page: 284
  year: 2018
  ident: D2CS00481J/cit418/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2017.10.008
– volume: 61
  start-page: e202114089
  year: 2022
  ident: D2CS00481J/cit265/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114089
– volume: 49
  start-page: 5885
  year: 2020
  ident: D2CS00481J/cit404/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00037J
– start-page: 95
  volume-title: Polymer Crystallization II
  year: 2016
  ident: D2CS00481J/cit152/1
  doi: 10.1007/12_2016_352
– volume: 8
  start-page: 1703491
  year: 2018
  ident: D2CS00481J/cit36/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703491
– volume: 7
  start-page: 11156
  year: 2016
  ident: D2CS00481J/cit348/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11156
– volume: 59
  start-page: 13852
  year: 2020
  ident: D2CS00481J/cit378/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003820
– volume: 128
  start-page: 15938
  year: 2006
  ident: D2CS00481J/cit204/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja064535p
– volume: 31
  start-page: 4927
  year: 2019
  ident: D2CS00481J/cit78/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01738
– volume: 21
  start-page: 3093
  year: 2021
  ident: D2CS00481J/cit251/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.1c00270
– volume: 48
  start-page: 9121
  year: 2009
  ident: D2CS00481J/cit286/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200902929
– volume-title: Autodeformation Defects in Crystals
  year: 2008
  ident: D2CS00481J/cit153/1
– volume: 8
  start-page: 2000959
  year: 2020
  ident: D2CS00481J/cit422/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000959
– volume: 100
  start-page: 1717
  year: 2000
  ident: D2CS00481J/cit453/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr980070c
– volume: 19
  start-page: 1276
  year: 2007
  ident: D2CS00481J/cit247/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602741
– volume: 44
  start-page: 2120
  year: 2005
  ident: D2CS00481J/cit274/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460986
– volume: 31
  start-page: 2926
  year: 2010
  ident: D2CS00481J/cit68/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.026
– volume: 22
  start-page: 1694
  year: 2013
  ident: D2CS00481J/cit11/1
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-012-0469-8
– volume: 122
  start-page: 4871
  year: 2000
  ident: D2CS00481J/cit266/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993181h
– volume: 4
  start-page: 7640
  year: 2014
  ident: D2CS00481J/cit240/1
  publication-title: RSC Adv.
  doi: 10.1039/C3RA46688D
– volume-title: Integrated Optics
  year: 1975
  ident: D2CS00481J/cit356/1
– volume: 1
  start-page: 305
  year: 2013
  ident: D2CS00481J/cit426/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201200067
– volume: 31
  start-page: 2100642
  year: 2021
  ident: D2CS00481J/cit438/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100642
– volume: 31
  start-page: 1016
  year: 2019
  ident: D2CS00481J/cit295/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04568
– volume: 279
  start-page: 123
  year: 2015
  ident: D2CS00481J/cit487/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.04.004
– volume: 51
  start-page: 3735
  year: 2015
  ident: D2CS00481J/cit313/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09074H
– volume: 142
  start-page: 13256
  year: 2020
  ident: D2CS00481J/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05440
– volume: 59
  start-page: 23035
  year: 2020
  ident: D2CS00481J/cit294/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009906
– volume: 66
  start-page: 6164
  year: 2001
  ident: D2CS00481J/cit267/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo010117l
– volume: 56
  start-page: 1
  year: 2016
  ident: D2CS00481J/cit141/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.11.006
– volume: 27
  start-page: 647
  year: 1971
  ident: D2CS00481J/cit191/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac197127040647
– volume: 54
  start-page: 13566
  year: 2015
  ident: D2CS00481J/cit310/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201505813
– volume: 132
  start-page: 4329
  year: 2020
  ident: D2CS00481J/cit385/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201914026
– volume: 2
  start-page: 19
  year: 2019
  ident: D2CS00481J/cit462/1
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0121-8
– volume: 61
  start-page: 557
  year: 2021
  ident: D2CS00481J/cit58/1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.202100056
– volume: 12
  start-page: 1478
  year: 2020
  ident: D2CS00481J/cit167/1
  publication-title: Symmetry
  doi: 10.3390/sym12091478
– volume: 11
  start-page: 1824
  year: 2020
  ident: D2CS00481J/cit101/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15663-5
– volume: 52
  start-page: 6889
  year: 2013
  ident: D2CS00481J/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302323
– volume: 128
  start-page: 14234
  year: 2006
  ident: D2CS00481J/cit125/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065139+
– volume: 137
  start-page: 1794
  year: 2015
  ident: D2CS00481J/cit501/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512817f
– volume: 47
  start-page: 8295
  year: 2014
  ident: D2CS00481J/cit135/1
  publication-title: Macromolecules
  doi: 10.1021/ma501733n
– volume: 5
  start-page: 4811
  year: 2014
  ident: D2CS00481J/cit461/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5811
– volume: 42
  start-page: 1223
  year: 1994
  ident: D2CS00481J/cit10/1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(94)90033-7
– volume: 60
  start-page: 10849
  year: 2021
  ident: D2CS00481J/cit218/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00881
– volume-title: Introduction to Integrated Optics
  year: 1974
  ident: D2CS00481J/cit437/1
  doi: 10.1007/978-1-4684-2082-1
– volume: 59
  start-page: 13821
  year: 2020
  ident: D2CS00481J/cit80/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002627
– volume: 22
  start-page: 446
  year: 1937
  ident: D2CS00481J/cit322/1
  publication-title: American Mineralogist
– volume: 20
  start-page: 6093
  year: 2020
  ident: D2CS00481J/cit336/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00798
– volume: 39
  start-page: 340
  year: 2007
  ident: D2CS00481J/cit22/1
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2006.06.004
– volume: 42
  start-page: 1517
  year: 2013
  ident: D2CS00481J/cit464/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.130797
– volume: 142
  start-page: 12651
  year: 2020
  ident: D2CS00481J/cit71/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03643
– volume: 9
  start-page: 538
  year: 2018
  ident: D2CS00481J/cit106/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02549-2
– volume: 115
  start-page: 12440
  year: 2015
  ident: D2CS00481J/cit29/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00398
– volume: 9
  start-page: 1178
  year: 1997
  ident: D2CS00481J/cit402/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19970091512
– volume: 271
  start-page: 108
  year: 1995
  ident: D2CS00481J/cit20/1
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(95)06875-9
– volume: 329
  start-page: 309
  year: 2010
  ident: D2CS00481J/cit301/1
  publication-title: Science
  doi: 10.1126/science.1190239
– volume: 127
  start-page: 10496
  year: 2005
  ident: D2CS00481J/cit280/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052940v
– volume: 4
  start-page: 112
  year: 2016
  ident: D2CS00481J/cit443/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500362
– volume: 42
  start-page: 2883
  year: 2003
  ident: D2CS00481J/cit285/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200350961
– volume: 98
  start-page: 1671
  year: 2009
  ident: D2CS00481J/cit507/1
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21552
– volume: 63
  start-page: 427
  year: 2011
  ident: D2CS00481J/cit469/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.12.007
– volume: 76
  start-page: 126502
  year: 2013
  ident: D2CS00481J/cit384/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/12/126502
– volume: 11
  start-page: 4458
  year: 2011
  ident: D2CS00481J/cit139/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg200640g
– volume: 11
  start-page: 4975
  year: 2011
  ident: D2CS00481J/cit213/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg200883b
– volume: 30
  start-page: 1902396
  year: 2020
  ident: D2CS00481J/cit296/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902396
– volume: 28
  start-page: 4889
  year: 2016
  ident: D2CS00481J/cit40/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02017
– volume: 272
  start-page: 710
  year: 1978
  ident: D2CS00481J/cit477/1
  publication-title: Nature
  doi: 10.1038/272710a0
– volume: 40
  start-page: 9040
  year: 2007
  ident: D2CS00481J/cit206/1
  publication-title: Macromolecules
  doi: 10.1021/ma0717082
– volume: 21
  start-page: 6258
  year: 2011
  ident: D2CS00481J/cit203/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10228a
– volume: 46
  start-page: 1616
  year: 2013
  ident: D2CS00481J/cit145/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400003q
– volume-title: Nanophotonics and Nanofabrication
  year: 2009
  ident: D2CS00481J/cit398/1
– volume: 6
  start-page: 7310
  year: 2015
  ident: D2CS00481J/cit108/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8310
– volume: 56
  start-page: 12841
  year: 2020
  ident: D2CS00481J/cit74/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC05904H
– volume-title: Materials Selection in Mechanical Design
  year: 2011
  ident: D2CS00481J/cit28/1
– volume: 16
  start-page: 2700
  year: 2019
  ident: D2CS00481J/cit498/1
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00247
– volume: 29
  start-page: 1605260
  year: 2017
  ident: D2CS00481J/cit431/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605260
– volume: 25
  start-page: 1796
  year: 2013
  ident: D2CS00481J/cit177/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204831
– volume: 23
  start-page: 5931
  year: 2021
  ident: D2CS00481J/cit215/1
  publication-title: CrystEngComm
  doi: 10.1039/D1CE00846C
– volume: 50
  start-page: 1654
  year: 2017
  ident: D2CS00481J/cit288/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00124
– volume: 59
  start-page: 1408
  year: 2020
  ident: D2CS00481J/cit358/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814439
– volume: 15
  start-page: 116
  year: 2019
  ident: D2CS00481J/cit156/1
  publication-title: Soft Matter
  doi: 10.1039/C8SM01290C
– volume: 129
  start-page: 32
  year: 2007
  ident: D2CS00481J/cit272/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0671161
– volume: 32
  start-page: 3952
  year: 2020
  ident: D2CS00481J/cit502/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00433
– volume: 12
  start-page: 4311
  year: 2012
  ident: D2CS00481J/cit65/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg3010882
– volume: 9
  start-page: 2002264
  year: 2021
  ident: D2CS00481J/cit373/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202002264
– volume: 52
  start-page: 13941
  year: 2016
  ident: D2CS00481J/cit31/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06235K
– volume: 108
  start-page: 1169
  year: 2004
  ident: D2CS00481J/cit233/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp037321s
– volume: 31
  start-page: e1902765
  year: 2019
  ident: D2CS00481J/cit305/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902765
– volume: 8
  start-page: 34314
  year: 2018
  ident: D2CS00481J/cit458/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA06639F
SSID ssj0011762
Score 2.7042258
SecondaryResourceType review_article
Snippet In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the...
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures X-ray diffraction, albeit as the century...
In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 398
SubjectTerms Actuators
Algorithms
Crystal growth
Crystallography
Delamination
Density functional theory
Fracture toughness
Machine learning
Magnetic properties
Measurement techniques
Mechanical properties
Milling (machining)
Modulus of elasticity
Molecular dynamics
Molecular structure
Photochemistry
Physical properties
Single crystals
Switches
Title Mechanical properties and peculiarities of molecular crystals
URI https://www.ncbi.nlm.nih.gov/pubmed/37070570
https://www.proquest.com/docview/2811164759
https://www.proquest.com/docview/2802887844
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgK0EviFchUFAQXNAqNPEjiY_VUrQUyoWt6G3l2E4b1O6usllV8OsZ23GS0iIBlyhynESa-TL5_JhvEHqDSwpkCJhbwTiPqEjKSMRcw5hHFsDOAUG2aN_Rl3R6TA9P2ElfbdRmlzTFO_nzxryS__EqtIFfTZbsP3i2eyg0wDn4F47gYTj-lY-PtMnbtWZemUn12qijutR_U_O2ErXVS7Vr6L4M7ljWP4ARnq-HtLSTDfCbOFuR0g4Olw4J3_SpUUEezG9Dt3Wfqj7uZmw-VY04FZduNUlU8qzq577PLpYbNZ4KAGDlduqq4eQDdlv9XIjTLmDSNI5o5jQcfURleIAcPgiPJHYlp6_F7ZgY2VOF5doK2HwfdgKbry6sB0kGAYq5QiO_qWT7S7fRFoYBAx6hrf2D2cfP3YpSAlHfy9MSvte_ahvd8Tdf5SbXBhxAP2pfFsbSj9l9dK8dN4T7DgQP0C29eIjuTny5vkdoAIawB0MIYAivgCFclmEHhtCD4TE6_nAwm0yjtjZGJGlMmggnRCrOJMTjuJCCJpwpGPvFWOmc4UyTjBCRJWWimCgVl4lKJfyWC8IyzgTQ0B00WiwX-ikKhZZZrHKlU6ZprooCEzgtiKQaC65VgN56q8xlKxxv6pecz-0GBsLn7_HkqzXmYYBed31XTi7lxl673rjz9nNaz3EOv93UyE8G6FV3GYxoVrDEQi83pg_Q4TzLKQ3QE-eU7jXeiQHaAS91zb2jn_3xludouwf3Lho19Ua_AK7ZFC9bGP0CEsp-kA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+properties+and+peculiarities+of+molecular+crystals&rft.jtitle=Chemical+Society+reviews&rft.au=Awad%2C+Wegood+M&rft.au=Davies%2C+Daniel+W&rft.au=Kitagawa%2C+Daichi&rft.au=Mahmoud+Halabi%2C+Jad&rft.date=2023-05-09&rft.eissn=1460-4744&rft.volume=52&rft.issue=9&rft.spage=3098&rft_id=info:doi/10.1039%2Fd2cs00481j&rft_id=info%3Apmid%2F37070570&rft.externalDocID=37070570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon