Joint Extraction of Multiple Relations and Entities from Building Code Clauses

The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to addr...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 20; p. 7103
Main Authors Li, Fulin, Song, Yuanbin, Shan, Yongwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to address the complexity of the semantic relations between named entities. In particular, the existence of two or more overlapping relations involving the same entity greatly exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed to extract the relations among entities in the form of triplets. In the proposed model, a hybrid deep learning algorithm combined with a decomposition strategy is applied. First, all candidate subject entities are identified, and then, the associated object entities and predicate relations are simultaneously detected. In this way, multiple relations, especially overlapping relations, can be extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject entities. Moreover, a collection of domain-specific entity and relation types is investigated for model implementation. The experimental results indicate that the proposed model is promising for extracting multiple relations and entities from building codes.
AbstractList The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to address the complexity of the semantic relations between named entities. In particular, the existence of two or more overlapping relations involving the same entity greatly exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed to extract the relations among entities in the form of triplets. In the proposed model, a hybrid deep learning algorithm combined with a decomposition strategy is applied. First, all candidate subject entities are identified, and then, the associated object entities and predicate relations are simultaneously detected. In this way, multiple relations, especially overlapping relations, can be extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject entities. Moreover, a collection of domain-specific entity and relation types is investigated for model implementation. The experimental results indicate that the proposed model is promising for extracting multiple relations and entities from building codes.
The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been explored for extracting computer-understandable engineering constraints from code clauses written in natural language, most are inadequate to address the complexity of the semantic relations between named entities. In particular, the existence of two or more overlapping relations involving the same entity greatly exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed to extract the relations among entities in the form of triplets. In the proposed model, a hybrid deep learning algorithm combined with a decomposition strategy is applied. First, all candidate subject entities are identified, and then, the associated object entities and predicate relations are simultaneously detected. In this way, multiple relations, especially overlapping relations, can be extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject entities. Moreover, a collection of domain-specific entity and relation types is investigated for model implementation. The experimental results indicate that the proposed model is promising for extracting multiple relations and entities from building codes. Keywords: regulation information extraction; building code; deep learning; automated code compliance checking
Audience Academic
Author Song, Yuanbin
Shan, Yongwei
Li, Fulin
Author_xml – sequence: 1
  givenname: Fulin
  surname: Li
  fullname: Li, Fulin
– sequence: 2
  givenname: Yuanbin
  surname: Song
  fullname: Song, Yuanbin
– sequence: 3
  givenname: Yongwei
  surname: Shan
  fullname: Shan, Yongwei
BookMark eNptUU2LFDEUDLKC67on_0DAo8z68tE93cd1GHVlVRA9h0zy3pChJ2mTNOi_N7MjsojJIY-iXqWoes4uYorI2EsBN0qN8MbOswAJawHqCbtsQ79SWqwvHs3P2HUpB2hnFGoQcMk-f0whVr79WbN1NaTIE_FPy1TDPCH_ipM9gYXb6Pk21lADFk45HfnbJUw-xD3fJI98M9mlYHnBnpKdCl7_ea_Y93fbb5sPq_sv7-82t_crp0HVlbCj12RJDL0gGv2w9mLQapTaIfRo0UmgzgHpTg163PVKEpKXJJ0AQUJdsbuzrk_2YOYcjjb_MskG8wCkvDc21-AmNIAO19h3UpHX3QA7pUBaclaqUe3k0LRenbXmnH4sWKo5pCXHZt_ITmkApWXfWDdn1t420RApnRJr1-MxuNYEhYbf9i3lTgh9svj6vOByKiUj_bUpwJwKM48Ka2zxD9uF-pB9-yZM_935DRu0mNo
CitedBy_id crossref_primary_10_1680_jsmic_23_00005
crossref_primary_10_1088_1755_1315_1101_9_092022
crossref_primary_10_36680_j_itcon_2025_002
crossref_primary_10_1016_j_heliyon_2024_e38141
crossref_primary_10_1061_JCEMD4_COENG_14436
crossref_primary_10_3390_app13021131
crossref_primary_10_3390_app15010049
crossref_primary_10_3390_buildings12101638
crossref_primary_10_1016_j_rineng_2022_100680
crossref_primary_10_1016_j_procs_2022_10_007
Cites_doi 10.1016/j.autcon.2019.103006
10.1007/978-3-030-00220-6_67
10.3233/SW-140134
10.3390/app10113902
10.22260/ISARC2018/0080
10.1016/j.aei.2019.101003
10.1016/j.autcon.2016.08.027
10.3390/app10144819
10.1016/j.aei.2019.100966
10.1007/978-3-030-00220-6_27
10.3390/app10165630
10.3390/app9183795
10.1061/(ASCE)CP.1943-5487.0000346
10.1162/neco.1997.9.8.1735
10.1016/j.autcon.2012.06.006
10.1145/3038912.3052708
10.1016/j.autcon.2016.09.004
10.1061/(ASCE)CO.1943-7862.0000131
10.1061/(ASCE)CO.1943-7862.0001199
10.18653/v1/W18-1405
10.18653/v1/P18-1047
10.1016/j.autcon.2009.07.002
10.3390/app10165711
10.1016/j.buildenv.2018.05.046
10.3390/app9071463
10.3390/app10072335
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10207103
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - The Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_0ece7e6523fd4580b3302afca2393b28
A641751141
10_3390_app10207103
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-1a9d4faf1861ff9d87d1843924ce06eaec20f5c0f453849b632fefd2f2c101f13
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:25:45 EDT 2025
Mon Jun 30 07:30:03 EDT 2025
Tue Jun 10 20:28:18 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 03:14:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-1a9d4faf1861ff9d87d1843924ce06eaec20f5c0f453849b632fefd2f2c101f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2534003426?pq-origsite=%requestingapplication%
PQID 2534003426
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_0ece7e6523fd4580b3302afca2393b28
proquest_journals_2534003426
gale_infotracacademiconefile_A641751141
crossref_primary_10_3390_app10207103
crossref_citationtrail_10_3390_app10207103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhong (ref_7) 2012; 28
ref_14
ref_36
ref_13
ref_35
Eastman (ref_1) 2009; 18
ref_34
ref_32
ref_31
ref_30
ref_19
Song (ref_20) 2020; 7
ref_18
Zhong (ref_5) 2018; 141
ref_17
ref_16
Xiong (ref_25) 2019; 42
ref_38
ref_15
ref_37
Zhong (ref_21) 2020; 43
Xiao (ref_27) 2019; 9
Hochreiter (ref_33) 1997; 9
Lehmann (ref_23) 2015; 6
ref_22
Zhou (ref_10) 2017; 74
ref_3
ref_2
Li (ref_11) 2016; 142
Zhang (ref_9) 2017; 73
ref_29
ref_28
ref_26
Zhang (ref_8) 2016; 30
Xu (ref_12) 2017; 109
ref_4
Kandil (ref_24) 2010; 136
ref_6
References_xml – ident: ref_28
– volume: 109
  start-page: 103006
  year: 2017
  ident: ref_12
  article-title: Semantic approach to compliance checking of underground utilities
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.103006
– ident: ref_13
  doi: 10.1007/978-3-030-00220-6_67
– ident: ref_30
– volume: 6
  start-page: 167
  year: 2015
  ident: ref_23
  article-title: DBpedia—A large-scale, multilingual knowledge base extracted from wikipedia
  publication-title: Semant. Web.
  doi: 10.3233/SW-140134
– ident: ref_4
  doi: 10.3390/app10113902
– ident: ref_18
  doi: 10.22260/ISARC2018/0080
– ident: ref_32
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_20
  article-title: Deep learning-based extraction of predicate-argument structure (PAS) in building design rule sentences
  publication-title: J. Comput. Des. Eng.
– ident: ref_26
– ident: ref_34
– volume: 43
  start-page: 101003
  year: 2020
  ident: ref_21
  article-title: Deep learning-based extraction of construction procedural constraints from construction regulations
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.101003
– volume: 73
  start-page: 45
  year: 2017
  ident: ref_9
  article-title: Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.08.027
– ident: ref_22
  doi: 10.3390/app10144819
– volume: 42
  start-page: 100966
  year: 2019
  ident: ref_25
  article-title: Onsite video mining for construction hazards identification with visual relationships
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100966
– ident: ref_37
– ident: ref_14
  doi: 10.1007/978-3-030-00220-6_27
– ident: ref_16
  doi: 10.3390/app10165630
– ident: ref_35
– volume: 9
  start-page: 3795
  year: 2019
  ident: ref_27
  article-title: A text-generated method to joint extraction of entities and relations
  publication-title: Appl. Sci.
  doi: 10.3390/app9183795
– volume: 30
  start-page: 04015014
  year: 2016
  ident: ref_8
  article-title: Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000346
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_33
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 28
  start-page: 58
  year: 2012
  ident: ref_7
  article-title: Ontology-based semantic modeling of regulation constraint for automated construction quality compliance checking
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2012.06.006
– ident: ref_6
– ident: ref_31
– ident: ref_29
– ident: ref_36
  doi: 10.1145/3038912.3052708
– volume: 74
  start-page: 103
  year: 2017
  ident: ref_10
  article-title: Ontology-based automated information extraction from building energy conservation codes
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.09.004
– volume: 136
  start-page: 294
  year: 2010
  ident: ref_24
  article-title: Concept relation extraction from construction documents using natural language processing
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0000131
– volume: 142
  start-page: 04016074
  year: 2016
  ident: ref_11
  article-title: Integrating natural language processing and spatial reasoning for utility compliance checking
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001199
– ident: ref_15
  doi: 10.18653/v1/W18-1405
– ident: ref_38
  doi: 10.18653/v1/P18-1047
– volume: 18
  start-page: 1011
  year: 2009
  ident: ref_1
  article-title: Automatic rule-based checking of building designs
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2009.07.002
– ident: ref_17
  doi: 10.3390/app10165711
– volume: 141
  start-page: 127
  year: 2018
  ident: ref_5
  article-title: Ontology-based framework for building environmental monitoring and compliance checking under BIM environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.05.046
– ident: ref_19
– ident: ref_3
  doi: 10.3390/app9071463
– ident: ref_2
  doi: 10.3390/app10072335
SSID ssj0000913810
Score 2.2429442
Snippet The extraction of regulatory information is a prerequisite for automated code compliance checking. Although a number of machine learning models have been...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7103
SubjectTerms Algorithms
Analysis
automated code compliance checking
Automation
building code
Building codes
Building law
Computational linguistics
Data mining
Deep learning
Engineering
Language
Language processing
Machine learning
Methods
Natural language
Natural language interfaces
Ontology
Regulation
regulation information extraction
Regulatory compliance
Roles
Semantic relations
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ETcXqlBwEP6DYpGnaHOfYGIKeFLyFNB8gSCtbB_755rXZqKB48VpySN73j773ewhdCkMUocTGULvGTCkXlymzcVEYlZsSUhwMCj8-8cULe3jNXnurvqAnrKMH7gR3l1htc8s9XnKGZUVSegBOldMKuLtK2o75-pzXA1NtDBYEqKu6gbzU43r4H-xzKSTU9FsKapn6f4vHbZKZH6D9UB3iSXerIdqx1Qjt9TgDR2gYvHGFrwNl9M0henqo36oGzz6bZTeogGuHH0OvIN42vGFVGTwLLKoYJkvwfViLjae1sXj6rtYruzpCL_PZ83QRh00JsWZJ2sRECcOccqTgxDlhitzAHhePrbRNuFVW08RlOnHMxzcmvAqos85QR7V3SUfSYzSo6sqeIMy87owqbM65YKktFRd5KnSpKBdZmekI3W6EJ3WgEYdtFu_SwwmQtOxJOkKX28MfHXvGz8fuQQvbI0B53X7whiCDIci_DCFCV6BDCY4JwlZhvsA_Cyiu5IQzXyp5-EciNN6oWQaPXUmapazlQ-Sn_3GbM7RLAZm3bX9jNGiWa3vuy5emvGgt9QvUk-vt
  priority: 102
  providerName: Directory of Open Access Journals
Title Joint Extraction of Multiple Relations and Entities from Building Code Clauses
URI https://www.proquest.com/docview/2534003426
https://doaj.org/article/0ece7e6523fd4580b3302afca2393b28
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SzaU9lCZp6bbJokMgTcHUeliWTyW77DYEspSQQG5C1qMUgp2uHejPr8ar3SbQ9mrrohnN45NmvgE4qRw1lFGfYe6aCWNCVnPhM6WcKV2NIQ4bha-W8uJWXN4Vd-nCrUtllRufODhq11q8I__MCi4Gvjr55eFnhlOj8HU1jdDYhb3ogpUawd50vvx2vb1lQdZLRfN1Yx6P-B7fhWNMxcDKn4WigbH_X355CDaL1_AqZYnkfK3WfdjxzQG8fMIdeAD7ySo78jFRR58dwvKy_dH0ZP6rX60bFkgbyFWqGSTbwjdiGkfmiU2VYIcJmabx2GTWOk9m9-ax890buF3Mb2YXWZqYkFmR8z6jpnIimECVpCFUTpUO57lEjGV9Lr3xluWhsHkQ0c-JKqqCBR8cC8xG0wyUv4VR0zb-HRARdeiM8qWUleC-NrIqeWVrw2RV1IUdw6eN8LRNdOI41eJeR1iBktZPJD2Gk-3ihzWLxt-XTVEL2yVIfT18aFffdbIknXvrSy8jgA5OFCqvOc-ZCdYgmVvN1BhOUYcaDRSFbVKfQdwWUl3pcyliyhRhIB3D0UbNOllup_-cs_f___0BXjDE3kNh3xGM-tWjP44JSl9PYFctvk7SWZwMMP837rrmlA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFS0gFgr4UMRDikhsx0kOCLXLLtvH7qmVejOOHwipSsomVeFP9TfWkzhLkYBbr_EoSmbG87BnvgHYKUyiEprYCGPXiCvlopJxG-W5UZkp0cVho_B8IWYn_OA0PV2Dq6EXBssqB5vYGWpTazwj_0BTxju8OvHp_EeEU6PwdnUYodGrxaH9delTtubj_mcv39eUTifH41kUpgpEmsesjRJVGO6US3KROFeYPDM488TnIdrGwiqraexSHTvubQEv_OdSZ52hjmqvvi5h_r134C5n3pNjZ_r0y-pMBzE28yTu2wD9eoy30N6Doxtnfzi-bj7Av7xA59qmD2EjxKRkt1eiTViz1RY8uIFUuAWbwQY05G0Aqn73CBYH9feqJZOf7bJvjyC1I_NQoUhWZXZEVYZMAnYrwX4WsheGcZNxbSwZn6mLxjaP4eRWOPkE1qu6sk-BcK8xRuU2E6LgzJZKFBkrdKmoKNIy1SN4PzBP6gBejjM0zqRPYpDT8ganR7CzIj7vMTv-TraHUliRINB296BefpNh38rYaptZ4dN1Z3iaxyVjMVVOK4SOK2k-gjcoQ4nmAJmtQleD_y0E1pK7gvsAzSedyQi2BzHLYCca-Vurn_1_-RXcmx3Pj-TR_uLwOdynmPV3JYXbsN4uL-wLHxq15ctOHwl8ve0NcA1JGiDG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggGgBsVDAhyIeUtTEdpzkgFB3u6s-6KpCVOrNdfxASFVSNqmAv8avw5M4S5GAW6-JFSUzk3nYM98HsF2YRCU0sRHmrhFXykUl4zbKc6MyU2KIw0Hh44XYP-WHZ-nZGvwcZmGwrXLwiZ2jNrXGPfIdmjLe4dWJHRfaIk725u8vv0bIIIUnrQOdRm8iR_bHN1--Ne8O9ryuX1I6n32a7keBYSDSPGZtlKjCcKdckovEucLkmUH-E1-TaBsLq6ymsUt17Lj3C7zwr06ddYY6qr0pu4T5596C9QyrohGsT2aLk4-rHR5E3MyTuB8KZKyI8Uzax3MM6uyPMNixBfwrJnSBbn4f7oUMlez2JrUBa7bahLvXcAs3YSN4hIa8DrDVbx7A4rD-UrVk9r1d9sMSpHbkOPQrklXTHVGVIbOA5EpwuoVMAjU3mdbGkumFumps8xBOb0SWj2BU1ZV9DIR7-zEqt5kQBWe2VKLIWKFLRUWRlqkew9tBeFIHKHNk1LiQvqRBSctrkh7D9mrxZY_g8fdlE9TCagnCbncX6uVnGf5iGVttMyt88e4MT_O4ZCymymmFQHIlzcfwCnUo0TmgsFWYcfCfhTBbcldwn675EjQZw9agZhm8RiN_2_iT_99-Abe98csPB4ujp3CH4hZA11-4BaN2eWWf-TypLZ8HgyRwftP_wC90_CZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Extraction+of+Multiple+Relations+and+Entities+from+Building+Code+Clauses&rft.jtitle=Applied+sciences&rft.au=Li%2C+Fulin&rft.au=Song%2C+Yuanbin&rft.au=Shan%2C+Yongwei&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft_id=info:doi/10.3390%2Fapp10207103&rft.externalDocID=A641751141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon