Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans

Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH....

Full description

Saved in:
Bibliographic Details
Published inLimnology and oceanography letters Vol. 3; no. 3; pp. 143 - 155
Main Authors Raymond, Peter A., Hamilton, Stephen K.
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.06.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH. This review summarizes controls on the production of HCO3− from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control HCO3− production, and water throughput controls HCO3− transport into rivers. Human influences on HCO3− fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but HCO3− fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial HCO3− fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes.
AbstractList Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH. This review summarizes controls on the production of HCO3− from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control HCO3− production, and water throughput controls HCO3− transport into rivers. Human influences on HCO3− fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but HCO3− fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial HCO3− fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes.
Abstract Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH. This review summarizes controls on the production of HCO3− from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control HCO3− production, and water throughput controls HCO3− transport into rivers. Human influences on HCO3− fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but HCO3− fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial HCO3− fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes.
Bicarbonate ( ), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of to the oceans and subsequent reactions affect atmospheric CO 2 , global climate and ocean pH. This review summarizes controls on the production of from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control production, and water throughput controls transport into rivers. Human influences on fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes.
Author Raymond, Peter A.
Hamilton, Stephen K.
Author_xml – sequence: 1
  givenname: Peter A.
  orcidid: 0000-0002-8564-7860
  surname: Raymond
  fullname: Raymond, Peter A.
  email: peter.raymond@yale.edu
  organization: Yale School of Forestry and Environmental Studies, Yale University
– sequence: 2
  givenname: Stephen K.
  orcidid: 0000-0002-4702-9017
  surname: Hamilton
  fullname: Hamilton, Stephen K.
  organization: Michigan State University, Hickory Corners
BookMark eNp9kU9LHTEUxUNRqLVu_AQD3RWe3vydzFKkrcIDN0KX4SaTaB7T5DWZZ-u3b8YpRUrpKpfD75xc7nlHjlJOnpBzChcUgF1OeWLLpIY35ITxXm8YE-zo1fyWnNW6AwCqaC-5PiFfr9L8WPI-P_gUXRdTmA4-OV-7nLoSn3yJyXdN_LlIoRtjrXl68mNDc3nAxeSw2EbPuZsffZedx1Tfk-OAU_Vnv99Tcv_50_31zWZ79-X2-mq7cQL4sAmUaatdHxgXo0c5WItsoEoJwZziAi1KCyiRAx1lGJge-mCD4uCkkpafkts1dsy4M_sSv2F5NhmjeRHahgbLHN3kTQ-Sg9ZCUaUFgrQ9WNpExUPfey1b1oc1a1_y94Ovs9nlQ0lte9NupyUoRkWjPq6UK7nW4sOfXymYpQaz1GBeamgw_AW7OOMcc5oLxunfFrpafsTJP_8n3Gzvtmz1_ALTnJo_
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131738
crossref_primary_10_1126_science_aay5945
crossref_primary_10_1186_s12932_020_00069_5
crossref_primary_10_1007_s12237_024_01421_z
crossref_primary_10_1126_science_adi7918
crossref_primary_10_1007_s00027_020_0712_6
crossref_primary_10_1371_journal_pone_0276513
crossref_primary_10_1007_s10533_022_00947_3
crossref_primary_10_3389_fclim_2022_959229
crossref_primary_10_3390_w12061817
crossref_primary_10_1029_2023JG007877
crossref_primary_10_1016_j_ejrh_2021_100881
crossref_primary_10_1029_2019WR025343
crossref_primary_10_1007_s10533_023_01064_5
crossref_primary_10_1021_acs_est_8b01051
crossref_primary_10_1029_2023GB007776
crossref_primary_10_1016_j_marchem_2021_104050
crossref_primary_10_1029_2019RG000681
crossref_primary_10_1029_2021GB007096
crossref_primary_10_3390_w14172703
crossref_primary_10_1016_j_scitotenv_2025_179017
crossref_primary_10_1021_acs_est_1c04605
crossref_primary_10_1029_2022GB007392
crossref_primary_10_1016_j_jenvman_2024_123681
crossref_primary_10_1007_s10750_023_05383_4
crossref_primary_10_1016_j_watres_2022_119289
crossref_primary_10_1002_lom3_10525
crossref_primary_10_1016_j_envpol_2021_117506
crossref_primary_10_1002_lno_12282
crossref_primary_10_3390_su12083369
crossref_primary_10_1098_rstb_2018_0017
crossref_primary_10_1002_lno_11399
crossref_primary_10_1021_acs_est_4c02368
crossref_primary_10_1016_j_gca_2019_09_042
crossref_primary_10_1039_D2EM00071G
crossref_primary_10_3390_min10090758
crossref_primary_10_1007_s00027_018_0617_9
crossref_primary_10_1007_s00027_023_00983_7
crossref_primary_10_1016_j_apgeochem_2023_105557
crossref_primary_10_1016_j_watres_2023_120808
crossref_primary_10_1016_j_scitotenv_2020_138255
crossref_primary_10_1007_s10040_020_02252_5
crossref_primary_10_1016_j_jhydrol_2019_04_036
crossref_primary_10_1029_2023WR035292
crossref_primary_10_1016_j_gca_2020_04_020
crossref_primary_10_1038_s41598_019_54861_0
crossref_primary_10_1126_sciadv_adl0779
crossref_primary_10_3390_ijerph20043032
crossref_primary_10_1016_j_jhydrol_2021_126287
crossref_primary_10_1029_2020JG005968
crossref_primary_10_1016_j_ecolind_2023_110494
crossref_primary_10_1111_fwb_13723
crossref_primary_10_3390_w15050894
crossref_primary_10_1016_j_gexplo_2025_107702
crossref_primary_10_1016_j_scitotenv_2023_163839
crossref_primary_10_1016_j_watres_2023_120744
crossref_primary_10_1029_2023GB007749
crossref_primary_10_1007_s12237_024_01384_1
crossref_primary_10_1098_rspb_2018_1415
crossref_primary_10_1029_2017GB005798
crossref_primary_10_1002_hyp_13679
crossref_primary_10_1029_2021GB007154
crossref_primary_10_1029_2021GB007231
crossref_primary_10_1029_2021JG006449
crossref_primary_10_1007_s11356_024_34962_8
crossref_primary_10_1016_j_chemgeo_2018_08_010
crossref_primary_10_1029_2024GL111310
crossref_primary_10_1126_sciadv_adl3169
crossref_primary_10_3390_land13070952
crossref_primary_10_1029_2024GB008134
crossref_primary_10_1016_j_jseaes_2024_106195
crossref_primary_10_1029_2021JC017239
crossref_primary_10_1016_j_jhydrol_2022_128677
crossref_primary_10_1016_j_scitotenv_2024_177458
crossref_primary_10_5194_bg_17_103_2020
crossref_primary_10_1002_lol2_10452
crossref_primary_10_1016_j_scitotenv_2021_145148
crossref_primary_10_5194_bg_17_2107_2020
crossref_primary_10_1016_j_jglr_2022_01_005
crossref_primary_10_5194_bg_20_3459_2023
crossref_primary_10_1038_s41586_022_05500_8
crossref_primary_10_3389_fmars_2024_1293955
Cites_doi 10.1016/j.gca.2008.06.013
10.1175/JCLI-D-13-00290.1
10.1038/359117a0
10.1038/nature06505
10.1002/2013JG002496
10.2134/jeq2006.0084
10.1016/j.epsl.2009.04.006
10.1016/j.chemgeo.2002.10.001
10.1126/science.1182570
10.1029/2006GB002738
10.1016/j.gca.2008.04.011
10.1016/j.chemgeo.2017.02.025
10.5268/IW-2.4.510
10.1007/s10533-010-9501-y
10.1038/ngeo2840
10.1080/10643380801977966
10.1038/ngeo2726
10.1130/G25270A.1
10.1016/0016-7037(94)90016-7
10.1007/s12665-015-5191-z
10.1038/nclimate1419
10.1016/j.apgeochem.2015.02.010
10.1007/s10533-013-9860-2
10.1002/jgrd.50516
10.1029/JC088iC14p09671
10.1029/2010WR010046
10.1016/j.apgeochem.2017.02.006
10.1016/j.cemconres.2004.07.025
10.1073/pnas.1112381108
10.1111/nph.13338
10.1016/S0022-1694(00)00277-8
10.1016/S0016-7037(02)01053-0
10.1016/j.epsl.2012.05.028
10.1016/j.epsl.2010.03.010
10.1016/0016-7037(94)90013-2
10.1016/j.chemgeo.2016.11.029
10.1126/science.1250770
10.1002/2015GB005324
10.1016/S0883-2927(99)00076-1
10.1038/nclimate2882
10.1016/S0009-2541(99)00031-5
10.1016/j.chemgeo.2002.08.001
10.1016/j.chemgeo.2003.09.009
10.1021/es4052022
10.1016/j.scitotenv.2014.04.054
10.1029/2006WR005201
10.1126/science.170.3962.1088
10.1016/j.epsl.2005.03.020
10.1016/j.gca.2010.03.036
10.1016/j.epsl.2004.05.019
10.1016/j.envpol.2016.08.075
10.1021/acs.estlett.7b00096
10.1029/WR005i006p01353
10.1016/j.geoderma.2005.06.002
10.1016/0016-7037(95)00078-E
10.1016/j.epsl.2008.10.018
10.1016/j.chemgeo.2003.03.001
10.1029/2004GB002325
10.3133/cir1376
10.1007/s10933-008-9292-5
10.1016/j.proeps.2014.08.005
10.1579/0044-7447-31.2.88
10.1038/srep16005
10.1016/j.atmosenv.2013.11.013
10.2475/ajs.287.5.401
10.1016/j.chemgeo.2013.10.025
10.1021/es4012959
10.1021/es401046s
10.1016/S0016-7037(99)00250-1
10.1016/j.jhydrol.2012.08.039
10.1111/j.1472-4669.2010.00264.x
10.1029/2011GB004192
10.1016/S0016-7037(02)01207-3
10.1029/2005GB002565
10.1016/j.apgeochem.2007.02.007
10.1023/B:AQUA.0000038960.63501.5b
10.2475/ajs.282.4.451
10.2475/ajs.283.7.641
10.1016/0016-7037(96)00106-8
10.4319/lo.1982.27.5.0856
10.1016/j.chemgeo.2009.06.018
10.1641/0006‐3568(2003)053[0341:TNC]2.0.CO;2]
ContentType Journal Article
Copyright 2018 The Author. Limnology and Oceanography Letters published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Author. Limnology and Oceanography Letters published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/lol2.10069
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
Chemistry
EISSN 2378-2242
EndPage 155
ExternalDocumentID oai_doaj_org_article_7053088461684a05b70b170563f77e85
10_1002_lol2_10069
LOL210069
Genre article
GrantInformation_xml – fundername: NASA
  funderid: NNX17A174G
– fundername: U.S. National Science Foundation
  funderid: DEB 145328
GroupedDBID 0R~
1OC
24P
8CJ
8FE
8FH
AAMMB
AAZKR
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1J
EBS
EJD
FRJ
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KQ8
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4039-f128b8c7f234dea59bba29166442c634aba5b0a5a301d5f92897fbf630c565b3
IEDL.DBID BENPR
ISSN 2378-2242
IngestDate Wed Aug 27 01:28:43 EDT 2025
Sun Jul 13 04:45:42 EDT 2025
Tue Jul 01 02:26:20 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Tue Jul 15 06:20:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4039-f128b8c7f234dea59bba29166442c634aba5b0a5a301d5f92897fbf630c565b3
Notes PAR and SKH contributed equally to the research and writing.
Edited by: Emily Stanley and Paul del Giorgio
Data Availability Statement
https://figshare.com/articles/Figure_2_csv/5753049/3
This article is part of the Special Issue: Carbon cycling in inland waters
Author Contribution Statement
To access the data for Fig. 2 go to
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8564-7860
0000-0002-4702-9017
OpenAccessLink https://www.proquest.com/docview/2248506214?pq-origsite=%requestingapplication%
PQID 2248506214
PQPubID 4370299
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_7053088461684a05b70b170563f77e85
proquest_journals_2248506214
crossref_primary_10_1002_lol2_10069
crossref_citationtrail_10_1002_lol2_10069
wiley_primary_10_1002_lol2_10069_LOL210069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Limnology and oceanography letters
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 83
2009; 41
2004; 204
2017; 4
1982; 52
1993; 22
2006; 36
2014; 27
2016; 75
2009; 277
2016; 30
2006; 132
2012; 468–469
2008; 72
2003; 53
2007; 36
2017; 449
1982; 27
2006; 20
2000; 15
1969; 5
2013; 116
2013; 118
2014; 93:3
1992; 359
1996; 60
2009; 284
2012; 26
2014; 363
2003; 202
2007; 21
2007; 22
2010; 74
2014; 488
2012; 339
2014; 10
2014; 119
2013; 47
2015; 5
2004; 224
1987; 287
2012
2010; 327
2002; 31
2000; 236
1995; 59
2005; 235
2014; 48
1999; 63
2015; 206
72
2017; 458
1982; 282
2011; 9
2004; 10
2011; 104
2016; 6
2012; 2
2005; 19
2011; 108
1983; 283
2015; 62
2016; 218
1970; 170
2009; 266
1994; 58
2010; 294
2011; 47
2007; 43
1999; 159
2008; 451
2009; 37
2016; 9
2014; 343
1983; 88
2009; 39
2003; 67
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Kempe S. (e_1_2_7_35_1) 1982; 52
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Renberg I. (e_1_2_7_59_1) 1993; 22
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 282
  start-page: 451
  year: 1982
  end-page: 473
  article-title: Burial of organic‐carbon and pyrite sulfur in the modern ocean ‐ its geochemical and environmental significance
  publication-title: Am. J. Sci.
– volume: 116
  start-page: 303
  year: 2013
  end-page: 334
  article-title: Trends in cation, nitrogen, sulfate and hydrogen ion concentrations in precipitation in the United States and Europe from 1978 to 2010: A new look at an old problem
  publication-title: Biogeochemistry
– volume: 27
  start-page: 856
  year: 1982
  end-page: 867
  article-title: Acid precipitation ‐ its role in the alkalization of a lake in Michigan
  publication-title: Limnol. Oceanogr.
– volume: 63
  start-page: 3277
  year: 1999
  end-page: 3291
  article-title: The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks
  publication-title: Geochim. Cosmochim. Acta
– volume: 468–469
  start-page: 249
  year: 2012
  end-page: 256
  article-title: A 125 year record of fluvial calcium flux from a temperate catchment: Interplay of climate, land‐use change and atmospheric deposition
  publication-title: J. Hydrol.
– volume: 4
  start-page: 198
  year: 2017
  end-page: 204
  article-title: Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds
  publication-title: Environ. Sci. Technol. Lett.
– volume: 118
  start-page: 6044
  year: 2013
  end-page: 6051
  article-title: The response of coastal stratocumulus clouds to agricultural irrigation in California
  publication-title: J. Geophys. Res. Atmos.
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
– volume: 235
  start-page: 211
  year: 2005
  end-page: 228
  article-title: Tectonic and climatic controls on silicate weathering
  publication-title: Earth Planet. Sci. Lett.
– volume: 53
  start-page: 341
  year: 2003
  end-page: 356
  article-title: The nitrogen cascade
  publication-title: BioScience
– volume: 202
  start-page: 257
  year: 2003
  end-page: 273
  article-title: Basalt weathering laws and the impact of basalt weathering on the global carbon cycle
  publication-title: Chem. Geol.
– volume: 27
  start-page: 994
  year: 2014
  end-page: 1009
  article-title: Impact of potential large‐scale irrigation on the West African Monsoon and its dependence on location of irrigated area
  publication-title: J. Clim.
– volume: 236
  start-page: 1
  year: 2000
  end-page: 16
  article-title: Chemical evolution of coal mine drainage in a non‐acid producing environment, Wasatch Plateau, Utah, USA
  publication-title: J. Hydrol.
– volume: 488
  start-page: 280
  year: 2014
  end-page: 289
  article-title: Long‐term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification
  publication-title: Sci. Total Environ.
– volume: 60
  start-page: 2533
  year: 1996
  end-page: 2550
  article-title: Chemical weathering rates of a soil chronosequence on granitic alluvium.1. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates
  publication-title: Geochim. Cosmochim. Acta
– volume: 31
  start-page: 88
  year: 2002
  end-page: 96
  article-title: Nitrogen use in the United States from 1961–2000 and potential future trends
  publication-title: Ambio
– volume: 30
  start-page: 753
  year: 2016
  end-page: 766
  article-title: Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect
  publication-title: Global Biogeochem. Cycles
– volume: 9
  start-page: 880
  year: 2016
  end-page: 883
  article-title: Substantial global carbon uptake by cement carbonation
  publication-title: Nat. Geosci.
– volume: 67
  start-page: 29
  year: 2003
  end-page: 46
  article-title: Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps
  publication-title: Geochim. Cosmochim. Acta
– volume: 15
  start-page: 865
  year: 2000
  end-page: 878
  article-title: Impact of nitrogen fertilizers on the natural weathering‐erosion processes and fluvial transport in the Garonne basin
  publication-title: Appl. Geochem.
– volume: 2
  start-page: 177
  year: 2012
  end-page: 184
  article-title: Carbon export by rivers draining the conterminous United States
  publication-title: Inland Waters
– volume: 108
  start-page: 20929
  year: 2011
  end-page: 20934
  article-title: Cumulative impacts of mountaintop mining on an Appalachian watershed. Proc
  publication-title: Natl. Acad. Sci. USA
– volume: 59
  start-page: 1729
  year: 1995
  end-page: 1747
  article-title: Effects of climate on chemical‐weathering in watersheds
  publication-title: Geochim. Cosmochim. Acta
– volume: 159
  start-page: 3
  year: 1999
  end-page: 30
  article-title: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers
  publication-title: Chem. Geol.
– volume: 83
  start-page: 121
  year: 2017
  end-page: 135
  article-title: Human‐accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use
  publication-title: Appl. Geochem.
– volume: 62
  start-page: 84
  year: 2015
  end-page: 95
  article-title: Temporal geochemical variations in above‐ and below‐drainage coal mine discharge
  publication-title: Appl. Geochem.
– volume: 449
  start-page: 58
  year: 2017
  end-page: 72
  article-title: Carbonate minerals in the global carbon cycle
  publication-title: Chem. Geol.
– volume: 458
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Temperature versus hydrologic controls of chemical weathering fluxes from United States forests
  publication-title: Chem. Geol.
– volume: 88
  start-page: 9671
  year: 1983
  end-page: 9688
  article-title: Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved‐load
  publication-title: J. Geophys. Res. Oceans Atmos.
– volume: 47
  start-page: 21
  year: 2011
  article-title: Possible link between irrigation in the US High Plains and increased summer streamflow in the Midwest
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 99
  year: 2004
  end-page: 137
  article-title: Impact of carbonate precipitation on riverine inorganic carbon mass transport from a mid‐continent, forested watershed
  publication-title: Aquat. Geochem.
– volume: 21
  year: 2007
  article-title: Evidence for carbon sequestration by agricultural liming
  publication-title: Global Biogeochem. Cycles
– volume: 451
  start-page: 449
  year: 2008
  end-page: 452
  article-title: Anthropogenically enhanced fluxes of water and carbon from the Mississippi River
  publication-title: Nature
– volume: 204
  start-page: 1
  year: 2004
  end-page: 21
  article-title: Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst‐dominated terrain, Guizhou Province, China
  publication-title: Chem. Geol.
– volume: 22
  start-page: 1329
  year: 2007
  end-page: 1343
  article-title: Diel variations in stream chemistry and isotopic composition of dissolved inorganic carbon, upper Clark Fork River, Montana, USA
  publication-title: Appl. Geochem.
– volume: 47
  start-page: 10041
  year: 2013
  end-page: 10048
  article-title: Isotopic imprints of mountaintop mining contaminants
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 14
  year: 2016
  article-title: Inorganic carbon dynamics and CO2 flux associated with coal‐ mine drainage sites in Blythedale PA and Lambert WV, USA
  publication-title: Environ. Earth Sci.
– volume: 224
  start-page: 547
  year: 2004
  end-page: 562
  article-title: Erosional and climatic effects on long‐term chemical weathering rates in granitic landscapes spanning diverse climate regimes
  publication-title: Earth Planet. Sci. Lett.
– volume: 104
  start-page: 275
  year: 2011
  end-page: 291
  article-title: Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas
  publication-title: Biogeochemistry
– volume: 5
  start-page: 1353
  year: 1969
  article-title: A working model for variation in stream water chemistry at Hubbard‐Brook‐Experimental‐Forest, New‐Hampshire
  publication-title: Water Resour. Res.
– volume: 72
  start-page: 4254
  end-page: 4277
  article-title: Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering
  publication-title: Geochim. Cosmochim. Acta
– volume: 22
  start-page: 264
  year: 1993
  end-page: 271
  article-title: A temporal perspective of lake acidification in Sweden
  publication-title: Ambio
– volume: 26
  year: 2012
  article-title: A land‐to‐ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean
  publication-title: Global Biogeochem. Cycles
– volume: 47
  start-page: 10302
  year: 2013
  end-page: 10311
  article-title: Increased river alkalinization in the Eastern US
  publication-title: Environ. Sci. Technol.
– volume: 294
  start-page: 101
  year: 2010
  end-page: 110
  article-title: The dependence of chemical weathering rates on fluid residence time
  publication-title: Earth Planet. Sci. Lett.
– volume: 36
  start-page: 664
  year: 2007
  end-page: 680
  article-title: Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions
  publication-title: J. Environ. Qual.
– volume: 9
  start-page: 140
  year: 2011
  end-page: 165
  article-title: Twelve testable hypotheses on the geobiology of weathering
  publication-title: Geobiology
– volume: 132
  start-page: 372
  year: 2006
  end-page: 383
  article-title: Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents
  publication-title: Geoderma
– volume: 19
  year: 2005
  article-title: Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin
  publication-title: Global Biogeochem. Cycles
– volume: 52
  start-page: 91
  year: 1982
  end-page: 332
  article-title: Long term records of CO2 pressure fluctuations in fresh waters
  publication-title: SCOPE/UNEP Sonderband
– volume: 206
  start-page: 900
  year: 2015
  end-page: 912
  article-title: One physical system’: Tansley's ecosystem as Earth's critical zone
  publication-title: New Phytol.
– volume: 43
  year: 2007
  article-title: Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005
  publication-title: Water Resour. Res.
– volume: 170
  start-page: 1088
  year: 1970
  article-title: Mechanisms controlling world water chemistry
  publication-title: Science
– start-page: 84
  year: 2012
– volume: 93:3
  start-page: 100
  year: 2014
  article-title: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus
  publication-title: Atmos. Environ.
– volume: 39
  start-page: 909
  year: 2009
  end-page: 1001
  article-title: Effects of agricultural drainage on aquatic ecosystems: A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 74
  start-page: 3669
  year: 2010
  end-page: 3691
  article-title: Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory
  publication-title: Geochim. Cosmochim. Acta
– volume: 218
  start-page: 1191
  year: 2016
  end-page: 1199
  article-title: Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification
  publication-title: Environ. Pollut.
– volume: 343
  start-page: 1502
  year: 2014
  end-page: 1504
  article-title: Hydrologic regulation of chemical weathering and the geologic carbon cycle
  publication-title: Science
– volume: 2
  start-page: 346
  year: 2012
  end-page: 349
  article-title: High sensitivity of the continental‐weathering carbon dioxide sink to future climate change
  publication-title: Nat. Clim. Chang.
– volume: 58
  start-page: 2325
  year: 1994
  end-page: 2332
  article-title: The effect of land plants on weathering rates of silicate minerals
  publication-title: Geochim. Cosmochim. Acta
– volume: 48
  start-page: 4809
  year: 2014
  end-page: 4816
  article-title: Carbon dioxide efficiency of terrestrial enhanced weathering
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 23
  year: 2014
  end-page: 27
  article-title: A brief overview of the GLObal RIver Chemistry Database, GLORICH
  publication-title: Procedia Earth Planet. Sci.
– volume: 119
  start-page: 848
  year: 2014
  end-page: 863
  article-title: The impact of climate and reservoirs on longitudinal riverine carbon fluxes from two major watersheds in the Central and Intermontane West
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 36
  start-page: 1760
  year: 2006
  end-page: 1767
  article-title: The experimental investigation of concrete carbonation depth
  publication-title: Cem. Concr. Res.
– volume: 277
  start-page: 213
  year: 2009
  end-page: 222
  article-title: Direct evidence of the feedback between climate and weathering
  publication-title: Earth Planet. Sci. Lett.
– volume: 287
  start-page: 401
  year: 1987
  end-page: 428
  article-title: Global chemical‐weathering of surficial rocks estimated from river dissolved loads
  publication-title: Am. J. Sci.
– volume: 5
  start-page: 16
  year: 2015
  article-title: Changing fluxes of carbon and other solutes from the Mekong River
  publication-title: Sci. Rep.
– volume: 283
  start-page: 641
  year: 1983
  end-page: 683
  article-title: The carbonate‐silicate geochemical cycle and its effect on atmospheric carbon‐dioxide over the past 100 million years
  publication-title: Am. J. Sci.
– volume: 202
  start-page: 225
  year: 2003
  end-page: 256
  article-title: Chemical weathering in granitic environments
  publication-title: Chem. Geol.
– volume: 363
  start-page: 145
  year: 2014
  end-page: 163
  article-title: Global chemical weathering and associated P‐release ‐ The role of lithology, temperature and soil properties
  publication-title: Chem. Geol.
– volume: 20
  year: 2006
  article-title: Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin
  publication-title: Global Biogeochem. Cycles
– volume: 37
  start-page: 151
  year: 2009
  end-page: 154
  article-title: A theoretical model coupling chemical weathering rates with denudation rates
  publication-title: Geology
– volume: 58
  start-page: 2361
  year: 1994
  end-page: 2386
  article-title: Chemical‐weathering rate laws and global geochemical cycles
  publication-title: Geochim. Cosmochim. Acta
– volume: 339
  start-page: 67
  year: 2012
  end-page: 78
  article-title: Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example
  publication-title: Earth Planet. Sci. Lett.
– volume: 202
  start-page: 479
  year: 2003
  end-page: 506
  article-title: The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?
  publication-title: Chem. Geol.
– volume: 9
  start-page: 361
  year: 2016
  end-page: 365
  article-title: Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon
  publication-title: Nat. Geosci.
– volume: 6
  start-page: 402
  year: 2016
  article-title: Enhanced weathering strategies for stabilizing climate and averting ocean acidification
  publication-title: Nat. Clim. Chang.
– volume: 72
  start-page: 3105
  year: 2008
  end-page: 3123
  article-title: Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales
  publication-title: Geochim. Cosmochim. Acta
– volume: 284
  start-page: 50
  year: 2009
  end-page: 56
  article-title: Long term changes of chemical weathering in rivers heavily impacted from Acid Mine Drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets
  publication-title: Earth Planet. Sci. Lett.
– volume: 41
  start-page: 563
  year: 2009
  end-page: 588
  article-title: Historical changes in sediment and phosphorus loading to the upper Mississippi River: Mass‐balance reconstructions from the sediments of Lake Pepin
  publication-title: J. Paleolimnol.
– volume: 266
  start-page: 318
  year: 2009
  end-page: 327
  article-title: The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds
  publication-title: Chem. Geol.
– volume: 67
  start-page: 1305
  year: 2003
  end-page: 1329
  article-title: Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada
  publication-title: Geochim. Cosmochim. Acta
– volume: 359
  start-page: 117
  year: 1992
  end-page: 122
  article-title: Tectonic forcing of late cenozoic climate
  publication-title: Nature
– ident: e_1_2_7_13_1
  doi: 10.1016/j.gca.2008.06.013
– ident: e_1_2_7_29_1
  doi: 10.1175/JCLI-D-13-00290.1
– ident: e_1_2_7_55_1
  doi: 10.1038/359117a0
– ident: e_1_2_7_57_1
  doi: 10.1038/nature06505
– ident: e_1_2_7_67_1
  doi: 10.1002/2013JG002496
– ident: e_1_2_7_8_1
  doi: 10.2134/jeq2006.0084
– ident: e_1_2_7_58_1
  doi: 10.1016/j.epsl.2009.04.006
– ident: e_1_2_7_14_1
  doi: 10.1016/j.chemgeo.2002.10.001
– ident: e_1_2_7_23_1
  doi: 10.1126/science.1182570
– ident: e_1_2_7_24_1
  doi: 10.1029/2006GB002738
– ident: e_1_2_7_54_1
  doi: 10.1016/j.gca.2008.04.011
– ident: e_1_2_7_56_1
  doi: 10.1016/j.chemgeo.2017.02.025
– ident: e_1_2_7_69_1
  doi: 10.5268/IW-2.4.510
– ident: e_1_2_7_85_1
  doi: 10.1007/s10533-010-9501-y
– ident: e_1_2_7_84_1
  doi: 10.1038/ngeo2840
– ident: e_1_2_7_7_1
  doi: 10.1080/10643380801977966
– ident: e_1_2_7_64_1
  doi: 10.1038/ngeo2726
– ident: e_1_2_7_18_1
  doi: 10.1130/G25270A.1
– ident: e_1_2_7_39_1
  doi: 10.1016/0016-7037(94)90016-7
– ident: e_1_2_7_76_1
  doi: 10.1007/s12665-015-5191-z
– volume: 52
  start-page: 91
  year: 1982
  ident: e_1_2_7_35_1
  article-title: Long term records of CO2 pressure fluctuations in fresh waters
  publication-title: SCOPE/UNEP Sonderband
– ident: e_1_2_7_4_1
  doi: 10.1038/nclimate1419
– ident: e_1_2_7_10_1
  doi: 10.1016/j.apgeochem.2015.02.010
– ident: e_1_2_7_38_1
  doi: 10.1007/s10533-013-9860-2
– ident: e_1_2_7_42_1
  doi: 10.1002/jgrd.50516
– ident: e_1_2_7_68_1
  doi: 10.1029/JC088iC14p09671
– ident: e_1_2_7_37_1
  doi: 10.1029/2010WR010046
– ident: e_1_2_7_34_1
  doi: 10.1016/j.apgeochem.2017.02.006
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cemconres.2004.07.025
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.1112381108
– ident: e_1_2_7_60_1
  doi: 10.1111/nph.13338
– ident: e_1_2_7_46_1
  doi: 10.1016/S0022-1694(00)00277-8
– ident: e_1_2_7_30_1
  doi: 10.1016/S0016-7037(02)01053-0
– ident: e_1_2_7_62_1
  doi: 10.1016/j.epsl.2012.05.028
– ident: e_1_2_7_43_1
  doi: 10.1016/j.epsl.2010.03.010
– ident: e_1_2_7_15_1
  doi: 10.1016/0016-7037(94)90013-2
– ident: e_1_2_7_45_1
  doi: 10.1016/j.chemgeo.2016.11.029
– ident: e_1_2_7_44_1
  doi: 10.1126/science.1250770
– ident: e_1_2_7_65_1
  doi: 10.1002/2015GB005324
– ident: e_1_2_7_63_1
  doi: 10.1016/S0883-2927(99)00076-1
– ident: e_1_2_7_74_1
  doi: 10.1038/nclimate2882
– ident: e_1_2_7_19_1
  doi: 10.1016/S0009-2541(99)00031-5
– ident: e_1_2_7_52_1
  doi: 10.1016/j.chemgeo.2002.08.001
– ident: e_1_2_7_25_1
  doi: 10.1016/j.chemgeo.2003.09.009
– ident: e_1_2_7_50_1
  doi: 10.1021/es4052022
– ident: e_1_2_7_70_1
  doi: 10.1016/j.scitotenv.2014.04.054
– ident: e_1_2_7_71_1
  doi: 10.1029/2006WR005201
– ident: e_1_2_7_21_1
  doi: 10.1126/science.170.3962.1088
– ident: e_1_2_7_78_1
  doi: 10.1016/j.epsl.2005.03.020
– ident: e_1_2_7_31_1
  doi: 10.1016/j.gca.2010.03.036
– ident: e_1_2_7_61_1
  doi: 10.1016/j.epsl.2004.05.019
– ident: e_1_2_7_16_1
  doi: 10.1016/j.envpol.2016.08.075
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.estlett.7b00096
– ident: e_1_2_7_32_1
  doi: 10.1029/WR005i006p01353
– ident: e_1_2_7_66_1
  doi: 10.1016/j.geoderma.2005.06.002
– volume: 22
  start-page: 264
  year: 1993
  ident: e_1_2_7_59_1
  article-title: A temporal perspective of lake acidification in Sweden
  publication-title: Ambio
– ident: e_1_2_7_79_1
  doi: 10.1016/0016-7037(95)00078-E
– ident: e_1_2_7_22_1
  doi: 10.1016/j.epsl.2008.10.018
– ident: e_1_2_7_82_1
  doi: 10.1016/j.chemgeo.2003.03.001
– ident: e_1_2_7_12_1
  doi: 10.1029/2004GB002325
– ident: e_1_2_7_2_1
  doi: 10.3133/cir1376
– ident: e_1_2_7_17_1
  doi: 10.1007/s10933-008-9292-5
– ident: e_1_2_7_26_1
  doi: 10.1016/j.proeps.2014.08.005
– ident: e_1_2_7_28_1
  doi: 10.1579/0044-7447-31.2.88
– ident: e_1_2_7_40_1
  doi: 10.1038/srep16005
– ident: e_1_2_7_77_1
  doi: 10.1016/j.atmosenv.2013.11.013
– ident: e_1_2_7_47_1
  doi: 10.2475/ajs.287.5.401
– ident: e_1_2_7_27_1
  doi: 10.1016/j.chemgeo.2013.10.025
– ident: e_1_2_7_75_1
  doi: 10.1021/es4012959
– ident: e_1_2_7_33_1
  doi: 10.1021/es401046s
– ident: e_1_2_7_81_1
  doi: 10.1016/S0016-7037(99)00250-1
– ident: e_1_2_7_83_1
  doi: 10.1016/j.jhydrol.2012.08.039
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1472-4669.2010.00264.x
– ident: e_1_2_7_73_1
  doi: 10.1029/2011GB004192
– ident: e_1_2_7_48_1
  doi: 10.1016/S0016-7037(02)01207-3
– ident: e_1_2_7_51_1
  doi: 10.1029/2005GB002565
– ident: e_1_2_7_53_1
  doi: 10.1016/j.apgeochem.2007.02.007
– ident: e_1_2_7_72_1
  doi: 10.1023/B:AQUA.0000038960.63501.5b
– ident: e_1_2_7_5_1
  doi: 10.2475/ajs.282.4.451
– ident: e_1_2_7_6_1
  doi: 10.2475/ajs.283.7.641
– ident: e_1_2_7_80_1
  doi: 10.1016/0016-7037(96)00106-8
– ident: e_1_2_7_36_1
  doi: 10.4319/lo.1982.27.5.0856
– ident: e_1_2_7_3_1
  doi: 10.1016/j.chemgeo.2009.06.018
– ident: e_1_2_7_20_1
  doi: 10.1641/0006‐3568(2003)053[0341:TNC]2.0.CO;2]
SSID ssj0001617538
Score 2.370388
Snippet Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales...
Bicarbonate ( ), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of...
Abstract Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143
SubjectTerms Acidification
Acids
Alkalinity
Anthropogenic factors
Aquatic ecosystems
Biogeochemistry
Calcification
Carbon cycle
Carbon dioxide
Chemistry
Climate change
Dissolved inorganic carbon
Global warming
Hydrologic cycle
Liming
Minerals
Mining
Natural waters
Oceans
Precipitation
River systems
Rivers
Seawater
Sediments
Water treatment
Watersheds
Weathering
Weathering zone
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJxHEn1idEtAXhbI2aZv2UcUhMt3LxL2FJE1gMlrZpvjne0naUUH0xbdwHCF8l3DfkeM7hC6SNI8E8IAwKgkUKJDyQwFVc5gxA_lHpDqWtlB8fMrun5OHaTrtjPqyPWFeHtgDN2BwS-AlJFmc5QnsKlkkrQRMRg1jOnfqpZDzOsXUq-cxwMPztR4pGczrObEr29ncyUBOqP8bu-xyVJdkhjtou2GH-Nqfahdt6GoPbY2VFlUjLb2PXtrZBhD6mcKzdsrIEtcVXtg2CyCOGIyf1mSw_XGv5x-6BFc_w0lhJRYSvFc1Bv6Ha7v_8gBNhneT2_uwGY8QqsT-3xpILTJXzBCalFqkhZSCANsDhkNURhMhRSojkQL2cZmaAkorZqTJaKSAxUl6iHpVXekjhHVJZSwkFQQIhShMoYgqCxIrGktGiAjQZYsYV410uJ1gMede9Jhwiy536AbofO375gUzfvS6scCvPazItTMADrwJPf8r9AHqt2HjzctbcmI12qKMxEmArlwofzkGH41HxK2O_-NAJ2gT-FTuO8n6qLdavOtT4Cwreeau5xc_weR7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5q-yJCsVbxaisL-mIhNJndbBLwRYullNb60NK-LbubXSgcidyd4p_vzCa5syCCb8syCcnMzs43--MbgPeqrHNLOCDLW6QEhUJ-ZilrznQVKf7YMhSOE8Wrr_r8Vl3cl_db8HG6CzPwQ6wX3Ngz0nzNDm7d8mRDGjrv58ht3TyBHb5by8z5qL5tVlg0s1CmknSSUiWKVbjmJ8WTzeOPIlIi7n-ENv_ErCnonD2H3REtik-DefdgK3Qv4Nm1D7Ybqab34W6qdUBD4cGLh6nqyFL0nVjwsQv6VUGdv7grCt6B7-c_Q0uiQ00nL7xdOJJe9YLwoOj5_cuXcHP25eb0PBvLJWRe8X5upFDjal9FlKoNtmycs0jojxAPei2VdbZ0uS3JFkVbxoZSrSq6qGXuCdU5-Qq2u74Lr0GEVrrCOmmRAIZtYuPRtw0WXhauQrQz-DBpzPiRSpwrWszNQIKMhrVrknZn8G4t-30g0Pir1GdW_FqCSa9TB-nBjD5kKpowaFJUutC1ogHmqtwxG5CWsapCXc7gcDKbGT1xaZA523KNhZrBcTLlPz7DXF5fYmod_I_wG3hKOKoeTpAdwvZq8SMcEVZZubdpSP4GmOLhBA
  priority: 102
  providerName: Wiley-Blackwell
Title Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flol2.10069
https://www.proquest.com/docview/2248506214
https://doaj.org/article/7053088461684a05b70b170563f77e85
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBf9eOgYlLXd2LXdYdheOghNHMdJnkp7XCmlH0e5sb4Z27GhcCTd3a30z6-UONcORt-CESZIsvSTLX4C-CGyItaIA6K44ligYMqPNFbNkcw95h-ducRQoXh9Iy9-icv77D5cuC1CW2UfE9tAXTWW7siPOXFvxZIn4uTxT0RTo-h1NYzQWIdNDMEFFl-bZ-Obyd3rLYskJspixUvKj2fNjNMXdTi_yUQtYf8_KPMtVm2Tzfkn2A4okZ12Zt2BNVfvwtaoH862Cx9vrdN1oJveg9_9vAN0hwfLHvrJIwvW1GxOrRcIJhkuPtOSZ_QK38yeXIWi3Vwny6yeG5ReNgwxIWto_8VnmJ6Pp6OLKIxMiKygN12PWjCFzT1PReV0VhqjOSJARD3cylRoozMT6wztkVSZL7Hcyr3xMo0tIjuTfoGNuqndV2CuSk2iTao5ggxd-tJyW5U8sWlics71AI567Skb6MRpqsVMdUTIXJGmVavpAXxfyT52JBr_lTojI6wkiPi6XUA9qHCOVI5BAwOjkIksBDqZyWNDjEAy9XnuimwAh70JVTiNC_XqOwP42Zr1nd9QV7dXvP3af3-vA_iA6Kno-sYOYWM5_-u-IUJZmiGsczEZBmcctnX-C1uM5Wo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7q9aEiiFalp1UD6oPC0t0km919kGJry9VeryIn9i0k2QQKx269O3_9Uf6Pndkf1wrSt76FMIQwmUy-2WS_D-C1TPPYIA6I4pJjgYJHfmSwao5UFvD8MalPLBWKJxM1-io_naVna_C3_xeGnlX2ObFJ1GXt6Bv5DifurVjxRO5efI9INYpuV3sJjTYsjv2fX1iyLd4ffcT1fcP54cF0fxR1qgKRk3TtGTAj29xlgQtZepMW1hqOIAmBAXdKSGNNamOT4pSTMg0FViRZsEGJ2CH4sQKHvQPrUmAlM4D1vYPJ5y9XH3UUEV_mKxpUvjOrZ5xa9KD62sHX6AP8A2qvQ-PmbDt8APc7UMo-tFH0ENZ8tQkb-70W3CbcO3XeVB279SP41ssrYPSdO3beC50sWF2xOb30QOzKsPM3dQVGl_717Kcv0bSVkXLMmblF62XNEIKymsZfPIbpbfjyCQyquvJbwHwpbGKsMBwxjSlC4bgrC544kdiMczOEt733tOvYy0lEY6Zb3mWuydO68fQQXq1sL1rOjv9a7dEirCyIZ7vpQD_obtvqDHMU5mGpEpVLjGmbxZYIiJQIWebzdAjb_RLqbvMv9FWoDuFds6w3TEOPT8e8aT29eayXsDGanoz1-Ghy_AzuInDL2ydr2zBYzn_45wiOlvZFF5IM9C1vgkuHWR9S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFbQURKvi1bYG1AeF5Xazu8nug4j9cbT2vBap2LeQZBMoHLvt3bXqn9b_rjP741pB-ta3EIawTGYn32Rnvw_gfZJmoUYcEIQFxwIFj_xAY9UcCOnx_NGpiwwVit_HYv9n8u00PV2C6-5fGGqr7HJinaiLytId-YAT91YoeJQMfNsWcbw7_HJ-EZCCFH1p7eQ0mhA5dH9_Y_k2-3ywi3v9gfPh3snOftAqDAQ2oU-gHrOzyaz0PE4Kp9PcGM0RMCFI4FbEiTY6NaFO8fGjIvU5VifSGy_i0CIQMjEu-wiWJRZFYQ-Wt_fGxz9uL3gEkWBmC0pUPphUE04jaq6-cwjWWgH_ANy7MLk-54bP4GkLUNnXJqKew5Ir1-DJTqcLtwarR9bpsmW6fgG_OqkFjMQzy8460ZMZq0o2pa4PxLEMJ__QlGfUAFBNrlyBpo2klGVWTw1azyuGcJRVtP7sJZw8hC9fQa-sSvcamCtiE2kTa474Ruc-t9wWOY9sHBnJue7Dx857yrZM5iSoMVENBzNX5GlVe7oP7xa25w1_x3-ttmkTFhbEuV1PoB9U-worifkKc3IiIpElGN9GhobIiETspXRZ2oeNbgtVmwhm6jZs-_Cp3tZ7HkONjka8Hq3fv9ZbeIzBr0YH48M3sIIYLmu61zagN59euk3ESXOz1UYkA_XA78ANz94jhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthropogenic+influences+on+riverine+fluxes+of+dissolved+inorganic+carbon+to+the+oceans&rft.jtitle=Limnology+and+oceanography+letters&rft.au=Raymond%2C+Peter+A&rft.au=Hamilton%2C+Stephen+K&rft.date=2018-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2378-2242&rft.volume=3&rft.issue=3&rft.spage=143&rft.epage=155&rft_id=info:doi/10.1002%2Flol2.10069&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2378-2242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2378-2242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2378-2242&client=summon