[Invited Paper] Pressure Change Simulation along Blood Flow in the Left Ventricle and the Aorta
The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart to the whole body. If the valve malfunctions, blood does not flow correctly, and enough nutrition is not conveyed all over the body. There is...
Saved in:
Published in | ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS Vol. 11; no. 3; pp. 102 - 112 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
The Institute of Image Information and Television Engineers
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart to the whole body. If the valve malfunctions, blood does not flow correctly, and enough nutrition is not conveyed all over the body. There is so much research on the aortic valve and the blood flow from the LV to the aorta; however, most of the previous works dealt with simplified cylindrical models and the blood flow in the model. The little study simulated the pressure change in the aorta and the LV using a real model generated from medical data. This paper summarizes our previous works that describe the model generation method from CT data, blood flow and pressure change in the aorta and the LV, and the comparison between the simulation results and the medical data. |
---|---|
AbstractList | The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart to the whole body. If the valve malfunctions, blood does not flow correctly, and enough nutrition is not conveyed all over the body. There is so much research on the aortic valve and the blood flow from the LV to the aorta; however, most of the previous works dealt with simplified cylindrical models and the blood flow in the model. The little study simulated the pressure change in the aorta and the LV using a real model generated from medical data. This paper summarizes our previous works that describe the model generation method from CT data, blood flow and pressure change in the aorta and the LV, and the comparison between the simulation results and the medical data. |
Author | Chang, Youngha Natsume, Takuya Takayama, Kohta Mukai, Nobuhiko |
Author_xml | – sequence: 1 fullname: Mukai, Nobuhiko organization: Graduate School of Integrative Science and Engineering, Tokyo City University – sequence: 2 fullname: Takayama, Kohta organization: Graduate School of Integrative Science and Engineering, Tokyo City University – sequence: 3 fullname: Natsume, Takuya organization: Graduate School of Integrative Science and Engineering, Tokyo City University – sequence: 4 fullname: Chang, Youngha organization: Graduate School of Integrative Science and Engineering, Tokyo City University |
BookMark | eNpNkE9LAzEQxYNUsNZe_AQ5C1szySa7e_BQi9VCQcE_F5GQ3U3aLdukJKnit3dra_E0b978eDDvHPWssxqhSyAjBqK4Xkc1AhgBoSeoTyEXScZE2vunz9AwhBUhhFFKREr7SL7P7GcTdY2f1Eb7D_zkdQhbr_FkqexC4-dmvW1VbJzFqnV2gW9b52o8bd0XbiyOS43n2kT8pm30TdVqrGz9a4-dj-oCnRrVBj08zAF6nd69TB6S-eP9bDKeJ1VKWEwoycqacQKCVnlZcEMzneZld-NFYdJCgGLAOBcZL0QOytC8BJMLASTnHAwboKt9buVdCF4bufHNWvlvCUTu2pFdOxKgW2kH3-zhVYhqoY-o8nH3wR_KDvzRr5bKS23ZDxKZbgg |
Cites_doi | 10.1016/S0021-9290(02)00244-0 10.1114/B:ABME.0000049032.51742.10 10.1007/s00466-015-1166-x 10.1016/j.medengphy.2012.07.015 10.1055/b-005-148942 10.3756/artsci.14.1 10.1109/BMEI.2011.6098415 10.5220/0005766402460251 10.1007/s00466-014-1059-4 10.1016/j.jcp.2012.08.036 10.1016/S0021-9290(00)00068-3 10.1016/j.jbiomech.2004.10.038 10.1007/978-3-030-01470-4_6 10.1080/15476278.2015.1019687 10.1145/3415264.3425456 10.5220/0006479400001626 10.1016/j.crme.2005.10.008 |
ContentType | Journal Article |
Copyright | 2023 The Institute of Image Information and Television Engineers |
Copyright_xml | – notice: 2023 The Institute of Image Information and Television Engineers |
DBID | AAYXX CITATION |
DOI | 10.3169/mta.11.102 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2186-7364 |
EndPage | 112 |
ExternalDocumentID | 10_3169_mta_11_102 article_mta_11_3_11_102_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION |
ID | FETCH-LOGICAL-c403t-207bd350162c8b95f27e48b403599f4961a313556759681af28b1f866108551f3 |
ISSN | 2186-7364 |
IngestDate | Fri Aug 23 02:25:05 EDT 2024 Thu Nov 07 05:22:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-207bd350162c8b95f27e48b403599f4961a313556759681af28b1f866108551f3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/mta/11/3/11_102/_article/-char/en |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_3169_mta_11_102 jstage_primary_article_mta_11_3_11_102_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS |
PublicationTitleAlternate | MTA |
PublicationYear | 2023 |
Publisher | The Institute of Image Information and Television Engineers |
Publisher_xml | – name: The Institute of Image Information and Television Engineers |
References | 14) N. Mukai, Y. Okamoto, K. Aoyama, and Y. Chang “Blood Flow and Pressure Change Simulation in the Aorta with the Model Generated from CT Data”, SIMULTECH 2017, pp.392-397 (2019 24) A. M. Handorf, Y. Zhou, M. A. Halanski, and W. J. Li: “Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression”, Organogenesis, Vol.11, Issue 1 (2015 1) J.D. Hart, G.W.M. Peters, P.J.G. Schreurs, and F.P.T. Baaijens: “A Two-dimensional Fluid-structure Interaction Model of the Aortic Value”. Journal of Biomechanics 33, pp.1079-1088 (2000 8) M.C. Hsu,D, Kamensky, F. Xu, J. Kiendl, C. Wang, M.C. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sackes: “Dynamic and Fluid-structure Interaction Simulations of Bioprosthetic Heart Valves using Parametric Design with T-splines and Fung-type Material Models”, Comput Mech 55, pp.1211-1225 (2015 22) J.R. Levick: “An Introduction to Cardiovascular Physiology 5th ed. (in Japanese)”, Medical Science International, Tokyo (2011 17) K. Takayama, T. Natsume, Y. Chang, and N. Mukai: “Pressure Chang Simulation in the Heart Considering Left Ventricular Expansion and Contraction (in Japanese)”, Media Computing Conference (2022 9) N. Mukai, Y. Abe, Y. Chang, K. Niki, and S. Takanashi: “Visualization of Pressure and Stress Distributions in Aortic Valve Simulation by Considering Heart's Pulsatin and Axial Flow”, JSAS 14(1), pp.1-8 (2015). 23) R.E. Klabunde: “Cardiovascular Physiology Concepts, 2nd ed.”, Lippincott Williams & Wilkins, Baltimore (2012 3) R. Cheng, Y.G. Lai, and K.B. Chandran: “Three-dimensional Fluid-structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics”. Annals of Biomedical Engineering, 32(11), pp.1471-1483 (2004 12) D.C. Wendell, M.M. Samyn, J.R. Cava, L.M. Ellwein, M.M. Krolikowski, K.L. Gandy, A.M. Pelech, S.C. Shadden, and J.F. LaDisaJr: “Including Aortic Valve Morphology in Computational Fluid Dynamics Simulations: Initial Findings and Application to Aortic Coarctation”, Medical Engineering & Physics 35, pp.723-735 (2013 10) N. Mukai, T. Takahashi, and Y. Chang: “Particle-based Simulation on Aortic Valve Behavior with CG Model Generated from CT”. VISIGRAPP 2016, pp.248-253 (2016 16) N. Mukai, K. Aoyama, and Y. Chang: “Pressure Simulation in the Heart with Valve Interlocking and Isovolumetric Contraction”, SIGGRAPH Asia 2020, Poster, Article 13, DOI: https://doi.org/10.1145/3415264.3425456 (2020 21) S. Silbernagl: “A. Despopoulos: Color Atlas of Physiology, 7th ed.”, Georg Thieme Verlag, Stuttgart (2015 13) T.B. Le and F. Sotiropoulos: “Fluid-structure Interaction of an Aortic Heart Valve Prosthesis driven by an Animated Anatomic Left Ventricle”, Journal of Computational Physics 244, pp.41-62 (2013 20) Y. Izawa: “Medical Note: Cardiovascular Disease (in Japanese)”, Nishimura, Tokyo (2009 11) T. Seo, S.H. Jeong, D.H. Kim, and D. Seo: “The Blood Flow Simulation of Human Aortic Arch Model with Major Branches”, BMEI, pp.923-926 (2011 18) K. Takayama, T. Natsume, Y. Chang, and N. Mukai: “Pressure Chang Simulation in the Heart Considering Left Ventricular Expansion and Contraction (in Japanese)”, IIEEJ Transactions on Image Electronics and Visual Computing, Vol.52, No.1, pp.183-192 (2023 4) R.V. Loon, P.D. Anderson, F.P.T. Baaijens, and F.N. van de Vosse: “A Three-dimensional Fluid-structure Interaction Method for Heart Valve Modelling”, C.R.Mecanique 333, pp.856-866 (2005 7) M.C. Hsu, D. Kamensky, Y. Bazilevs, MS. Sackes, and T.JR. Hughes: “Fluid-structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation”, Comput Mech 54, pp.1055-1071 (2014 19) S. Koshizuka: “Particle Method”, Maruzen, Tokyo (2005 5) C.J. Carmody, G. Burriesci, I.C. Howard, and E.A. Patterson: “An Approach to the Simulation of Fluid-structure Interaction in the Aortic Valve”, Journal of Biomechanics 39, pp.158-169 (2006 2) J.D. Hart, G.W.M. Peters, P.J.G. Schreurs, and F.P.T. Baaijens: “A Three-dimensional Computational Analysis of Fuid-structure Interaction in the Aortic Valve”. Journal of Biomechanics 36, pp.103-112 (2003 6) N. Mukai, Y. Abe, Y. Chang, K. Niki, and S. Takanashi: “Particle Based Simulation of the Aortic Valve by Considering Heart's Pulsation”. Medicine Meets Virtual Reality, pp.285-289 (2014 15) N. Mukai, K. Aoyama, T. Natsume, and Y. Chang: “Particle Based Blood Pressure Simulation in the Aorta with the Model Generated from CT Images”, Springer, Advances in Intelligent Systems and Computing book series, AISC 873, pp.102-113, DOI: https:10.1007/978-3-030-01470-4_6 (2019 11 22 12 23 13 24 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – ident: 2 doi: 10.1016/S0021-9290(02)00244-0 – ident: 3 doi: 10.1114/B:ABME.0000049032.51742.10 – ident: 8 doi: 10.1007/s00466-015-1166-x – ident: 17 – ident: 18 – ident: 12 doi: 10.1016/j.medengphy.2012.07.015 – ident: 21 doi: 10.1055/b-005-148942 – ident: 9 doi: 10.3756/artsci.14.1 – ident: 11 doi: 10.1109/BMEI.2011.6098415 – ident: 10 doi: 10.5220/0005766402460251 – ident: 7 doi: 10.1007/s00466-014-1059-4 – ident: 19 – ident: 13 doi: 10.1016/j.jcp.2012.08.036 – ident: 1 doi: 10.1016/S0021-9290(00)00068-3 – ident: 5 doi: 10.1016/j.jbiomech.2004.10.038 – ident: 15 doi: 10.1007/978-3-030-01470-4_6 – ident: 24 doi: 10.1080/15476278.2015.1019687 – ident: 6 – ident: 16 doi: 10.1145/3415264.3425456 – ident: 20 – ident: 14 doi: 10.5220/0006479400001626 – ident: 4 doi: 10.1016/j.crme.2005.10.008 – ident: 22 – ident: 23 |
SSID | ssj0003220642 |
Score | 2.2700982 |
Snippet | The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart... |
SourceID | crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 102 |
SubjectTerms | computer graphics medical application physics based simulation visualization |
Title | [Invited Paper] Pressure Change Simulation along Blood Flow in the Left Ventricle and the Aorta |
URI | https://www.jstage.jst.go.jp/article/mta/11/3/11_102/_article/-char/en |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ITE Transactions on Media Technology and Applications, 2023, Vol.11(3), pp.102-112 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK4IEXBALEYEOWgKcqpY6dNHnsgGnjRwWiQ5MQiuwkVkvXZJpS0Pgv-Y-4sx0nRTyMvUSV5dTS3Zfz3fm-MyHPOStKrsdpoMelCkQh0yDhBYQqecJ0JEJR5EhO_jCLj07E29PodDD43ata2jRqlP_6J6_kOlqFMdArsmT_Q7P-T2EAfoN-4QkahueVdPwiOjiufhin8aM8B-FHrx3f76J0vIHh5-Xa3dA1lGd4sdABlqoPD8_qn22N4_tSN8MvmObFBXxN5RQ9877zClbONkO3ZAhz0IAHPbKXoDdvT3un4p1GV_bm61mtNovlqu5yBit5KdeWmlYvGr9PzGSD7FCDKLnaXHY1RW2S25iqhexnLiyteNSy3rZqIY7XWKDkCFhNW4c99wx735zRNXA39hFv0wom3DZB98ac9UDLe5aZjcPeJs9s7fbf-wdnMbZfXTcStpKRf2WrH7fTdgaTIHzKOD5gZtaOI1sOwHmD3AzB9mGV6btPiU_7gf3EkM82ysXlXnaLbblGt75DdNBWFhpnZ36X3HFRCp3axe6RQVndJ9lXBzZqwPaNtlCjFmq0gxo1UKMGahShRpcVBUxRhBr1UKMgfzNsoPaAnBy-mb86Ctz9HEEuxryBT3GiCjyYjsM8UWmkw0kpEiWwK2SqRRozyRn4sxCTpnHCpA4TxXQCHiEWRzLNH5Kdqq7KR4RKJiSXoZZ5Ggr0QSdxDpF7KItcJbBF7JJnrWiyc9uGBYSeoQBbRYAAd0lspebnXFFZj6_74hNyG5Ftc3J7ZKe52JT74KU26qnR-x9W9p8x |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BInvited+Paper%5D+Pressure+Change+Simulation+along+Blood+Flow+in+the+Left+Ventricle+and+the+Aorta&rft.jtitle=ITE+Transactions+on+Media+Technology+and+Applications&rft.au=Mukai%2C+Nobuhiko&rft.au=Takayama%2C+Kohta&rft.au=Natsume%2C+Takuya&rft.au=Chang%2C+Youngha&rft.date=2023&rft.pub=The+Institute+of+Image+Information+and+Television+Engineers&rft.eissn=2186-7364&rft.volume=11&rft.issue=3&rft.spage=102&rft.epage=112&rft_id=info:doi/10.3169%2Fmta.11.102&rft.externalDocID=article_mta_11_3_11_102_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2186-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2186-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2186-7364&client=summon |