Deep Learning–Based Estimation of Implantable Collamer Lens Vault Using Optical Coherence Tomography

To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwe...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 253; pp. 29 - 36
Main Authors Assaf, Jad F., Reinstein, Dan Z., Zakka, Cyril, Arbelaez, Juan G., Boufadel, Peter, Choufani, Mathieu, Archer, Timothy, Ibrahim, Perla, Awwad, Shady T.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2023
Online AccessGet full text
ISSN0002-9394
1879-1891
1879-1891
DOI10.1016/j.ajo.2023.04.008

Cover

Abstract To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. •Deep learning neural network developed to automate measurement of ICL vault using AS-OCT.•Validated using 2647 scans from 139 eyes of 82 subjects from 3 different centers.•Model achieved a MAPE of 3.42%, MAE of 15.82 µm, RMSE of 18.85 µm, Pearson correlation coefficient r of +0.98, and coefficient of determination R2 of +0.96.•The model assists postoperative assessment in ICL surgery, reducing time and potential bias of manual measurements.
AbstractList To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT).PURPOSETo develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT).Cross-sectional retrospective study.DESIGNCross-sectional retrospective study.A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model.METHODSA total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model.On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064).RESULTSOn the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064).Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.CONCLUSIONSUsing transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.
To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R ) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.
To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. •Deep learning neural network developed to automate measurement of ICL vault using AS-OCT.•Validated using 2647 scans from 139 eyes of 82 subjects from 3 different centers.•Model achieved a MAPE of 3.42%, MAE of 15.82 µm, RMSE of 18.85 µm, Pearson correlation coefficient r of +0.98, and coefficient of determination R2 of +0.96.•The model assists postoperative assessment in ICL surgery, reducing time and potential bias of manual measurements.
Author Boufadel, Peter
Awwad, Shady T.
Zakka, Cyril
Arbelaez, Juan G.
Reinstein, Dan Z.
Archer, Timothy
Assaf, Jad F.
Ibrahim, Perla
Choufani, Mathieu
Author_xml – sequence: 1
  givenname: Jad F.
  orcidid: 0000-0003-4963-7339
  surname: Assaf
  fullname: Assaf, Jad F.
  organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon
– sequence: 2
  givenname: Dan Z.
  orcidid: 0000-0001-6747-7311
  surname: Reinstein
  fullname: Reinstein, Dan Z.
  organization: London Vision Clinic, EuroEyes Group (D.Z.R., T.A.), London, United Kingdom
– sequence: 3
  givenname: Cyril
  orcidid: 0000-0001-8446-2349
  surname: Zakka
  fullname: Zakka, Cyril
  organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon
– sequence: 4
  givenname: Juan G.
  orcidid: 0000-0001-5054-6077
  surname: Arbelaez
  fullname: Arbelaez, Juan G.
  organization: Muscat Eye Laser Center (J.G.A.), Muscat, Oman
– sequence: 5
  givenname: Peter
  orcidid: 0000-0001-7078-9148
  surname: Boufadel
  fullname: Boufadel, Peter
  organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon
– sequence: 6
  givenname: Mathieu
  orcidid: 0009-0009-8748-6034
  surname: Choufani
  fullname: Choufani, Mathieu
  organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon
– sequence: 7
  givenname: Timothy
  orcidid: 0000-0003-4196-2516
  surname: Archer
  fullname: Archer, Timothy
  organization: London Vision Clinic, EuroEyes Group (D.Z.R., T.A.), London, United Kingdom
– sequence: 8
  givenname: Perla
  orcidid: 0000-0001-7055-9705
  surname: Ibrahim
  fullname: Ibrahim, Perla
  organization: Department of Ophthalmology, American University of Beirut Medical Center (P.I., S.T.A.), Beirut, Lebanon
– sequence: 9
  givenname: Shady T.
  surname: Awwad
  fullname: Awwad, Shady T.
  email: sawwad@gmail.com
  organization: Department of Ophthalmology, American University of Beirut Medical Center (P.I., S.T.A.), Beirut, Lebanon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37142173$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPCA3BBe-SSxeN1dtfiBKGFSpF6CVwtxx63Drv2YjuVcuMdeEOepA5pLz2UkzXS_43G_3dGTnzwSMhboDVQaD9sa7UNNaOsqSmvKe1fkBn0nZhDL-CEzCilbC4awU_JWUrbMrYd716R06YDzqBrZsR-QZyqFaronb_5-_vPZ5XQVBcpu1FlF3wVbHU1ToPyWW0GrJZhGNSIsTA-VT_UbsjV91TY6nrKTquhJG4xotdYrcMYbqKabvevyUurhoRvHt5zsr68WC-_zVfXX6-Wn1ZzzWmT58C4AsttKwztlRFKma41RtANdMCAWqaYbtrGdKal2APYhQLeWsYXgFY05-T9ce0Uw68dpixHlzSWiz2GXZKsBypY0y7aEn33EN1tRjRyiuXDcS8fqymB7hjQMaQU0Urt8r9KclRukEDlQYLcyiJBHiRIymWRUEh4Qj4uf475eGSwtHPnMMqk3aFE4yLqLE1wz9LiCa0H5w82fuL-P-w9lA6y1A
CitedBy_id crossref_primary_10_1007_s40123_023_00841_7
crossref_primary_10_3928_1081597X_20240214_01
crossref_primary_10_3928_1081597X_20250204_04
Cites_doi 10.1167/iovs.16-19963
10.1016/j.jcrs.2006.02.028
10.21105/joss.04101
10.1016/j.artmed.2020.101938
10.1016/j.ophtha.2005.05.023
10.1167/iovs.11-9033
10.1167/tvst.7.3.4
10.1109/ACCESS.2018.2789526
10.1016/j.jcrs.2003.09.019
10.1016/j.ajo.2021.01.018
10.1007/s00417-012-1957-0
10.1097/ICO.0000000000001776
10.1016/j.jcrs.2009.03.052
10.1001/jamaophthalmol.2016.0078
10.1097/ICO.0000000000001785
10.1016/S0886-3350(01)00978-6
10.3928/1081597X-20090617-11
10.1097/ICO.0000000000002640
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ajo.2023.04.008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1891
EndPage 36
ExternalDocumentID 37142173
10_1016_j_ajo_2023_04_008
S0002939423001861
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
3V.
7RV
7X7
8FI
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKRA
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
AZQEC
BENPR
EFLBG
FYUFA
G8K
GUQSH
LCYCR
M1P
M2O
RIG
ZA5
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c403t-124a1f4f69d08ad9aad76dd90b171210f2a2c363d7d60e811f5a146f2451ef93
IEDL.DBID AIKHN
ISSN 0002-9394
1879-1891
IngestDate Thu Sep 04 22:46:45 EDT 2025
Wed Feb 19 02:24:27 EST 2025
Thu Apr 24 23:08:52 EDT 2025
Tue Jul 01 03:42:35 EDT 2025
Fri Feb 23 02:37:32 EST 2024
Tue Aug 26 19:18:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-124a1f4f69d08ad9aad76dd90b171210f2a2c363d7d60e811f5a146f2451ef93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4196-2516
0000-0003-4963-7339
0000-0001-7078-9148
0000-0001-5054-6077
0000-0001-8446-2349
0009-0009-8748-6034
0000-0001-6747-7311
0000-0001-7055-9705
PMID 37142173
PQID 2810923656
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2810923656
pubmed_primary_37142173
crossref_citationtrail_10_1016_j_ajo_2023_04_008
crossref_primary_10_1016_j_ajo_2023_04_008
elsevier_sciencedirect_doi_10_1016_j_ajo_2023_04_008
elsevier_clinicalkey_doi_10_1016_j_ajo_2023_04_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gonzalez-Lopez, Mompean, Bilbao-Calabuig, Vila-Arteaga, Beltran, Baviera (bib0007) 2018; 7
Detlefsen, Borovec, Schock (bib0016) 2022; 7
Kazeminia, Baur, Kuijper (bib0027) 2020; 109
Muscat, Parks, Kemp, Keating (bib0022) 2002; 43
Kato, Shimizu, Igarashi (bib0008) 2019; 38
He, Zhang, Ren, Sun (bib0011) 2016
ImageNet large scale visual recognition challenge. SpringerLink. Accessed July 17, 2022.
Accessed July 14, 2022.
Fujimoto, Swanson (bib0019) 2016; 57
Paszke, Gross, Massa (bib0015) 2019; 32
Retinal Physician. Ophthalmic OCT reaches $1 billion per year.
jaketmp, Tirrell L. jaketmp/pyCompare. Published online June 11, 2021. doi:10.5281/zenodo.4926654
Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Maeda, Yoshida, Ito, Nakamura, Hara, Ichikawa (bib0001) 2010; 26
Zéboulon, Ghazal, Gatinel (bib0024) 2021; 40
Vetter, Tehrani, Dick (bib0003) 2006; 32
Smith LN. Cyclical learning rates for training neural networks. Published online April 4, 2017. Accessed October 5, 2022.
112;10:1734-1746.
Treder, Lauermann, Alnawaiseh, Eter (bib0025) 2019; 38
Howard J, Ruder S. Universal language model fine-tuning for text classification. Published online May 23, 2018. Accessed July 18, 2022.
.
Alfonso, Fernández-Vega, Lisa, Fernandes, González-Meijome, Montés-Micó (bib0006) 2012; 250
Smallman, Probst, Rafuse (bib0002) 2004; 30
Guber, Mouvet, Bergin, Perritaz, Othenin-Girard, Majo (bib0004) 2016; 134
Elsawy, Eleiwa, Chase (bib0023) 2021; 226
Dhaini, Chokr, El-Oud, Fattah, Awwad (bib0026) 2018; 6
Kamiya, Shimizu, Kawamorita (bib0005) 2009; 35
Bechmann, Ullrich, Thiel, Kenyon, Ludwig (bib0009) 2002; 28
Correa-Pérez, López-Miguel, Miranda-Anta, Iglesias-Cortiñas, Alió, Maldonado (bib0021) 2012; 53
Pedregosa, Varoquaux, Gramfort (bib0010) 2011; 12
Elsawy (10.1016/j.ajo.2023.04.008_bib0023) 2021; 226
Guber (10.1016/j.ajo.2023.04.008_bib0004) 2016; 134
Zéboulon (10.1016/j.ajo.2023.04.008_bib0024) 2021; 40
Smallman (10.1016/j.ajo.2023.04.008_bib0002) 2004; 30
Kato (10.1016/j.ajo.2023.04.008_bib0008) 2019; 38
Pedregosa (10.1016/j.ajo.2023.04.008_bib0010) 2011; 12
Fujimoto (10.1016/j.ajo.2023.04.008_bib0019) 2016; 57
Vetter (10.1016/j.ajo.2023.04.008_bib0003) 2006; 32
Maeda (10.1016/j.ajo.2023.04.008_bib0001) 2010; 26
He (10.1016/j.ajo.2023.04.008_bib0011) 2016
10.1016/j.ajo.2023.04.008_bib0020
Dhaini (10.1016/j.ajo.2023.04.008_bib0026) 2018; 6
Muscat (10.1016/j.ajo.2023.04.008_bib0022) 2002; 43
10.1016/j.ajo.2023.04.008_bib0013
10.1016/j.ajo.2023.04.008_bib0012
Bechmann (10.1016/j.ajo.2023.04.008_bib0009) 2002; 28
Treder (10.1016/j.ajo.2023.04.008_bib0025) 2019; 38
10.1016/j.ajo.2023.04.008_bib0014
10.1016/j.ajo.2023.04.008_bib0017
10.1016/j.ajo.2023.04.008_bib0018
Alfonso (10.1016/j.ajo.2023.04.008_bib0006) 2012; 250
Detlefsen (10.1016/j.ajo.2023.04.008_bib0016) 2022; 7
Correa-Pérez (10.1016/j.ajo.2023.04.008_bib0021) 2012; 53
Kamiya (10.1016/j.ajo.2023.04.008_bib0005) 2009; 35
Paszke (10.1016/j.ajo.2023.04.008_bib0015) 2019; 32
Kazeminia (10.1016/j.ajo.2023.04.008_bib0027) 2020; 109
Gonzalez-Lopez (10.1016/j.ajo.2023.04.008_bib0007) 2018; 7
References_xml – volume: 250
  start-page: 1807
  year: 2012
  end-page: 1812
  ident: bib0006
  article-title: Long-term evaluation of the central vault after phakic Collamer® lens (ICL) implantation using OCT
  publication-title: Graefes Arch Clin Exp Ophthalmol
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0011
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 32
  start-page: 1065
  year: 2006
  end-page: 1067
  ident: bib0003
  article-title: Surgical management of acute angle-closure glaucoma after toric implantable contact lens implantation
  publication-title: J Cataract Refract Surg
– volume: 109
  year: 2020
  ident: bib0027
  article-title: GANs for medical image analysis
  publication-title: Artif Intell Med
– volume: 35
  start-page: 1582
  year: 2009
  end-page: 1586
  ident: bib0005
  article-title: Changes in vaulting and the effect on refraction after phakic posterior chamber intraocular lens implantation
  publication-title: J Cataract Refract Surg
– volume: 57
  start-page: OCT1
  year: 2016
  end-page: OCT13
  ident: bib0019
  article-title: The development, commercialization, and impact of optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– volume: 6
  start-page: 3977
  year: 2018
  end-page: 3991
  ident: bib0026
  article-title: Automated detection and measurement of corneal haze and demarcation line in spectral-domain optical coherence tomography images
  publication-title: IEEE Access
– volume: 30
  start-page: 905
  year: 2004
  end-page: 907
  ident: bib0002
  article-title: Pupillary block glaucoma secondary to posterior chamber phakic intraocular lens implantation for high myopia
  publication-title: J Cataract Refract Surg
– reference: jaketmp, Tirrell L. jaketmp/pyCompare. Published online June 11, 2021. doi:10.5281/zenodo.4926654
– reference: Smith LN. Cyclical learning rates for training neural networks. Published online April 4, 2017. Accessed October 5, 2022.
– reference: Accessed July 14, 2022.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0010
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 134
  start-page: 487
  year: 2016
  end-page: 494
  ident: bib0004
  article-title: Clinical outcomes and cataract formation rates in eyes 10 years after posterior phakic lens implantation for myopia
  publication-title: JAMA Ophthalmol
– reference: Howard J, Ruder S. Universal language model fine-tuning for text classification. Published online May 23, 2018. Accessed July 18, 2022.
– volume: 7
  start-page: 4101
  year: 2022
  ident: bib0016
  article-title: TorchMetrics - measuring reproducibility in PyTorch
  publication-title: J Open Source Softw
– reference: 112;10:1734-1746.
– volume: 38
  start-page: 217
  year: 2019
  end-page: 220
  ident: bib0008
  article-title: Vault changes caused by light-induced pupil constriction and accommodation in eyes with an implantable Collamer lens
  publication-title: Cornea
– volume: 28
  start-page: 360
  year: 2002
  end-page: 363
  ident: bib0009
  article-title: Imaging of posterior chamber phakic intraocular lens by optical coherence tomography
  publication-title: J Cataract Refract Surg
– volume: 32
  year: 2019
  ident: bib0015
  article-title: PyTorch: an imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 157
  year: 2019
  end-page: 161
  ident: bib0025
  article-title: Using deep learning in automated detection of graft detachment in Descemet membrane endothelial keratoplasty: a pilot study
  publication-title: Cornea
– reference: Retinal Physician. Ophthalmic OCT reaches $1 billion per year.
– volume: 40
  start-page: 1267
  year: 2021
  end-page: 1275
  ident: bib0024
  article-title: Corneal edema visualization with optical coherence tomography using deep learning: proof of concept
  publication-title: Cornea
– volume: 7
  start-page: 4
  year: 2018
  ident: bib0007
  article-title: Dynamic assessment of light-induced vaulting changes of implantable Collamer lens with central port by swept-source OCT: pilot study
  publication-title: Transl Vis Sci Technol
– volume: 226
  start-page: 252
  year: 2021
  end-page: 261
  ident: bib0023
  article-title: Multidisease deep learning neural network for the diagnosis of corneal diseases
  publication-title: Am J Ophthalmol
– reference: .
– reference: Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
– reference: ImageNet large scale visual recognition challenge. SpringerLink. Accessed July 17, 2022.
– volume: 53
  start-page: 1752
  year: 2012
  end-page: 1757
  ident: bib0021
  article-title: Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness
  publication-title: Invest Ophthalmol Vis Sci
– volume: 26
  start-page: 327
  year: 2010
  end-page: 332
  ident: bib0001
  article-title: Posterior chamber phakic implantable Collamer lens: changes in vault during 1 year
  publication-title: J Refract Surg
– volume: 43
  start-page: 490
  year: 2002
  end-page: 495
  ident: bib0022
  article-title: Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system
  publication-title: Invest Ophthalmol Vis Sci
– volume: 57
  start-page: OCT1
  issue: 9
  year: 2016
  ident: 10.1016/j.ajo.2023.04.008_bib0019
  article-title: The development, commercialization, and impact of optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-19963
– ident: 10.1016/j.ajo.2023.04.008_bib0017
– volume: 32
  start-page: 1065
  issue: 6
  year: 2006
  ident: 10.1016/j.ajo.2023.04.008_bib0003
  article-title: Surgical management of acute angle-closure glaucoma after toric implantable contact lens implantation
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2006.02.028
– volume: 32
  year: 2019
  ident: 10.1016/j.ajo.2023.04.008_bib0015
  article-title: PyTorch: an imperative style, high-performance deep learning library
– volume: 7
  start-page: 4101
  issue: 70
  year: 2022
  ident: 10.1016/j.ajo.2023.04.008_bib0016
  article-title: TorchMetrics - measuring reproducibility in PyTorch
  publication-title: J Open Source Softw
  doi: 10.21105/joss.04101
– volume: 109
  year: 2020
  ident: 10.1016/j.ajo.2023.04.008_bib0027
  article-title: GANs for medical image analysis
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101938
– ident: 10.1016/j.ajo.2023.04.008_bib0020
  doi: 10.1016/j.ophtha.2005.05.023
– volume: 53
  start-page: 1752
  issue: 4
  year: 2012
  ident: 10.1016/j.ajo.2023.04.008_bib0021
  article-title: Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-9033
– volume: 7
  start-page: 4
  issue: 3
  year: 2018
  ident: 10.1016/j.ajo.2023.04.008_bib0007
  article-title: Dynamic assessment of light-induced vaulting changes of implantable Collamer lens with central port by swept-source OCT: pilot study
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.7.3.4
– volume: 6
  start-page: 3977
  year: 2018
  ident: 10.1016/j.ajo.2023.04.008_bib0026
  article-title: Automated detection and measurement of corneal haze and demarcation line in spectral-domain optical coherence tomography images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789526
– volume: 43
  start-page: 490
  issue: 2
  year: 2002
  ident: 10.1016/j.ajo.2023.04.008_bib0022
  article-title: Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system
  publication-title: Invest Ophthalmol Vis Sci
– ident: 10.1016/j.ajo.2023.04.008_bib0018
– ident: 10.1016/j.ajo.2023.04.008_bib0012
– ident: 10.1016/j.ajo.2023.04.008_bib0014
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10.1016/j.ajo.2023.04.008_bib0010
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 30
  start-page: 905
  issue: 4
  year: 2004
  ident: 10.1016/j.ajo.2023.04.008_bib0002
  article-title: Pupillary block glaucoma secondary to posterior chamber phakic intraocular lens implantation for high myopia
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2003.09.019
– volume: 226
  start-page: 252
  year: 2021
  ident: 10.1016/j.ajo.2023.04.008_bib0023
  article-title: Multidisease deep learning neural network for the diagnosis of corneal diseases
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2021.01.018
– volume: 250
  start-page: 1807
  issue: 12
  year: 2012
  ident: 10.1016/j.ajo.2023.04.008_bib0006
  article-title: Long-term evaluation of the central vault after phakic Collamer® lens (ICL) implantation using OCT
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-012-1957-0
– volume: 38
  start-page: 157
  issue: 2
  year: 2019
  ident: 10.1016/j.ajo.2023.04.008_bib0025
  article-title: Using deep learning in automated detection of graft detachment in Descemet membrane endothelial keratoplasty: a pilot study
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001776
– start-page: 770
  year: 2016
  ident: 10.1016/j.ajo.2023.04.008_bib0011
  article-title: Deep residual learning for image recognition
– volume: 35
  start-page: 1582
  issue: 9
  year: 2009
  ident: 10.1016/j.ajo.2023.04.008_bib0005
  article-title: Changes in vaulting and the effect on refraction after phakic posterior chamber intraocular lens implantation
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2009.03.052
– volume: 134
  start-page: 487
  issue: 5
  year: 2016
  ident: 10.1016/j.ajo.2023.04.008_bib0004
  article-title: Clinical outcomes and cataract formation rates in eyes 10 years after posterior phakic lens implantation for myopia
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2016.0078
– volume: 38
  start-page: 217
  issue: 2
  year: 2019
  ident: 10.1016/j.ajo.2023.04.008_bib0008
  article-title: Vault changes caused by light-induced pupil constriction and accommodation in eyes with an implantable Collamer lens
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001785
– volume: 28
  start-page: 360
  issue: 2
  year: 2002
  ident: 10.1016/j.ajo.2023.04.008_bib0009
  article-title: Imaging of posterior chamber phakic intraocular lens by optical coherence tomography
  publication-title: J Cataract Refract Surg
  doi: 10.1016/S0886-3350(01)00978-6
– volume: 26
  start-page: 327
  issue: 5
  year: 2010
  ident: 10.1016/j.ajo.2023.04.008_bib0001
  article-title: Posterior chamber phakic implantable Collamer lens: changes in vault during 1 year
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20090617-11
– ident: 10.1016/j.ajo.2023.04.008_bib0013
– volume: 40
  start-page: 1267
  issue: 10
  year: 2021
  ident: 10.1016/j.ajo.2023.04.008_bib0024
  article-title: Corneal edema visualization with optical coherence tomography using deep learning: proof of concept
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000002640
SSID ssj0006747
Score 2.4716501
Snippet To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
Title Deep Learning–Based Estimation of Implantable Collamer Lens Vault Using Optical Coherence Tomography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002939423001861
https://dx.doi.org/10.1016/j.ajo.2023.04.008
https://www.ncbi.nlm.nih.gov/pubmed/37142173
https://www.proquest.com/docview/2810923656
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB3RRap6qaDQdgtFRuKElOLYTrI-LhS0LYJeFsTNcmIbgSC7YnevVf-hf8iXMJM4K1WiVOoxUUaxxvbMG3vmDcAeD-hjbMiSQgYMUMo8JFanPuFKlaqSVoum1-HZeT66UN-vsqsVOOpqYSitMtr-1qY31jq-OYjaPJje3FCNL0dfpREPUGc5CoFWhdR51oPV4bfT0fnSIOeFKjoUTALd5WaT5mVvqQRQyIbwlJpMPu-e_gY_Gzd0sgZvI35kw3aI67Di63fw-izekG9A-Or9lEXW1OvHX78P0U05dow7uS1SZJPAiBIYNUpVU4xODuy9f0CZesYu7eJuzpo8AvZj2pxzM6rgaGoC2XhyHxmuN2F8cjw-GiWxl0JSKS7nCbpxmwYVcu34wDptrSty5zQv04I4xIKwopK5dIXLuR-kacgsGtEgVJb6oOV76NWT2n8EZjHCEBWvSl-UymltnVLKEa7ivkS83gfeadBUkWec2l3cmS6h7Nag0g0p3XBlUOl92F-KTFuSjZc-Ft20mK56FO2dQRfwkpBaCv2xvP4lttvNu8FtR3cptvaTxcyIQcoRGyMa7sOHdkEsh04kiBjpyU__99MteENPbSLbNvTmDwv_GZHPvNyBV19-pjtxfT8BNmkA-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swELdQJ7G9TOPPtm4MjMTTpIATO0n9yKCobC176RBvlhPbU6s2raB9nfYd9g33SXbnOEVIUKS9JjnFOtt3v7PvfkfIEXPgY7RLo5w7CFCKzEVaxjZiQhSi5Fomvtfh4Crr_RBfb9KbDXLW1MJgWmWw_bVN99Y6PDkJ2jyZj0ZY48vAV0nAA9hZDkOgFyLlOeb1Hf-6z_PIcpE3GBg_b642fZKXHmMBYMI93Sm2mHzcOT0FPr0TunhDXgf0SE_rAW6RDVttk81BuB_fIe7c2jkNnKk___7-8wWclKFd2Md1iSKdOYqEwKBPrJmieG6gp_YWZKo7eq2XkwX1WQT0-9yfclOs3_AVgXQ4mwZ-610yvOgOz3pR6KQQlYLxRQROXMdOuEwa1tFGam3yzBjJijhHBjGX6KTkGTe5yZjtxLFLNZhQl4g0tk7yt6RVzSr7nlAN8UVSsrKweSGMlNoIIQyiKmYLQOttwhoNqjKwjGOzi4lq0snGCpSuUOmKCQVKb5PPK5F5TbGx7uOkmRbV1I6CtVPgANYJiZXQg8X1nNhhM-8KNh3epOjKzpZ3KunEDJAxYOE2eVcviNXQkQIR4jz-4f9-ekBe9oaDvupfXn37SF7hmzqlbY-0FrdL-wkw0KLY92v8H2H2AcU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning%E2%80%93Based+Estimation+of+Implantable+Collamer+Lens+Vault+Using+Optical+Coherence+Tomography&rft.jtitle=American+journal+of+ophthalmology&rft.au=Assaf%2C+Jad+F.&rft.au=Reinstein%2C+Dan+Z.&rft.au=Zakka%2C+Cyril&rft.au=Arbelaez%2C+Juan+G.&rft.date=2023-09-01&rft.issn=0002-9394&rft.volume=253&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1016%2Fj.ajo.2023.04.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ajo_2023_04_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon