Deep Learning–Based Estimation of Implantable Collamer Lens Vault Using Optical Coherence Tomography
To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwe...
Saved in:
Published in | American journal of ophthalmology Vol. 253; pp. 29 - 36 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2023
|
Online Access | Get full text |
ISSN | 0002-9394 1879-1891 1879-1891 |
DOI | 10.1016/j.ajo.2023.04.008 |
Cover
Abstract | To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT).
Cross-sectional retrospective study.
A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model.
On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064).
Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.
•Deep learning neural network developed to automate measurement of ICL vault using AS-OCT.•Validated using 2647 scans from 139 eyes of 82 subjects from 3 different centers.•Model achieved a MAPE of 3.42%, MAE of 15.82 µm, RMSE of 18.85 µm, Pearson correlation coefficient r of +0.98, and coefficient of determination R2 of +0.96.•The model assists postoperative assessment in ICL surgery, reducing time and potential bias of manual measurements. |
---|---|
AbstractList | To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT).PURPOSETo develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT).Cross-sectional retrospective study.DESIGNCross-sectional retrospective study.A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model.METHODSA total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model.On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064).RESULTSOn the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064).Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery.CONCLUSIONSUsing transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R ) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical coherence tomography (AS-OCT). Cross-sectional retrospective study. A total of 2647 AS-OCT scans were used from 139 eyes of 82 subjects who underwent ICL surgery in 3 different centers. Using transfer learning, a deep learning network was trained and validated for estimating the ICL vault on OCT. A trained operator separately reviewed all OCT scans and measured the central vault using a built-in caliper tool. The model was then separately tested on 191 scans. A Bland-Altman plot was constructed and the mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), and determination coefficient (R2) were calculated to evaluate the strength and validity of the model. On the test set, the model achieved a MAPE of 3.42%, an MAE of 15.82 µm, a RMSE of 18.85 µm, a Pearson correlation coefficient r of +0.98 (P < .00001), and a coefficient of determination R2 of +0.96. There was no significant difference between the vaults of the test set labeled by the technician vs those estimated by the model: 478 ± 95 µm vs 475 ± 97 µm, respectively, P = .064). Using transfer learning, our deep learning neural network was able to accurately compute the ICL vault from AS-OCT scans, overcoming the limitations of an imbalanced data set and limited training data. Such an algorithm can assist the postoperative assessment in ICL surgery. •Deep learning neural network developed to automate measurement of ICL vault using AS-OCT.•Validated using 2647 scans from 139 eyes of 82 subjects from 3 different centers.•Model achieved a MAPE of 3.42%, MAE of 15.82 µm, RMSE of 18.85 µm, Pearson correlation coefficient r of +0.98, and coefficient of determination R2 of +0.96.•The model assists postoperative assessment in ICL surgery, reducing time and potential bias of manual measurements. |
Author | Boufadel, Peter Awwad, Shady T. Zakka, Cyril Arbelaez, Juan G. Reinstein, Dan Z. Archer, Timothy Assaf, Jad F. Ibrahim, Perla Choufani, Mathieu |
Author_xml | – sequence: 1 givenname: Jad F. orcidid: 0000-0003-4963-7339 surname: Assaf fullname: Assaf, Jad F. organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon – sequence: 2 givenname: Dan Z. orcidid: 0000-0001-6747-7311 surname: Reinstein fullname: Reinstein, Dan Z. organization: London Vision Clinic, EuroEyes Group (D.Z.R., T.A.), London, United Kingdom – sequence: 3 givenname: Cyril orcidid: 0000-0001-8446-2349 surname: Zakka fullname: Zakka, Cyril organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon – sequence: 4 givenname: Juan G. orcidid: 0000-0001-5054-6077 surname: Arbelaez fullname: Arbelaez, Juan G. organization: Muscat Eye Laser Center (J.G.A.), Muscat, Oman – sequence: 5 givenname: Peter orcidid: 0000-0001-7078-9148 surname: Boufadel fullname: Boufadel, Peter organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon – sequence: 6 givenname: Mathieu orcidid: 0009-0009-8748-6034 surname: Choufani fullname: Choufani, Mathieu organization: Faculty of Medicine, American University of Beirut (J.F.A., C.Z., P.B., M.C.), Beirut, Lebanon – sequence: 7 givenname: Timothy orcidid: 0000-0003-4196-2516 surname: Archer fullname: Archer, Timothy organization: London Vision Clinic, EuroEyes Group (D.Z.R., T.A.), London, United Kingdom – sequence: 8 givenname: Perla orcidid: 0000-0001-7055-9705 surname: Ibrahim fullname: Ibrahim, Perla organization: Department of Ophthalmology, American University of Beirut Medical Center (P.I., S.T.A.), Beirut, Lebanon – sequence: 9 givenname: Shady T. surname: Awwad fullname: Awwad, Shady T. email: sawwad@gmail.com organization: Department of Ophthalmology, American University of Beirut Medical Center (P.I., S.T.A.), Beirut, Lebanon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37142173$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPCA3BBe-SSxeN1dtfiBKGFSpF6CVwtxx63Drv2YjuVcuMdeEOepA5pLz2UkzXS_43G_3dGTnzwSMhboDVQaD9sa7UNNaOsqSmvKe1fkBn0nZhDL-CEzCilbC4awU_JWUrbMrYd716R06YDzqBrZsR-QZyqFaronb_5-_vPZ5XQVBcpu1FlF3wVbHU1ToPyWW0GrJZhGNSIsTA-VT_UbsjV91TY6nrKTquhJG4xotdYrcMYbqKabvevyUurhoRvHt5zsr68WC-_zVfXX6-Wn1ZzzWmT58C4AsttKwztlRFKma41RtANdMCAWqaYbtrGdKal2APYhQLeWsYXgFY05-T9ce0Uw68dpixHlzSWiz2GXZKsBypY0y7aEn33EN1tRjRyiuXDcS8fqymB7hjQMaQU0Urt8r9KclRukEDlQYLcyiJBHiRIymWRUEh4Qj4uf475eGSwtHPnMMqk3aFE4yLqLE1wz9LiCa0H5w82fuL-P-w9lA6y1A |
CitedBy_id | crossref_primary_10_1007_s40123_023_00841_7 crossref_primary_10_3928_1081597X_20240214_01 crossref_primary_10_3928_1081597X_20250204_04 |
Cites_doi | 10.1167/iovs.16-19963 10.1016/j.jcrs.2006.02.028 10.21105/joss.04101 10.1016/j.artmed.2020.101938 10.1016/j.ophtha.2005.05.023 10.1167/iovs.11-9033 10.1167/tvst.7.3.4 10.1109/ACCESS.2018.2789526 10.1016/j.jcrs.2003.09.019 10.1016/j.ajo.2021.01.018 10.1007/s00417-012-1957-0 10.1097/ICO.0000000000001776 10.1016/j.jcrs.2009.03.052 10.1001/jamaophthalmol.2016.0078 10.1097/ICO.0000000000001785 10.1016/S0886-3350(01)00978-6 10.3928/1081597X-20090617-11 10.1097/ICO.0000000000002640 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ajo.2023.04.008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1891 |
EndPage | 36 |
ExternalDocumentID | 37142173 10_1016_j_ajo_2023_04_008 S0002939423001861 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAHTB AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABPEJ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSZ SV3 T5K UNMZH UV1 VH1 WH7 WOW X7M XPP Z5R ZGI ZXP ~G- 3V. 7RV 7X7 8FI AACTN AAIAV ABLVK ABYKQ AFCTW AFKRA AFKWA AHPSJ AJBFU AJOXV AMFUW AZQEC BENPR EFLBG FYUFA G8K GUQSH LCYCR M1P M2O RIG ZA5 AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c403t-124a1f4f69d08ad9aad76dd90b171210f2a2c363d7d60e811f5a146f2451ef93 |
IEDL.DBID | AIKHN |
ISSN | 0002-9394 1879-1891 |
IngestDate | Thu Sep 04 22:46:45 EDT 2025 Wed Feb 19 02:24:27 EST 2025 Thu Apr 24 23:08:52 EDT 2025 Tue Jul 01 03:42:35 EDT 2025 Fri Feb 23 02:37:32 EST 2024 Tue Aug 26 19:18:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-124a1f4f69d08ad9aad76dd90b171210f2a2c363d7d60e811f5a146f2451ef93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4196-2516 0000-0003-4963-7339 0000-0001-7078-9148 0000-0001-5054-6077 0000-0001-8446-2349 0009-0009-8748-6034 0000-0001-6747-7311 0000-0001-7055-9705 |
PMID | 37142173 |
PQID | 2810923656 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2810923656 pubmed_primary_37142173 crossref_citationtrail_10_1016_j_ajo_2023_04_008 crossref_primary_10_1016_j_ajo_2023_04_008 elsevier_sciencedirect_doi_10_1016_j_ajo_2023_04_008 elsevier_clinicalkey_doi_10_1016_j_ajo_2023_04_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of ophthalmology |
PublicationTitleAlternate | Am J Ophthalmol |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Gonzalez-Lopez, Mompean, Bilbao-Calabuig, Vila-Arteaga, Beltran, Baviera (bib0007) 2018; 7 Detlefsen, Borovec, Schock (bib0016) 2022; 7 Kazeminia, Baur, Kuijper (bib0027) 2020; 109 Muscat, Parks, Kemp, Keating (bib0022) 2002; 43 Kato, Shimizu, Igarashi (bib0008) 2019; 38 He, Zhang, Ren, Sun (bib0011) 2016 ImageNet large scale visual recognition challenge. SpringerLink. Accessed July 17, 2022. Accessed July 14, 2022. Fujimoto, Swanson (bib0019) 2016; 57 Paszke, Gross, Massa (bib0015) 2019; 32 Retinal Physician. Ophthalmic OCT reaches $1 billion per year. jaketmp, Tirrell L. jaketmp/pyCompare. Published online June 11, 2021. doi:10.5281/zenodo.4926654 Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Maeda, Yoshida, Ito, Nakamura, Hara, Ichikawa (bib0001) 2010; 26 Zéboulon, Ghazal, Gatinel (bib0024) 2021; 40 Vetter, Tehrani, Dick (bib0003) 2006; 32 Smith LN. Cyclical learning rates for training neural networks. Published online April 4, 2017. Accessed October 5, 2022. 112;10:1734-1746. Treder, Lauermann, Alnawaiseh, Eter (bib0025) 2019; 38 Howard J, Ruder S. Universal language model fine-tuning for text classification. Published online May 23, 2018. Accessed July 18, 2022. . Alfonso, Fernández-Vega, Lisa, Fernandes, González-Meijome, Montés-Micó (bib0006) 2012; 250 Smallman, Probst, Rafuse (bib0002) 2004; 30 Guber, Mouvet, Bergin, Perritaz, Othenin-Girard, Majo (bib0004) 2016; 134 Elsawy, Eleiwa, Chase (bib0023) 2021; 226 Dhaini, Chokr, El-Oud, Fattah, Awwad (bib0026) 2018; 6 Kamiya, Shimizu, Kawamorita (bib0005) 2009; 35 Bechmann, Ullrich, Thiel, Kenyon, Ludwig (bib0009) 2002; 28 Correa-Pérez, López-Miguel, Miranda-Anta, Iglesias-Cortiñas, Alió, Maldonado (bib0021) 2012; 53 Pedregosa, Varoquaux, Gramfort (bib0010) 2011; 12 Elsawy (10.1016/j.ajo.2023.04.008_bib0023) 2021; 226 Guber (10.1016/j.ajo.2023.04.008_bib0004) 2016; 134 Zéboulon (10.1016/j.ajo.2023.04.008_bib0024) 2021; 40 Smallman (10.1016/j.ajo.2023.04.008_bib0002) 2004; 30 Kato (10.1016/j.ajo.2023.04.008_bib0008) 2019; 38 Pedregosa (10.1016/j.ajo.2023.04.008_bib0010) 2011; 12 Fujimoto (10.1016/j.ajo.2023.04.008_bib0019) 2016; 57 Vetter (10.1016/j.ajo.2023.04.008_bib0003) 2006; 32 Maeda (10.1016/j.ajo.2023.04.008_bib0001) 2010; 26 He (10.1016/j.ajo.2023.04.008_bib0011) 2016 10.1016/j.ajo.2023.04.008_bib0020 Dhaini (10.1016/j.ajo.2023.04.008_bib0026) 2018; 6 Muscat (10.1016/j.ajo.2023.04.008_bib0022) 2002; 43 10.1016/j.ajo.2023.04.008_bib0013 10.1016/j.ajo.2023.04.008_bib0012 Bechmann (10.1016/j.ajo.2023.04.008_bib0009) 2002; 28 Treder (10.1016/j.ajo.2023.04.008_bib0025) 2019; 38 10.1016/j.ajo.2023.04.008_bib0014 10.1016/j.ajo.2023.04.008_bib0017 10.1016/j.ajo.2023.04.008_bib0018 Alfonso (10.1016/j.ajo.2023.04.008_bib0006) 2012; 250 Detlefsen (10.1016/j.ajo.2023.04.008_bib0016) 2022; 7 Correa-Pérez (10.1016/j.ajo.2023.04.008_bib0021) 2012; 53 Kamiya (10.1016/j.ajo.2023.04.008_bib0005) 2009; 35 Paszke (10.1016/j.ajo.2023.04.008_bib0015) 2019; 32 Kazeminia (10.1016/j.ajo.2023.04.008_bib0027) 2020; 109 Gonzalez-Lopez (10.1016/j.ajo.2023.04.008_bib0007) 2018; 7 |
References_xml | – volume: 250 start-page: 1807 year: 2012 end-page: 1812 ident: bib0006 article-title: Long-term evaluation of the central vault after phakic Collamer® lens (ICL) implantation using OCT publication-title: Graefes Arch Clin Exp Ophthalmol – start-page: 770 year: 2016 end-page: 778 ident: bib0011 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 32 start-page: 1065 year: 2006 end-page: 1067 ident: bib0003 article-title: Surgical management of acute angle-closure glaucoma after toric implantable contact lens implantation publication-title: J Cataract Refract Surg – volume: 109 year: 2020 ident: bib0027 article-title: GANs for medical image analysis publication-title: Artif Intell Med – volume: 35 start-page: 1582 year: 2009 end-page: 1586 ident: bib0005 article-title: Changes in vaulting and the effect on refraction after phakic posterior chamber intraocular lens implantation publication-title: J Cataract Refract Surg – volume: 57 start-page: OCT1 year: 2016 end-page: OCT13 ident: bib0019 article-title: The development, commercialization, and impact of optical coherence tomography publication-title: Invest Ophthalmol Vis Sci – volume: 6 start-page: 3977 year: 2018 end-page: 3991 ident: bib0026 article-title: Automated detection and measurement of corneal haze and demarcation line in spectral-domain optical coherence tomography images publication-title: IEEE Access – volume: 30 start-page: 905 year: 2004 end-page: 907 ident: bib0002 article-title: Pupillary block glaucoma secondary to posterior chamber phakic intraocular lens implantation for high myopia publication-title: J Cataract Refract Surg – reference: jaketmp, Tirrell L. jaketmp/pyCompare. Published online June 11, 2021. doi:10.5281/zenodo.4926654 – reference: Smith LN. Cyclical learning rates for training neural networks. Published online April 4, 2017. Accessed October 5, 2022. – reference: Accessed July 14, 2022. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0010 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 134 start-page: 487 year: 2016 end-page: 494 ident: bib0004 article-title: Clinical outcomes and cataract formation rates in eyes 10 years after posterior phakic lens implantation for myopia publication-title: JAMA Ophthalmol – reference: Howard J, Ruder S. Universal language model fine-tuning for text classification. Published online May 23, 2018. Accessed July 18, 2022. – volume: 7 start-page: 4101 year: 2022 ident: bib0016 article-title: TorchMetrics - measuring reproducibility in PyTorch publication-title: J Open Source Softw – reference: 112;10:1734-1746. – volume: 38 start-page: 217 year: 2019 end-page: 220 ident: bib0008 article-title: Vault changes caused by light-induced pupil constriction and accommodation in eyes with an implantable Collamer lens publication-title: Cornea – volume: 28 start-page: 360 year: 2002 end-page: 363 ident: bib0009 article-title: Imaging of posterior chamber phakic intraocular lens by optical coherence tomography publication-title: J Cataract Refract Surg – volume: 32 year: 2019 ident: bib0015 article-title: PyTorch: an imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems – volume: 38 start-page: 157 year: 2019 end-page: 161 ident: bib0025 article-title: Using deep learning in automated detection of graft detachment in Descemet membrane endothelial keratoplasty: a pilot study publication-title: Cornea – reference: Retinal Physician. Ophthalmic OCT reaches $1 billion per year. – volume: 40 start-page: 1267 year: 2021 end-page: 1275 ident: bib0024 article-title: Corneal edema visualization with optical coherence tomography using deep learning: proof of concept publication-title: Cornea – volume: 7 start-page: 4 year: 2018 ident: bib0007 article-title: Dynamic assessment of light-induced vaulting changes of implantable Collamer lens with central port by swept-source OCT: pilot study publication-title: Transl Vis Sci Technol – volume: 226 start-page: 252 year: 2021 end-page: 261 ident: bib0023 article-title: Multidisease deep learning neural network for the diagnosis of corneal diseases publication-title: Am J Ophthalmol – reference: . – reference: Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. – reference: ImageNet large scale visual recognition challenge. SpringerLink. Accessed July 17, 2022. – volume: 53 start-page: 1752 year: 2012 end-page: 1757 ident: bib0021 article-title: Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness publication-title: Invest Ophthalmol Vis Sci – volume: 26 start-page: 327 year: 2010 end-page: 332 ident: bib0001 article-title: Posterior chamber phakic implantable Collamer lens: changes in vault during 1 year publication-title: J Refract Surg – volume: 43 start-page: 490 year: 2002 end-page: 495 ident: bib0022 article-title: Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system publication-title: Invest Ophthalmol Vis Sci – volume: 57 start-page: OCT1 issue: 9 year: 2016 ident: 10.1016/j.ajo.2023.04.008_bib0019 article-title: The development, commercialization, and impact of optical coherence tomography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.16-19963 – ident: 10.1016/j.ajo.2023.04.008_bib0017 – volume: 32 start-page: 1065 issue: 6 year: 2006 ident: 10.1016/j.ajo.2023.04.008_bib0003 article-title: Surgical management of acute angle-closure glaucoma after toric implantable contact lens implantation publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2006.02.028 – volume: 32 year: 2019 ident: 10.1016/j.ajo.2023.04.008_bib0015 article-title: PyTorch: an imperative style, high-performance deep learning library – volume: 7 start-page: 4101 issue: 70 year: 2022 ident: 10.1016/j.ajo.2023.04.008_bib0016 article-title: TorchMetrics - measuring reproducibility in PyTorch publication-title: J Open Source Softw doi: 10.21105/joss.04101 – volume: 109 year: 2020 ident: 10.1016/j.ajo.2023.04.008_bib0027 article-title: GANs for medical image analysis publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101938 – ident: 10.1016/j.ajo.2023.04.008_bib0020 doi: 10.1016/j.ophtha.2005.05.023 – volume: 53 start-page: 1752 issue: 4 year: 2012 ident: 10.1016/j.ajo.2023.04.008_bib0021 article-title: Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-9033 – volume: 7 start-page: 4 issue: 3 year: 2018 ident: 10.1016/j.ajo.2023.04.008_bib0007 article-title: Dynamic assessment of light-induced vaulting changes of implantable Collamer lens with central port by swept-source OCT: pilot study publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.7.3.4 – volume: 6 start-page: 3977 year: 2018 ident: 10.1016/j.ajo.2023.04.008_bib0026 article-title: Automated detection and measurement of corneal haze and demarcation line in spectral-domain optical coherence tomography images publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789526 – volume: 43 start-page: 490 issue: 2 year: 2002 ident: 10.1016/j.ajo.2023.04.008_bib0022 article-title: Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system publication-title: Invest Ophthalmol Vis Sci – ident: 10.1016/j.ajo.2023.04.008_bib0018 – ident: 10.1016/j.ajo.2023.04.008_bib0012 – ident: 10.1016/j.ajo.2023.04.008_bib0014 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 10.1016/j.ajo.2023.04.008_bib0010 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 30 start-page: 905 issue: 4 year: 2004 ident: 10.1016/j.ajo.2023.04.008_bib0002 article-title: Pupillary block glaucoma secondary to posterior chamber phakic intraocular lens implantation for high myopia publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2003.09.019 – volume: 226 start-page: 252 year: 2021 ident: 10.1016/j.ajo.2023.04.008_bib0023 article-title: Multidisease deep learning neural network for the diagnosis of corneal diseases publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2021.01.018 – volume: 250 start-page: 1807 issue: 12 year: 2012 ident: 10.1016/j.ajo.2023.04.008_bib0006 article-title: Long-term evaluation of the central vault after phakic Collamer® lens (ICL) implantation using OCT publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-012-1957-0 – volume: 38 start-page: 157 issue: 2 year: 2019 ident: 10.1016/j.ajo.2023.04.008_bib0025 article-title: Using deep learning in automated detection of graft detachment in Descemet membrane endothelial keratoplasty: a pilot study publication-title: Cornea doi: 10.1097/ICO.0000000000001776 – start-page: 770 year: 2016 ident: 10.1016/j.ajo.2023.04.008_bib0011 article-title: Deep residual learning for image recognition – volume: 35 start-page: 1582 issue: 9 year: 2009 ident: 10.1016/j.ajo.2023.04.008_bib0005 article-title: Changes in vaulting and the effect on refraction after phakic posterior chamber intraocular lens implantation publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2009.03.052 – volume: 134 start-page: 487 issue: 5 year: 2016 ident: 10.1016/j.ajo.2023.04.008_bib0004 article-title: Clinical outcomes and cataract formation rates in eyes 10 years after posterior phakic lens implantation for myopia publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2016.0078 – volume: 38 start-page: 217 issue: 2 year: 2019 ident: 10.1016/j.ajo.2023.04.008_bib0008 article-title: Vault changes caused by light-induced pupil constriction and accommodation in eyes with an implantable Collamer lens publication-title: Cornea doi: 10.1097/ICO.0000000000001785 – volume: 28 start-page: 360 issue: 2 year: 2002 ident: 10.1016/j.ajo.2023.04.008_bib0009 article-title: Imaging of posterior chamber phakic intraocular lens by optical coherence tomography publication-title: J Cataract Refract Surg doi: 10.1016/S0886-3350(01)00978-6 – volume: 26 start-page: 327 issue: 5 year: 2010 ident: 10.1016/j.ajo.2023.04.008_bib0001 article-title: Posterior chamber phakic implantable Collamer lens: changes in vault during 1 year publication-title: J Refract Surg doi: 10.3928/1081597X-20090617-11 – ident: 10.1016/j.ajo.2023.04.008_bib0013 – volume: 40 start-page: 1267 issue: 10 year: 2021 ident: 10.1016/j.ajo.2023.04.008_bib0024 article-title: Corneal edema visualization with optical coherence tomography using deep learning: proof of concept publication-title: Cornea doi: 10.1097/ICO.0000000000002640 |
SSID | ssj0006747 |
Score | 2.4716501 |
Snippet | To develop and validate a deep learning neural network for automated measurement of implantable collamer lens (ICL) vault using anterior segment optical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
Title | Deep Learning–Based Estimation of Implantable Collamer Lens Vault Using Optical Coherence Tomography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002939423001861 https://dx.doi.org/10.1016/j.ajo.2023.04.008 https://www.ncbi.nlm.nih.gov/pubmed/37142173 https://www.proquest.com/docview/2810923656 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB3RRap6qaDQdgtFRuKElOLYTrI-LhS0LYJeFsTNcmIbgSC7YnevVf-hf8iXMJM4K1WiVOoxUUaxxvbMG3vmDcAeD-hjbMiSQgYMUMo8JFanPuFKlaqSVoum1-HZeT66UN-vsqsVOOpqYSitMtr-1qY31jq-OYjaPJje3FCNL0dfpREPUGc5CoFWhdR51oPV4bfT0fnSIOeFKjoUTALd5WaT5mVvqQRQyIbwlJpMPu-e_gY_Gzd0sgZvI35kw3aI67Di63fw-izekG9A-Or9lEXW1OvHX78P0U05dow7uS1SZJPAiBIYNUpVU4xODuy9f0CZesYu7eJuzpo8AvZj2pxzM6rgaGoC2XhyHxmuN2F8cjw-GiWxl0JSKS7nCbpxmwYVcu34wDptrSty5zQv04I4xIKwopK5dIXLuR-kacgsGtEgVJb6oOV76NWT2n8EZjHCEBWvSl-UymltnVLKEa7ivkS83gfeadBUkWec2l3cmS6h7Nag0g0p3XBlUOl92F-KTFuSjZc-Ft20mK56FO2dQRfwkpBaCv2xvP4lttvNu8FtR3cptvaTxcyIQcoRGyMa7sOHdkEsh04kiBjpyU__99MteENPbSLbNvTmDwv_GZHPvNyBV19-pjtxfT8BNmkA-g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swELdQJ7G9TOPPtm4MjMTTpIATO0n9yKCobC176RBvlhPbU6s2raB9nfYd9g33SXbnOEVIUKS9JjnFOtt3v7PvfkfIEXPgY7RLo5w7CFCKzEVaxjZiQhSi5Fomvtfh4Crr_RBfb9KbDXLW1MJgWmWw_bVN99Y6PDkJ2jyZj0ZY48vAV0nAA9hZDkOgFyLlOeb1Hf-6z_PIcpE3GBg_b642fZKXHmMBYMI93Sm2mHzcOT0FPr0TunhDXgf0SE_rAW6RDVttk81BuB_fIe7c2jkNnKk___7-8wWclKFd2Md1iSKdOYqEwKBPrJmieG6gp_YWZKo7eq2XkwX1WQT0-9yfclOs3_AVgXQ4mwZ-610yvOgOz3pR6KQQlYLxRQROXMdOuEwa1tFGam3yzBjJijhHBjGX6KTkGTe5yZjtxLFLNZhQl4g0tk7yt6RVzSr7nlAN8UVSsrKweSGMlNoIIQyiKmYLQOttwhoNqjKwjGOzi4lq0snGCpSuUOmKCQVKb5PPK5F5TbGx7uOkmRbV1I6CtVPgANYJiZXQg8X1nNhhM-8KNh3epOjKzpZ3KunEDJAxYOE2eVcviNXQkQIR4jz-4f9-ekBe9oaDvupfXn37SF7hmzqlbY-0FrdL-wkw0KLY92v8H2H2AcU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning%E2%80%93Based+Estimation+of+Implantable+Collamer+Lens+Vault+Using+Optical+Coherence+Tomography&rft.jtitle=American+journal+of+ophthalmology&rft.au=Assaf%2C+Jad+F.&rft.au=Reinstein%2C+Dan+Z.&rft.au=Zakka%2C+Cyril&rft.au=Arbelaez%2C+Juan+G.&rft.date=2023-09-01&rft.issn=0002-9394&rft.volume=253&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1016%2Fj.ajo.2023.04.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ajo_2023_04_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon |