DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution
This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined t...
Saved in:
Published in | Magnetic resonance imaging Vol. 68; pp. 136 - 147 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately.
•Proposed an end-to-end parallel imaging reconstruction framework. The proposed framework doesn’t need any calculation of the sensitivity information to resolve the aliasing and correlations among the channels.•Both real-valued and complex-valued versions of our proposed framework have been investigated for parallel imaging with our code released to the public.•The method has been compared withquite a few state-of-the-art methods. Encouraging performances have been achieved by our proposed framework. |
---|---|
AbstractList | This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately.This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately. This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately. •Proposed an end-to-end parallel imaging reconstruction framework. The proposed framework doesn’t need any calculation of the sensitivity information to resolve the aliasing and correlations among the channels.•Both real-valued and complex-valued versions of our proposed framework have been investigated for parallel imaging with our code released to the public.•The method has been compared withquite a few state-of-the-art methods. Encouraging performances have been achieved by our proposed framework. This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately. |
Author | Cheng, Huitao Wang, Shanshan Ke, Ziwen Zheng, Hairong Xiao, Taohui Liang, Dong Ying, Leslie |
Author_xml | – sequence: 1 givenname: Shanshan surname: Wang fullname: Wang, Shanshan organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China – sequence: 2 givenname: Huitao surname: Cheng fullname: Cheng, Huitao organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China – sequence: 3 givenname: Leslie surname: Ying fullname: Ying, Leslie organization: Department of Biomedical Engineering and Department of Electrical Engineering, The State University of New York, Buffalo, NY 14260, USA – sequence: 4 givenname: Taohui surname: Xiao fullname: Xiao, Taohui organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China – sequence: 5 givenname: Ziwen surname: Ke fullname: Ke, Ziwen organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China – sequence: 6 givenname: Hairong surname: Zheng fullname: Zheng, Hairong organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China – sequence: 7 givenname: Dong surname: Liang fullname: Liang, Dong email: dong.liang@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32045635$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvFDEQhC0URDaBH8AF-chlJn6M5wEnFAKJlAgpAomb5bHbwRvPeLC9efx7vNrNJYdwaqm7vpKq6wgdzGEGhN5TUlNC25N1PUVXM8JITVhNCHuFVrTveCX6oTlAK9JxUnVM_D5ERymtCSGCcfEGHXJGGtFysUL2K8Ciw7R4eLi6vviEzx4WH1x28w025YQjJGc2yuMZ8n2It9iGiK1KGS8qKu_B46tr7CZ1s0XuXf6D93ZlznfBb7IL81v02iqf4N1-HqNf385-np5Xlz--X5x-uax0Q3iuqCaj4sIq2o6GtwIYg7anthHKsKGzRAythbK1XPQjVX1rlBoMmEaMTHWaH6OPO98lhr8bSFlOLmnwXs0QNkmW-A0dSva2SD_spZtxAiOXWELER_n0myLodgIdQ0oRrNQuq22aHJXzkhK5bUGuZWlBbluQhMnSQiHpM_LJ_CXm846B8p47B1Em7WDWYFwEnaUJ7kV6eEZr72anlb-Fx_-w_wBK3rQO |
CitedBy_id | crossref_primary_10_3390_info16030218 crossref_primary_10_1016_j_patcog_2024_110412 crossref_primary_10_1109_TMI_2022_3180228 crossref_primary_10_1016_j_compbiomed_2022_105947 crossref_primary_10_1016_j_compbiomed_2024_108668 crossref_primary_10_1002_mrm_29033 crossref_primary_10_3390_electronics11040586 crossref_primary_10_32604_cmc_2023_040264 crossref_primary_10_1002_mrm_29317 crossref_primary_10_1016_j_bspc_2021_102522 crossref_primary_10_1088_1361_6560_ac6cc2 crossref_primary_10_1016_j_mri_2022_08_007 crossref_primary_10_1002_mrm_29833 crossref_primary_10_1002_mrm_29556 crossref_primary_10_1016_j_media_2024_103349 crossref_primary_10_1016_j_media_2021_102098 crossref_primary_10_4103_digm_digm_43_21 crossref_primary_10_1088_1361_6560_ad3dbc crossref_primary_10_3390_rs16203896 crossref_primary_10_3390_diagnostics11010061 crossref_primary_10_1016_j_compbiomed_2021_104504 crossref_primary_10_1002_mrm_29548 crossref_primary_10_1109_TMI_2022_3202106 crossref_primary_10_1109_TMI_2021_3065948 crossref_primary_10_1002_mrm_28733 crossref_primary_10_1093_jcde_qwae006 crossref_primary_10_1016_j_compbiomed_2023_107330 crossref_primary_10_1109_TCI_2024_3518210 crossref_primary_10_1109_JSTSP_2022_3171082 crossref_primary_10_1016_j_bspc_2025_107564 crossref_primary_10_1016_j_mri_2023_10_001 crossref_primary_10_1109_JBHI_2022_3216446 crossref_primary_10_1155_2023_7139560 crossref_primary_10_1360_SSI_2021_0114 crossref_primary_10_1109_TMI_2024_3432388 crossref_primary_10_1016_j_compbiomed_2024_108603 crossref_primary_10_1016_j_mri_2020_06_016 crossref_primary_10_1016_j_optlaseng_2023_107897 crossref_primary_10_1109_TCI_2020_3018562 crossref_primary_10_1109_TIP_2024_3388970 crossref_primary_10_1016_j_bbe_2021_05_007 crossref_primary_10_1016_j_media_2021_102190 crossref_primary_10_1109_JBHI_2024_3516758 crossref_primary_10_1109_ACCESS_2020_3039527 crossref_primary_10_1016_j_compmedimag_2021_101969 crossref_primary_10_1109_JAS_2022_105743 crossref_primary_10_1109_JBHI_2021_3094578 crossref_primary_10_1007_s13534_024_00425_9 crossref_primary_10_1016_j_mri_2024_04_023 crossref_primary_10_1002_mrm_29684 crossref_primary_10_3934_ipi_2020051 crossref_primary_10_1002_nbm_4540 crossref_primary_10_1016_j_cmpb_2021_106121 crossref_primary_10_1016_j_patcog_2024_110801 crossref_primary_10_3390_jimaging7110231 crossref_primary_10_1109_TMI_2023_3294245 crossref_primary_10_1002_mrm_28912 crossref_primary_10_11834_jig_230041 crossref_primary_10_1016_j_media_2025_103459 crossref_primary_10_1016_j_mri_2024_110267 crossref_primary_10_1109_TGRS_2024_3384059 crossref_primary_10_1109_TMI_2020_3023620 crossref_primary_10_3389_fradi_2021_781868 crossref_primary_10_1109_TNNLS_2021_3105901 crossref_primary_10_1016_j_mri_2020_08_014 crossref_primary_10_1016_j_mri_2020_08_013 crossref_primary_10_1016_j_mri_2024_01_007 crossref_primary_10_1016_j_mri_2020_12_019 crossref_primary_10_1016_j_neuroimage_2022_119680 crossref_primary_10_1109_ACCESS_2020_3041867 crossref_primary_10_1109_TIM_2023_3331413 crossref_primary_10_1109_TIM_2024_3417538 crossref_primary_10_1109_TNNLS_2021_3090303 crossref_primary_10_1109_JPROC_2022_3141367 crossref_primary_10_1002_mrm_30105 crossref_primary_10_1016_j_bspc_2024_106134 crossref_primary_10_1109_TMI_2022_3153849 crossref_primary_10_1016_j_compbiomed_2024_108905 crossref_primary_10_1111_jfpe_13620 crossref_primary_10_1109_TCBB_2022_3213669 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1186_s42492_020_00065_7 crossref_primary_10_1016_j_compmedimag_2021_101862 crossref_primary_10_3390_rs14236087 crossref_primary_10_1109_TCI_2023_3252260 crossref_primary_10_1109_TRPMS_2020_3025071 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1002_nbm_5291 crossref_primary_10_1109_ACCESS_2020_3036380 crossref_primary_10_1109_TMI_2023_3234968 crossref_primary_10_1002_nbm_5179 crossref_primary_10_1038_s41598_021_94692_6 crossref_primary_10_1016_j_neuroimage_2021_118404 crossref_primary_10_1016_j_knosys_2025_113048 crossref_primary_10_1016_j_cmpb_2023_107590 crossref_primary_10_1016_j_mri_2024_05_008 crossref_primary_10_1038_s41598_020_69932_w crossref_primary_10_1088_1361_6560_ad6d28 crossref_primary_10_1016_j_mri_2024_02_004 crossref_primary_10_1109_ACCESS_2020_3041807 crossref_primary_10_1016_j_media_2021_101987 crossref_primary_10_3389_fonc_2023_1095637 crossref_primary_10_1088_1361_6560_acc0cd crossref_primary_10_1016_j_cmpb_2023_107440 crossref_primary_10_1016_j_neucom_2024_128125 crossref_primary_10_1049_2024_7006156 crossref_primary_10_1016_j_media_2023_102872 crossref_primary_10_1016_j_neucom_2025_129771 crossref_primary_10_1007_s12204_024_2778_0 crossref_primary_10_1016_j_cmpb_2021_105997 crossref_primary_10_3390_appliedmath4030059 crossref_primary_10_1016_j_micpro_2021_104359 crossref_primary_10_1002_mrm_28793 crossref_primary_10_1016_j_mri_2022_01_011 crossref_primary_10_1002_mrm_29400 crossref_primary_10_1016_j_bspc_2023_105810 crossref_primary_10_1016_j_jmr_2022_107354 crossref_primary_10_1002_mrm_29085 crossref_primary_10_1016_j_compbiomed_2022_106204 crossref_primary_10_1109_TCI_2025_3531729 crossref_primary_10_1088_1361_6560_ac5296 crossref_primary_10_1016_j_bspc_2021_102579 crossref_primary_10_1016_j_mri_2023_03_011 crossref_primary_10_1016_j_bspc_2025_107509 crossref_primary_10_1007_s00330_022_08638_1 crossref_primary_10_1016_j_neucom_2022_09_048 crossref_primary_10_1186_s41747_023_00372_7 crossref_primary_10_1109_TNNLS_2023_3253557 crossref_primary_10_1016_j_media_2021_102047 crossref_primary_10_1049_sil2_12180 crossref_primary_10_1109_MSP_2022_3183809 |
Cites_doi | 10.1109/TMI.2013.2256923 10.1002/mrm.20328 10.1109/TMI.2016.2550204 10.1002/mrm.26182 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G 10.1002/mrm.1241 10.1002/mrm.24751 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.27106 10.1002/mp.12600 10.1002/mrm.27201 10.1109/TMI.2017.2760978 10.1109/TCI.2019.2956877 10.1109/TMI.2003.815896 10.1109/TMI.2010.2093536 10.1016/j.media.2011.11.008 10.1002/mrm.24997 10.1038/nature25988 10.1016/j.media.2010.08.001 10.1002/mrm.22428 10.1002/mrm.10171 10.1109/TMI.2017.2723871 10.1109/TMI.2017.2746086 10.1109/TMI.2018.2820120 10.1109/TBME.2018.2821699 10.1002/mrm.25717 10.1002/mrm.27921 10.1109/TMI.2015.2509245 10.1002/mrm.26977 10.1137/040605412 10.1109/TMI.2018.2865356 10.1109/TMI.2018.2863670 10.1002/mrm.27827 10.1002/mrm.25663 10.1109/TIP.2011.2150231 10.1002/mrm.21236 10.1016/j.media.2013.09.007 10.1002/mrm.20285 10.1002/mrm.1910380414 10.1109/TMI.2018.2858752 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.mri.2020.02.002 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 147 |
ExternalDocumentID | 32045635 10_1016_j_mri_2020_02_002 S0730725X19305338 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c403t-1c0ba35fa16bd365e22e681f45ad297f0596fee22f358b1a86daa9ded45b2a7c3 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Mon Jul 21 09:37:10 EDT 2025 Wed Feb 19 02:30:14 EST 2025 Thu Apr 24 23:12:54 EDT 2025 Tue Jul 01 01:55:25 EDT 2025 Fri Feb 23 02:48:02 EST 2024 Tue Aug 26 18:33:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Prior knowledge Parallel imaging Convolutional neural network Fast MR imaging |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-1c0ba35fa16bd365e22e681f45ad297f0596fee22f358b1a86daa9ded45b2a7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32045635 |
PQID | 2354194566 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2354194566 pubmed_primary_32045635 crossref_citationtrail_10_1016_j_mri_2020_02_002 crossref_primary_10_1016_j_mri_2020_02_002 elsevier_sciencedirect_doi_10_1016_j_mri_2020_02_002 elsevier_clinicalkey_doi_10_1016_j_mri_2020_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 2020-May 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kim, Setsompop, Haldar (bb0100) 2017; 77 Pruessmann, Weiger, Scheidegger, Boesiger (bb0005) 1999; 42 Sun, Li, Xu (bb0175) 2016 Trabelsi, Bilaniuk, Zhang, Serdyuk, Subramanian, Santos (bb0270) 2017 Wang, Zhao, Huang, Tan, Liu, Ying (bb0250) 2017 Haldar, Zhuo (bb0095) 2016; 75 Wang, Huang, Zhao, Yang, Ying, Liang (bb0240) 2017 Chang, Liang, Ying (bb0150) 2011 Sodickson, Manning (bb0010) 1997; 38 Dedmari, Conjeti, Estrada, Ehses, St?cker, Reuter (bb0285) 2019 Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock (bb0165) 2018; 79 Walsh, Gmitro, Marcellin (bb0295) 2000; 43 Liang, Madore, Glover, Pelc (bb0140) 2003; 22 Wang, Su, Ying, Peng, Liang (bb0160) 2016 Wang, Ke, Cheng, Ying, Liu, Zheng (bb0255) 2018 Liu, Samsonov, Chen, Kijowski, Feng (bb0220) 2019 Samsonov, Kholmovski, Parker, Johnson (bb0145) 2004; 52 Hui, Smith (bb0275) 1995 Qin, Schlemper, Caballero, Price, Hajnal, Rueckert (bb0210) 2019; 38 Ramani, Fessler (bb0050) 2011; 30 Block, Uecker, Frahm (bb0065) 2007; 57 Weller, Polimeni, Grady, Wald, Adalsteinsson, Goyal (bb0040) 2013; 32 Aggarwal, Mani, Jacob (bb0225) 2019; 38 Mardani, Gong, Cheng, Vasanawala, Zaharchuk, Xing (bb0235) 2019; 38 Liu, Liu, Zhang, Yang, Wang, Liang (bb0230) 2020; 6 Qu, Hou, Lam, Guo, Zhong, Chen (bb0080) 2014; 18 Quan, Nguyen-Duc, Jeong (bb0200) 2018; 37 Chen, Li, Huang (bb0075) 2013 Zhou, Wang, Balu, Li, Yuan (bb0110) 2016; 75 Han, Yoo, Kim, Shin, Sung, Ye (bb0185) 2018; 80 Eo, Jun, Kim, Jang, Lee, Hwang (bb0190) 2018; 80 Wang, Tan, Gao, Liu, Ying, Xiao (bb0055) 2018; 37 He, Liu, Christodoulou, Ma, Lam, Liang (bb0115) 2016; 35 Cole, Pauly, Cheng (bb0290) 2019 Wang, Cheng, Ke, Ying, Liu, Zheng (bb0265) 2018 Uecker, Lai, Murphy, Virtue, Elad, Pauly (bb0025) 2014; 71 Liu, Yang, Cheng, Wang, Zhang, Liang (bb0085) 2020; 83 Pruessmann, Weiger, Börnert, Boesiger (bb0030) 2001; 46 Shin, Larson, Ohliger, Elad, Pauly, Vigneron (bb0105) 2014; 72 Wang, Xiao, Tan, Liu, Ying, Liang (bb0245) 2017 Griswold, Jakob, Heidemann, Nittka, Jellus, Wang (bb0015) 2002; 47 Kwon, Kim, Park (bb0260) 2017; 44 Nakarmi, Wang, Lyu, Liang, Ying (bb0130) 2017; 36 Schlemper, Caballero, Hajnal, Price, Rueckert (bb0205) 2018; 37 Virtue, Stella, Lustig (bb0280) 2017 Liu, Zou, Ying (bb0035) 2008 S. Wang, Z. Ke, H. Cheng, S. Jia, L. Ying, H. Zheng, D. Liang. DIMENSION: dynamic MR imaging with both K-space and spatial prior knowledge obtained via multi-supervised network training, NMR Biomed, e4131. Wu, Liu, Jiao, Wang, Hou (bb0120) 2011; 20 Lee, Yoo, Tak, Ye (bb0215) 2018; 65 Lustig, Pauly (bb0020) 2010; 64 Wachinger, Yigitsoy, Rijkhorst, Navab (bb0125) 2012; 16 Chaâri, Pesquet, Benazza-Benyahia, Ciuciu (bb0060) 2011; 15 Liang (bb0090) 2007 Park, Zhang, Jellus, Simonetti, Li (bb0045) 2005; 53 Chen, Xiao, Li, Liu, Wang (bb0170) 2019 Wang, Su, Ying, Peng, Zhu, Liang (bb0155) 2016 Poddar, Jacob (bb0135) 2016; 35 Osher, Burger, Goldfarb, Xu, Yin (bb0070) 2005; 4 Zhu, Liu, Cauley, Rosen, Rosen (bb0180) 2017; 555 Poddar (10.1016/j.mri.2020.02.002_bb0135) 2016; 35 Trabelsi (10.1016/j.mri.2020.02.002_bb0270) 2017 Virtue (10.1016/j.mri.2020.02.002_bb0280) 2017 Hui (10.1016/j.mri.2020.02.002_bb0275) 1995 Zhou (10.1016/j.mri.2020.02.002_bb0110) 2016; 75 Liang (10.1016/j.mri.2020.02.002_bb0140) 2003; 22 10.1016/j.mri.2020.02.002_bb0195 Mardani (10.1016/j.mri.2020.02.002_bb0235) 2019; 38 Uecker (10.1016/j.mri.2020.02.002_bb0025) 2014; 71 Haldar (10.1016/j.mri.2020.02.002_bb0095) 2016; 75 Pruessmann (10.1016/j.mri.2020.02.002_bb0030) 2001; 46 Qu (10.1016/j.mri.2020.02.002_bb0080) 2014; 18 Schlemper (10.1016/j.mri.2020.02.002_bb0205) 2018; 37 Wang (10.1016/j.mri.2020.02.002_bb0055) 2018; 37 Wang (10.1016/j.mri.2020.02.002_bb0250) 2017 Liu (10.1016/j.mri.2020.02.002_bb0035) 2008 Lee (10.1016/j.mri.2020.02.002_bb0215) 2018; 65 Wang (10.1016/j.mri.2020.02.002_bb0265) 2018 Wachinger (10.1016/j.mri.2020.02.002_bb0125) 2012; 16 Samsonov (10.1016/j.mri.2020.02.002_bb0145) 2004; 52 Chang (10.1016/j.mri.2020.02.002_bb0150) 2011 Chaâri (10.1016/j.mri.2020.02.002_bb0060) 2011; 15 Liu (10.1016/j.mri.2020.02.002_bb0085) 2020; 83 Cole (10.1016/j.mri.2020.02.002_bb0290) 2019 Liu (10.1016/j.mri.2020.02.002_bb0230) 2020; 6 Wang (10.1016/j.mri.2020.02.002_bb0245) 2017 Kwon (10.1016/j.mri.2020.02.002_bb0260) 2017; 44 Wang (10.1016/j.mri.2020.02.002_bb0155) 2016 Wang (10.1016/j.mri.2020.02.002_bb0160) 2016 Han (10.1016/j.mri.2020.02.002_bb0185) 2018; 80 Eo (10.1016/j.mri.2020.02.002_bb0190) 2018; 80 Park (10.1016/j.mri.2020.02.002_bb0045) 2005; 53 Chen (10.1016/j.mri.2020.02.002_bb0170) 2019 Griswold (10.1016/j.mri.2020.02.002_bb0015) 2002; 47 Chen (10.1016/j.mri.2020.02.002_bb0075) 2013 Liu (10.1016/j.mri.2020.02.002_bb0220) 2019 Kim (10.1016/j.mri.2020.02.002_bb0100) 2017; 77 Hammernik (10.1016/j.mri.2020.02.002_bb0165) 2018; 79 Walsh (10.1016/j.mri.2020.02.002_bb0295) 2000; 43 Ramani (10.1016/j.mri.2020.02.002_bb0050) 2011; 30 Zhu (10.1016/j.mri.2020.02.002_bb0180) 2017; 555 Qin (10.1016/j.mri.2020.02.002_bb0210) 2019; 38 Sodickson (10.1016/j.mri.2020.02.002_bb0010) 1997; 38 Nakarmi (10.1016/j.mri.2020.02.002_bb0130) 2017; 36 Dedmari (10.1016/j.mri.2020.02.002_bb0285) 2019 He (10.1016/j.mri.2020.02.002_bb0115) 2016; 35 Shin (10.1016/j.mri.2020.02.002_bb0105) 2014; 72 Aggarwal (10.1016/j.mri.2020.02.002_bb0225) 2019; 38 Quan (10.1016/j.mri.2020.02.002_bb0200) 2018; 37 Pruessmann (10.1016/j.mri.2020.02.002_bb0005) 1999; 42 Liang (10.1016/j.mri.2020.02.002_bb0090) 2007 Wu (10.1016/j.mri.2020.02.002_bb0120) 2011; 20 Weller (10.1016/j.mri.2020.02.002_bb0040) 2013; 32 Block (10.1016/j.mri.2020.02.002_bb0065) 2007; 57 Osher (10.1016/j.mri.2020.02.002_bb0070) 2005; 4 Wang (10.1016/j.mri.2020.02.002_bb0255) 2018 Sun (10.1016/j.mri.2020.02.002_bb0175) 2016 Wang (10.1016/j.mri.2020.02.002_bb0240) 2017 Lustig (10.1016/j.mri.2020.02.002_bb0020) 2010; 64 |
References_xml | – volume: 35 start-page: 2119 year: 2016 end-page: 2129 ident: bb0115 article-title: Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors publication-title: IEEE Trans Med Imaging – volume: 64 start-page: 457 year: 2010 end-page: 471 ident: bb0020 article-title: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space publication-title: Magn Reson Med – volume: 20 start-page: 3483 year: 2011 end-page: 3494 ident: bb0120 article-title: Multivariate compressive sensing for image reconstruction in the wavelet domain: using scale mixture models publication-title: IEEE Trans Image Process – start-page: 10 year: 2016 end-page: 18 ident: bb0175 article-title: Deep ADMM-net for compressive sensing MRI publication-title: Advances in neural information processing systems – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: bb0005 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 15 start-page: 185 year: 2011 end-page: 201 ident: bb0060 article-title: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging publication-title: Med Image Anal – reference: S. Wang, Z. Ke, H. Cheng, S. Jia, L. Ying, H. Zheng, D. Liang. DIMENSION: dynamic MR imaging with both K-space and spatial prior knowledge obtained via multi-supervised network training, NMR Biomed, e4131. – volume: 36 start-page: 2297 year: 2017 end-page: 2307 ident: bb0130 article-title: A kernel-based low-rank (klr) model for low-dimensional manifold recovery in highly accelerated dynamic MRI publication-title: IEEE Trans Med Imaging – volume: 80 start-page: 1189 year: 2018 end-page: 1205 ident: bb0185 article-title: Deep learning with domain adaptation for accelerated projection-reconstruction MR publication-title: Magn Reson Med – volume: 6 start-page: 434 year: 2020 end-page: 446 ident: bb0230 article-title: IFR-net: iterative feature refinement net-work for compressed sensing MRI publication-title: IEEE Transactions on Computational Imaging – start-page: 30 year: 2019 end-page: 38 ident: bb0285 article-title: Complex fully convolutional neural networks for MR image reconstruction – volume: 77 start-page: 1021 year: 2017 end-page: 1035 ident: bb0100 article-title: LORAKS makes better SENSE: phase-constrained partial fourier sense reconstruction without phase calibration publication-title: Magn Reson Med – start-page: 1890 year: 2019 end-page: 1904 ident: bb0220 article-title: SANTIS: sampling augmented neural network with incoherent structure for MR image reconstruction publication-title: Magn Reson Med – volume: 72 start-page: 959 year: 2014 end-page: 970 ident: bb0105 article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion publication-title: Magn Reson Med – volume: 35 start-page: 1106 year: 2016 end-page: 1115 ident: bb0135 article-title: Dynamic MRI using smoothness regularization on manifolds (SToRM) publication-title: IEEE Trans Med Imaging – volume: 38 start-page: 167 year: 2019 end-page: 179 ident: bb0235 article-title: Deep generative adversarial neural networks for compressive sensing MRI publication-title: IEEE Trans Med Imaging – volume: 65 start-page: 1985 year: 2018 end-page: 1995 ident: bb0215 article-title: Deep residual learning for accelerated MRI using magnitude and phase networks publication-title: IEEE Trans Biomed Eng – volume: 22 start-page: 1026 year: 2003 end-page: 1030 ident: bb0140 article-title: Fast algorithms for GS-model-based image reconstruction in data-sharing fourier imaging publication-title: IEEE Trans Med Imaging – year: 2016 ident: bb0160 article-title: Exploiting deep convolutional neural network for fast magnetic resonance imaging publication-title: ISMRM 24th annual meeting and exhibition – volume: 38 start-page: 280 year: 2019 end-page: 290 ident: bb0210 article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging – start-page: 514 year: 2016 end-page: 517 ident: bb0155 article-title: Accelerating magnetic resonance imaging via deep learning publication-title: 2016 IEEE 13th international symposium on biomedical imaging (ISBI) – volume: 16 start-page: 806 year: 2012 end-page: 818 ident: bb0125 article-title: Manifold learning for image-based breathing gating in ultrasound and MRI publication-title: Med Image Anal – volume: 52 start-page: 1397 year: 2004 end-page: 1406 ident: bb0145 article-title: POC-SENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging publication-title: Magn Reson Med – start-page: 4714 year: 2019 ident: bb0290 article-title: Complex-valued convolutional neural networks for MRI reconstruction publication-title: In proceedings of the 27th annual meeting of ISMRM, Montreal, Canada – volume: 43 start-page: 682 year: 2000 end-page: 690 ident: bb0295 article-title: Adaptive reconstruction of phased array MR imagery publication-title: Magn Reson Med – start-page: 513 year: 1995 end-page: 516 ident: bb0275 article-title: MRI reconstruction from truncated data using a complex domain backpropagation neural network publication-title: IEEE pacific rim conference on communications, computers, and signal processing. Proceedings, Victoria, BC, Canada – volume: 46 start-page: 638 year: 2001 end-page: 651 ident: bb0030 article-title: Advances in sensitivity encoding with arbitrary k-space trajectories publication-title: Magn Reson Med – volume: 38 start-page: 394 year: 2019 end-page: 405 ident: bb0225 article-title: MoDL: model-based deep learning architecture for inverse problems publication-title: IEEE Trans Med Imaging – year: 2017 ident: bb0270 article-title: Deep complex networks, arXiv preprint arXiv:1705.09792 – start-page: 5482 year: 2017 ident: bb0240 article-title: 1d partial fourier parallel MR imaging with deep convolutional neural network publication-title: Proceedings of the 25st annual meeting of ISMRM, Honolulu, HI, USA – volume: 555 start-page: 487 year: 2017 ident: bb0180 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature – start-page: 2781 year: 2018 ident: bb0265 article-title: Complex-valued residual network learning for parallel MR imaging publication-title: Proceedings of the 26st annual meeting of ISMRM – start-page: 4224 year: 2017 ident: bb0245 article-title: Undersampling trajectory design for fast MRI with super-resolution convolutional neural network publication-title: Proceedings of the 25st annual meeting of ISMRM, Honolulu, HI, USA – start-page: 3953 year: 2017 end-page: 3957 ident: bb0280 article-title: Better than real: Complex-valued neural nets for MRI fingerprinting publication-title: IEEE international conference on image processing (ICIP) – start-page: 2786 year: 2018 ident: bb0255 article-title: Investigation of convolutional neural network based deep learning for cardiac imaging publication-title: Proceedings of the 26st annual meeting of ISMRM, Paris, France – volume: 75 start-page: 750 year: 2016 end-page: 761 ident: bb0110 article-title: STEP: self-supporting tailored k-space estimation for parallel imaging reconstruction publication-title: Magn Reson Med – start-page: 106 year: 2013 end-page: 114 ident: bb0075 article-title: Calibrationless parallel MRI with joint total variation regularization publication-title: International conference on medical image computing and computer-assisted intervention (MICCAI) – volume: 44 start-page: 6209 year: 2017 end-page: 6224 ident: bb0260 article-title: A parallel MR imaging method using multilayer perceptron publication-title: Med Phys – volume: 18 start-page: 843 year: 2014 end-page: 856 ident: bb0080 article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator publication-title: Med Image Anal – start-page: 389 year: 2011 end-page: 392 ident: bb0150 article-title: A kernel approach to parallel MRI reconstruction publication-title: 2011 IEEE international symposium on biomedical imaging (ISBI): From Nano to macro – volume: 57 start-page: 1086 year: 2007 end-page: 1098 ident: bb0065 article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint publication-title: Magn Reson Med – volume: 38 start-page: 591 year: 1997 end-page: 603 ident: bb0010 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med – volume: 75 start-page: 1499 year: 2016 end-page: 1514 ident: bb0095 article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data publication-title: Magn Reson Med – volume: 53 start-page: 186 year: 2005 end-page: 193 ident: bb0045 article-title: Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density sampling publication-title: Magn Reson Med – volume: 30 start-page: 694 year: 2011 end-page: 706 ident: bb0050 article-title: Parallel MR image reconstruction using augmented lagrangian methods publication-title: IEEE Trans Med Imaging – volume: 47 start-page: 1202 year: 2002 end-page: 1210 ident: bb0015 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 79 start-page: 3055 year: 2018 end-page: 3071 ident: bb0165 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med – volume: 80 start-page: 2188 year: 2018 end-page: 2201 ident: bb0190 article-title: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images publication-title: Magn Reson Med – volume: 83 start-page: 322 year: 2020 end-page: 336 ident: bb0085 article-title: Highly undersampled magnetic resonance imaging reconstruction using autoencoder priors publication-title: Magn Reson Med – volume: 32 start-page: 1325 year: 2013 end-page: 1335 ident: bb0040 article-title: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction publication-title: IEEE Trans Med Imaging – start-page: 127 year: 2008 end-page: 130 ident: bb0035 article-title: Sparsesense: Application of compressed sensing in parallel mri publication-title: 2008 international conference on information technology and applications in biomedicine – volume: 71 start-page: 990 year: 2014 end-page: 1001 ident: bb0025 article-title: ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn Reson Med – start-page: 30 year: 2019 end-page: 38 ident: bb0170 article-title: Model-based convolutional De-aliasing network learning for parallel MR imaging. International conference on medical image computing and computer-assisted intervention (MICCAI) – volume: 37 start-page: 491 year: 2018 end-page: 503 ident: bb0205 article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging – start-page: 4302 year: 2017 ident: bb0250 article-title: Feasibility of multi-contrast MR imaging via deep learning publication-title: Proceedings of the 25st annual meeting of ISMRM, Honolulu, HI, USA – volume: 4 start-page: 460 year: 2005 end-page: 489 ident: bb0070 article-title: An iterative regularization method for total variation-based image restoration publication-title: Multiscale Model Simul – start-page: 988 year: 2007 end-page: 991 ident: bb0090 article-title: Spatiotemporal imaging with partially separable functions publication-title: 2007 4th IEEE international symposium on biomedical imaging (ISBI): From Nano to macro – volume: 37 start-page: 251 year: 2018 end-page: 261 ident: bb0055 article-title: Learning joint-sparse codes for calibration-free parallel mr imaging publication-title: IEEE Trans Med Imaging – volume: 37 start-page: 1488 year: 2018 end-page: 1497 ident: bb0200 article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss publication-title: IEEE Trans Med Imaging – volume: 32 start-page: 1325 issue: 7 year: 2013 ident: 10.1016/j.mri.2020.02.002_bb0040 article-title: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2256923 – volume: 53 start-page: 186 issue: 1 year: 2005 ident: 10.1016/j.mri.2020.02.002_bb0045 article-title: Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density sampling publication-title: Magn Reson Med doi: 10.1002/mrm.20328 – start-page: 5482 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0240 article-title: 1d partial fourier parallel MR imaging with deep convolutional neural network – volume: 35 start-page: 2119 issue: 9 year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0115 article-title: Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2550204 – volume: 77 start-page: 1021 issue: 3 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0100 article-title: LORAKS makes better SENSE: phase-constrained partial fourier sense reconstruction without phase calibration publication-title: Magn Reson Med doi: 10.1002/mrm.26182 – volume: 43 start-page: 682 issue: 5 year: 2000 ident: 10.1016/j.mri.2020.02.002_bb0295 article-title: Adaptive reconstruction of phased array MR imagery publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G – volume: 46 start-page: 638 issue: 4 year: 2001 ident: 10.1016/j.mri.2020.02.002_bb0030 article-title: Advances in sensitivity encoding with arbitrary k-space trajectories publication-title: Magn Reson Med doi: 10.1002/mrm.1241 – start-page: 513 year: 1995 ident: 10.1016/j.mri.2020.02.002_bb0275 article-title: MRI reconstruction from truncated data using a complex domain backpropagation neural network – volume: 71 start-page: 990 issue: 3 year: 2014 ident: 10.1016/j.mri.2020.02.002_bb0025 article-title: ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn Reson Med doi: 10.1002/mrm.24751 – start-page: 127 year: 2008 ident: 10.1016/j.mri.2020.02.002_bb0035 article-title: Sparsesense: Application of compressed sensing in parallel mri – volume: 42 start-page: 952 issue: 5 year: 1999 ident: 10.1016/j.mri.2020.02.002_bb0005 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – start-page: 389 year: 2011 ident: 10.1016/j.mri.2020.02.002_bb0150 article-title: A kernel approach to parallel MRI reconstruction – volume: 80 start-page: 1189 issue: 3 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0185 article-title: Deep learning with domain adaptation for accelerated projection-reconstruction MR publication-title: Magn Reson Med doi: 10.1002/mrm.27106 – volume: 44 start-page: 6209 issue: 12 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0260 article-title: A parallel MR imaging method using multilayer perceptron publication-title: Med Phys doi: 10.1002/mp.12600 – volume: 80 start-page: 2188 issue: 5 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0190 article-title: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images publication-title: Magn Reson Med doi: 10.1002/mrm.27201 – volume: 37 start-page: 491 issue: 2 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0205 article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2760978 – start-page: 988 year: 2007 ident: 10.1016/j.mri.2020.02.002_bb0090 article-title: Spatiotemporal imaging with partially separable functions – volume: 6 start-page: 434 year: 2020 ident: 10.1016/j.mri.2020.02.002_bb0230 article-title: IFR-net: iterative feature refinement net-work for compressed sensing MRI publication-title: IEEE Transactions on Computational Imaging doi: 10.1109/TCI.2019.2956877 – volume: 22 start-page: 1026 issue: 8 year: 2003 ident: 10.1016/j.mri.2020.02.002_bb0140 article-title: Fast algorithms for GS-model-based image reconstruction in data-sharing fourier imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.815896 – volume: 30 start-page: 694 issue: 3 year: 2011 ident: 10.1016/j.mri.2020.02.002_bb0050 article-title: Parallel MR image reconstruction using augmented lagrangian methods publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2093536 – start-page: 2781 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0265 article-title: Complex-valued residual network learning for parallel MR imaging – volume: 16 start-page: 806 issue: 4 year: 2012 ident: 10.1016/j.mri.2020.02.002_bb0125 article-title: Manifold learning for image-based breathing gating in ultrasound and MRI publication-title: Med Image Anal doi: 10.1016/j.media.2011.11.008 – start-page: 514 year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0155 article-title: Accelerating magnetic resonance imaging via deep learning – volume: 72 start-page: 959 issue: 4 year: 2014 ident: 10.1016/j.mri.2020.02.002_bb0105 article-title: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion publication-title: Magn Reson Med doi: 10.1002/mrm.24997 – start-page: 4714 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0290 article-title: Complex-valued convolutional neural networks for MRI reconstruction – volume: 555 start-page: 487 issue: 7697 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0180 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature doi: 10.1038/nature25988 – start-page: 4224 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0245 article-title: Undersampling trajectory design for fast MRI with super-resolution convolutional neural network – volume: 15 start-page: 185 issue: 2 year: 2011 ident: 10.1016/j.mri.2020.02.002_bb0060 article-title: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging publication-title: Med Image Anal doi: 10.1016/j.media.2010.08.001 – volume: 64 start-page: 457 issue: 2 year: 2010 ident: 10.1016/j.mri.2020.02.002_bb0020 article-title: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space publication-title: Magn Reson Med doi: 10.1002/mrm.22428 – volume: 47 start-page: 1202 issue: 6 year: 2002 ident: 10.1016/j.mri.2020.02.002_bb0015 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med doi: 10.1002/mrm.10171 – volume: 36 start-page: 2297 issue: 11 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0130 article-title: A kernel-based low-rank (klr) model for low-dimensional manifold recovery in highly accelerated dynamic MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2723871 – volume: 37 start-page: 251 issue: 1 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0055 article-title: Learning joint-sparse codes for calibration-free parallel mr imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2746086 – volume: 37 start-page: 1488 issue: 6 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0200 article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2820120 – year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0160 article-title: Exploiting deep convolutional neural network for fast magnetic resonance imaging – volume: 65 start-page: 1985 issue: 9 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0215 article-title: Deep residual learning for accelerated MRI using magnitude and phase networks publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2821699 – volume: 75 start-page: 1499 issue: 4 year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0095 article-title: P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data publication-title: Magn Reson Med doi: 10.1002/mrm.25717 – volume: 83 start-page: 322 issue: 1 year: 2020 ident: 10.1016/j.mri.2020.02.002_bb0085 article-title: Highly undersampled magnetic resonance imaging reconstruction using autoencoder priors publication-title: Magn Reson Med doi: 10.1002/mrm.27921 – volume: 35 start-page: 1106 issue: 4 year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0135 article-title: Dynamic MRI using smoothness regularization on manifolds (SToRM) publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2509245 – volume: 79 start-page: 3055 issue: 6 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0165 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med doi: 10.1002/mrm.26977 – volume: 4 start-page: 460 issue: 2 year: 2005 ident: 10.1016/j.mri.2020.02.002_bb0070 article-title: An iterative regularization method for total variation-based image restoration publication-title: Multiscale Model Simul doi: 10.1137/040605412 – start-page: 30 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0170 – volume: 38 start-page: 394 issue: 2 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0225 article-title: MoDL: model-based deep learning architecture for inverse problems publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2865356 – year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0270 – start-page: 106 year: 2013 ident: 10.1016/j.mri.2020.02.002_bb0075 article-title: Calibrationless parallel MRI with joint total variation regularization – volume: 38 start-page: 280 issue: 1 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0210 article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2863670 – start-page: 1890 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0220 article-title: SANTIS: sampling augmented neural network with incoherent structure for MR image reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.27827 – volume: 75 start-page: 750 issue: 2 year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0110 article-title: STEP: self-supporting tailored k-space estimation for parallel imaging reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.25663 – volume: 20 start-page: 3483 issue: 12 year: 2011 ident: 10.1016/j.mri.2020.02.002_bb0120 article-title: Multivariate compressive sensing for image reconstruction in the wavelet domain: using scale mixture models publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2150231 – start-page: 30 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0285 – volume: 57 start-page: 1086 issue: 6 year: 2007 ident: 10.1016/j.mri.2020.02.002_bb0065 article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint publication-title: Magn Reson Med doi: 10.1002/mrm.21236 – start-page: 10 year: 2016 ident: 10.1016/j.mri.2020.02.002_bb0175 article-title: Deep ADMM-net for compressive sensing MRI – volume: 18 start-page: 843 issue: 6 year: 2014 ident: 10.1016/j.mri.2020.02.002_bb0080 article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator publication-title: Med Image Anal doi: 10.1016/j.media.2013.09.007 – start-page: 3953 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0280 article-title: Better than real: Complex-valued neural nets for MRI fingerprinting – volume: 52 start-page: 1397 issue: 6 year: 2004 ident: 10.1016/j.mri.2020.02.002_bb0145 article-title: POC-SENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20285 – ident: 10.1016/j.mri.2020.02.002_bb0195 – start-page: 4302 year: 2017 ident: 10.1016/j.mri.2020.02.002_bb0250 article-title: Feasibility of multi-contrast MR imaging via deep learning – volume: 38 start-page: 591 issue: 4 year: 1997 ident: 10.1016/j.mri.2020.02.002_bb0010 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med doi: 10.1002/mrm.1910380414 – start-page: 2786 year: 2018 ident: 10.1016/j.mri.2020.02.002_bb0255 article-title: Investigation of convolutional neural network based deep learning for cardiac imaging – volume: 38 start-page: 167 issue: 1 year: 2019 ident: 10.1016/j.mri.2020.02.002_bb0235 article-title: Deep generative adversarial neural networks for compressive sensing MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2858752 |
SSID | ssj0005235 |
Score | 2.6349502 |
Snippet | This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136 |
SubjectTerms | Convolutional neural network Deep learning Fast MR imaging Parallel imaging Prior knowledge |
Title | DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19305338 https://dx.doi.org/10.1016/j.mri.2020.02.002 https://www.ncbi.nlm.nih.gov/pubmed/32045635 https://www.proquest.com/docview/2354194566 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EYfEi6voYdaUXPAlxkn4kGW_iKuPKePABc2v6CZExDjqCJ3-7VUln0IMu7DFJV9JUV6q_7v6qipCDApbGNi9N4rx1iZCFTUo5wE0cobktrfYeo5FHV_nwTvwdy_ECOe1iYZBWGX1_69Mbbx3v9KM2-9Oq6t-gcRZMjgGCYEApBvwKUaCVH719pHm0RTahcYKtu5PNhuP18FTBEpGlbdpO9tXc9BX2bOag81WyEsEjPWn7t0YWfL1Ofozi8fhPEv54P21I4v51dH1xTBuGXYXMZurgEYW1dRN8ReuW_U0BstKgn2cUU4BPJn5CR9e0emhKF1Hco6XxdRTp6dFMN8jd-dnt6TCJhRQSK1I-SzKbGs1l0FluHM-lZ8znZRaE1I4NioAleIKHu4HL0mS6zJ3WA-edkIbpwvJNslg_1n6b0EwbC6AkcAAqgpnCWB4MjK4BGOA4kz2SdipUNmYZx2IXE9XRye4VaF2h1lXKFGi9Rw7nItM2xcZ3jVk3LqqLHQVvp2AC-E5IzIU-Gde_xH53A6_gp8OTFF37x5dnBTYlsgFgz7xHtlqLmHedY4J_0M7O_310lyzjVcup3COLs6cX_wtwz8zsN4a9T5ZOLi6HV-91uAIO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxLNseRmJE1LYxI8kyw0Vqi00PZRW2pvlpxS0TVftVuLU385M4qzg0CJxtT2JNR7bn-1vZgDeV3g0dmVtMx-cz6SqXFarGV3iSCNc7UwI5I3cHJXzU_ltoRZbsDf6whCtMq39w5rer9apZJq0OV217fQHGWfF1QIhCDmU1nfgrsTpS2kMPl7_yfMYsmxi64yaj0-bPcnr7KLFMyLPh7id_KbN6Sbw2W9C-4_gYUKP7PPQwcewFboncK9J7-NPIX4JYdWzxMOv5vjgE-spdi1Rm5nHKoaH6977inUD_ZshZmXRXK4ZxQBfLsOSNcesPetzFzG6pGXpc4z46clOn8Hp_teTvXmWMilkTuZinRUut0aoaIrSelGqwHko6yJKZTyfVZFy8MSApVGo2hamLr0xMx-8VJabyonnsN2dd-EFsMJYh6gkCkQqktvKOhEtDq9FHOAFVxPIRxVql8KMU7aLpR75ZD81al2T1nXONWp9Ah82IqshxsZtjfk4Lnp0HsXlTuMOcJuQ3Aj9ZV3_Ens3DrzGWUdPKaYL51eXGm1KFjMEn-UEdgaL2HRdUIR_1M7u__30LdyfnzSH-vDg6PtLeEA1A8HyFWyvL67CawRBa_umN_LfSlUDnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepcomplexMRI%3A+Exploiting+deep+residual+network+for+fast+parallel+MR+imaging+with+complex+convolution&rft.jtitle=Magnetic+resonance+imaging&rft.au=Wang%2C+Shanshan&rft.au=Cheng%2C+Huitao&rft.au=Ying%2C+Leslie&rft.au=Xiao%2C+Taohui&rft.date=2020-05-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=68&rft.spage=136&rft.epage=147&rft_id=info:doi/10.1016%2Fj.mri.2020.02.002&rft.externalDocID=S0730725X19305338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |