DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution

This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined t...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 68; pp. 136 - 147
Main Authors Wang, Shanshan, Cheng, Huitao, Ying, Leslie, Xiao, Taohui, Ke, Ziwen, Zheng, Hairong, Liang, Dong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately. •Proposed an end-to-end parallel imaging reconstruction framework. The proposed framework doesn’t need any calculation of the sensitivity information to resolve the aliasing and correlations among the channels.•Both real-valued and complex-valued versions of our proposed framework have been investigated for parallel imaging with our code released to the public.•The method has been compared withquite a few state-of-the-art methods. Encouraging performances have been achieved by our proposed framework.
AbstractList This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately.This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately.
This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately. •Proposed an end-to-end parallel imaging reconstruction framework. The proposed framework doesn’t need any calculation of the sensitivity information to resolve the aliasing and correlations among the channels.•Both real-valued and complex-valued versions of our proposed framework have been investigated for parallel imaging with our code released to the public.•The method has been compared withquite a few state-of-the-art methods. Encouraging performances have been achieved by our proposed framework.
This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately.
Author Cheng, Huitao
Wang, Shanshan
Ke, Ziwen
Zheng, Hairong
Xiao, Taohui
Liang, Dong
Ying, Leslie
Author_xml – sequence: 1
  givenname: Shanshan
  surname: Wang
  fullname: Wang, Shanshan
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
– sequence: 2
  givenname: Huitao
  surname: Cheng
  fullname: Cheng, Huitao
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
– sequence: 3
  givenname: Leslie
  surname: Ying
  fullname: Ying, Leslie
  organization: Department of Biomedical Engineering and Department of Electrical Engineering, The State University of New York, Buffalo, NY 14260, USA
– sequence: 4
  givenname: Taohui
  surname: Xiao
  fullname: Xiao, Taohui
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
– sequence: 5
  givenname: Ziwen
  surname: Ke
  fullname: Ke, Ziwen
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
– sequence: 6
  givenname: Hairong
  surname: Zheng
  fullname: Zheng, Hairong
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
– sequence: 7
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  email: dong.liang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32045635$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvFDEQhC0URDaBH8AF-chlJn6M5wEnFAKJlAgpAomb5bHbwRvPeLC9efx7vNrNJYdwaqm7vpKq6wgdzGEGhN5TUlNC25N1PUVXM8JITVhNCHuFVrTveCX6oTlAK9JxUnVM_D5ERymtCSGCcfEGHXJGGtFysUL2K8Ciw7R4eLi6vviEzx4WH1x28w025YQjJGc2yuMZ8n2It9iGiK1KGS8qKu_B46tr7CZ1s0XuXf6D93ZlznfBb7IL81v02iqf4N1-HqNf385-np5Xlz--X5x-uax0Q3iuqCaj4sIq2o6GtwIYg7anthHKsKGzRAythbK1XPQjVX1rlBoMmEaMTHWaH6OPO98lhr8bSFlOLmnwXs0QNkmW-A0dSva2SD_spZtxAiOXWELER_n0myLodgIdQ0oRrNQuq22aHJXzkhK5bUGuZWlBbluQhMnSQiHpM_LJ_CXm846B8p47B1Em7WDWYFwEnaUJ7kV6eEZr72anlb-Fx_-w_wBK3rQO
CitedBy_id crossref_primary_10_3390_info16030218
crossref_primary_10_1016_j_patcog_2024_110412
crossref_primary_10_1109_TMI_2022_3180228
crossref_primary_10_1016_j_compbiomed_2022_105947
crossref_primary_10_1016_j_compbiomed_2024_108668
crossref_primary_10_1002_mrm_29033
crossref_primary_10_3390_electronics11040586
crossref_primary_10_32604_cmc_2023_040264
crossref_primary_10_1002_mrm_29317
crossref_primary_10_1016_j_bspc_2021_102522
crossref_primary_10_1088_1361_6560_ac6cc2
crossref_primary_10_1016_j_mri_2022_08_007
crossref_primary_10_1002_mrm_29833
crossref_primary_10_1002_mrm_29556
crossref_primary_10_1016_j_media_2024_103349
crossref_primary_10_1016_j_media_2021_102098
crossref_primary_10_4103_digm_digm_43_21
crossref_primary_10_1088_1361_6560_ad3dbc
crossref_primary_10_3390_rs16203896
crossref_primary_10_3390_diagnostics11010061
crossref_primary_10_1016_j_compbiomed_2021_104504
crossref_primary_10_1002_mrm_29548
crossref_primary_10_1109_TMI_2022_3202106
crossref_primary_10_1109_TMI_2021_3065948
crossref_primary_10_1002_mrm_28733
crossref_primary_10_1093_jcde_qwae006
crossref_primary_10_1016_j_compbiomed_2023_107330
crossref_primary_10_1109_TCI_2024_3518210
crossref_primary_10_1109_JSTSP_2022_3171082
crossref_primary_10_1016_j_bspc_2025_107564
crossref_primary_10_1016_j_mri_2023_10_001
crossref_primary_10_1109_JBHI_2022_3216446
crossref_primary_10_1155_2023_7139560
crossref_primary_10_1360_SSI_2021_0114
crossref_primary_10_1109_TMI_2024_3432388
crossref_primary_10_1016_j_compbiomed_2024_108603
crossref_primary_10_1016_j_mri_2020_06_016
crossref_primary_10_1016_j_optlaseng_2023_107897
crossref_primary_10_1109_TCI_2020_3018562
crossref_primary_10_1109_TIP_2024_3388970
crossref_primary_10_1016_j_bbe_2021_05_007
crossref_primary_10_1016_j_media_2021_102190
crossref_primary_10_1109_JBHI_2024_3516758
crossref_primary_10_1109_ACCESS_2020_3039527
crossref_primary_10_1016_j_compmedimag_2021_101969
crossref_primary_10_1109_JAS_2022_105743
crossref_primary_10_1109_JBHI_2021_3094578
crossref_primary_10_1007_s13534_024_00425_9
crossref_primary_10_1016_j_mri_2024_04_023
crossref_primary_10_1002_mrm_29684
crossref_primary_10_3934_ipi_2020051
crossref_primary_10_1002_nbm_4540
crossref_primary_10_1016_j_cmpb_2021_106121
crossref_primary_10_1016_j_patcog_2024_110801
crossref_primary_10_3390_jimaging7110231
crossref_primary_10_1109_TMI_2023_3294245
crossref_primary_10_1002_mrm_28912
crossref_primary_10_11834_jig_230041
crossref_primary_10_1016_j_media_2025_103459
crossref_primary_10_1016_j_mri_2024_110267
crossref_primary_10_1109_TGRS_2024_3384059
crossref_primary_10_1109_TMI_2020_3023620
crossref_primary_10_3389_fradi_2021_781868
crossref_primary_10_1109_TNNLS_2021_3105901
crossref_primary_10_1016_j_mri_2020_08_014
crossref_primary_10_1016_j_mri_2020_08_013
crossref_primary_10_1016_j_mri_2024_01_007
crossref_primary_10_1016_j_mri_2020_12_019
crossref_primary_10_1016_j_neuroimage_2022_119680
crossref_primary_10_1109_ACCESS_2020_3041867
crossref_primary_10_1109_TIM_2023_3331413
crossref_primary_10_1109_TIM_2024_3417538
crossref_primary_10_1109_TNNLS_2021_3090303
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1016_j_bspc_2024_106134
crossref_primary_10_1109_TMI_2022_3153849
crossref_primary_10_1016_j_compbiomed_2024_108905
crossref_primary_10_1111_jfpe_13620
crossref_primary_10_1109_TCBB_2022_3213669
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1186_s42492_020_00065_7
crossref_primary_10_1016_j_compmedimag_2021_101862
crossref_primary_10_3390_rs14236087
crossref_primary_10_1109_TCI_2023_3252260
crossref_primary_10_1109_TRPMS_2020_3025071
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1002_nbm_5291
crossref_primary_10_1109_ACCESS_2020_3036380
crossref_primary_10_1109_TMI_2023_3234968
crossref_primary_10_1002_nbm_5179
crossref_primary_10_1038_s41598_021_94692_6
crossref_primary_10_1016_j_neuroimage_2021_118404
crossref_primary_10_1016_j_knosys_2025_113048
crossref_primary_10_1016_j_cmpb_2023_107590
crossref_primary_10_1016_j_mri_2024_05_008
crossref_primary_10_1038_s41598_020_69932_w
crossref_primary_10_1088_1361_6560_ad6d28
crossref_primary_10_1016_j_mri_2024_02_004
crossref_primary_10_1109_ACCESS_2020_3041807
crossref_primary_10_1016_j_media_2021_101987
crossref_primary_10_3389_fonc_2023_1095637
crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_1016_j_cmpb_2023_107440
crossref_primary_10_1016_j_neucom_2024_128125
crossref_primary_10_1049_2024_7006156
crossref_primary_10_1016_j_media_2023_102872
crossref_primary_10_1016_j_neucom_2025_129771
crossref_primary_10_1007_s12204_024_2778_0
crossref_primary_10_1016_j_cmpb_2021_105997
crossref_primary_10_3390_appliedmath4030059
crossref_primary_10_1016_j_micpro_2021_104359
crossref_primary_10_1002_mrm_28793
crossref_primary_10_1016_j_mri_2022_01_011
crossref_primary_10_1002_mrm_29400
crossref_primary_10_1016_j_bspc_2023_105810
crossref_primary_10_1016_j_jmr_2022_107354
crossref_primary_10_1002_mrm_29085
crossref_primary_10_1016_j_compbiomed_2022_106204
crossref_primary_10_1109_TCI_2025_3531729
crossref_primary_10_1088_1361_6560_ac5296
crossref_primary_10_1016_j_bspc_2021_102579
crossref_primary_10_1016_j_mri_2023_03_011
crossref_primary_10_1016_j_bspc_2025_107509
crossref_primary_10_1007_s00330_022_08638_1
crossref_primary_10_1016_j_neucom_2022_09_048
crossref_primary_10_1186_s41747_023_00372_7
crossref_primary_10_1109_TNNLS_2023_3253557
crossref_primary_10_1016_j_media_2021_102047
crossref_primary_10_1049_sil2_12180
crossref_primary_10_1109_MSP_2022_3183809
Cites_doi 10.1109/TMI.2013.2256923
10.1002/mrm.20328
10.1109/TMI.2016.2550204
10.1002/mrm.26182
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1002/mrm.1241
10.1002/mrm.24751
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.27106
10.1002/mp.12600
10.1002/mrm.27201
10.1109/TMI.2017.2760978
10.1109/TCI.2019.2956877
10.1109/TMI.2003.815896
10.1109/TMI.2010.2093536
10.1016/j.media.2011.11.008
10.1002/mrm.24997
10.1038/nature25988
10.1016/j.media.2010.08.001
10.1002/mrm.22428
10.1002/mrm.10171
10.1109/TMI.2017.2723871
10.1109/TMI.2017.2746086
10.1109/TMI.2018.2820120
10.1109/TBME.2018.2821699
10.1002/mrm.25717
10.1002/mrm.27921
10.1109/TMI.2015.2509245
10.1002/mrm.26977
10.1137/040605412
10.1109/TMI.2018.2865356
10.1109/TMI.2018.2863670
10.1002/mrm.27827
10.1002/mrm.25663
10.1109/TIP.2011.2150231
10.1002/mrm.21236
10.1016/j.media.2013.09.007
10.1002/mrm.20285
10.1002/mrm.1910380414
10.1109/TMI.2018.2858752
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mri.2020.02.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 147
ExternalDocumentID 32045635
10_1016_j_mri_2020_02_002
S0730725X19305338
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c403t-1c0ba35fa16bd365e22e681f45ad297f0596fee22f358b1a86daa9ded45b2a7c3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Mon Jul 21 09:37:10 EDT 2025
Wed Feb 19 02:30:14 EST 2025
Thu Apr 24 23:12:54 EDT 2025
Tue Jul 01 01:55:25 EDT 2025
Fri Feb 23 02:48:02 EST 2024
Tue Aug 26 18:33:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Prior knowledge
Parallel imaging
Convolutional neural network
Fast MR imaging
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-1c0ba35fa16bd365e22e681f45ad297f0596fee22f358b1a86daa9ded45b2a7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32045635
PQID 2354194566
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2354194566
pubmed_primary_32045635
crossref_citationtrail_10_1016_j_mri_2020_02_002
crossref_primary_10_1016_j_mri_2020_02_002
elsevier_sciencedirect_doi_10_1016_j_mri_2020_02_002
elsevier_clinicalkey_doi_10_1016_j_mri_2020_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kim, Setsompop, Haldar (bb0100) 2017; 77
Pruessmann, Weiger, Scheidegger, Boesiger (bb0005) 1999; 42
Sun, Li, Xu (bb0175) 2016
Trabelsi, Bilaniuk, Zhang, Serdyuk, Subramanian, Santos (bb0270) 2017
Wang, Zhao, Huang, Tan, Liu, Ying (bb0250) 2017
Haldar, Zhuo (bb0095) 2016; 75
Wang, Huang, Zhao, Yang, Ying, Liang (bb0240) 2017
Chang, Liang, Ying (bb0150) 2011
Sodickson, Manning (bb0010) 1997; 38
Dedmari, Conjeti, Estrada, Ehses, St?cker, Reuter (bb0285) 2019
Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock (bb0165) 2018; 79
Walsh, Gmitro, Marcellin (bb0295) 2000; 43
Liang, Madore, Glover, Pelc (bb0140) 2003; 22
Wang, Su, Ying, Peng, Liang (bb0160) 2016
Wang, Ke, Cheng, Ying, Liu, Zheng (bb0255) 2018
Liu, Samsonov, Chen, Kijowski, Feng (bb0220) 2019
Samsonov, Kholmovski, Parker, Johnson (bb0145) 2004; 52
Hui, Smith (bb0275) 1995
Qin, Schlemper, Caballero, Price, Hajnal, Rueckert (bb0210) 2019; 38
Ramani, Fessler (bb0050) 2011; 30
Block, Uecker, Frahm (bb0065) 2007; 57
Weller, Polimeni, Grady, Wald, Adalsteinsson, Goyal (bb0040) 2013; 32
Aggarwal, Mani, Jacob (bb0225) 2019; 38
Mardani, Gong, Cheng, Vasanawala, Zaharchuk, Xing (bb0235) 2019; 38
Liu, Liu, Zhang, Yang, Wang, Liang (bb0230) 2020; 6
Qu, Hou, Lam, Guo, Zhong, Chen (bb0080) 2014; 18
Quan, Nguyen-Duc, Jeong (bb0200) 2018; 37
Chen, Li, Huang (bb0075) 2013
Zhou, Wang, Balu, Li, Yuan (bb0110) 2016; 75
Han, Yoo, Kim, Shin, Sung, Ye (bb0185) 2018; 80
Eo, Jun, Kim, Jang, Lee, Hwang (bb0190) 2018; 80
Wang, Tan, Gao, Liu, Ying, Xiao (bb0055) 2018; 37
He, Liu, Christodoulou, Ma, Lam, Liang (bb0115) 2016; 35
Cole, Pauly, Cheng (bb0290) 2019
Wang, Cheng, Ke, Ying, Liu, Zheng (bb0265) 2018
Uecker, Lai, Murphy, Virtue, Elad, Pauly (bb0025) 2014; 71
Liu, Yang, Cheng, Wang, Zhang, Liang (bb0085) 2020; 83
Pruessmann, Weiger, Börnert, Boesiger (bb0030) 2001; 46
Shin, Larson, Ohliger, Elad, Pauly, Vigneron (bb0105) 2014; 72
Wang, Xiao, Tan, Liu, Ying, Liang (bb0245) 2017
Griswold, Jakob, Heidemann, Nittka, Jellus, Wang (bb0015) 2002; 47
Kwon, Kim, Park (bb0260) 2017; 44
Nakarmi, Wang, Lyu, Liang, Ying (bb0130) 2017; 36
Schlemper, Caballero, Hajnal, Price, Rueckert (bb0205) 2018; 37
Virtue, Stella, Lustig (bb0280) 2017
Liu, Zou, Ying (bb0035) 2008
S. Wang, Z. Ke, H. Cheng, S. Jia, L. Ying, H. Zheng, D. Liang. DIMENSION: dynamic MR imaging with both K-space and spatial prior knowledge obtained via multi-supervised network training, NMR Biomed, e4131.
Wu, Liu, Jiao, Wang, Hou (bb0120) 2011; 20
Lee, Yoo, Tak, Ye (bb0215) 2018; 65
Lustig, Pauly (bb0020) 2010; 64
Wachinger, Yigitsoy, Rijkhorst, Navab (bb0125) 2012; 16
Chaâri, Pesquet, Benazza-Benyahia, Ciuciu (bb0060) 2011; 15
Liang (bb0090) 2007
Park, Zhang, Jellus, Simonetti, Li (bb0045) 2005; 53
Chen, Xiao, Li, Liu, Wang (bb0170) 2019
Wang, Su, Ying, Peng, Zhu, Liang (bb0155) 2016
Poddar, Jacob (bb0135) 2016; 35
Osher, Burger, Goldfarb, Xu, Yin (bb0070) 2005; 4
Zhu, Liu, Cauley, Rosen, Rosen (bb0180) 2017; 555
Poddar (10.1016/j.mri.2020.02.002_bb0135) 2016; 35
Trabelsi (10.1016/j.mri.2020.02.002_bb0270) 2017
Virtue (10.1016/j.mri.2020.02.002_bb0280) 2017
Hui (10.1016/j.mri.2020.02.002_bb0275) 1995
Zhou (10.1016/j.mri.2020.02.002_bb0110) 2016; 75
Liang (10.1016/j.mri.2020.02.002_bb0140) 2003; 22
10.1016/j.mri.2020.02.002_bb0195
Mardani (10.1016/j.mri.2020.02.002_bb0235) 2019; 38
Uecker (10.1016/j.mri.2020.02.002_bb0025) 2014; 71
Haldar (10.1016/j.mri.2020.02.002_bb0095) 2016; 75
Pruessmann (10.1016/j.mri.2020.02.002_bb0030) 2001; 46
Qu (10.1016/j.mri.2020.02.002_bb0080) 2014; 18
Schlemper (10.1016/j.mri.2020.02.002_bb0205) 2018; 37
Wang (10.1016/j.mri.2020.02.002_bb0055) 2018; 37
Wang (10.1016/j.mri.2020.02.002_bb0250) 2017
Liu (10.1016/j.mri.2020.02.002_bb0035) 2008
Lee (10.1016/j.mri.2020.02.002_bb0215) 2018; 65
Wang (10.1016/j.mri.2020.02.002_bb0265) 2018
Wachinger (10.1016/j.mri.2020.02.002_bb0125) 2012; 16
Samsonov (10.1016/j.mri.2020.02.002_bb0145) 2004; 52
Chang (10.1016/j.mri.2020.02.002_bb0150) 2011
Chaâri (10.1016/j.mri.2020.02.002_bb0060) 2011; 15
Liu (10.1016/j.mri.2020.02.002_bb0085) 2020; 83
Cole (10.1016/j.mri.2020.02.002_bb0290) 2019
Liu (10.1016/j.mri.2020.02.002_bb0230) 2020; 6
Wang (10.1016/j.mri.2020.02.002_bb0245) 2017
Kwon (10.1016/j.mri.2020.02.002_bb0260) 2017; 44
Wang (10.1016/j.mri.2020.02.002_bb0155) 2016
Wang (10.1016/j.mri.2020.02.002_bb0160) 2016
Han (10.1016/j.mri.2020.02.002_bb0185) 2018; 80
Eo (10.1016/j.mri.2020.02.002_bb0190) 2018; 80
Park (10.1016/j.mri.2020.02.002_bb0045) 2005; 53
Chen (10.1016/j.mri.2020.02.002_bb0170) 2019
Griswold (10.1016/j.mri.2020.02.002_bb0015) 2002; 47
Chen (10.1016/j.mri.2020.02.002_bb0075) 2013
Liu (10.1016/j.mri.2020.02.002_bb0220) 2019
Kim (10.1016/j.mri.2020.02.002_bb0100) 2017; 77
Hammernik (10.1016/j.mri.2020.02.002_bb0165) 2018; 79
Walsh (10.1016/j.mri.2020.02.002_bb0295) 2000; 43
Ramani (10.1016/j.mri.2020.02.002_bb0050) 2011; 30
Zhu (10.1016/j.mri.2020.02.002_bb0180) 2017; 555
Qin (10.1016/j.mri.2020.02.002_bb0210) 2019; 38
Sodickson (10.1016/j.mri.2020.02.002_bb0010) 1997; 38
Nakarmi (10.1016/j.mri.2020.02.002_bb0130) 2017; 36
Dedmari (10.1016/j.mri.2020.02.002_bb0285) 2019
He (10.1016/j.mri.2020.02.002_bb0115) 2016; 35
Shin (10.1016/j.mri.2020.02.002_bb0105) 2014; 72
Aggarwal (10.1016/j.mri.2020.02.002_bb0225) 2019; 38
Quan (10.1016/j.mri.2020.02.002_bb0200) 2018; 37
Pruessmann (10.1016/j.mri.2020.02.002_bb0005) 1999; 42
Liang (10.1016/j.mri.2020.02.002_bb0090) 2007
Wu (10.1016/j.mri.2020.02.002_bb0120) 2011; 20
Weller (10.1016/j.mri.2020.02.002_bb0040) 2013; 32
Block (10.1016/j.mri.2020.02.002_bb0065) 2007; 57
Osher (10.1016/j.mri.2020.02.002_bb0070) 2005; 4
Wang (10.1016/j.mri.2020.02.002_bb0255) 2018
Sun (10.1016/j.mri.2020.02.002_bb0175) 2016
Wang (10.1016/j.mri.2020.02.002_bb0240) 2017
Lustig (10.1016/j.mri.2020.02.002_bb0020) 2010; 64
References_xml – volume: 35
  start-page: 2119
  year: 2016
  end-page: 2129
  ident: bb0115
  article-title: Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors
  publication-title: IEEE Trans Med Imaging
– volume: 64
  start-page: 457
  year: 2010
  end-page: 471
  ident: bb0020
  article-title: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space
  publication-title: Magn Reson Med
– volume: 20
  start-page: 3483
  year: 2011
  end-page: 3494
  ident: bb0120
  article-title: Multivariate compressive sensing for image reconstruction in the wavelet domain: using scale mixture models
  publication-title: IEEE Trans Image Process
– start-page: 10
  year: 2016
  end-page: 18
  ident: bb0175
  article-title: Deep ADMM-net for compressive sensing MRI
  publication-title: Advances in neural information processing systems
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: bb0005
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 15
  start-page: 185
  year: 2011
  end-page: 201
  ident: bb0060
  article-title: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging
  publication-title: Med Image Anal
– reference: S. Wang, Z. Ke, H. Cheng, S. Jia, L. Ying, H. Zheng, D. Liang. DIMENSION: dynamic MR imaging with both K-space and spatial prior knowledge obtained via multi-supervised network training, NMR Biomed, e4131.
– volume: 36
  start-page: 2297
  year: 2017
  end-page: 2307
  ident: bb0130
  article-title: A kernel-based low-rank (klr) model for low-dimensional manifold recovery in highly accelerated dynamic MRI
  publication-title: IEEE Trans Med Imaging
– volume: 80
  start-page: 1189
  year: 2018
  end-page: 1205
  ident: bb0185
  article-title: Deep learning with domain adaptation for accelerated projection-reconstruction MR
  publication-title: Magn Reson Med
– volume: 6
  start-page: 434
  year: 2020
  end-page: 446
  ident: bb0230
  article-title: IFR-net: iterative feature refinement net-work for compressed sensing MRI
  publication-title: IEEE Transactions on Computational Imaging
– start-page: 30
  year: 2019
  end-page: 38
  ident: bb0285
  article-title: Complex fully convolutional neural networks for MR image reconstruction
– volume: 77
  start-page: 1021
  year: 2017
  end-page: 1035
  ident: bb0100
  article-title: LORAKS makes better SENSE: phase-constrained partial fourier sense reconstruction without phase calibration
  publication-title: Magn Reson Med
– start-page: 1890
  year: 2019
  end-page: 1904
  ident: bb0220
  article-title: SANTIS: sampling augmented neural network with incoherent structure for MR image reconstruction
  publication-title: Magn Reson Med
– volume: 72
  start-page: 959
  year: 2014
  end-page: 970
  ident: bb0105
  article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1106
  year: 2016
  end-page: 1115
  ident: bb0135
  article-title: Dynamic MRI using smoothness regularization on manifolds (SToRM)
  publication-title: IEEE Trans Med Imaging
– volume: 38
  start-page: 167
  year: 2019
  end-page: 179
  ident: bb0235
  article-title: Deep generative adversarial neural networks for compressive sensing MRI
  publication-title: IEEE Trans Med Imaging
– volume: 65
  start-page: 1985
  year: 2018
  end-page: 1995
  ident: bb0215
  article-title: Deep residual learning for accelerated MRI using magnitude and phase networks
  publication-title: IEEE Trans Biomed Eng
– volume: 22
  start-page: 1026
  year: 2003
  end-page: 1030
  ident: bb0140
  article-title: Fast algorithms for GS-model-based image reconstruction in data-sharing fourier imaging
  publication-title: IEEE Trans Med Imaging
– year: 2016
  ident: bb0160
  article-title: Exploiting deep convolutional neural network for fast magnetic resonance imaging
  publication-title: ISMRM 24th annual meeting and exhibition
– volume: 38
  start-page: 280
  year: 2019
  end-page: 290
  ident: bb0210
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– start-page: 514
  year: 2016
  end-page: 517
  ident: bb0155
  article-title: Accelerating magnetic resonance imaging via deep learning
  publication-title: 2016 IEEE 13th international symposium on biomedical imaging (ISBI)
– volume: 16
  start-page: 806
  year: 2012
  end-page: 818
  ident: bb0125
  article-title: Manifold learning for image-based breathing gating in ultrasound and MRI
  publication-title: Med Image Anal
– volume: 52
  start-page: 1397
  year: 2004
  end-page: 1406
  ident: bb0145
  article-title: POC-SENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging
  publication-title: Magn Reson Med
– start-page: 4714
  year: 2019
  ident: bb0290
  article-title: Complex-valued convolutional neural networks for MRI reconstruction
  publication-title: In proceedings of the 27th annual meeting of ISMRM, Montreal, Canada
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  ident: bb0295
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– start-page: 513
  year: 1995
  end-page: 516
  ident: bb0275
  article-title: MRI reconstruction from truncated data using a complex domain backpropagation neural network
  publication-title: IEEE pacific rim conference on communications, computers, and signal processing. Proceedings, Victoria, BC, Canada
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  ident: bb0030
  article-title: Advances in sensitivity encoding with arbitrary k-space trajectories
  publication-title: Magn Reson Med
– volume: 38
  start-page: 394
  year: 2019
  end-page: 405
  ident: bb0225
  article-title: MoDL: model-based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imaging
– year: 2017
  ident: bb0270
  article-title: Deep complex networks, arXiv preprint arXiv:1705.09792
– start-page: 5482
  year: 2017
  ident: bb0240
  article-title: 1d partial fourier parallel MR imaging with deep convolutional neural network
  publication-title: Proceedings of the 25st annual meeting of ISMRM, Honolulu, HI, USA
– volume: 555
  start-page: 487
  year: 2017
  ident: bb0180
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
– start-page: 2781
  year: 2018
  ident: bb0265
  article-title: Complex-valued residual network learning for parallel MR imaging
  publication-title: Proceedings of the 26st annual meeting of ISMRM
– start-page: 4224
  year: 2017
  ident: bb0245
  article-title: Undersampling trajectory design for fast MRI with super-resolution convolutional neural network
  publication-title: Proceedings of the 25st annual meeting of ISMRM, Honolulu, HI, USA
– start-page: 3953
  year: 2017
  end-page: 3957
  ident: bb0280
  article-title: Better than real: Complex-valued neural nets for MRI fingerprinting
  publication-title: IEEE international conference on image processing (ICIP)
– start-page: 2786
  year: 2018
  ident: bb0255
  article-title: Investigation of convolutional neural network based deep learning for cardiac imaging
  publication-title: Proceedings of the 26st annual meeting of ISMRM, Paris, France
– volume: 75
  start-page: 750
  year: 2016
  end-page: 761
  ident: bb0110
  article-title: STEP: self-supporting tailored k-space estimation for parallel imaging reconstruction
  publication-title: Magn Reson Med
– start-page: 106
  year: 2013
  end-page: 114
  ident: bb0075
  article-title: Calibrationless parallel MRI with joint total variation regularization
  publication-title: International conference on medical image computing and computer-assisted intervention (MICCAI)
– volume: 44
  start-page: 6209
  year: 2017
  end-page: 6224
  ident: bb0260
  article-title: A parallel MR imaging method using multilayer perceptron
  publication-title: Med Phys
– volume: 18
  start-page: 843
  year: 2014
  end-page: 856
  ident: bb0080
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
  publication-title: Med Image Anal
– start-page: 389
  year: 2011
  end-page: 392
  ident: bb0150
  article-title: A kernel approach to parallel MRI reconstruction
  publication-title: 2011 IEEE international symposium on biomedical imaging (ISBI): From Nano to macro
– volume: 57
  start-page: 1086
  year: 2007
  end-page: 1098
  ident: bb0065
  article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
  publication-title: Magn Reson Med
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  ident: bb0010
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1499
  year: 2016
  end-page: 1514
  ident: bb0095
  article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data
  publication-title: Magn Reson Med
– volume: 53
  start-page: 186
  year: 2005
  end-page: 193
  ident: bb0045
  article-title: Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density sampling
  publication-title: Magn Reson Med
– volume: 30
  start-page: 694
  year: 2011
  end-page: 706
  ident: bb0050
  article-title: Parallel MR image reconstruction using augmented lagrangian methods
  publication-title: IEEE Trans Med Imaging
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  ident: bb0015
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  ident: bb0165
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
– volume: 80
  start-page: 2188
  year: 2018
  end-page: 2201
  ident: bb0190
  article-title: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images
  publication-title: Magn Reson Med
– volume: 83
  start-page: 322
  year: 2020
  end-page: 336
  ident: bb0085
  article-title: Highly undersampled magnetic resonance imaging reconstruction using autoencoder priors
  publication-title: Magn Reson Med
– volume: 32
  start-page: 1325
  year: 2013
  end-page: 1335
  ident: bb0040
  article-title: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction
  publication-title: IEEE Trans Med Imaging
– start-page: 127
  year: 2008
  end-page: 130
  ident: bb0035
  article-title: Sparsesense: Application of compressed sensing in parallel mri
  publication-title: 2008 international conference on information technology and applications in biomedicine
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  ident: bb0025
  article-title: ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– start-page: 30
  year: 2019
  end-page: 38
  ident: bb0170
  article-title: Model-based convolutional De-aliasing network learning for parallel MR imaging. International conference on medical image computing and computer-assisted intervention (MICCAI)
– volume: 37
  start-page: 491
  year: 2018
  end-page: 503
  ident: bb0205
  article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– start-page: 4302
  year: 2017
  ident: bb0250
  article-title: Feasibility of multi-contrast MR imaging via deep learning
  publication-title: Proceedings of the 25st annual meeting of ISMRM, Honolulu, HI, USA
– volume: 4
  start-page: 460
  year: 2005
  end-page: 489
  ident: bb0070
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model Simul
– start-page: 988
  year: 2007
  end-page: 991
  ident: bb0090
  article-title: Spatiotemporal imaging with partially separable functions
  publication-title: 2007 4th IEEE international symposium on biomedical imaging (ISBI): From Nano to macro
– volume: 37
  start-page: 251
  year: 2018
  end-page: 261
  ident: bb0055
  article-title: Learning joint-sparse codes for calibration-free parallel mr imaging
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 1488
  year: 2018
  end-page: 1497
  ident: bb0200
  article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: 1325
  issue: 7
  year: 2013
  ident: 10.1016/j.mri.2020.02.002_bb0040
  article-title: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2256923
– volume: 53
  start-page: 186
  issue: 1
  year: 2005
  ident: 10.1016/j.mri.2020.02.002_bb0045
  article-title: Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density sampling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20328
– start-page: 5482
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0240
  article-title: 1d partial fourier parallel MR imaging with deep convolutional neural network
– volume: 35
  start-page: 2119
  issue: 9
  year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0115
  article-title: Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2550204
– volume: 77
  start-page: 1021
  issue: 3
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0100
  article-title: LORAKS makes better SENSE: phase-constrained partial fourier sense reconstruction without phase calibration
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26182
– volume: 43
  start-page: 682
  issue: 5
  year: 2000
  ident: 10.1016/j.mri.2020.02.002_bb0295
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– volume: 46
  start-page: 638
  issue: 4
  year: 2001
  ident: 10.1016/j.mri.2020.02.002_bb0030
  article-title: Advances in sensitivity encoding with arbitrary k-space trajectories
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1241
– start-page: 513
  year: 1995
  ident: 10.1016/j.mri.2020.02.002_bb0275
  article-title: MRI reconstruction from truncated data using a complex domain backpropagation neural network
– volume: 71
  start-page: 990
  issue: 3
  year: 2014
  ident: 10.1016/j.mri.2020.02.002_bb0025
  article-title: ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24751
– start-page: 127
  year: 2008
  ident: 10.1016/j.mri.2020.02.002_bb0035
  article-title: Sparsesense: Application of compressed sensing in parallel mri
– volume: 42
  start-page: 952
  issue: 5
  year: 1999
  ident: 10.1016/j.mri.2020.02.002_bb0005
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– start-page: 389
  year: 2011
  ident: 10.1016/j.mri.2020.02.002_bb0150
  article-title: A kernel approach to parallel MRI reconstruction
– volume: 80
  start-page: 1189
  issue: 3
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0185
  article-title: Deep learning with domain adaptation for accelerated projection-reconstruction MR
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27106
– volume: 44
  start-page: 6209
  issue: 12
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0260
  article-title: A parallel MR imaging method using multilayer perceptron
  publication-title: Med Phys
  doi: 10.1002/mp.12600
– volume: 80
  start-page: 2188
  issue: 5
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0190
  article-title: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27201
– volume: 37
  start-page: 491
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0205
  article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2760978
– start-page: 988
  year: 2007
  ident: 10.1016/j.mri.2020.02.002_bb0090
  article-title: Spatiotemporal imaging with partially separable functions
– volume: 6
  start-page: 434
  year: 2020
  ident: 10.1016/j.mri.2020.02.002_bb0230
  article-title: IFR-net: iterative feature refinement net-work for compressed sensing MRI
  publication-title: IEEE Transactions on Computational Imaging
  doi: 10.1109/TCI.2019.2956877
– volume: 22
  start-page: 1026
  issue: 8
  year: 2003
  ident: 10.1016/j.mri.2020.02.002_bb0140
  article-title: Fast algorithms for GS-model-based image reconstruction in data-sharing fourier imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.815896
– volume: 30
  start-page: 694
  issue: 3
  year: 2011
  ident: 10.1016/j.mri.2020.02.002_bb0050
  article-title: Parallel MR image reconstruction using augmented lagrangian methods
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2093536
– start-page: 2781
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0265
  article-title: Complex-valued residual network learning for parallel MR imaging
– volume: 16
  start-page: 806
  issue: 4
  year: 2012
  ident: 10.1016/j.mri.2020.02.002_bb0125
  article-title: Manifold learning for image-based breathing gating in ultrasound and MRI
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2011.11.008
– start-page: 514
  year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0155
  article-title: Accelerating magnetic resonance imaging via deep learning
– volume: 72
  start-page: 959
  issue: 4
  year: 2014
  ident: 10.1016/j.mri.2020.02.002_bb0105
  article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24997
– start-page: 4714
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0290
  article-title: Complex-valued convolutional neural networks for MRI reconstruction
– volume: 555
  start-page: 487
  issue: 7697
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0180
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– start-page: 4224
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0245
  article-title: Undersampling trajectory design for fast MRI with super-resolution convolutional neural network
– volume: 15
  start-page: 185
  issue: 2
  year: 2011
  ident: 10.1016/j.mri.2020.02.002_bb0060
  article-title: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2010.08.001
– volume: 64
  start-page: 457
  issue: 2
  year: 2010
  ident: 10.1016/j.mri.2020.02.002_bb0020
  article-title: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22428
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  ident: 10.1016/j.mri.2020.02.002_bb0015
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10171
– volume: 36
  start-page: 2297
  issue: 11
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0130
  article-title: A kernel-based low-rank (klr) model for low-dimensional manifold recovery in highly accelerated dynamic MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2723871
– volume: 37
  start-page: 251
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0055
  article-title: Learning joint-sparse codes for calibration-free parallel mr imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2746086
– volume: 37
  start-page: 1488
  issue: 6
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0200
  article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2820120
– year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0160
  article-title: Exploiting deep convolutional neural network for fast magnetic resonance imaging
– volume: 65
  start-page: 1985
  issue: 9
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0215
  article-title: Deep residual learning for accelerated MRI using magnitude and phase networks
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2821699
– volume: 75
  start-page: 1499
  issue: 4
  year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0095
  article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25717
– volume: 83
  start-page: 322
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2020.02.002_bb0085
  article-title: Highly undersampled magnetic resonance imaging reconstruction using autoencoder priors
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27921
– volume: 35
  start-page: 1106
  issue: 4
  year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0135
  article-title: Dynamic MRI using smoothness regularization on manifolds (SToRM)
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2509245
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0165
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26977
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  ident: 10.1016/j.mri.2020.02.002_bb0070
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model Simul
  doi: 10.1137/040605412
– start-page: 30
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0170
– volume: 38
  start-page: 394
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0225
  article-title: MoDL: model-based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2865356
– year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0270
– start-page: 106
  year: 2013
  ident: 10.1016/j.mri.2020.02.002_bb0075
  article-title: Calibrationless parallel MRI with joint total variation regularization
– volume: 38
  start-page: 280
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0210
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2863670
– start-page: 1890
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0220
  article-title: SANTIS: sampling augmented neural network with incoherent structure for MR image reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27827
– volume: 75
  start-page: 750
  issue: 2
  year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0110
  article-title: STEP: self-supporting tailored k-space estimation for parallel imaging reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25663
– volume: 20
  start-page: 3483
  issue: 12
  year: 2011
  ident: 10.1016/j.mri.2020.02.002_bb0120
  article-title: Multivariate compressive sensing for image reconstruction in the wavelet domain: using scale mixture models
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2150231
– start-page: 30
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0285
– volume: 57
  start-page: 1086
  issue: 6
  year: 2007
  ident: 10.1016/j.mri.2020.02.002_bb0065
  article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21236
– start-page: 10
  year: 2016
  ident: 10.1016/j.mri.2020.02.002_bb0175
  article-title: Deep ADMM-net for compressive sensing MRI
– volume: 18
  start-page: 843
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2020.02.002_bb0080
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.09.007
– start-page: 3953
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0280
  article-title: Better than real: Complex-valued neural nets for MRI fingerprinting
– volume: 52
  start-page: 1397
  issue: 6
  year: 2004
  ident: 10.1016/j.mri.2020.02.002_bb0145
  article-title: POC-SENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20285
– ident: 10.1016/j.mri.2020.02.002_bb0195
– start-page: 4302
  year: 2017
  ident: 10.1016/j.mri.2020.02.002_bb0250
  article-title: Feasibility of multi-contrast MR imaging via deep learning
– volume: 38
  start-page: 591
  issue: 4
  year: 1997
  ident: 10.1016/j.mri.2020.02.002_bb0010
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910380414
– start-page: 2786
  year: 2018
  ident: 10.1016/j.mri.2020.02.002_bb0255
  article-title: Investigation of convolutional neural network based deep learning for cardiac imaging
– volume: 38
  start-page: 167
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2020.02.002_bb0235
  article-title: Deep generative adversarial neural networks for compressive sensing MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2858752
SSID ssj0005235
Score 2.6349502
Snippet This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms Convolutional neural network
Deep learning
Fast MR imaging
Parallel imaging
Prior knowledge
Title DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19305338
https://dx.doi.org/10.1016/j.mri.2020.02.002
https://www.ncbi.nlm.nih.gov/pubmed/32045635
https://www.proquest.com/docview/2354194566
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EYfEi6voYdaUXPAlxkn4kGW_iKuPKePABc2v6CZExDjqCJ3-7VUln0IMu7DFJV9JUV6q_7v6qipCDApbGNi9N4rx1iZCFTUo5wE0cobktrfYeo5FHV_nwTvwdy_ECOe1iYZBWGX1_69Mbbx3v9KM2-9Oq6t-gcRZMjgGCYEApBvwKUaCVH719pHm0RTahcYKtu5PNhuP18FTBEpGlbdpO9tXc9BX2bOag81WyEsEjPWn7t0YWfL1Ofozi8fhPEv54P21I4v51dH1xTBuGXYXMZurgEYW1dRN8ReuW_U0BstKgn2cUU4BPJn5CR9e0emhKF1Hco6XxdRTp6dFMN8jd-dnt6TCJhRQSK1I-SzKbGs1l0FluHM-lZ8znZRaE1I4NioAleIKHu4HL0mS6zJ3WA-edkIbpwvJNslg_1n6b0EwbC6AkcAAqgpnCWB4MjK4BGOA4kz2SdipUNmYZx2IXE9XRye4VaF2h1lXKFGi9Rw7nItM2xcZ3jVk3LqqLHQVvp2AC-E5IzIU-Gde_xH53A6_gp8OTFF37x5dnBTYlsgFgz7xHtlqLmHedY4J_0M7O_310lyzjVcup3COLs6cX_wtwz8zsN4a9T5ZOLi6HV-91uAIO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxLNseRmJE1LYxI8kyw0Vqi00PZRW2pvlpxS0TVftVuLU385M4qzg0CJxtT2JNR7bn-1vZgDeV3g0dmVtMx-cz6SqXFarGV3iSCNc7UwI5I3cHJXzU_ltoRZbsDf6whCtMq39w5rer9apZJq0OV217fQHGWfF1QIhCDmU1nfgrsTpS2kMPl7_yfMYsmxi64yaj0-bPcnr7KLFMyLPh7id_KbN6Sbw2W9C-4_gYUKP7PPQwcewFboncK9J7-NPIX4JYdWzxMOv5vjgE-spdi1Rm5nHKoaH6977inUD_ZshZmXRXK4ZxQBfLsOSNcesPetzFzG6pGXpc4z46clOn8Hp_teTvXmWMilkTuZinRUut0aoaIrSelGqwHko6yJKZTyfVZFy8MSApVGo2hamLr0xMx-8VJabyonnsN2dd-EFsMJYh6gkCkQqktvKOhEtDq9FHOAFVxPIRxVql8KMU7aLpR75ZD81al2T1nXONWp9Ah82IqshxsZtjfk4Lnp0HsXlTuMOcJuQ3Aj9ZV3_Ens3DrzGWUdPKaYL51eXGm1KFjMEn-UEdgaL2HRdUIR_1M7u__30LdyfnzSH-vDg6PtLeEA1A8HyFWyvL67CawRBa_umN_LfSlUDnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepcomplexMRI%3A+Exploiting+deep+residual+network+for+fast+parallel+MR+imaging+with+complex+convolution&rft.jtitle=Magnetic+resonance+imaging&rft.au=Wang%2C+Shanshan&rft.au=Cheng%2C+Huitao&rft.au=Ying%2C+Leslie&rft.au=Xiao%2C+Taohui&rft.date=2020-05-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=68&rft.spage=136&rft.epage=147&rft_id=info:doi/10.1016%2Fj.mri.2020.02.002&rft.externalDocID=S0730725X19305338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon