Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans
Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH....
Saved in:
Published in | Limnology and oceanography letters Vol. 3; no. 3; pp. 143 - 155 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.06.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH. This review summarizes controls on the production of HCO3− from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control HCO3− production, and water throughput controls HCO3− transport into rivers. Human influences on HCO3− fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but HCO3− fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial HCO3− fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes. |
---|---|
AbstractList | Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH. This review summarizes controls on the production of HCO3− from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control HCO3− production, and water throughput controls HCO3− transport into rivers. Human influences on HCO3− fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but HCO3− fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial HCO3− fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes. Abstract Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of HCO3− to the oceans and subsequent reactions affect atmospheric CO2, global climate and ocean pH. This review summarizes controls on the production of HCO3− from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control HCO3− production, and water throughput controls HCO3− transport into rivers. Human influences on HCO3− fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but HCO3− fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial HCO3− fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes. Bicarbonate ( ), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of decades to centuries, riverine fluxes of to the oceans and subsequent reactions affect atmospheric CO 2 , global climate and ocean pH. This review summarizes controls on the production of from chemical weathering and its transport into river systems. The availability of minerals and weathering agents (carbonic, sulfuric, and nitric acids) in the weathering zone interact to control production, and water throughput controls transport into rivers. Human influences on fluxes include climate warming, acid precipitation, mining, concrete use, and agricultural fertilization and liming. We currently cannot evaluate the net result of human influences on a global scale but fluxes are clearly increasing in some major rivers as shown here for much of the United States. This increase could be partly a return to pre‐industrial fluxes as anthropogenic acidification has been mitigated in the United States, but elsewhere around the world anthropogenic acidification could be leading to decreased concentrations and fluxes. |
Author | Raymond, Peter A. Hamilton, Stephen K. |
Author_xml | – sequence: 1 givenname: Peter A. orcidid: 0000-0002-8564-7860 surname: Raymond fullname: Raymond, Peter A. email: peter.raymond@yale.edu organization: Yale School of Forestry and Environmental Studies, Yale University – sequence: 2 givenname: Stephen K. orcidid: 0000-0002-4702-9017 surname: Hamilton fullname: Hamilton, Stephen K. organization: Michigan State University, Hickory Corners |
BookMark | eNp9kU9LHTEUxUNRqLVu_AQD3RWe3vydzFKkrcIDN0KX4SaTaB7T5DWZZ-u3b8YpRUrpKpfD75xc7nlHjlJOnpBzChcUgF1OeWLLpIY35ITxXm8YE-zo1fyWnNW6AwCqaC-5PiFfr9L8WPI-P_gUXRdTmA4-OV-7nLoSn3yJyXdN_LlIoRtjrXl68mNDc3nAxeSw2EbPuZsffZedx1Tfk-OAU_Vnv99Tcv_50_31zWZ79-X2-mq7cQL4sAmUaatdHxgXo0c5WItsoEoJwZziAi1KCyiRAx1lGJge-mCD4uCkkpafkts1dsy4M_sSv2F5NhmjeRHahgbLHN3kTQ-Sg9ZCUaUFgrQ9WNpExUPfey1b1oc1a1_y94Ovs9nlQ0lte9NupyUoRkWjPq6UK7nW4sOfXymYpQaz1GBeamgw_AW7OOMcc5oLxunfFrpafsTJP_8n3Gzvtmz1_ALTnJo_ |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131738 crossref_primary_10_1126_science_aay5945 crossref_primary_10_1186_s12932_020_00069_5 crossref_primary_10_1007_s12237_024_01421_z crossref_primary_10_1126_science_adi7918 crossref_primary_10_1007_s00027_020_0712_6 crossref_primary_10_1371_journal_pone_0276513 crossref_primary_10_1007_s10533_022_00947_3 crossref_primary_10_3389_fclim_2022_959229 crossref_primary_10_3390_w12061817 crossref_primary_10_1029_2023JG007877 crossref_primary_10_1016_j_ejrh_2021_100881 crossref_primary_10_1029_2019WR025343 crossref_primary_10_1007_s10533_023_01064_5 crossref_primary_10_1021_acs_est_8b01051 crossref_primary_10_1029_2023GB007776 crossref_primary_10_1016_j_marchem_2021_104050 crossref_primary_10_1029_2019RG000681 crossref_primary_10_1029_2021GB007096 crossref_primary_10_3390_w14172703 crossref_primary_10_1016_j_scitotenv_2025_179017 crossref_primary_10_1021_acs_est_1c04605 crossref_primary_10_1029_2022GB007392 crossref_primary_10_1016_j_jenvman_2024_123681 crossref_primary_10_1007_s10750_023_05383_4 crossref_primary_10_1016_j_watres_2022_119289 crossref_primary_10_1002_lom3_10525 crossref_primary_10_1016_j_envpol_2021_117506 crossref_primary_10_1002_lno_12282 crossref_primary_10_3390_su12083369 crossref_primary_10_1098_rstb_2018_0017 crossref_primary_10_1002_lno_11399 crossref_primary_10_1021_acs_est_4c02368 crossref_primary_10_1016_j_gca_2019_09_042 crossref_primary_10_1039_D2EM00071G crossref_primary_10_3390_min10090758 crossref_primary_10_1007_s00027_018_0617_9 crossref_primary_10_1007_s00027_023_00983_7 crossref_primary_10_1016_j_apgeochem_2023_105557 crossref_primary_10_1016_j_watres_2023_120808 crossref_primary_10_1016_j_scitotenv_2020_138255 crossref_primary_10_1007_s10040_020_02252_5 crossref_primary_10_1016_j_jhydrol_2019_04_036 crossref_primary_10_1029_2023WR035292 crossref_primary_10_1016_j_gca_2020_04_020 crossref_primary_10_1038_s41598_019_54861_0 crossref_primary_10_1126_sciadv_adl0779 crossref_primary_10_3390_ijerph20043032 crossref_primary_10_1016_j_jhydrol_2021_126287 crossref_primary_10_1029_2020JG005968 crossref_primary_10_1016_j_ecolind_2023_110494 crossref_primary_10_1111_fwb_13723 crossref_primary_10_3390_w15050894 crossref_primary_10_1016_j_gexplo_2025_107702 crossref_primary_10_1016_j_scitotenv_2023_163839 crossref_primary_10_1016_j_watres_2023_120744 crossref_primary_10_1029_2023GB007749 crossref_primary_10_1007_s12237_024_01384_1 crossref_primary_10_1098_rspb_2018_1415 crossref_primary_10_1029_2017GB005798 crossref_primary_10_1002_hyp_13679 crossref_primary_10_1029_2021GB007154 crossref_primary_10_1029_2021GB007231 crossref_primary_10_1029_2021JG006449 crossref_primary_10_1007_s11356_024_34962_8 crossref_primary_10_1016_j_chemgeo_2018_08_010 crossref_primary_10_1029_2024GL111310 crossref_primary_10_1126_sciadv_adl3169 crossref_primary_10_3390_land13070952 crossref_primary_10_1029_2024GB008134 crossref_primary_10_1016_j_jseaes_2024_106195 crossref_primary_10_1029_2021JC017239 crossref_primary_10_1016_j_jhydrol_2022_128677 crossref_primary_10_1016_j_scitotenv_2024_177458 crossref_primary_10_5194_bg_17_103_2020 crossref_primary_10_1002_lol2_10452 crossref_primary_10_1016_j_scitotenv_2021_145148 crossref_primary_10_5194_bg_17_2107_2020 crossref_primary_10_1016_j_jglr_2022_01_005 crossref_primary_10_5194_bg_20_3459_2023 crossref_primary_10_1038_s41586_022_05500_8 crossref_primary_10_3389_fmars_2024_1293955 |
Cites_doi | 10.1016/j.gca.2008.06.013 10.1175/JCLI-D-13-00290.1 10.1038/359117a0 10.1038/nature06505 10.1002/2013JG002496 10.2134/jeq2006.0084 10.1016/j.epsl.2009.04.006 10.1016/j.chemgeo.2002.10.001 10.1126/science.1182570 10.1029/2006GB002738 10.1016/j.gca.2008.04.011 10.1016/j.chemgeo.2017.02.025 10.5268/IW-2.4.510 10.1007/s10533-010-9501-y 10.1038/ngeo2840 10.1080/10643380801977966 10.1038/ngeo2726 10.1130/G25270A.1 10.1016/0016-7037(94)90016-7 10.1007/s12665-015-5191-z 10.1038/nclimate1419 10.1016/j.apgeochem.2015.02.010 10.1007/s10533-013-9860-2 10.1002/jgrd.50516 10.1029/JC088iC14p09671 10.1029/2010WR010046 10.1016/j.apgeochem.2017.02.006 10.1016/j.cemconres.2004.07.025 10.1073/pnas.1112381108 10.1111/nph.13338 10.1016/S0022-1694(00)00277-8 10.1016/S0016-7037(02)01053-0 10.1016/j.epsl.2012.05.028 10.1016/j.epsl.2010.03.010 10.1016/0016-7037(94)90013-2 10.1016/j.chemgeo.2016.11.029 10.1126/science.1250770 10.1002/2015GB005324 10.1016/S0883-2927(99)00076-1 10.1038/nclimate2882 10.1016/S0009-2541(99)00031-5 10.1016/j.chemgeo.2002.08.001 10.1016/j.chemgeo.2003.09.009 10.1021/es4052022 10.1016/j.scitotenv.2014.04.054 10.1029/2006WR005201 10.1126/science.170.3962.1088 10.1016/j.epsl.2005.03.020 10.1016/j.gca.2010.03.036 10.1016/j.epsl.2004.05.019 10.1016/j.envpol.2016.08.075 10.1021/acs.estlett.7b00096 10.1029/WR005i006p01353 10.1016/j.geoderma.2005.06.002 10.1016/0016-7037(95)00078-E 10.1016/j.epsl.2008.10.018 10.1016/j.chemgeo.2003.03.001 10.1029/2004GB002325 10.3133/cir1376 10.1007/s10933-008-9292-5 10.1016/j.proeps.2014.08.005 10.1579/0044-7447-31.2.88 10.1038/srep16005 10.1016/j.atmosenv.2013.11.013 10.2475/ajs.287.5.401 10.1016/j.chemgeo.2013.10.025 10.1021/es4012959 10.1021/es401046s 10.1016/S0016-7037(99)00250-1 10.1016/j.jhydrol.2012.08.039 10.1111/j.1472-4669.2010.00264.x 10.1029/2011GB004192 10.1016/S0016-7037(02)01207-3 10.1029/2005GB002565 10.1016/j.apgeochem.2007.02.007 10.1023/B:AQUA.0000038960.63501.5b 10.2475/ajs.282.4.451 10.2475/ajs.283.7.641 10.1016/0016-7037(96)00106-8 10.4319/lo.1982.27.5.0856 10.1016/j.chemgeo.2009.06.018 10.1641/0006‐3568(2003)053[0341:TNC]2.0.CO;2] |
ContentType | Journal Article |
Copyright | 2018 The Author. Limnology and Oceanography Letters published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Author. Limnology and Oceanography Letters published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/lol2.10069 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Chemistry |
EISSN | 2378-2242 |
EndPage | 155 |
ExternalDocumentID | oai_doaj_org_article_7053088461684a05b70b170563f77e85 10_1002_lol2_10069 LOL210069 |
Genre | article |
GrantInformation_xml | – fundername: NASA funderid: NNX17A174G – fundername: U.S. National Science Foundation funderid: DEB 145328 |
GroupedDBID | 0R~ 1OC 24P 8CJ 8FE 8FH AAMMB AAZKR ACCMX ACXQS ADBBV ADKYN ADZMN AEFGJ AEUYN AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU D1J EBS EJD FRJ GROUPED_DOAJ HCIFZ IAO IGS ITC KQ8 M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4039-f128b8c7f234dea59bba29166442c634aba5b0a5a301d5f92897fbf630c565b3 |
IEDL.DBID | BENPR |
ISSN | 2378-2242 |
IngestDate | Wed Aug 27 01:28:43 EDT 2025 Sun Jul 13 04:45:42 EDT 2025 Tue Jul 01 02:26:20 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 15 06:20:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4039-f128b8c7f234dea59bba29166442c634aba5b0a5a301d5f92897fbf630c565b3 |
Notes | PAR and SKH contributed equally to the research and writing. Edited by: Emily Stanley and Paul del Giorgio Data Availability Statement https://figshare.com/articles/Figure_2_csv/5753049/3 This article is part of the Special Issue: Carbon cycling in inland waters Author Contribution Statement To access the data for Fig. 2 go to . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8564-7860 0000-0002-4702-9017 |
OpenAccessLink | https://www.proquest.com/docview/2248506214?pq-origsite=%requestingapplication% |
PQID | 2248506214 |
PQPubID | 4370299 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7053088461684a05b70b170563f77e85 proquest_journals_2248506214 crossref_primary_10_1002_lol2_10069 crossref_citationtrail_10_1002_lol2_10069 wiley_primary_10_1002_lol2_10069_LOL210069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Limnology and oceanography letters |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 83 2009; 41 2004; 204 2017; 4 1982; 52 1993; 22 2006; 36 2014; 27 2016; 75 2009; 277 2016; 30 2006; 132 2012; 468–469 2008; 72 2003; 53 2007; 36 2017; 449 1982; 27 2006; 20 2000; 15 1969; 5 2013; 116 2013; 118 2014; 93:3 1992; 359 1996; 60 2009; 284 2012; 26 2014; 363 2003; 202 2007; 21 2007; 22 2010; 74 2014; 488 2012; 339 2014; 10 2014; 119 2013; 47 2015; 5 2004; 224 1987; 287 2012 2010; 327 2002; 31 2000; 236 1995; 59 2005; 235 2014; 48 1999; 63 2015; 206 72 2017; 458 1982; 282 2011; 9 2004; 10 2011; 104 2016; 6 2012; 2 2005; 19 2011; 108 1983; 283 2015; 62 2016; 218 1970; 170 2009; 266 1994; 58 2010; 294 2011; 47 2007; 43 1999; 159 2008; 451 2009; 37 2016; 9 2014; 343 1983; 88 2009; 39 2003; 67 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Kempe S. (e_1_2_7_35_1) 1982; 52 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Renberg I. (e_1_2_7_59_1) 1993; 22 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 282 start-page: 451 year: 1982 end-page: 473 article-title: Burial of organic‐carbon and pyrite sulfur in the modern ocean ‐ its geochemical and environmental significance publication-title: Am. J. Sci. – volume: 116 start-page: 303 year: 2013 end-page: 334 article-title: Trends in cation, nitrogen, sulfate and hydrogen ion concentrations in precipitation in the United States and Europe from 1978 to 2010: A new look at an old problem publication-title: Biogeochemistry – volume: 27 start-page: 856 year: 1982 end-page: 867 article-title: Acid precipitation ‐ its role in the alkalization of a lake in Michigan publication-title: Limnol. Oceanogr. – volume: 63 start-page: 3277 year: 1999 end-page: 3291 article-title: The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks publication-title: Geochim. Cosmochim. Acta – volume: 468–469 start-page: 249 year: 2012 end-page: 256 article-title: A 125 year record of fluvial calcium flux from a temperate catchment: Interplay of climate, land‐use change and atmospheric deposition publication-title: J. Hydrol. – volume: 4 start-page: 198 year: 2017 end-page: 204 article-title: Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds publication-title: Environ. Sci. Technol. Lett. – volume: 118 start-page: 6044 year: 2013 end-page: 6051 article-title: The response of coastal stratocumulus clouds to agricultural irrigation in California publication-title: J. Geophys. Res. Atmos. – volume: 327 start-page: 1008 year: 2010 end-page: 1010 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 235 start-page: 211 year: 2005 end-page: 228 article-title: Tectonic and climatic controls on silicate weathering publication-title: Earth Planet. Sci. Lett. – volume: 53 start-page: 341 year: 2003 end-page: 356 article-title: The nitrogen cascade publication-title: BioScience – volume: 202 start-page: 257 year: 2003 end-page: 273 article-title: Basalt weathering laws and the impact of basalt weathering on the global carbon cycle publication-title: Chem. Geol. – volume: 27 start-page: 994 year: 2014 end-page: 1009 article-title: Impact of potential large‐scale irrigation on the West African Monsoon and its dependence on location of irrigated area publication-title: J. Clim. – volume: 236 start-page: 1 year: 2000 end-page: 16 article-title: Chemical evolution of coal mine drainage in a non‐acid producing environment, Wasatch Plateau, Utah, USA publication-title: J. Hydrol. – volume: 488 start-page: 280 year: 2014 end-page: 289 article-title: Long‐term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification publication-title: Sci. Total Environ. – volume: 60 start-page: 2533 year: 1996 end-page: 2550 article-title: Chemical weathering rates of a soil chronosequence on granitic alluvium.1. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates publication-title: Geochim. Cosmochim. Acta – volume: 31 start-page: 88 year: 2002 end-page: 96 article-title: Nitrogen use in the United States from 1961–2000 and potential future trends publication-title: Ambio – volume: 30 start-page: 753 year: 2016 end-page: 766 article-title: Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect publication-title: Global Biogeochem. Cycles – volume: 9 start-page: 880 year: 2016 end-page: 883 article-title: Substantial global carbon uptake by cement carbonation publication-title: Nat. Geosci. – volume: 67 start-page: 29 year: 2003 end-page: 46 article-title: Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps publication-title: Geochim. Cosmochim. Acta – volume: 15 start-page: 865 year: 2000 end-page: 878 article-title: Impact of nitrogen fertilizers on the natural weathering‐erosion processes and fluvial transport in the Garonne basin publication-title: Appl. Geochem. – volume: 2 start-page: 177 year: 2012 end-page: 184 article-title: Carbon export by rivers draining the conterminous United States publication-title: Inland Waters – volume: 108 start-page: 20929 year: 2011 end-page: 20934 article-title: Cumulative impacts of mountaintop mining on an Appalachian watershed. Proc publication-title: Natl. Acad. Sci. USA – volume: 59 start-page: 1729 year: 1995 end-page: 1747 article-title: Effects of climate on chemical‐weathering in watersheds publication-title: Geochim. Cosmochim. Acta – volume: 159 start-page: 3 year: 1999 end-page: 30 article-title: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers publication-title: Chem. Geol. – volume: 83 start-page: 121 year: 2017 end-page: 135 article-title: Human‐accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use publication-title: Appl. Geochem. – volume: 62 start-page: 84 year: 2015 end-page: 95 article-title: Temporal geochemical variations in above‐ and below‐drainage coal mine discharge publication-title: Appl. Geochem. – volume: 449 start-page: 58 year: 2017 end-page: 72 article-title: Carbonate minerals in the global carbon cycle publication-title: Chem. Geol. – volume: 458 start-page: 1 year: 2017 end-page: 13 article-title: Temperature versus hydrologic controls of chemical weathering fluxes from United States forests publication-title: Chem. Geol. – volume: 88 start-page: 9671 year: 1983 end-page: 9688 article-title: Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved‐load publication-title: J. Geophys. Res. Oceans Atmos. – volume: 47 start-page: 21 year: 2011 article-title: Possible link between irrigation in the US High Plains and increased summer streamflow in the Midwest publication-title: Water Resour. Res. – volume: 10 start-page: 99 year: 2004 end-page: 137 article-title: Impact of carbonate precipitation on riverine inorganic carbon mass transport from a mid‐continent, forested watershed publication-title: Aquat. Geochem. – volume: 21 year: 2007 article-title: Evidence for carbon sequestration by agricultural liming publication-title: Global Biogeochem. Cycles – volume: 451 start-page: 449 year: 2008 end-page: 452 article-title: Anthropogenically enhanced fluxes of water and carbon from the Mississippi River publication-title: Nature – volume: 204 start-page: 1 year: 2004 end-page: 21 article-title: Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst‐dominated terrain, Guizhou Province, China publication-title: Chem. Geol. – volume: 22 start-page: 1329 year: 2007 end-page: 1343 article-title: Diel variations in stream chemistry and isotopic composition of dissolved inorganic carbon, upper Clark Fork River, Montana, USA publication-title: Appl. Geochem. – volume: 47 start-page: 10041 year: 2013 end-page: 10048 article-title: Isotopic imprints of mountaintop mining contaminants publication-title: Environ. Sci. Technol. – volume: 75 start-page: 14 year: 2016 article-title: Inorganic carbon dynamics and CO2 flux associated with coal‐ mine drainage sites in Blythedale PA and Lambert WV, USA publication-title: Environ. Earth Sci. – volume: 224 start-page: 547 year: 2004 end-page: 562 article-title: Erosional and climatic effects on long‐term chemical weathering rates in granitic landscapes spanning diverse climate regimes publication-title: Earth Planet. Sci. Lett. – volume: 104 start-page: 275 year: 2011 end-page: 291 article-title: Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas publication-title: Biogeochemistry – volume: 5 start-page: 1353 year: 1969 article-title: A working model for variation in stream water chemistry at Hubbard‐Brook‐Experimental‐Forest, New‐Hampshire publication-title: Water Resour. Res. – volume: 72 start-page: 4254 end-page: 4277 article-title: Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering publication-title: Geochim. Cosmochim. Acta – volume: 22 start-page: 264 year: 1993 end-page: 271 article-title: A temporal perspective of lake acidification in Sweden publication-title: Ambio – volume: 26 year: 2012 article-title: A land‐to‐ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean publication-title: Global Biogeochem. Cycles – volume: 47 start-page: 10302 year: 2013 end-page: 10311 article-title: Increased river alkalinization in the Eastern US publication-title: Environ. Sci. Technol. – volume: 294 start-page: 101 year: 2010 end-page: 110 article-title: The dependence of chemical weathering rates on fluid residence time publication-title: Earth Planet. Sci. Lett. – volume: 36 start-page: 664 year: 2007 end-page: 680 article-title: Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions publication-title: J. Environ. Qual. – volume: 9 start-page: 140 year: 2011 end-page: 165 article-title: Twelve testable hypotheses on the geobiology of weathering publication-title: Geobiology – volume: 132 start-page: 372 year: 2006 end-page: 383 article-title: Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents publication-title: Geoderma – volume: 19 year: 2005 article-title: Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin publication-title: Global Biogeochem. Cycles – volume: 52 start-page: 91 year: 1982 end-page: 332 article-title: Long term records of CO2 pressure fluctuations in fresh waters publication-title: SCOPE/UNEP Sonderband – volume: 206 start-page: 900 year: 2015 end-page: 912 article-title: One physical system’: Tansley's ecosystem as Earth's critical zone publication-title: New Phytol. – volume: 43 year: 2007 article-title: Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005 publication-title: Water Resour. Res. – volume: 170 start-page: 1088 year: 1970 article-title: Mechanisms controlling world water chemistry publication-title: Science – start-page: 84 year: 2012 – volume: 93:3 start-page: 100 year: 2014 article-title: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus publication-title: Atmos. Environ. – volume: 39 start-page: 909 year: 2009 end-page: 1001 article-title: Effects of agricultural drainage on aquatic ecosystems: A review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 74 start-page: 3669 year: 2010 end-page: 3691 article-title: Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory publication-title: Geochim. Cosmochim. Acta – volume: 218 start-page: 1191 year: 2016 end-page: 1199 article-title: Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification publication-title: Environ. Pollut. – volume: 343 start-page: 1502 year: 2014 end-page: 1504 article-title: Hydrologic regulation of chemical weathering and the geologic carbon cycle publication-title: Science – volume: 2 start-page: 346 year: 2012 end-page: 349 article-title: High sensitivity of the continental‐weathering carbon dioxide sink to future climate change publication-title: Nat. Clim. Chang. – volume: 58 start-page: 2325 year: 1994 end-page: 2332 article-title: The effect of land plants on weathering rates of silicate minerals publication-title: Geochim. Cosmochim. Acta – volume: 48 start-page: 4809 year: 2014 end-page: 4816 article-title: Carbon dioxide efficiency of terrestrial enhanced weathering publication-title: Environ. Sci. Technol. – volume: 10 start-page: 23 year: 2014 end-page: 27 article-title: A brief overview of the GLObal RIver Chemistry Database, GLORICH publication-title: Procedia Earth Planet. Sci. – volume: 119 start-page: 848 year: 2014 end-page: 863 article-title: The impact of climate and reservoirs on longitudinal riverine carbon fluxes from two major watersheds in the Central and Intermontane West publication-title: J. Geophys. Res. Biogeosci. – volume: 36 start-page: 1760 year: 2006 end-page: 1767 article-title: The experimental investigation of concrete carbonation depth publication-title: Cem. Concr. Res. – volume: 277 start-page: 213 year: 2009 end-page: 222 article-title: Direct evidence of the feedback between climate and weathering publication-title: Earth Planet. Sci. Lett. – volume: 287 start-page: 401 year: 1987 end-page: 428 article-title: Global chemical‐weathering of surficial rocks estimated from river dissolved loads publication-title: Am. J. Sci. – volume: 5 start-page: 16 year: 2015 article-title: Changing fluxes of carbon and other solutes from the Mekong River publication-title: Sci. Rep. – volume: 283 start-page: 641 year: 1983 end-page: 683 article-title: The carbonate‐silicate geochemical cycle and its effect on atmospheric carbon‐dioxide over the past 100 million years publication-title: Am. J. Sci. – volume: 202 start-page: 225 year: 2003 end-page: 256 article-title: Chemical weathering in granitic environments publication-title: Chem. Geol. – volume: 363 start-page: 145 year: 2014 end-page: 163 article-title: Global chemical weathering and associated P‐release ‐ The role of lithology, temperature and soil properties publication-title: Chem. Geol. – volume: 20 year: 2006 article-title: Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin publication-title: Global Biogeochem. Cycles – volume: 37 start-page: 151 year: 2009 end-page: 154 article-title: A theoretical model coupling chemical weathering rates with denudation rates publication-title: Geology – volume: 58 start-page: 2361 year: 1994 end-page: 2386 article-title: Chemical‐weathering rate laws and global geochemical cycles publication-title: Geochim. Cosmochim. Acta – volume: 339 start-page: 67 year: 2012 end-page: 78 article-title: Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example publication-title: Earth Planet. Sci. Lett. – volume: 202 start-page: 479 year: 2003 end-page: 506 article-title: The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? publication-title: Chem. Geol. – volume: 9 start-page: 361 year: 2016 end-page: 365 article-title: Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon publication-title: Nat. Geosci. – volume: 6 start-page: 402 year: 2016 article-title: Enhanced weathering strategies for stabilizing climate and averting ocean acidification publication-title: Nat. Clim. Chang. – volume: 72 start-page: 3105 year: 2008 end-page: 3123 article-title: Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales publication-title: Geochim. Cosmochim. Acta – volume: 284 start-page: 50 year: 2009 end-page: 56 article-title: Long term changes of chemical weathering in rivers heavily impacted from Acid Mine Drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets publication-title: Earth Planet. Sci. Lett. – volume: 41 start-page: 563 year: 2009 end-page: 588 article-title: Historical changes in sediment and phosphorus loading to the upper Mississippi River: Mass‐balance reconstructions from the sediments of Lake Pepin publication-title: J. Paleolimnol. – volume: 266 start-page: 318 year: 2009 end-page: 327 article-title: The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds publication-title: Chem. Geol. – volume: 67 start-page: 1305 year: 2003 end-page: 1329 article-title: Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada publication-title: Geochim. Cosmochim. Acta – volume: 359 start-page: 117 year: 1992 end-page: 122 article-title: Tectonic forcing of late cenozoic climate publication-title: Nature – ident: e_1_2_7_13_1 doi: 10.1016/j.gca.2008.06.013 – ident: e_1_2_7_29_1 doi: 10.1175/JCLI-D-13-00290.1 – ident: e_1_2_7_55_1 doi: 10.1038/359117a0 – ident: e_1_2_7_57_1 doi: 10.1038/nature06505 – ident: e_1_2_7_67_1 doi: 10.1002/2013JG002496 – ident: e_1_2_7_8_1 doi: 10.2134/jeq2006.0084 – ident: e_1_2_7_58_1 doi: 10.1016/j.epsl.2009.04.006 – ident: e_1_2_7_14_1 doi: 10.1016/j.chemgeo.2002.10.001 – ident: e_1_2_7_23_1 doi: 10.1126/science.1182570 – ident: e_1_2_7_24_1 doi: 10.1029/2006GB002738 – ident: e_1_2_7_54_1 doi: 10.1016/j.gca.2008.04.011 – ident: e_1_2_7_56_1 doi: 10.1016/j.chemgeo.2017.02.025 – ident: e_1_2_7_69_1 doi: 10.5268/IW-2.4.510 – ident: e_1_2_7_85_1 doi: 10.1007/s10533-010-9501-y – ident: e_1_2_7_84_1 doi: 10.1038/ngeo2840 – ident: e_1_2_7_7_1 doi: 10.1080/10643380801977966 – ident: e_1_2_7_64_1 doi: 10.1038/ngeo2726 – ident: e_1_2_7_18_1 doi: 10.1130/G25270A.1 – ident: e_1_2_7_39_1 doi: 10.1016/0016-7037(94)90016-7 – ident: e_1_2_7_76_1 doi: 10.1007/s12665-015-5191-z – volume: 52 start-page: 91 year: 1982 ident: e_1_2_7_35_1 article-title: Long term records of CO2 pressure fluctuations in fresh waters publication-title: SCOPE/UNEP Sonderband – ident: e_1_2_7_4_1 doi: 10.1038/nclimate1419 – ident: e_1_2_7_10_1 doi: 10.1016/j.apgeochem.2015.02.010 – ident: e_1_2_7_38_1 doi: 10.1007/s10533-013-9860-2 – ident: e_1_2_7_42_1 doi: 10.1002/jgrd.50516 – ident: e_1_2_7_68_1 doi: 10.1029/JC088iC14p09671 – ident: e_1_2_7_37_1 doi: 10.1029/2010WR010046 – ident: e_1_2_7_34_1 doi: 10.1016/j.apgeochem.2017.02.006 – ident: e_1_2_7_11_1 doi: 10.1016/j.cemconres.2004.07.025 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.1112381108 – ident: e_1_2_7_60_1 doi: 10.1111/nph.13338 – ident: e_1_2_7_46_1 doi: 10.1016/S0022-1694(00)00277-8 – ident: e_1_2_7_30_1 doi: 10.1016/S0016-7037(02)01053-0 – ident: e_1_2_7_62_1 doi: 10.1016/j.epsl.2012.05.028 – ident: e_1_2_7_43_1 doi: 10.1016/j.epsl.2010.03.010 – ident: e_1_2_7_15_1 doi: 10.1016/0016-7037(94)90013-2 – ident: e_1_2_7_45_1 doi: 10.1016/j.chemgeo.2016.11.029 – ident: e_1_2_7_44_1 doi: 10.1126/science.1250770 – ident: e_1_2_7_65_1 doi: 10.1002/2015GB005324 – ident: e_1_2_7_63_1 doi: 10.1016/S0883-2927(99)00076-1 – ident: e_1_2_7_74_1 doi: 10.1038/nclimate2882 – ident: e_1_2_7_19_1 doi: 10.1016/S0009-2541(99)00031-5 – ident: e_1_2_7_52_1 doi: 10.1016/j.chemgeo.2002.08.001 – ident: e_1_2_7_25_1 doi: 10.1016/j.chemgeo.2003.09.009 – ident: e_1_2_7_50_1 doi: 10.1021/es4052022 – ident: e_1_2_7_70_1 doi: 10.1016/j.scitotenv.2014.04.054 – ident: e_1_2_7_71_1 doi: 10.1029/2006WR005201 – ident: e_1_2_7_21_1 doi: 10.1126/science.170.3962.1088 – ident: e_1_2_7_78_1 doi: 10.1016/j.epsl.2005.03.020 – ident: e_1_2_7_31_1 doi: 10.1016/j.gca.2010.03.036 – ident: e_1_2_7_61_1 doi: 10.1016/j.epsl.2004.05.019 – ident: e_1_2_7_16_1 doi: 10.1016/j.envpol.2016.08.075 – ident: e_1_2_7_49_1 doi: 10.1021/acs.estlett.7b00096 – ident: e_1_2_7_32_1 doi: 10.1029/WR005i006p01353 – ident: e_1_2_7_66_1 doi: 10.1016/j.geoderma.2005.06.002 – volume: 22 start-page: 264 year: 1993 ident: e_1_2_7_59_1 article-title: A temporal perspective of lake acidification in Sweden publication-title: Ambio – ident: e_1_2_7_79_1 doi: 10.1016/0016-7037(95)00078-E – ident: e_1_2_7_22_1 doi: 10.1016/j.epsl.2008.10.018 – ident: e_1_2_7_82_1 doi: 10.1016/j.chemgeo.2003.03.001 – ident: e_1_2_7_12_1 doi: 10.1029/2004GB002325 – ident: e_1_2_7_2_1 doi: 10.3133/cir1376 – ident: e_1_2_7_17_1 doi: 10.1007/s10933-008-9292-5 – ident: e_1_2_7_26_1 doi: 10.1016/j.proeps.2014.08.005 – ident: e_1_2_7_28_1 doi: 10.1579/0044-7447-31.2.88 – ident: e_1_2_7_40_1 doi: 10.1038/srep16005 – ident: e_1_2_7_77_1 doi: 10.1016/j.atmosenv.2013.11.013 – ident: e_1_2_7_47_1 doi: 10.2475/ajs.287.5.401 – ident: e_1_2_7_27_1 doi: 10.1016/j.chemgeo.2013.10.025 – ident: e_1_2_7_75_1 doi: 10.1021/es4012959 – ident: e_1_2_7_33_1 doi: 10.1021/es401046s – ident: e_1_2_7_81_1 doi: 10.1016/S0016-7037(99)00250-1 – ident: e_1_2_7_83_1 doi: 10.1016/j.jhydrol.2012.08.039 – ident: e_1_2_7_9_1 doi: 10.1111/j.1472-4669.2010.00264.x – ident: e_1_2_7_73_1 doi: 10.1029/2011GB004192 – ident: e_1_2_7_48_1 doi: 10.1016/S0016-7037(02)01207-3 – ident: e_1_2_7_51_1 doi: 10.1029/2005GB002565 – ident: e_1_2_7_53_1 doi: 10.1016/j.apgeochem.2007.02.007 – ident: e_1_2_7_72_1 doi: 10.1023/B:AQUA.0000038960.63501.5b – ident: e_1_2_7_5_1 doi: 10.2475/ajs.282.4.451 – ident: e_1_2_7_6_1 doi: 10.2475/ajs.283.7.641 – ident: e_1_2_7_80_1 doi: 10.1016/0016-7037(96)00106-8 – ident: e_1_2_7_36_1 doi: 10.4319/lo.1982.27.5.0856 – ident: e_1_2_7_3_1 doi: 10.1016/j.chemgeo.2009.06.018 – ident: e_1_2_7_20_1 doi: 10.1641/0006‐3568(2003)053[0341:TNC]2.0.CO;2] |
SSID | ssj0001617538 |
Score | 2.370388 |
Snippet | Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales... Bicarbonate ( ), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On time scales of... Abstract Bicarbonate (HCO3−), the predominant form of dissolved inorganic carbon in natural waters, originates mostly from watershed mineral weathering. On... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 143 |
SubjectTerms | Acidification Acids Alkalinity Anthropogenic factors Aquatic ecosystems Biogeochemistry Calcification Carbon cycle Carbon dioxide Chemistry Climate change Dissolved inorganic carbon Global warming Hydrologic cycle Liming Minerals Mining Natural waters Oceans Precipitation River systems Rivers Seawater Sediments Water treatment Watersheds Weathering Weathering zone |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJxHEn1idEtAXhbI2aZv2UcUhMt3LxL2FJE1gMlrZpvjne0naUUH0xbdwHCF8l3DfkeM7hC6SNI8E8IAwKgkUKJDyQwFVc5gxA_lHpDqWtlB8fMrun5OHaTrtjPqyPWFeHtgDN2BwS-AlJFmc5QnsKlkkrQRMRg1jOnfqpZDzOsXUq-cxwMPztR4pGczrObEr29ncyUBOqP8bu-xyVJdkhjtou2GH-Nqfahdt6GoPbY2VFlUjLb2PXtrZBhD6mcKzdsrIEtcVXtg2CyCOGIyf1mSw_XGv5x-6BFc_w0lhJRYSvFc1Bv6Ha7v_8gBNhneT2_uwGY8QqsT-3xpILTJXzBCalFqkhZSCANsDhkNURhMhRSojkQL2cZmaAkorZqTJaKSAxUl6iHpVXekjhHVJZSwkFQQIhShMoYgqCxIrGktGiAjQZYsYV410uJ1gMede9Jhwiy536AbofO375gUzfvS6scCvPazItTMADrwJPf8r9AHqt2HjzctbcmI12qKMxEmArlwofzkGH41HxK2O_-NAJ2gT-FTuO8n6qLdavOtT4Cwreeau5xc_weR7 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5q-yJCsVbxaisL-mIhNJndbBLwRYullNb60NK-LbubXSgcidyd4p_vzCa5syCCb8syCcnMzs43--MbgPeqrHNLOCDLW6QEhUJ-ZilrznQVKf7YMhSOE8Wrr_r8Vl3cl_db8HG6CzPwQ6wX3Ngz0nzNDm7d8mRDGjrv58ht3TyBHb5by8z5qL5tVlg0s1CmknSSUiWKVbjmJ8WTzeOPIlIi7n-ENv_ErCnonD2H3REtik-DefdgK3Qv4Nm1D7Ybqab34W6qdUBD4cGLh6nqyFL0nVjwsQv6VUGdv7grCt6B7-c_Q0uiQ00nL7xdOJJe9YLwoOj5_cuXcHP25eb0PBvLJWRe8X5upFDjal9FlKoNtmycs0jojxAPei2VdbZ0uS3JFkVbxoZSrSq6qGXuCdU5-Qq2u74Lr0GEVrrCOmmRAIZtYuPRtw0WXhauQrQz-DBpzPiRSpwrWszNQIKMhrVrknZn8G4t-30g0Pir1GdW_FqCSa9TB-nBjD5kKpowaFJUutC1ogHmqtwxG5CWsapCXc7gcDKbGT1xaZA523KNhZrBcTLlPz7DXF5fYmod_I_wG3hKOKoeTpAdwvZq8SMcEVZZubdpSP4GmOLhBA priority: 102 providerName: Wiley-Blackwell |
Title | Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flol2.10069 https://www.proquest.com/docview/2248506214 https://doaj.org/article/7053088461684a05b70b170563f77e85 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBf9eOgYlLXd2LXdYdheOghNHMdJnkp7XCmlH0e5sb4Z27GhcCTd3a30z6-UONcORt-CESZIsvSTLX4C-CGyItaIA6K44ligYMqPNFbNkcw95h-ducRQoXh9Iy9-icv77D5cuC1CW2UfE9tAXTWW7siPOXFvxZIn4uTxT0RTo-h1NYzQWIdNDMEFFl-bZ-Obyd3rLYskJspixUvKj2fNjNMXdTi_yUQtYf8_KPMtVm2Tzfkn2A4okZ12Zt2BNVfvwtaoH862Cx9vrdN1oJveg9_9vAN0hwfLHvrJIwvW1GxOrRcIJhkuPtOSZ_QK38yeXIWi3Vwny6yeG5ReNgwxIWto_8VnmJ6Pp6OLKIxMiKygN12PWjCFzT1PReV0VhqjOSJARD3cylRoozMT6wztkVSZL7Hcyr3xMo0tIjuTfoGNuqndV2CuSk2iTao5ggxd-tJyW5U8sWlics71AI567Skb6MRpqsVMdUTIXJGmVavpAXxfyT52JBr_lTojI6wkiPi6XUA9qHCOVI5BAwOjkIksBDqZyWNDjEAy9XnuimwAh70JVTiNC_XqOwP42Zr1nd9QV7dXvP3af3-vA_iA6Kno-sYOYWM5_-u-IUJZmiGsczEZBmcctnX-C1uM5Wo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7q9aEiiFalp1UD6oPC0t0km919kGJry9VeryIn9i0k2QQKx269O3_9Uf6Pndkf1wrSt76FMIQwmUy-2WS_D-C1TPPYIA6I4pJjgYJHfmSwao5UFvD8MalPLBWKJxM1-io_naVna_C3_xeGnlX2ObFJ1GXt6Bv5DifurVjxRO5efI9INYpuV3sJjTYsjv2fX1iyLd4ffcT1fcP54cF0fxR1qgKRk3TtGTAj29xlgQtZepMW1hqOIAmBAXdKSGNNamOT4pSTMg0FViRZsEGJ2CH4sQKHvQPrUmAlM4D1vYPJ5y9XH3UUEV_mKxpUvjOrZ5xa9KD62sHX6AP8A2qvQ-PmbDt8APc7UMo-tFH0ENZ8tQkb-70W3CbcO3XeVB279SP41ssrYPSdO3beC50sWF2xOb30QOzKsPM3dQVGl_717Kcv0bSVkXLMmblF62XNEIKymsZfPIbpbfjyCQyquvJbwHwpbGKsMBwxjSlC4bgrC544kdiMczOEt733tOvYy0lEY6Zb3mWuydO68fQQXq1sL1rOjv9a7dEirCyIZ7vpQD_obtvqDHMU5mGpEpVLjGmbxZYIiJQIWebzdAjb_RLqbvMv9FWoDuFds6w3TEOPT8e8aT29eayXsDGanoz1-Ghy_AzuInDL2ydr2zBYzn_45wiOlvZFF5IM9C1vgkuHWR9S |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7qFbQURKvi1bYG1AeF5Xazu8nug4j9cbT2vBap2LeQZBMoHLvt3bXqn9b_rjP741pB-ta3EIawTGYn32Rnvw_gfZJmoUYcEIQFxwIFj_xAY9UcCOnx_NGpiwwVit_HYv9n8u00PV2C6-5fGGqr7HJinaiLytId-YAT91YoeJQMfNsWcbw7_HJ-EZCCFH1p7eQ0mhA5dH9_Y_k2-3ywi3v9gfPh3snOftAqDAQ2oU-gHrOzyaz0PE4Kp9PcGM0RMCFI4FbEiTY6NaFO8fGjIvU5VifSGy_i0CIQMjEu-wiWJRZFYQ-Wt_fGxz9uL3gEkWBmC0pUPphUE04jaq6-cwjWWgH_ANy7MLk-54bP4GkLUNnXJqKew5Ir1-DJTqcLtwarR9bpsmW6fgG_OqkFjMQzy8460ZMZq0o2pa4PxLEMJ__QlGfUAFBNrlyBpo2klGVWTw1azyuGcJRVtP7sJZw8hC9fQa-sSvcamCtiE2kTa474Ruc-t9wWOY9sHBnJue7Dx857yrZM5iSoMVENBzNX5GlVe7oP7xa25w1_x3-ttmkTFhbEuV1PoB9U-worifkKc3IiIpElGN9GhobIiETspXRZ2oeNbgtVmwhm6jZs-_Cp3tZ7HkONjka8Hq3fv9ZbeIzBr0YH48M3sIIYLmu61zagN59euk3ESXOz1UYkA_XA78ANz94jhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthropogenic+influences+on+riverine+fluxes+of+dissolved+inorganic+carbon+to+the+oceans&rft.jtitle=Limnology+and+oceanography+letters&rft.au=Raymond%2C+Peter+A&rft.au=Hamilton%2C+Stephen+K&rft.date=2018-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2378-2242&rft.volume=3&rft.issue=3&rft.spage=143&rft.epage=155&rft_id=info:doi/10.1002%2Flol2.10069&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2378-2242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2378-2242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2378-2242&client=summon |