Fault detection for networked control systems subject to quantisation and packet dropout

This article addresses the stochastic fault detection (SFD) problem in finite-frequency domain for a class of networked control systems (NCSs) with respect to signal quantisation and data packet dropout. Considering a logarithmic quantiser and Markovian packet dropout, the NCS is modelled as a Marko...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of systems science Vol. 44; no. 6; pp. 1150 - 1159
Main Authors Long, Yue, Yang, Guang-Hong
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Group 01.06.2013
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article addresses the stochastic fault detection (SFD) problem in finite-frequency domain for a class of networked control systems (NCSs) with respect to signal quantisation and data packet dropout. Considering a logarithmic quantiser and Markovian packet dropout, the NCS is modelled as a Markov jump linear system (MJLS) with quantisation error. Further, a new definition of finite-frequency stochastic H − index is given, which gives a measurement of sensitivity. Subsequently, sufficient conditions are derived to guarantee that the MJLS can achieve such a performance. By virtue of the obtained conditions, the fault detection filters (FDFs) are designed in finite-frequency domain, which are valid in characterising the disturbance attenuation performance and finite-frequency fault sensitivity performance. Finally, a simulation example is given to illustrate the method and its effectiveness.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0020-7721
1464-5319
DOI:10.1080/00207721.2012.658882