A Review of Maximum Power Point Tracking Algorithms for Wind Energy Conversion Systems

Renewable energy resources are gaining a lot of popularity. Several researchers have worked on the tracking and extraction of energy from these sources. In the past few decades, among the available green energy resources, wind energy has been the most attractive option among the resources available....

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 9; no. 11; p. 1187
Main Authors Pande, Jayshree, Nasikkar, Paresh, Kotecha, Ketan, Varadarajan, Vijayakumar
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Renewable energy resources are gaining a lot of popularity. Several researchers have worked on the tracking and extraction of energy from these sources. In the past few decades, among the available green energy resources, wind energy has been the most attractive option among the resources available. It is imperative to use the maximum power available in the wind to achieve the wind turbine (WT) operation at maximum power. The maximum power point tracking (MPPT) algorithms are a pioneer in this context. Many research papers are contributed in this domain which necessitates a thorough review while choosing an appropriate technique. This paper comprehensively focuses on reviewing different algorithms in the past and present for tracking maximum power point, and capturing maximized output power from the wind energy conversion system (WECS). In this paper, the algorithms are classified based on the direct and indirect power measurement, hybrid and smart algorithms for tracking maximum power point, and they are compared, considering the parameters like complexity, convergence speed, use of sensors, memory requirement, need for knowledge of system parameters, etc. The immense popularity of the different versions of perturb and observe (P&O) based algorithms due to their various features is evident from the literature. The review reveals that the hybrid maximum power point tracking algorithms can use the advantages of the conventional methods and eliminate their drawbacks.
AbstractList Renewable energy resources are gaining a lot of popularity. Several researchers have worked on the tracking and extraction of energy from these sources. In the past few decades, among the available green energy resources, wind energy has been the most attractive option among the resources available. It is imperative to use the maximum power available in the wind to achieve the wind turbine (WT) operation at maximum power. The maximum power point tracking (MPPT) algorithms are a pioneer in this context. Many research papers are contributed in this domain which necessitates a thorough review while choosing an appropriate technique. This paper comprehensively focuses on reviewing different algorithms in the past and present for tracking maximum power point, and capturing maximized output power from the wind energy conversion system (WECS). In this paper, the algorithms are classified based on the direct and indirect power measurement, hybrid and smart algorithms for tracking maximum power point, and they are compared, considering the parameters like complexity, convergence speed, use of sensors, memory requirement, need for knowledge of system parameters, etc. The immense popularity of the different versions of perturb and observe (P&O) based algorithms due to their various features is evident from the literature. The review reveals that the hybrid maximum power point tracking algorithms can use the advantages of the conventional methods and eliminate their drawbacks.
Audience Academic
Author Pande, Jayshree
Kotecha, Ketan
Nasikkar, Paresh
Varadarajan, Vijayakumar
Author_xml – sequence: 1
  givenname: Jayshree
  orcidid: 0000-0003-2564-4534
  surname: Pande
  fullname: Pande, Jayshree
– sequence: 2
  givenname: Paresh
  surname: Nasikkar
  fullname: Nasikkar, Paresh
– sequence: 3
  givenname: Ketan
  orcidid: 0000-0003-2653-3780
  surname: Kotecha
  fullname: Kotecha, Ketan
– sequence: 4
  givenname: Vijayakumar
  surname: Varadarajan
  fullname: Varadarajan, Vijayakumar
BookMark eNptUV1rVDEQDVLBWvvkHwj4KNvm8-bex2WpWmix2FYfQ5I7uWbdm9Qk27r_3tRVKMUJZIbhnMPMnNfoIKYICL2l5ITzgZyu5wIDbdGrF-iQEaUWlFN28KR-hY5LWZMWPeso6Q7R1yX-AvcBHnDy-NL8CvN2xlfpAXL7Q6z4Jhv3I8QJLzdTyqF-nwv2KeNvIY74LEKedniV4j3kElLE17tSYS5v0EtvNgWO_-YjdPvh7Gb1aXHx-eP5anmxcILwuqBqZLKHzlEOgxRKAaVgnPBgmVIdUcb2vZeEO-utMowIkB0hwippCQfLj9D5XndMZq3vcphN3ulkgv7TSHnSJtfgNqAHCQws6aSzXJBRWEb5wOTg3egl60XTerfXusvp5xZK1eu0zbGNr1lHGBkG1rOGOtmjJtNEQ_Sptgu1N8IcXHPEh9Zfqr4tKBh5JNA9weVUSgavXaimtmM1YthoSvSjffqJfY3z_hnn32r_Q_8GbXqcAw
CitedBy_id crossref_primary_10_3390_pr11051420
crossref_primary_10_1016_j_est_2022_105223
crossref_primary_10_1007_s00202_024_02401_z
crossref_primary_10_1049_pel2_12756
crossref_primary_10_23919_CJEE_2023_000042
crossref_primary_10_3390_app14219802
crossref_primary_10_3390_su15053986
crossref_primary_10_3390_en16020945
crossref_primary_10_4995_riai_2024_21097
crossref_primary_10_3390_en17194927
crossref_primary_10_3390_en16062799
crossref_primary_10_3390_en15114159
crossref_primary_10_3390_electronics11233931
crossref_primary_10_3390_su162410875
crossref_primary_10_1016_j_egyr_2024_03_039
crossref_primary_10_1177_0309524X221114350
crossref_primary_10_1002_cta_3958
crossref_primary_10_1109_JSYST_2023_3264532
crossref_primary_10_3390_electronics12030592
crossref_primary_10_1016_j_epsr_2022_108829
crossref_primary_10_3390_en16176204
crossref_primary_10_1177_0309524X241263764
crossref_primary_10_1016_j_heliyon_2024_e32032
crossref_primary_10_3390_machines10111046
crossref_primary_10_3390_en16052286
crossref_primary_10_37394_23203_2022_17_35
crossref_primary_10_1109_TIA_2024_3481195
crossref_primary_10_1016_j_egyr_2024_02_047
crossref_primary_10_3390_en16010402
crossref_primary_10_1109_ACCESS_2024_3354708
crossref_primary_10_2174_2352096516666230803144411
crossref_primary_10_1080_15325008_2024_2309631
crossref_primary_10_1088_1742_6596_2801_1_012024
crossref_primary_10_1016_j_epsr_2024_111110
crossref_primary_10_3390_en15176488
crossref_primary_10_3390_en15030719
crossref_primary_10_3390_en16124778
crossref_primary_10_3390_en16093701
crossref_primary_10_1093_jcde_qwac132
crossref_primary_10_15407_itm2024_02_092
crossref_primary_10_1007_s40435_024_01434_3
crossref_primary_10_1016_j_prime_2024_100690
crossref_primary_10_1016_j_jer_2024_09_017
crossref_primary_10_3390_en15176238
crossref_primary_10_1049_pel2_12601
crossref_primary_10_1109_ACCESS_2024_3491296
crossref_primary_10_1109_ACCESS_2022_3208583
crossref_primary_10_3390_app13095302
crossref_primary_10_1109_ACCESS_2025_3549794
crossref_primary_10_3390_en15093146
crossref_primary_10_1016_j_esr_2023_101117
crossref_primary_10_3390_en16052147
crossref_primary_10_2339_politeknik_952553
crossref_primary_10_24237_djes_2024_17101
crossref_primary_10_3390_en17133125
Cites_doi 10.1007/s00348-016-2155-3
10.2514/6.2004-347
10.1109/TPEL.2015.2420568
10.1109/TE.2012.2207119
10.1049/iet-rpg.2016.0635
10.1109/IECON.2011.6119422
10.1007/s00202-019-00911-9
10.1016/j.enconman.2016.06.046
10.1016/j.rser.2014.11.088
10.1016/j.enconman.2014.08.037
10.1016/j.rser.2013.01.012
10.1016/j.renene.2010.04.028
10.1016/j.egypro.2017.12.631
10.1063/1.4898365
10.1016/j.rser.2015.07.034
10.5772/21657
10.1109/ECCE.2010.5617747
10.1016/j.enconman.2012.12.012
10.1109/TIA.2005.858282
10.1016/j.renene.2014.10.002
10.1109/28.903156
10.1109/ELECO.2013.6713840
10.1109/EPDC.2015.7330493
10.1109/AUPEC.2014.6966524
10.1016/j.rser.2016.01.110
10.1109/ICEET.2009.129
10.1109/TIE.2016.2547365
10.1109/TEC.2007.914164
10.1109/ECCE.2011.6064125
10.1016/j.egypro.2015.07.732
10.1016/j.ijepes.2019.04.038
10.1049/iet-rpg.2010.0102
10.1109/TIA.2013.2296618
10.1016/j.renene.2020.03.050
10.1016/j.renene.2019.06.078
10.1016/j.ifacol.2016.03.097
10.1016/j.energy.2016.03.026
10.1109/TEC.2013.2259627
10.1016/j.renene.2015.07.071
10.1016/j.renene.2015.07.091
10.1016/j.rser.2015.11.013
10.1016/j.rser.2012.02.016
10.1016/j.ijepes.2020.106149
10.3390/en12010167
10.1016/j.egyr.2019.03.001
10.1109/TIE.2010.2064275
10.1016/j.renene.2018.03.049
10.1016/j.apenergy.2008.11.010
10.13052/jge1904-4720.643
10.1016/j.energy.2014.07.031
10.1016/j.rser.2017.06.055
10.1016/j.renene.2011.12.015
10.1016/j.rser.2015.04.126
10.1016/j.ijepes.2014.12.027
10.1016/j.ijepes.2018.09.015
10.1016/j.enconman.2015.06.005
10.1016/j.renene.2013.10.036
10.7763/IJESD.2010.V1.69
10.1016/j.energy.2015.06.027
10.1109/TIA.2004.841159
10.1016/j.asoc.2019.105937
10.1109/TEC.2011.2107912
10.1109/IECON.2013.6699403
10.1109/TEC.2016.2520460
10.1016/j.jart.2015.06.002
10.1049/iet-rpg.2018.5206
10.1109/TPEL.2011.2162251
10.1016/j.renene.2012.12.035
10.1016/j.enconman.2006.03.033
10.1109/ENERGYCON.2010.5771752
10.1007/s42452-019-0878-5
10.1016/j.renene.2015.09.010
10.1016/j.egyr.2015.03.001
10.1016/j.renene.2018.10.079
10.1016/j.enconman.2014.06.055
10.1016/j.energy.2005.09.007
10.1109/TEC.2009.2032604
10.1002/tee.23246
10.1109/JESTPE.2013.2280572
10.1016/j.rser.2015.06.060
10.1016/j.energy.2016.07.081
10.1002/2050-7038.12151
10.18280/mmc_a.920104
10.1109/MCS.2010.939962
10.1109/TIE.2012.2227905
10.3390/en5051398
10.1016/j.enconman.2017.12.019
10.1109/TEC.2004.827038
10.1109/CET.2011.6041484
10.1016/j.energy.2010.02.033
10.1016/j.ijepes.2012.10.048
10.1016/j.energy.2012.12.017
10.1016/j.energy.2013.08.022
10.1016/j.ijepes.2018.12.044
10.1016/j.asoc.2015.01.019
10.1016/j.epsr.2019.105942
10.1049/iet-rpg.2009.0207
10.1109/TPEL.2009.2017082
10.1109/TEC.2009.2032613
10.1109/WEA.2012.6242771
10.1016/j.rser.2017.02.054
10.1016/j.egypro.2017.03.263
10.1016/j.renene.2015.04.031
10.1109/TIE.2010.2044732
10.1016/j.ijepes.2020.106081
10.1109/PEMWA.2012.6316393
10.1109/TIE.2006.870658
10.1109/PES.2011.6039023
10.1049/iet-rpg.2014.0070
10.1016/j.ijepes.2014.03.069
10.1016/j.enconman.2015.03.062
10.1109/ACCESS.2018.2874525
10.1109/IICPE.2012.6450491
10.1016/j.renene.2017.01.021
10.1016/j.energy.2016.05.077
10.1109/ICE2T.2014.7006277
10.1109/TPWRS.2009.2030421
10.1109/TEC.2002.808346
10.18178/ijmlc.2018.8.1.656
10.1016/j.rser.2011.12.004
10.1016/S0960-1481(97)00055-4
10.1109/ICPES.2016.7584157
10.1016/j.apenergy.2016.12.132
10.1016/j.isatra.2019.05.029
10.1016/j.epsr.2003.08.004
10.1016/j.ijepes.2012.11.020
10.1016/j.apenergy.2019.04.073
10.1109/TPEL.2004.833459
10.1109/CCIntelS.2015.7437961
10.1016/j.ijepes.2020.106598
10.1109/TCST.2014.2303112
10.1109/TEC.2005.853735
10.1016/j.apenergy.2015.04.085
10.1109/ECCE.2014.6954074
10.1016/j.ijepes.2018.10.034
10.1016/j.rser.2017.02.051
10.1016/j.energy.2014.02.023
10.1109/TPEL.2010.2054113
10.1109/JESTPE.2015.2432677
10.1016/j.egypro.2013.11.002
10.1016/j.enconman.2016.10.062
ContentType Journal Article
Copyright COPYRIGHT 2021 MDPI AG
2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 MDPI AG
– notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse9111187
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_95e2eb065cb340d4b2139259fcdf5284
A784034202
10_3390_jmse9111187
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
PMFND
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c403t-17d258e6c13e95477e11eac4feb277607ab88f503cbfb7a204e56004b75b03eb3
IEDL.DBID BENPR
ISSN 2077-1312
IngestDate Wed Aug 27 01:24:18 EDT 2025
Fri Jul 25 12:14:44 EDT 2025
Tue Jun 10 21:07:47 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 02:55:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-17d258e6c13e95477e11eac4feb277607ab88f503cbfb7a204e56004b75b03eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2653-3780
0000-0003-2564-4534
OpenAccessLink https://www.proquest.com/docview/2602099282?pq-origsite=%requestingapplication%
PQID 2602099282
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_95e2eb065cb340d4b2139259fcdf5284
proquest_journals_2602099282
gale_infotracacademiconefile_A784034202
crossref_citationtrail_10_3390_jmse9111187
crossref_primary_10_3390_jmse9111187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_91
ref_90
ref_14
Galdi (ref_133) 2008; 23
Yaakoubi (ref_139) 2019; 5
ref_99
ref_130
ref_98
ref_132
Errami (ref_53) 2015; 74
ref_19
Parker (ref_51) 2016; 57
Mousa (ref_3) 2021; 126
Cheng (ref_11) 2014; 88
Hu (ref_28) 2019; 248
Lahfaoui (ref_46) 2017; 111
Dursun (ref_30) 2020; 121
Kortabarria (ref_95) 2014; 63
Muljadi (ref_5) 2001; 37
Merabet (ref_147) 2015; 83
Song (ref_60) 2018; 157
Linus (ref_109) 2015; 9
Brahmi (ref_141) 2009; 86
Morimoto (ref_80) 2005; 41
Billel (ref_110) 2015; 6
ref_127
Mei (ref_47) 2011; 58
ref_24
Koutroulis (ref_50) 2006; 53
Nayanar (ref_101) 2016; 31
ref_120
ref_122
ref_121
Bianchi (ref_15) 2014; 61
Youssef (ref_48) 2020; 154
Hayat (ref_7) 2012; 16
Abdullah (ref_36) 2012; 16
Medjber (ref_140) 2016; 106
Phan (ref_143) 2016; 111
Singh (ref_17) 2011; 26
Lin (ref_106) 2010; 35
Punitha (ref_92) 2013; 62
Singh (ref_12) 2004; 69
(ref_43) 2016; 86
Pao (ref_9) 2011; 31
Watil (ref_25) 2020; 121
Zhu (ref_42) 2012; 5
Nagarajan (ref_108) 2018; 8
Hossain (ref_1) 2015; 49
Sompracha (ref_156) 2019; 2019
Urtasun (ref_75) 2013; 55
Carrillo (ref_77) 2013; 21
Yu (ref_94) 2015; 13
Mousa (ref_116) 2020; 145
ref_149
Duran (ref_10) 2013; 56
Shahgholian (ref_114) 2016; 4
Auger (ref_144) 2016; 86
Zammit (ref_93) 2017; 142
Hong (ref_136) 2013; 50
ref_142
ref_88
Zhang (ref_20) 2014; 50
ref_87
ref_146
ref_84
ref_145
Abdullah (ref_153) 2018; 6
Viveiros (ref_131) 2015; 1
Tanaka (ref_70) 1997; 12
Liu (ref_66) 2015; 101
Xie (ref_21) 2017; 106
Fathabadi (ref_113) 2016; 123
Zhang (ref_63) 2019; 176
Patel (ref_13) 2005; 73069
Hussain (ref_155) 2016; 31
Sitharthan (ref_61) 2020; 96
Karabacak (ref_29) 2019; 133
Agarwal (ref_115) 2010; 25
Nabipour (ref_138) 2017; 74
ref_58
ref_54
Chen (ref_18) 2009; 24
Njiri (ref_8) 2016; 60
Tan (ref_41) 2004; 19
Meghni (ref_111) 2020; 102
Oh (ref_65) 2015; 79
Masood (ref_117) 2015; 154
Balasundar (ref_49) 2015; 3
Liu (ref_134) 2015; 29
Taveiros (ref_45) 2015; 89
Mokhtari (ref_125) 2018; 126
Kenne (ref_135) 2016; 86
Tripathi (ref_68) 2015; 51
Houssamo (ref_73) 2013; 46
Zhang (ref_82) 2011; 5
Mousa (ref_23) 2019; 108
Datta (ref_71) 2003; 18
Mirbagheri (ref_74) 2013; 42
Dalala (ref_83) 2013; 28
Yin (ref_62) 2017; 11
Azzouz (ref_152) 2019; 92
Kazmi (ref_40) 2011; 58
Camblong (ref_56) 2006; 47
ref_64
Yang (ref_123) 2017; 133
Errami (ref_26) 2015; 68
Chinchilla (ref_78) 2006; 21
Wang (ref_89) 2004; 19
Fathabadi (ref_129) 2016; 113
Mahdi (ref_103) 2011; 2011
Nasiri (ref_52) 2014; 86
Wu (ref_31) 2019; 105
Narayana (ref_112) 2012; 44
Mirecki (ref_67) 2004; 2
Aliyu (ref_2) 2018; 81
Kumar (ref_37) 2018; 12
Yurdusev (ref_119) 2006; 31
Uehara (ref_22) 2011; 26
Sachan (ref_72) 2017; 6
Ahmed (ref_150) 2019; 27
Daili (ref_118) 2015; 97
ref_35
Jena (ref_57) 2015; 43
ref_34
ref_33
Elnaggar (ref_107) 2014; 74
Amei (ref_79) 2002; 3
ref_39
Rajaei (ref_16) 2013; 60
Ghaffari (ref_44) 2014; 22
Chen (ref_151) 2016; 63
Azzouz (ref_148) 2011; 5
Assareh (ref_137) 2015; 51
Jadhav (ref_27) 2013; 49
Tiwari (ref_128) 2016; 49
ref_104
Qais (ref_126) 2020; 86
Hong (ref_105) 2013; 69
Muyeen (ref_4) 2010; 25
Song (ref_59) 2017; 190
Youssef (ref_97) 2019; 107
Kesraoui (ref_76) 2011; 36
Vachon (ref_154) 1991; 11
ref_100
ref_102
Mittal (ref_6) 2010; 1
Mousa (ref_96) 2019; 112
Xia (ref_69) 2011; 26
Ali (ref_38) 2020; 30
Burton (ref_86) 2001; 2
Pan (ref_81) 2010; 25
Li (ref_85) 2005; 41
Rezk (ref_124) 2017; 74
Kumar (ref_32) 2016; 55
Ganjefar (ref_55) 2014; 67
References_xml – volume: 57
  start-page: 1
  year: 2016
  ident: ref_51
  article-title: The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-016-2155-3
– ident: ref_87
  doi: 10.2514/6.2004-347
– volume: 31
  start-page: 1161
  year: 2016
  ident: ref_101
  article-title: A Single-Sensor-Based MPPT Controller for Wind-Driven Induction Generators Supplying DC Microgrid
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2420568
– volume: 56
  start-page: 174
  year: 2013
  ident: ref_10
  article-title: Understanding power electronics and electrical machines in multidisciplinary wind energy conversion system courses
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/TE.2012.2207119
– volume: 73069
  start-page: 1
  year: 2005
  ident: ref_13
  article-title: Wind and solar power systems: Design, analysis, and operation, second edition
  publication-title: Wind Sol. Power Syst. Des. Anal. Oper. Second Ed.
– volume: 11
  start-page: 501
  year: 2017
  ident: ref_62
  article-title: Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2016.0635
– ident: ref_142
  doi: 10.1109/IECON.2011.6119422
– volume: 102
  start-page: 763
  year: 2020
  ident: ref_111
  article-title: A novel improved variable-step-size P&O MPPT method and effective supervisory controller to extend optimal energy management in hybrid wind turbine
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-019-00911-9
– volume: 123
  start-page: 392
  year: 2016
  ident: ref_113
  article-title: Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.06.046
– volume: 43
  start-page: 1046
  year: 2015
  ident: ref_57
  article-title: A review of estimation of effective wind speed based control of wind turbines
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.088
– volume: 88
  start-page: 332
  year: 2014
  ident: ref_11
  article-title: The state of the art of wind energy conversion systems and technologies: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.08.037
– volume: 21
  start-page: 572
  year: 2013
  ident: ref_77
  article-title: Review of power curve modelling for windturbines
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.01.012
– ident: ref_88
– volume: 36
  start-page: 2655
  year: 2011
  ident: ref_76
  article-title: Maximum power point tracker of wind energy conversion system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.04.028
– volume: 142
  start-page: 2284
  year: 2017
  ident: ref_93
  article-title: Incremental Current Based MPPT for a PMSG Micro Wind Turbine in a Grid-Connected DC Microgrid
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.631
– ident: ref_102
  doi: 10.1063/1.4898365
– volume: 51
  start-page: 1023
  year: 2015
  ident: ref_137
  article-title: A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.034
– ident: ref_54
  doi: 10.5772/21657
– volume: 4
  start-page: 111
  year: 2016
  ident: ref_114
  article-title: Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller
  publication-title: Energy Equip. Syst.
– ident: ref_33
  doi: 10.1109/ECCE.2010.5617747
– volume: 2011
  start-page: 84
  year: 2011
  ident: ref_103
  article-title: Estimation of tip speed ratio using an adaptive perturbation and observation method for wind turbine generator systems
  publication-title: IET Conf. Publ.
– volume: 69
  start-page: 58
  year: 2013
  ident: ref_105
  article-title: Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.12.012
– volume: 41
  start-page: 1548
  year: 2005
  ident: ref_85
  article-title: Neural-network-based sensorless maximum wind energy capture with compensated power coefficient
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2005.858282
– volume: 79
  start-page: 150
  year: 2015
  ident: ref_65
  article-title: Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.002
– volume: 37
  start-page: 240
  year: 2001
  ident: ref_5
  article-title: Pitch-controlled variable-speed wind turbine generation
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.903156
– ident: ref_91
  doi: 10.1109/ELECO.2013.6713840
– ident: ref_39
  doi: 10.1109/EPDC.2015.7330493
– ident: ref_84
  doi: 10.1109/AUPEC.2014.6966524
– ident: ref_120
– volume: 60
  start-page: 377
  year: 2016
  ident: ref_8
  article-title: State-of-the-art in wind turbine control: Trends and challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.110
– ident: ref_100
  doi: 10.1109/ICEET.2009.129
– volume: 63
  start-page: 4899
  year: 2016
  ident: ref_151
  article-title: Design of a Unified Power Controller for Variable-Speed Fixed-Pitch Wind Energy Conversion System
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2547365
– volume: 23
  start-page: 559
  year: 2008
  ident: ref_133
  article-title: Designing an Adaptive Fuzzy Controller for Maximum Wind Energy Extraction
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2007.914164
– ident: ref_132
  doi: 10.1109/ECCE.2011.6064125
– volume: 74
  start-page: 477
  year: 2015
  ident: ref_53
  article-title: Optimal Power Control Strategy of Maximizing Wind Energy Tracking and Different Operating Conditions for Permanent Magnet Synchronous Generator Wind Farm
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.732
– volume: 112
  start-page: 294
  year: 2019
  ident: ref_96
  article-title: Adaptive P&O MPPT algorithm based wind generation system using realistic wind fluctuations
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.04.038
– volume: 5
  start-page: 422
  year: 2011
  ident: ref_148
  article-title: Evaluation of fuzzy-based maximum power-tracking in wind energy conversion systems
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2010.0102
– volume: 50
  start-page: 2331
  year: 2014
  ident: ref_20
  article-title: A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2013.2296618
– volume: 154
  start-page: 875
  year: 2020
  ident: ref_48
  article-title: Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.050
– volume: 145
  start-page: 1412
  year: 2020
  ident: ref_116
  article-title: Hybrid and adaptive sectors P&O MPPT algorithm based wind generation system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.078
– volume: 49
  start-page: 462
  year: 2016
  ident: ref_128
  article-title: Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.03.097
– volume: 106
  start-page: 137
  year: 2016
  ident: ref_140
  article-title: New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.026
– volume: 28
  start-page: 756
  year: 2013
  ident: ref_83
  article-title: Design and analysis of an MPPT technique for small-scale wind energy conversion systems
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2013.2259627
– volume: 86
  start-page: 38
  year: 2016
  ident: ref_135
  article-title: A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.07.071
– volume: 86
  start-page: 280
  year: 2016
  ident: ref_144
  article-title: Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.07.091
– volume: 55
  start-page: 957
  year: 2016
  ident: ref_32
  article-title: A review of conventional and advanced MPPT algorithms for wind energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.013
– volume: 16
  start-page: 3220
  year: 2012
  ident: ref_36
  article-title: A review of maximum power point tracking algorithms for wind energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.016
– volume: 121
  start-page: 106149
  year: 2020
  ident: ref_30
  article-title: Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106149
– ident: ref_127
  doi: 10.3390/en12010167
– volume: 5
  start-page: 545
  year: 2019
  ident: ref_139
  article-title: Non-linear and intelligent maximum power point tracking strategies for small size wind turbines: Performance analysis and comparison
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.03.001
– volume: 27
  start-page: 822
  year: 2019
  ident: ref_150
  article-title: A Novel Maximum Power Point Tracking Algorithm for Wind Energy Conversion System
  publication-title: Eng. Lett.
– volume: 58
  start-page: 2427
  year: 2011
  ident: ref_47
  article-title: A novel improved variable step-size incremental-resistance MPPT method for PV systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2064275
– volume: 126
  start-page: 1055
  year: 2018
  ident: ref_125
  article-title: High performance of Maximum Power Point Tracking Using Ant Colony algorithm in wind turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.03.049
– volume: 86
  start-page: 1565
  year: 2009
  ident: ref_141
  article-title: A comparative study between three sensorless control strategies for PMSG in wind energy conversion system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.11.010
– volume: 6
  start-page: 385
  year: 2017
  ident: ref_72
  article-title: A review of MPPT algorithms employed in wind energy conversion systems
  publication-title: J. Green Eng.
  doi: 10.13052/jge1904-4720.643
– volume: 74
  start-page: 651
  year: 2014
  ident: ref_107
  article-title: Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.031
– volume: 81
  start-page: 2502
  year: 2018
  ident: ref_2
  article-title: A review of renewable energy development in Africa: A focus in South Africa, Egypt and Nigeria
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.06.055
– volume: 44
  start-page: 72
  year: 2012
  ident: ref_112
  article-title: Generic maximum power point tracking controller for small-scale wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.12.015
– volume: 49
  start-page: 481
  year: 2015
  ident: ref_1
  article-title: Future research directions for the wind turbine generator system
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.126
– volume: 68
  start-page: 180
  year: 2015
  ident: ref_26
  article-title: A performance comparison of a nonlinear and a linear control for grid connected PMSG wind energy conversion system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.027
– volume: 105
  start-page: 660
  year: 2019
  ident: ref_31
  article-title: Adaptive active fault-tolerant MPPT control for wind power generation system under partial loss of actuator effectiveness
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.09.015
– volume: 101
  start-page: 738
  year: 2015
  ident: ref_66
  article-title: A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.06.005
– volume: 63
  start-page: 785
  year: 2014
  ident: ref_95
  article-title: A novel adaptative maximum power point tracking algorithm for small wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.10.036
– volume: 1
  start-page: 351
  year: 2010
  ident: ref_6
  article-title: An Overview of Some Important Issues Related to Wind Energy Conversion System (WECS)
  publication-title: Int. J. Environ. Sci. Dev.
  doi: 10.7763/IJESD.2010.V1.69
– volume: 89
  start-page: 896
  year: 2015
  ident: ref_45
  article-title: Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.027
– volume: 41
  start-page: 60
  year: 2005
  ident: ref_80
  article-title: Sensorless output maximization control for variable-speed wind generation system using IPMSG
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2004.841159
– volume: 86
  start-page: 105937
  year: 2020
  ident: ref_126
  article-title: Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105937
– volume: 26
  start-page: 550
  year: 2011
  ident: ref_22
  article-title: A coordinated control method to smooth wind power fluctuations of a PMSG-Based WECS
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2011.2107912
– ident: ref_58
  doi: 10.1109/IECON.2013.6699403
– volume: 31
  start-page: 697
  year: 2016
  ident: ref_155
  article-title: Adaptive Maximum Power Point Tracking Control Algorithm for Wind Energy Conversion Systems
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2016.2520460
– volume: 13
  start-page: 238
  year: 2015
  ident: ref_94
  article-title: Applying novel fractional order incremental conductance algorithm to design and study the maximum power tracking of small wind power systems
  publication-title: J. Appl. Res. Technol.
  doi: 10.1016/j.jart.2015.06.002
– volume: 12
  start-page: 1609
  year: 2018
  ident: ref_37
  article-title: Review on control techniques and methodologies for maximum power extraction from wind energy systems
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5206
– volume: 3
  start-page: 5
  year: 2015
  ident: ref_49
  article-title: Design of an Optimal Tip Speed Ratio Control MPPT Algorithm for Standalone WECS
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
– volume: 26
  start-page: 3609
  year: 2011
  ident: ref_69
  article-title: A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2011.2162251
– volume: 55
  start-page: 138
  year: 2013
  ident: ref_75
  article-title: Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.12.035
– volume: 2019
  start-page: 4890
  year: 2019
  ident: ref_156
  article-title: Particle swarm optimisation technique to improve energy efficiency of doubly-fed induction generators for wind turbines
  publication-title: J. Eng.
– volume: 47
  start-page: 2846
  year: 2006
  ident: ref_56
  article-title: Experimental evaluation of wind turbines maximum power point tracking controllers
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2006.03.033
– ident: ref_146
  doi: 10.1109/ENERGYCON.2010.5771752
– ident: ref_24
  doi: 10.1007/s42452-019-0878-5
– volume: 86
  start-page: 848
  year: 2016
  ident: ref_43
  article-title: Development details and performance assessment of a Wind Turbine Emulator
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.09.010
– volume: 1
  start-page: 89
  year: 2015
  ident: ref_131
  article-title: Supervisory control of a variable speed wind turbine with doubly fed induction generator
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2015.03.001
– volume: 11
  start-page: 73
  year: 1991
  ident: ref_154
  article-title: Control of variable-speed wind turbines
  publication-title: Am. Soc. Mech. Eng. Sol. Energy Div. SED
– volume: 133
  start-page: 807
  year: 2019
  ident: ref_29
  article-title: A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.079
– volume: 86
  start-page: 892
  year: 2014
  ident: ref_52
  article-title: Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.06.055
– volume: 31
  start-page: 2153
  year: 2006
  ident: ref_119
  article-title: Assessment of optimum tip speed ratio in wind turbines using artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2005.09.007
– volume: 25
  start-page: 207
  year: 2010
  ident: ref_81
  article-title: A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2009.2032604
– ident: ref_149
  doi: 10.1002/tee.23246
– ident: ref_122
  doi: 10.1109/JESTPE.2013.2280572
– volume: 51
  start-page: 1288
  year: 2015
  ident: ref_68
  article-title: Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.06.060
– volume: 113
  start-page: 1219
  year: 2016
  ident: ref_129
  article-title: Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.081
– volume: 30
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12151
– volume: 92
  start-page: 23
  year: 2019
  ident: ref_152
  article-title: A Novel Hybrid MPPT Controller Using (P&O)-neural Networks for Variable Speed Wind Turbine Based on DFIG
  publication-title: Model. Meas. Control A
  doi: 10.18280/mmc_a.920104
– volume: 31
  start-page: 44
  year: 2011
  ident: ref_9
  article-title: Control of Wind Turbines: Approaches, challenges, and recent developments
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2010.939962
– volume: 60
  start-page: 2919
  year: 2013
  ident: ref_16
  article-title: Vienna-rectifier-based direct torque control of PMSG for wind energy application
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2227905
– volume: 5
  start-page: 1398
  year: 2012
  ident: ref_42
  article-title: A novel maximum power point tracking control for permanent magnet direct drive wind energy conversion systems
  publication-title: Energies
  doi: 10.3390/en5051398
– volume: 157
  start-page: 587
  year: 2018
  ident: ref_60
  article-title: Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.12.019
– volume: 19
  start-page: 392
  year: 2004
  ident: ref_41
  article-title: Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2004.827038
– ident: ref_35
  doi: 10.1109/CET.2011.6041484
– ident: ref_98
– volume: 35
  start-page: 2440
  year: 2010
  ident: ref_106
  article-title: Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system
  publication-title: Energy
  doi: 10.1016/j.energy.2010.02.033
– volume: 46
  start-page: 98
  year: 2013
  ident: ref_73
  article-title: Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.10.048
– volume: 50
  start-page: 270
  year: 2013
  ident: ref_136
  article-title: Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system
  publication-title: Energy
  doi: 10.1016/j.energy.2012.12.017
– volume: 62
  start-page: 330
  year: 2013
  ident: ref_92
  article-title: Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.022
– volume: 108
  start-page: 218
  year: 2019
  ident: ref_23
  article-title: Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.12.044
– volume: 29
  start-page: 450
  year: 2015
  ident: ref_134
  article-title: Sensorless wind energy conversion system maximum power point tracking using Takagi-Sugeno fuzzy cerebellar model articulation control
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.019
– volume: 176
  start-page: 105942
  year: 2019
  ident: ref_63
  article-title: An improved maximum power point tracking method based on decreasing torque gain for large scale wind turbines at low wind sites
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.105942
– volume: 5
  start-page: 99
  year: 2011
  ident: ref_82
  article-title: One-power-point operation for variable speed wind/tidal stream turbines with synchronous generators
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2009.0207
– volume: 24
  start-page: 1859
  year: 2009
  ident: ref_18
  article-title: A review of the state of the art of power electronics for wind turbines
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2017082
– volume: 25
  start-page: 228
  year: 2010
  ident: ref_115
  article-title: A novel scheme for rapid tracking of maximum power point in wind energy generation systems
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2009.2032613
– ident: ref_145
  doi: 10.1109/WEA.2012.6242771
– volume: 3
  start-page: 1447
  year: 2002
  ident: ref_79
  article-title: A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit
  publication-title: Proc. Power Convers. Conf.
– volume: 74
  start-page: 1147
  year: 2017
  ident: ref_138
  article-title: A new MPPT scheme based on a novel fuzzy approach
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.054
– volume: 111
  start-page: 1000
  year: 2017
  ident: ref_46
  article-title: Real Time Study of P&O MPPT Control for Small Wind PMSG Turbine Systems Using Arduino Microcontroller
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.263
– volume: 83
  start-page: 162
  year: 2015
  ident: ref_147
  article-title: Multivariable control algorithm for laboratory experiments in wind energy conversion
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.04.031
– volume: 58
  start-page: 29
  year: 2011
  ident: ref_40
  article-title: A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2044732
– volume: 121
  start-page: 106081
  year: 2020
  ident: ref_25
  article-title: Multi-objective output feedback control strategy for a variable speed wind energy conversion system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106081
– ident: ref_104
  doi: 10.1109/PEMWA.2012.6316393
– volume: 53
  start-page: 486
  year: 2006
  ident: ref_50
  article-title: Design of a maximum power tracking system for wind-energy-conversion applications
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2006.870658
– ident: ref_34
  doi: 10.1109/PES.2011.6039023
– volume: 9
  start-page: 682
  year: 2015
  ident: ref_109
  article-title: Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2014.0070
– volume: 61
  start-page: 523
  year: 2014
  ident: ref_15
  article-title: Control of a wind turbine cluster based on squirrel cage induction generators connected to a single VSC power converter
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.03.069
– volume: 2
  start-page: 471
  year: 2001
  ident: ref_86
  article-title: Wind Energy Handbook
  publication-title: Wind Energy
– volume: 97
  start-page: 298
  year: 2015
  ident: ref_118
  article-title: Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.03.062
– volume: 6
  start-page: 58427
  year: 2018
  ident: ref_153
  article-title: Towards green energy for smart cities: Particle swarm optimization based MPPT approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874525
– ident: ref_19
  doi: 10.1109/IICPE.2012.6450491
– volume: 106
  start-page: 149
  year: 2017
  ident: ref_21
  article-title: Small signal stability analysis for different types of PMSGs connected to the grid
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.01.021
– volume: 111
  start-page: 377
  year: 2016
  ident: ref_143
  article-title: Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.077
– ident: ref_90
  doi: 10.1109/ICE2T.2014.7006277
– volume: 6
  start-page: 70
  year: 2015
  ident: ref_110
  article-title: Maximum power extraction (SMC, P & O ) from wind energy system based on reliable control
  publication-title: Rev. des Sci. et de la Technol. 6
– volume: 25
  start-page: 331
  year: 2010
  ident: ref_4
  article-title: A variable speed wind turbine control strategy to meet wind farm grid code requirements
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030421
– volume: 18
  start-page: 163
  year: 2003
  ident: ref_71
  article-title: A method of tracking the peak power points for a variable speed wind energy conversion system
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2002.808346
– volume: 8
  start-page: 14
  year: 2018
  ident: ref_108
  article-title: A Predictive hill climbing algorithm for real valued multi-variable optimization problem like PID tuning
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2018.8.1.656
– volume: 16
  start-page: 1926
  year: 2012
  ident: ref_7
  article-title: Vertical axis wind turbine—A review of various configurations and design techniques
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.12.004
– volume: 12
  start-page: 387
  year: 1997
  ident: ref_70
  article-title: Output control by hill-climbing method for a small scale wind power generating system
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(97)00055-4
– ident: ref_14
  doi: 10.1109/ICPES.2016.7584157
– volume: 190
  start-page: 670
  year: 2017
  ident: ref_59
  article-title: Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.132
– volume: 96
  start-page: 479
  year: 2020
  ident: ref_61
  article-title: Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.05.029
– volume: 69
  start-page: 107
  year: 2004
  ident: ref_12
  article-title: Self-excited induction generator research—A survey
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2003.08.004
– volume: 49
  start-page: 8
  year: 2013
  ident: ref_27
  article-title: A comprehensive review on the grid integration of doubly fed induction generator
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.11.020
– volume: 248
  start-page: 567
  year: 2019
  ident: ref_28
  article-title: Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.073
– volume: 19
  start-page: 1242
  year: 2004
  ident: ref_89
  article-title: An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2004.833459
– ident: ref_64
  doi: 10.1109/CCIntelS.2015.7437961
– volume: 126
  start-page: 106598
  year: 2021
  ident: ref_3
  article-title: International Journal of Electrical Power and Energy Systems State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106598
– volume: 22
  start-page: 1684
  year: 2014
  ident: ref_44
  article-title: Power optimization and control in wind energy conversion systems using extremum seeking
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2303112
– volume: 21
  start-page: 130
  year: 2006
  ident: ref_78
  article-title: Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.853735
– volume: 154
  start-page: 209
  year: 2015
  ident: ref_117
  article-title: A new tool to estimate maximum wind power penetration level: In perspective of frequency response adequacy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.085
– ident: ref_130
  doi: 10.1109/ECCE.2014.6954074
– volume: 107
  start-page: 89
  year: 2019
  ident: ref_97
  article-title: Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.10.034
– volume: 74
  start-page: 377
  year: 2017
  ident: ref_124
  article-title: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.051
– volume: 67
  start-page: 444
  year: 2014
  ident: ref_55
  article-title: Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.023
– volume: 2
  start-page: 993
  year: 2004
  ident: ref_67
  article-title: Comparative study of maximum power strategy in wind turbines
  publication-title: IEEE Int. Symp. Ind. Electron.
– volume: 26
  start-page: 165
  year: 2011
  ident: ref_17
  article-title: Application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2010.2054113
– ident: ref_121
  doi: 10.1109/JESTPE.2015.2432677
– volume: 42
  start-page: 24
  year: 2013
  ident: ref_74
  article-title: MPPT with Inc.Cond method using conventional interleaved boost converter
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.11.002
– ident: ref_99
– volume: 133
  start-page: 427
  year: 2017
  ident: ref_123
  article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.10.062
SSID ssj0000826106
Score 2.5053055
SecondaryResourceType review_article
Snippet Renewable energy resources are gaining a lot of popularity. Several researchers have worked on the tracking and extraction of energy from these sources. In the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1187
SubjectTerms Air-turbines
Algorithms
Alternative energy sources
Buildings and facilities
Clean energy
Energy conversion
Energy resources
Energy sources
Environmental management
Force and energy
Generators
Green energy
Literature reviews
maximum power point tracking
Maximum power tracking
Parameters
Power measurement
Renewable energy
Renewable resources
Resource management
Scientific papers
Sensors
Turbine engines
Turbines
Velocity
wind energy conversion systems
Wind power
wind turbine
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQTxieuLHARBKLZN0nSPqyiL4OPgY28hkya6stsVdwV_vjNplT0oXrz0UHJIZzoz3xcy3zB2CALQ67ZKim4oEwmlSsD5MikqhAPOShlik9jVddG_l5cDNZgb9UV3whp54MZwJ13lcw9YKB0ImVYScsQsiNmDq4LC3ErZF2veHJmKORhRM5KdpiFPIK8_eRlPPQV2Rpfn5kpQVOr_LR_HInOxylZadMh7za7W2IKv19nyjfO2bqWlN9hDjzcH-nwS-JX9GI7fx_yWhp3hc1jPOJYfRwfgvDd6miD3fx5POUJT_oj0m5_HXj9-RpfN40kZbzXLN9n9xfndWT9ppyMkTqZilmS6ylXpC5cJ31VSa59lmEVlQK6sdZFqC2UZVCocBNA2T6UndCNBK0gFcugttlhPar_NuMLIBaG0DMpLEKm1EoGVBazdyMYg77DjL4MZ10qH0wSLkUEKQdY1c9btsMPvxa-NYsbPy07J8t9LSOY6vkDnm9b55i_nd9gR-c1QMOKGnG17CvCzSNbK9DTyVyHzFD9h78u1po3SqUEuR53DyDp3_mM3u2wppxsvsVNxjy3O3t79PkKWGRzEv_MTYv3oRg
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review of Maximum Power Point Tracking Algorithms for Wind Energy Conversion Systems
URI https://www.proquest.com/docview/2602099282
https://doaj.org/article/95e2eb065cb340d4b2139259fcdf5284
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbN5lIKpU-6TbroECgUTGxLsrSnsAm7DYWkoTRtbkIjS0lK1ptmHejP74xWu82h7cUHWwdL45n5vvE8GNsDASh11xbNOJpCglEF-GCKpkU44J2UMRWJnZw2x-fy04W6yAG3ZU6rXNvEZKjbhacY-T7ibqryRIZwcPuzoKlR9Hc1j9DYYttogo0ZsO3D6enZl02UBR0c4oNmVZgnkN_v_5gvAyl4RUl0D1xR6tj_L7ucnM3sGXuaUSKfrMT6nD0K3Qv25LMPrsstpl-ybxO-CuzzReQn7tf1_H7Oz2joGV6vu56jG_IUCOeTm0vcSX81X3KEqPw70nA-TTV__IiSzlPEjOfe5a_Y-Wz69ei4yFMSCi9L0ReVbmtlQuMrEcZKah2qCq2pjMiZtW5K7cCYqErhIYJ2dSkDoRwJWkEpkEu_ZoNu0YU3jCvUYBBKy6iCBFE6JxFgOUAfjqwM6iH7sD4w63MLcZpkcWORStDp2genO2R7m8W3q84Zf192SCe_WULtrtONxd2lzdpjxyrUARAteRCybCXUCFyRuEXfRoUOdsjek9wsKSW-kHe5tgC3Re2t7EQjjxWyLnELu2vR2qytS_vn23r7_8c77HFNOS2pFnGXDfq7-_AOQUkPI7ZlZh9H-fsbJWr_Gx5g40s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCQEE-xUMCHIiSkqI4fcfaA0FK6bGm3cGihN2M7dinqZks3FfCn-I3MOMnSA3DrJYfYipLxZOb7xp4ZQtadcLDqtsqKYSwz6UqVOR_KrKgADngrZUxJYtO9YnIg3x2qwxXyq8-FwWOVvU1Mhrqae4yRbwDuxixPYAivTr9l2DUKd1f7FhqtWuyEn9-Bsi1ebr-B9X3G-Xhrf3OSdV0FMi-ZaLJcV1yVofC5CEMltQ55DtZHRuCYWhdMW1eWUTHhXXTaciYDogLptHJMAPeE514hV6UAT46Z6eO3y5gOuFNAI0WbBgjjbOPrbBHQnOR4ZO-C40v9Af7lBZJrG98iNztMSketEt0mK6G-Q26898HWXUHru-TjiLbbCHQe6dT-OJ6dz-gHbLEG1-O6oeD0PIbd6ejkCOTWfJktKABi-glIP91KGYZ0E4-4p_gc7Sql3yMHlyK9-2S1ntfhAaEK7IUTSsuognSCWSsBzlkHiAE4oOMD8qIXmPFdwXLsm3FigLigdM0F6Q7I-nLyaVun4-_TXqPkl1OwuHa6MT87Mt2_aoYq8OAAm3knJKuk4wCTgSZGX0UF7nxAnuO6GTQB8ELedpkM8FlYTMuMNLBmITmDT1jrl9Z0tmFh_mjyw_8PPyXXJvvTXbO7vbfziFzneJomZUGukdXm7Dw8BjjUuCdJByn5fNlK_xtbvhyl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGJyGENI0v0W2AD0NISFGT2I7TA0Ld1mpjrFSIwW7GduzRaU3Hmgn2r_HX8V7ilB2A2y45JFYUP7-89_vZ74OQbcMMrLouoqzv84ibXETGujzKCoADVnPu6ySxo3G2f8zfnYiTFfKrzYXBsMrWJtaGuphb3CPvAe7GLE9gCD0fwiIme6O3F98j7CCFJ61tO41GRQ7d9Q-gb4s3B3uw1i_TdDT8tLsfhQ4DkeUxq6JEFqnIXWYT5vqCS-mSBCwR98A3pcxiqU2eexEza7yROo25Q4TAjRQmZsBD4b13yKpEVtQhqzvD8eTjcocHnCtgk6xJCmSsH_fOZguHxiXBAL4bbrDuFvAvn1A7utE6WQsIlQ4alXpAVlz5kNz_YJ0uQ3nrR-TzgDaHCnTu6ZH-OZ1dzegEG67BdVpWFFygxU14Ojg_BclV32YLCvCYfpmWBR3W-YZ0FwPe6906GuqmPybHtyK_J6RTzkv3lFAB1sMwIbkXjhsWa80B3GkD-AEYoUm75HUrMGVD-XLsonGugMagdNUN6XbJ9nLwRVO14-_DdlDyyyFYaru-Mb88VeHPVX3hUmcAqVnDeFxwkwJoBtLobeEFOPcueYXrptAgwAdZHfIaYFpYWksNJHBoxtMYprDVLq0KlmKh_uj1xv8fvyB3QeHV-4Px4Sa5l2JoTZ0SuUU61eWVewbYqDLPgxJS8vW29f43Rg8iNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Maximum+Power+Point+Tracking+Algorithms+for+Wind+Energy+Conversion+Systems&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Pande%2C+Jayshree&rft.au=Nasikkar%2C+Paresh&rft.au=Kotecha%2C+Ketan&rft.au=Varadarajan%2C+Vijayakumar&rft.date=2021-11-01&rft.issn=2077-1312&rft.eissn=2077-1312&rft.volume=9&rft.issue=11&rft.spage=1187&rft_id=info:doi/10.3390%2Fjmse9111187&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jmse9111187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon