[Invited Paper] Pressure Change Simulation along Blood Flow in the Left Ventricle and the Aorta

The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart to the whole body. If the valve malfunctions, blood does not flow correctly, and enough nutrition is not conveyed all over the body. There is...

Full description

Saved in:
Bibliographic Details
Published inITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS Vol. 11; no. 3; pp. 102 - 112
Main Authors Mukai, Nobuhiko, Takayama, Kohta, Natsume, Takuya, Chang, Youngha
Format Journal Article
LanguageEnglish
Published The Institute of Image Information and Television Engineers 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart to the whole body. If the valve malfunctions, blood does not flow correctly, and enough nutrition is not conveyed all over the body. There is so much research on the aortic valve and the blood flow from the LV to the aorta; however, most of the previous works dealt with simplified cylindrical models and the blood flow in the model. The little study simulated the pressure change in the aorta and the LV using a real model generated from medical data. This paper summarizes our previous works that describe the model generation method from CT data, blood flow and pressure change in the aorta and the LV, and the comparison between the simulation results and the medical data.
AbstractList The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart to the whole body. If the valve malfunctions, blood does not flow correctly, and enough nutrition is not conveyed all over the body. There is so much research on the aortic valve and the blood flow from the LV to the aorta; however, most of the previous works dealt with simplified cylindrical models and the blood flow in the model. The little study simulated the pressure change in the aorta and the LV using a real model generated from medical data. This paper summarizes our previous works that describe the model generation method from CT data, blood flow and pressure change in the aorta and the LV, and the comparison between the simulation results and the medical data.
Author Chang, Youngha
Natsume, Takuya
Takayama, Kohta
Mukai, Nobuhiko
Author_xml – sequence: 1
  fullname: Mukai, Nobuhiko
  organization: Graduate School of Integrative Science and Engineering, Tokyo City University
– sequence: 2
  fullname: Takayama, Kohta
  organization: Graduate School of Integrative Science and Engineering, Tokyo City University
– sequence: 3
  fullname: Natsume, Takuya
  organization: Graduate School of Integrative Science and Engineering, Tokyo City University
– sequence: 4
  fullname: Chang, Youngha
  organization: Graduate School of Integrative Science and Engineering, Tokyo City University
BookMark eNpNkE9LAzEQxYNUsNZe_AQ5C1szySa7e_BQi9VCQcE_F5GQ3U3aLdukJKnit3dra_E0b978eDDvHPWssxqhSyAjBqK4Xkc1AhgBoSeoTyEXScZE2vunz9AwhBUhhFFKREr7SL7P7GcTdY2f1Eb7D_zkdQhbr_FkqexC4-dmvW1VbJzFqnV2gW9b52o8bd0XbiyOS43n2kT8pm30TdVqrGz9a4-dj-oCnRrVBj08zAF6nd69TB6S-eP9bDKeJ1VKWEwoycqacQKCVnlZcEMzneZld-NFYdJCgGLAOBcZL0QOytC8BJMLASTnHAwboKt9buVdCF4bufHNWvlvCUTu2pFdOxKgW2kH3-zhVYhqoY-o8nH3wR_KDvzRr5bKS23ZDxKZbgg
Cites_doi 10.1016/S0021-9290(02)00244-0
10.1114/B:ABME.0000049032.51742.10
10.1007/s00466-015-1166-x
10.1016/j.medengphy.2012.07.015
10.1055/b-005-148942
10.3756/artsci.14.1
10.1109/BMEI.2011.6098415
10.5220/0005766402460251
10.1007/s00466-014-1059-4
10.1016/j.jcp.2012.08.036
10.1016/S0021-9290(00)00068-3
10.1016/j.jbiomech.2004.10.038
10.1007/978-3-030-01470-4_6
10.1080/15476278.2015.1019687
10.1145/3415264.3425456
10.5220/0006479400001626
10.1016/j.crme.2005.10.008
ContentType Journal Article
Copyright 2023 The Institute of Image Information and Television Engineers
Copyright_xml – notice: 2023 The Institute of Image Information and Television Engineers
DBID AAYXX
CITATION
DOI 10.3169/mta.11.102
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2186-7364
EndPage 112
ExternalDocumentID 10_3169_mta_11_102
article_mta_11_3_11_102_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
KQ8
OK1
RJT
RZJ
AAYXX
CITATION
ID FETCH-LOGICAL-c403t-207bd350162c8b95f27e48b403599f4961a313556759681af28b1f866108551f3
ISSN 2186-7364
IngestDate Fri Aug 23 02:25:05 EDT 2024
Thu Nov 07 05:22:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-207bd350162c8b95f27e48b403599f4961a313556759681af28b1f866108551f3
OpenAccessLink https://www.jstage.jst.go.jp/article/mta/11/3/11_102/_article/-char/en
PageCount 11
ParticipantIDs crossref_primary_10_3169_mta_11_102
jstage_primary_article_mta_11_3_11_102_article_char_en
PublicationCentury 2000
PublicationDate 2023
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS
PublicationTitleAlternate MTA
PublicationYear 2023
Publisher The Institute of Image Information and Television Engineers
Publisher_xml – name: The Institute of Image Information and Television Engineers
References 14) N. Mukai, Y. Okamoto, K. Aoyama, and Y. Chang “Blood Flow and Pressure Change Simulation in the Aorta with the Model Generated from CT Data”, SIMULTECH 2017, pp.392-397 (2019
24) A. M. Handorf, Y. Zhou, M. A. Halanski, and W. J. Li: “Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression”, Organogenesis, Vol.11, Issue 1 (2015
1) J.D. Hart, G.W.M. Peters, P.J.G. Schreurs, and F.P.T. Baaijens: “A Two-dimensional Fluid-structure Interaction Model of the Aortic Value”. Journal of Biomechanics 33, pp.1079-1088 (2000
8) M.C. Hsu,D, Kamensky, F. Xu, J. Kiendl, C. Wang, M.C. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sackes: “Dynamic and Fluid-structure Interaction Simulations of Bioprosthetic Heart Valves using Parametric Design with T-splines and Fung-type Material Models”, Comput Mech 55, pp.1211-1225 (2015
22) J.R. Levick: “An Introduction to Cardiovascular Physiology 5th ed. (in Japanese)”, Medical Science International, Tokyo (2011
17) K. Takayama, T. Natsume, Y. Chang, and N. Mukai: “Pressure Chang Simulation in the Heart Considering Left Ventricular Expansion and Contraction (in Japanese)”, Media Computing Conference (2022
9) N. Mukai, Y. Abe, Y. Chang, K. Niki, and S. Takanashi: “Visualization of Pressure and Stress Distributions in Aortic Valve Simulation by Considering Heart's Pulsatin and Axial Flow”, JSAS 14(1), pp.1-8 (2015).
23) R.E. Klabunde: “Cardiovascular Physiology Concepts, 2nd ed.”, Lippincott Williams & Wilkins, Baltimore (2012
3) R. Cheng, Y.G. Lai, and K.B. Chandran: “Three-dimensional Fluid-structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics”. Annals of Biomedical Engineering, 32(11), pp.1471-1483 (2004
12) D.C. Wendell, M.M. Samyn, J.R. Cava, L.M. Ellwein, M.M. Krolikowski, K.L. Gandy, A.M. Pelech, S.C. Shadden, and J.F. LaDisaJr: “Including Aortic Valve Morphology in Computational Fluid Dynamics Simulations: Initial Findings and Application to Aortic Coarctation”, Medical Engineering & Physics 35, pp.723-735 (2013
10) N. Mukai, T. Takahashi, and Y. Chang: “Particle-based Simulation on Aortic Valve Behavior with CG Model Generated from CT”. VISIGRAPP 2016, pp.248-253 (2016
16) N. Mukai, K. Aoyama, and Y. Chang: “Pressure Simulation in the Heart with Valve Interlocking and Isovolumetric Contraction”, SIGGRAPH Asia 2020, Poster, Article 13, DOI: https://doi.org/10.1145/3415264.3425456 (2020
21) S. Silbernagl: “A. Despopoulos: Color Atlas of Physiology, 7th ed.”, Georg Thieme Verlag, Stuttgart (2015
13) T.B. Le and F. Sotiropoulos: “Fluid-structure Interaction of an Aortic Heart Valve Prosthesis driven by an Animated Anatomic Left Ventricle”, Journal of Computational Physics 244, pp.41-62 (2013
20) Y. Izawa: “Medical Note: Cardiovascular Disease (in Japanese)”, Nishimura, Tokyo (2009
11) T. Seo, S.H. Jeong, D.H. Kim, and D. Seo: “The Blood Flow Simulation of Human Aortic Arch Model with Major Branches”, BMEI, pp.923-926 (2011
18) K. Takayama, T. Natsume, Y. Chang, and N. Mukai: “Pressure Chang Simulation in the Heart Considering Left Ventricular Expansion and Contraction (in Japanese)”, IIEEJ Transactions on Image Electronics and Visual Computing, Vol.52, No.1, pp.183-192 (2023
4) R.V. Loon, P.D. Anderson, F.P.T. Baaijens, and F.N. van de Vosse: “A Three-dimensional Fluid-structure Interaction Method for Heart Valve Modelling”, C.R.Mecanique 333, pp.856-866 (2005
7) M.C. Hsu, D. Kamensky, Y. Bazilevs, MS. Sackes, and T.JR. Hughes: “Fluid-structure Interaction Analysis of Bioprosthetic Heart Valves: Significance of Arterial Wall Deformation”, Comput Mech 54, pp.1055-1071 (2014
19) S. Koshizuka: “Particle Method”, Maruzen, Tokyo (2005
5) C.J. Carmody, G. Burriesci, I.C. Howard, and E.A. Patterson: “An Approach to the Simulation of Fluid-structure Interaction in the Aortic Valve”, Journal of Biomechanics 39, pp.158-169 (2006
2) J.D. Hart, G.W.M. Peters, P.J.G. Schreurs, and F.P.T. Baaijens: “A Three-dimensional Computational Analysis of Fuid-structure Interaction in the Aortic Valve”. Journal of Biomechanics 36, pp.103-112 (2003
6) N. Mukai, Y. Abe, Y. Chang, K. Niki, and S. Takanashi: “Particle Based Simulation of the Aortic Valve by Considering Heart's Pulsation”. Medicine Meets Virtual Reality, pp.285-289 (2014
15) N. Mukai, K. Aoyama, T. Natsume, and Y. Chang: “Particle Based Blood Pressure Simulation in the Aorta with the Model Generated from CT Images”, Springer, Advances in Intelligent Systems and Computing book series, AISC 873, pp.102-113, DOI: https:10.1007/978-3-030-01470-4_6 (2019
11
22
12
23
13
24
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 2
  doi: 10.1016/S0021-9290(02)00244-0
– ident: 3
  doi: 10.1114/B:ABME.0000049032.51742.10
– ident: 8
  doi: 10.1007/s00466-015-1166-x
– ident: 17
– ident: 18
– ident: 12
  doi: 10.1016/j.medengphy.2012.07.015
– ident: 21
  doi: 10.1055/b-005-148942
– ident: 9
  doi: 10.3756/artsci.14.1
– ident: 11
  doi: 10.1109/BMEI.2011.6098415
– ident: 10
  doi: 10.5220/0005766402460251
– ident: 7
  doi: 10.1007/s00466-014-1059-4
– ident: 19
– ident: 13
  doi: 10.1016/j.jcp.2012.08.036
– ident: 1
  doi: 10.1016/S0021-9290(00)00068-3
– ident: 5
  doi: 10.1016/j.jbiomech.2004.10.038
– ident: 15
  doi: 10.1007/978-3-030-01470-4_6
– ident: 24
  doi: 10.1080/15476278.2015.1019687
– ident: 6
– ident: 16
  doi: 10.1145/3415264.3425456
– ident: 20
– ident: 14
  doi: 10.5220/0006479400001626
– ident: 4
  doi: 10.1016/j.crme.2005.10.008
– ident: 22
– ident: 23
SSID ssj0003220642
Score 2.2700982
Snippet The aorta is the most critical blood vessel in our body, and the aortic valve between the left ventricle (LV) and the aorta controls blood flow from the heart...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 102
SubjectTerms computer graphics
medical application
physics based simulation
visualization
Title [Invited Paper] Pressure Change Simulation along Blood Flow in the Left Ventricle and the Aorta
URI https://www.jstage.jst.go.jp/article/mta/11/3/11_102/_article/-char/en
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ITE Transactions on Media Technology and Applications, 2023, Vol.11(3), pp.102-112
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK4IEXBALEYEOWgKcqpY6dNHnsgGnjRwWiQ5MQiuwkVkvXZJpS0Pgv-Y-4sx0nRTyMvUSV5dTS3Zfz3fm-MyHPOStKrsdpoMelCkQh0yDhBYQqecJ0JEJR5EhO_jCLj07E29PodDD43ata2jRqlP_6J6_kOlqFMdArsmT_Q7P-T2EAfoN-4QkahueVdPwiOjiufhin8aM8B-FHrx3f76J0vIHh5-Xa3dA1lGd4sdABlqoPD8_qn22N4_tSN8MvmObFBXxN5RQ9877zClbONkO3ZAhz0IAHPbKXoDdvT3un4p1GV_bm61mtNovlqu5yBit5KdeWmlYvGr9PzGSD7FCDKLnaXHY1RW2S25iqhexnLiyteNSy3rZqIY7XWKDkCFhNW4c99wx735zRNXA39hFv0wom3DZB98ac9UDLe5aZjcPeJs9s7fbf-wdnMbZfXTcStpKRf2WrH7fTdgaTIHzKOD5gZtaOI1sOwHmD3AzB9mGV6btPiU_7gf3EkM82ysXlXnaLbblGt75DdNBWFhpnZ36X3HFRCp3axe6RQVndJ9lXBzZqwPaNtlCjFmq0gxo1UKMGahShRpcVBUxRhBr1UKMgfzNsoPaAnBy-mb86Ctz9HEEuxryBT3GiCjyYjsM8UWmkw0kpEiWwK2SqRRozyRn4sxCTpnHCpA4TxXQCHiEWRzLNH5Kdqq7KR4RKJiSXoZZ5Ggr0QSdxDpF7KItcJbBF7JJnrWiyc9uGBYSeoQBbRYAAd0lspebnXFFZj6_74hNyG5Ftc3J7ZKe52JT74KU26qnR-x9W9p8x
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BInvited+Paper%5D+Pressure+Change+Simulation+along+Blood+Flow+in+the+Left+Ventricle+and+the+Aorta&rft.jtitle=ITE+Transactions+on+Media+Technology+and+Applications&rft.au=Mukai%2C+Nobuhiko&rft.au=Takayama%2C+Kohta&rft.au=Natsume%2C+Takuya&rft.au=Chang%2C+Youngha&rft.date=2023&rft.pub=The+Institute+of+Image+Information+and+Television+Engineers&rft.eissn=2186-7364&rft.volume=11&rft.issue=3&rft.spage=102&rft.epage=112&rft_id=info:doi/10.3169%2Fmta.11.102&rft.externalDocID=article_mta_11_3_11_102_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2186-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2186-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2186-7364&client=summon