Joint Extraction of Multiple Relations and Entities from Building Code Clauses
The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to addr...
Saved in:
Published in | Applied sciences Vol. 10; no. 20; p. 7103 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to address the complexity of the semantic relations between named entities. In particular, the existence of two or more overlapping relations involving the same entity greatly exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed to extract the relations among entities in the form of triplets. In the proposed model, a hybrid deep learning algorithm combined with a decomposition strategy is applied. First, all candidate subject entities are identified, and then, the associated object entities and predicate relations are simultaneously detected. In this way, multiple relations, especially overlapping relations, can be extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject entities. Moreover, a collection of domain-specific entity and relation types is investigated for model implementation. The experimental results indicate that the proposed model is promising for extracting multiple relations and entities from building codes. |
---|---|
AbstractList | The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to address the complexity of the semantic relations between named entities. In particular, the existence of two or more overlapping relations involving the same entity greatly exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed to extract the relations among entities in the form of triplets. In the proposed model, a hybrid deep learning algorithm combined with a decomposition strategy is applied. First, all candidate subject entities are identified, and then, the associated object entities and predicate relations are simultaneously detected. In this way, multiple relations, especially overlapping relations, can be extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject entities. Moreover, a collection of domain-specific entity and relation types is investigated for model implementation. The experimental results indicate that the proposed model is promising for extracting multiple relations and entities from building codes. The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to address the complexity of the semantic relations between named entities. In particular, the existence of two or more overlapping relations involving the same entity greatly exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed to extract the relations among entities in the form of triplets. In the proposed model, a hybrid deep learning algorithm combined with a decomposition strategy is applied. First, all candidate subject entities are identified, and then, the associated object entities and predicate relations are simultaneously detected. In this way, multiple relations, especially overlapping relations, can be extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject entities. Moreover, a collection of domain-specific entity and relation types is investigated for model implementation. The experimental results indicate that the proposed model is promising for extracting multiple relations and entities from building codes. Keywords: regulation information extraction; building code; deep learning; automated code compliance checking |
Audience | Academic |
Author | Song, Yuanbin Shan, Yongwei Li, Fulin |
Author_xml | – sequence: 1 givenname: Fulin surname: Li fullname: Li, Fulin – sequence: 2 givenname: Yuanbin surname: Song fullname: Song, Yuanbin – sequence: 3 givenname: Yongwei surname: Shan fullname: Shan, Yongwei |
BookMark | eNptUU2LFDEUDLKC67on_0DAo8z68tE93cd1GHVlVRA9h0zy3pChJ2mTNOi_N7MjsojJIY-iXqWoes4uYorI2EsBN0qN8MbOswAJawHqCbtsQ79SWqwvHs3P2HUpB2hnFGoQcMk-f0whVr79WbN1NaTIE_FPy1TDPCH_ipM9gYXb6Pk21lADFk45HfnbJUw-xD3fJI98M9mlYHnBnpKdCl7_ea_Y93fbb5sPq_sv7-82t_crp0HVlbCj12RJDL0gGv2w9mLQapTaIfRo0UmgzgHpTg163PVKEpKXJJ0AQUJdsbuzrk_2YOYcjjb_MskG8wCkvDc21-AmNIAO19h3UpHX3QA7pUBaclaqUe3k0LRenbXmnH4sWKo5pCXHZt_ITmkApWXfWDdn1t420RApnRJr1-MxuNYEhYbf9i3lTgh9svj6vOByKiUj_bUpwJwKM48Ka2zxD9uF-pB9-yZM_935DRu0mNo |
CitedBy_id | crossref_primary_10_1680_jsmic_23_00005 crossref_primary_10_1088_1755_1315_1101_9_092022 crossref_primary_10_36680_j_itcon_2025_002 crossref_primary_10_1016_j_heliyon_2024_e38141 crossref_primary_10_1061_JCEMD4_COENG_14436 crossref_primary_10_3390_app13021131 crossref_primary_10_3390_app15010049 crossref_primary_10_3390_buildings12101638 crossref_primary_10_1016_j_rineng_2022_100680 crossref_primary_10_1016_j_procs_2022_10_007 |
Cites_doi | 10.1016/j.autcon.2019.103006 10.1007/978-3-030-00220-6_67 10.3233/SW-140134 10.3390/app10113902 10.22260/ISARC2018/0080 10.1016/j.aei.2019.101003 10.1016/j.autcon.2016.08.027 10.3390/app10144819 10.1016/j.aei.2019.100966 10.1007/978-3-030-00220-6_27 10.3390/app10165630 10.3390/app9183795 10.1061/(ASCE)CP.1943-5487.0000346 10.1162/neco.1997.9.8.1735 10.1016/j.autcon.2012.06.006 10.1145/3038912.3052708 10.1016/j.autcon.2016.09.004 10.1061/(ASCE)CO.1943-7862.0000131 10.1061/(ASCE)CO.1943-7862.0001199 10.18653/v1/W18-1405 10.18653/v1/P18-1047 10.1016/j.autcon.2009.07.002 10.3390/app10165711 10.1016/j.buildenv.2018.05.046 10.3390/app9071463 10.3390/app10072335 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10207103 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - The Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_0ece7e6523fd4580b3302afca2393b28 A641751141 10_3390_app10207103 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-1a9d4faf1861ff9d87d1843924ce06eaec20f5c0f453849b632fefd2f2c101f13 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:25:45 EDT 2025 Mon Jun 30 07:30:03 EDT 2025 Tue Jun 10 20:28:18 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 03:14:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-1a9d4faf1861ff9d87d1843924ce06eaec20f5c0f453849b632fefd2f2c101f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2534003426?pq-origsite=%requestingapplication% |
PQID | 2534003426 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ece7e6523fd4580b3302afca2393b28 proquest_journals_2534003426 gale_infotracacademiconefile_A641751141 crossref_primary_10_3390_app10207103 crossref_citationtrail_10_3390_app10207103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhong (ref_7) 2012; 28 ref_14 ref_36 ref_13 ref_35 Eastman (ref_1) 2009; 18 ref_34 ref_32 ref_31 ref_30 ref_19 Song (ref_20) 2020; 7 ref_18 Zhong (ref_5) 2018; 141 ref_17 ref_16 Xiong (ref_25) 2019; 42 ref_38 ref_15 ref_37 Zhong (ref_21) 2020; 43 Xiao (ref_27) 2019; 9 Hochreiter (ref_33) 1997; 9 Lehmann (ref_23) 2015; 6 ref_22 Zhou (ref_10) 2017; 74 ref_3 ref_2 Li (ref_11) 2016; 142 Zhang (ref_9) 2017; 73 ref_29 ref_28 ref_26 Zhang (ref_8) 2016; 30 Xu (ref_12) 2017; 109 ref_4 Kandil (ref_24) 2010; 136 ref_6 |
References_xml | – ident: ref_28 – volume: 109 start-page: 103006 year: 2017 ident: ref_12 article-title: Semantic approach to compliance checking of underground utilities publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.103006 – ident: ref_13 doi: 10.1007/978-3-030-00220-6_67 – ident: ref_30 – volume: 6 start-page: 167 year: 2015 ident: ref_23 article-title: DBpedia—A large-scale, multilingual knowledge base extracted from wikipedia publication-title: Semant. Web. doi: 10.3233/SW-140134 – ident: ref_4 doi: 10.3390/app10113902 – ident: ref_18 doi: 10.22260/ISARC2018/0080 – ident: ref_32 – volume: 7 start-page: 1 year: 2020 ident: ref_20 article-title: Deep learning-based extraction of predicate-argument structure (PAS) in building design rule sentences publication-title: J. Comput. Des. Eng. – ident: ref_26 – ident: ref_34 – volume: 43 start-page: 101003 year: 2020 ident: ref_21 article-title: Deep learning-based extraction of construction procedural constraints from construction regulations publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.101003 – volume: 73 start-page: 45 year: 2017 ident: ref_9 article-title: Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.08.027 – ident: ref_22 doi: 10.3390/app10144819 – volume: 42 start-page: 100966 year: 2019 ident: ref_25 article-title: Onsite video mining for construction hazards identification with visual relationships publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100966 – ident: ref_37 – ident: ref_14 doi: 10.1007/978-3-030-00220-6_27 – ident: ref_16 doi: 10.3390/app10165630 – ident: ref_35 – volume: 9 start-page: 3795 year: 2019 ident: ref_27 article-title: A text-generated method to joint extraction of entities and relations publication-title: Appl. Sci. doi: 10.3390/app9183795 – volume: 30 start-page: 04015014 year: 2016 ident: ref_8 article-title: Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000346 – volume: 9 start-page: 1735 year: 1997 ident: ref_33 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 28 start-page: 58 year: 2012 ident: ref_7 article-title: Ontology-based semantic modeling of regulation constraint for automated construction quality compliance checking publication-title: Autom. Constr. doi: 10.1016/j.autcon.2012.06.006 – ident: ref_6 – ident: ref_31 – ident: ref_29 – ident: ref_36 doi: 10.1145/3038912.3052708 – volume: 74 start-page: 103 year: 2017 ident: ref_10 article-title: Ontology-based automated information extraction from building energy conservation codes publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.09.004 – volume: 136 start-page: 294 year: 2010 ident: ref_24 article-title: Concept relation extraction from construction documents using natural language processing publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0000131 – volume: 142 start-page: 04016074 year: 2016 ident: ref_11 article-title: Integrating natural language processing and spatial reasoning for utility compliance checking publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001199 – ident: ref_15 doi: 10.18653/v1/W18-1405 – ident: ref_38 doi: 10.18653/v1/P18-1047 – volume: 18 start-page: 1011 year: 2009 ident: ref_1 article-title: Automatic rule-based checking of building designs publication-title: Autom. Constr. doi: 10.1016/j.autcon.2009.07.002 – ident: ref_17 doi: 10.3390/app10165711 – volume: 141 start-page: 127 year: 2018 ident: ref_5 article-title: Ontology-based framework for building environmental monitoring and compliance checking under BIM environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.05.046 – ident: ref_19 – ident: ref_3 doi: 10.3390/app9071463 – ident: ref_2 doi: 10.3390/app10072335 |
SSID | ssj0000913810 |
Score | 2.2429442 |
Snippet | The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7103 |
SubjectTerms | Algorithms Analysis automated code compliance checking Automation building code Building codes Building law Computational linguistics Data mining Deep learning Engineering Language Language processing Machine learning Methods Natural language Natural language interfaces Ontology Regulation regulation information extraction Regulatory compliance Roles Semantic relations Semantics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ETcXqlBwEP6DYpGnaHOfYGIKeFLyFNB8gSCtbB_755rXZqKB48VpySN73j773ewhdCkMUocTGULvGTCkXlymzcVEYlZsSUhwMCj8-8cULe3jNXnurvqAnrKMH7gR3l1htc8s9XnKGZUVSegBOldMKuLtK2o75-pzXA1NtDBYEqKu6gbzU43r4H-xzKSTU9FsKapn6f4vHbZKZH6D9UB3iSXerIdqx1Qjt9TgDR2gYvHGFrwNl9M0henqo36oGzz6bZTeogGuHH0OvIN42vGFVGTwLLKoYJkvwfViLjae1sXj6rtYruzpCL_PZ83QRh00JsWZJ2sRECcOccqTgxDlhitzAHhePrbRNuFVW08RlOnHMxzcmvAqos85QR7V3SUfSYzSo6sqeIMy87owqbM65YKktFRd5KnSpKBdZmekI3W6EJ3WgEYdtFu_SwwmQtOxJOkKX28MfHXvGz8fuQQvbI0B53X7whiCDIci_DCFCV6BDCY4JwlZhvsA_Cyiu5IQzXyp5-EciNN6oWQaPXUmapazlQ-Sn_3GbM7RLAZm3bX9jNGiWa3vuy5emvGgt9QvUk-vt priority: 102 providerName: Directory of Open Access Journals |
Title | Joint Extraction of Multiple Relations and Entities from Building Code Clauses |
URI | https://www.proquest.com/docview/2534003426 https://doaj.org/article/0ece7e6523fd4580b3302afca2393b28 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SzaU9lCZp6bbJokMgTcHUeliWTyW77DYEspSQQG5C1qMUgp2uHejPr8ar3SbQ9mrrohnN45NmvgE4qRw1lFGfYe6aCWNCVnPhM6WcKV2NIQ4bha-W8uJWXN4Vd-nCrUtllRufODhq11q8I__MCi4Gvjr55eFnhlOj8HU1jdDYhb3ogpUawd50vvx2vb1lQdZLRfN1Yx6P-B7fhWNMxcDKn4WigbH_X355CDaL1_AqZYnkfK3WfdjxzQG8fMIdeAD7ySo78jFRR58dwvKy_dH0ZP6rX60bFkgbyFWqGSTbwjdiGkfmiU2VYIcJmabx2GTWOk9m9-ax890buF3Mb2YXWZqYkFmR8z6jpnIimECVpCFUTpUO57lEjGV9Lr3xluWhsHkQ0c-JKqqCBR8cC8xG0wyUv4VR0zb-HRARdeiM8qWUleC-NrIqeWVrw2RV1IUdw6eN8LRNdOI41eJeR1iBktZPJD2Gk-3ihzWLxt-XTVEL2yVIfT18aFffdbIknXvrSy8jgA5OFCqvOc-ZCdYgmVvN1BhOUYcaDRSFbVKfQdwWUl3pcyliyhRhIB3D0UbNOllup_-cs_f___0BXjDE3kNh3xGM-tWjP44JSl9PYFctvk7SWZwMMP837rrmlA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFS0gFgr4UMRDikhsx0kOCLXLLtvH7qmVejOOHwipSsomVeFP9TfWkzhLkYBbr_EoSmbG87BnvgHYKUyiEprYCGPXiCvlopJxG-W5UZkp0cVho_B8IWYn_OA0PV2Dq6EXBssqB5vYGWpTazwj_0BTxju8OvHp_EeEU6PwdnUYodGrxaH9delTtubj_mcv39eUTifH41kUpgpEmsesjRJVGO6US3KROFeYPDM488TnIdrGwiqraexSHTvubQEv_OdSZ52hjmqvvi5h_r134C5n3pNjZ_r0y-pMBzE28yTu2wD9eoy30N6Doxtnfzi-bj7Av7xA59qmD2EjxKRkt1eiTViz1RY8uIFUuAWbwQY05G0Aqn73CBYH9feqJZOf7bJvjyC1I_NQoUhWZXZEVYZMAnYrwX4WsheGcZNxbSwZn6mLxjaP4eRWOPkE1qu6sk-BcK8xRuU2E6LgzJZKFBkrdKmoKNIy1SN4PzBP6gBejjM0zqRPYpDT8ganR7CzIj7vMTv-TraHUliRINB296BefpNh38rYaptZ4dN1Z3iaxyVjMVVOK4SOK2k-gjcoQ4nmAJmtQleD_y0E1pK7gvsAzSedyQi2BzHLYCca-Vurn_1_-RXcmx3Pj-TR_uLwOdynmPV3JYXbsN4uL-wLHxq15ctOHwl8ve0NcA1JGiDG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsVDAhyIeUtTEdpzkgFB3u6s-6KpCVOrNdfxASFVSNqmAv8avw5M4S5GAW6-JFSUzk3nYM98HsF2YRCU0sRHmrhFXykUl4zbKc6MyU2KIw0Hh44XYP-WHZ-nZGvwcZmGwrXLwiZ2jNrXGPfIdmjLe4dWJHRfaIk725u8vv0bIIIUnrQOdRm8iR_bHN1--Ne8O9ryuX1I6n32a7keBYSDSPGZtlKjCcKdckovEucLkmUH-E1-TaBsLq6ymsUt17Lj3C7zwr06ddYY6qr0pu4T5596C9QyrohGsT2aLk4-rHR5E3MyTuB8KZKyI8Uzax3MM6uyPMNixBfwrJnSBbn4f7oUMlez2JrUBa7bahLvXcAs3YSN4hIa8DrDVbx7A4rD-UrVk9r1d9sMSpHbkOPQrklXTHVGVIbOA5EpwuoVMAjU3mdbGkumFumps8xBOb0SWj2BU1ZV9DIR7-zEqt5kQBWe2VKLIWKFLRUWRlqkew9tBeFIHKHNk1LiQvqRBSctrkh7D9mrxZY_g8fdlE9TCagnCbncX6uVnGf5iGVttMyt88e4MT_O4ZCymymmFQHIlzcfwCnUo0TmgsFWYcfCfhTBbcldwn675EjQZw9agZhm8RiN_2_iT_99-Abe98csPB4ujp3CH4hZA11-4BaN2eWWf-TypLZ8HgyRwftP_wC90_CZY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Extraction+of+Multiple+Relations+and+Entities+from+Building+Code+Clauses&rft.jtitle=Applied+sciences&rft.au=Li%2C+Fulin&rft.au=Song%2C+Yuanbin&rft.au=Shan%2C+Yongwei&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft_id=info:doi/10.3390%2Fapp10207103&rft.externalDocID=A641751141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |