On Noether’s Theorem for the Euler–Poincaré Equation on the Diffeomorphism Group with Advected Quantities

We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler–Poincaré theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 13; no. 4; pp. 457 - 477
Main Authors Cotter, C. J., Holm, D. D.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.08.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler–Poincaré theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler–Poincaré theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin–Noether theorem given in Sect. 4 of Holm et al. (Adv. Math. 137:1–81, 1998 ).
AbstractList We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler-Poincare theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler-Poincare theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin-Noether theorem given in Sect. 4 of Holm et al. (Adv. Math. 137:1-81, 1998).
We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler-Poincaré theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler-Poincaré theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin-Noether theorem given in Sect. 4 of Holm et al. (Adv. Math. 137:1-81, 1998 ).[PUBLICATION ABSTRACT]
We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler-Poincare theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler-Poincare theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin-Noether theorem given in Sect. 4 of Holm et al. (Adv. Math. 137:1-81, 1998). Keywords Hamiltonian structures * Symmetries * Variational principles * Conservation laws Mathematics Subject Classification 37K05
We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler–Poincaré theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler–Poincaré theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin–Noether theorem given in Sect. 4 of Holm et al. (Adv. Math. 137:1–81, 1998 ).
Audience Academic
Author Cotter, C. J.
Holm, D. D.
Author_xml – sequence: 1
  givenname: C. J.
  surname: Cotter
  fullname: Cotter, C. J.
  organization: Aeronautics Department, Imperial College London
– sequence: 2
  givenname: D. D.
  surname: Holm
  fullname: Holm, D. D.
  email: d.holm@ic.ac.uk
  organization: Mathematics Department, Imperial College London
BookMark eNp9kktuFDEQhlsoSCSBA7CzxAYWHfzqbvdyFIYkUkR4hLXlcZdnHHXbE9sdYJc7sOIInIObcBLcDAImGpAt2ar6_qqS_R8Ue847KIrHBB8RjJvnkWCKRYkJLVtC61LcK_ZJTaqSMcH2ft-b6kFxEOMVxqRqCd8v3IVDrzykFYTvt18iulyBDzAg4wPKQTQf-ynz-bW3Tqvw7SuaX48qWe9Q3hPxwhoDfvBhvbJxQCfBj2v0waYVmnU3oBN06M2oXLLJQnxY3Deqj_Do13lYvH85vzw-Lc8vTs6OZ-el5piJsjbMaNHWnNddW9MKU61gweq2UU1XaVUtdMNV0-SkIrozRpiFWLRUcaw6RSk7LJ5u6q6Dvx4hJjnYqKHvlQM_Rkk4bYWgTNQZfXIHvfJjcHm6TJGmrXL_6g-1VD1I64xPQempqJwxzljNWcszVe6gluAgqD5_mLE5vMUf7eDz6mCweqfg2ZYgMwk-pqUaY5Rn795us2TD6uBjDGDkOthBhU-SYDmZRm5MI7Np5GQaKbKmuaPRNv387jyY7f-rpBtlzF3cEsJfz_hP0Q9DN9gC
CODEN FCMOA3
CitedBy_id crossref_primary_10_1017_S0022377814000658
crossref_primary_10_1088_1751_8113_47_9_095501
crossref_primary_10_1093_ptep_ptae025
crossref_primary_10_1103_PhysRevFluids_3_104702
crossref_primary_10_1016_j_piutam_2013_03_025
crossref_primary_10_5802_crmeca_242
crossref_primary_10_1002_qj_2260
crossref_primary_10_1016_j_ijnonlinmec_2024_104705
crossref_primary_10_1063_1_5099383
Cites_doi 10.1007/978-1-4612-4350-2
10.1016/j.neuroimage.2004.07.017
10.1007/BF00281448
10.1017/S0022112082003292
10.1063/1.3515303
10.1103/PhysRevD.49.5173
10.1016/0375-9601(96)00472-0
10.1016/0375-9601(85)90456-6
10.1006/aima.1998.1721
10.1007/s10208-007-9022-9
10.1063/1.866469
10.1007/0-387-21791-6_4
10.1016/0370-1573(85)90028-6
10.1088/0029-5515/18/11/007
10.1016/j.jde.2005.01.012
10.3934/jgm.2011.3.41
10.1016/j.physd.2010.10.012
10.1007/0-8176-4419-9_8
10.1007/BF00281447
10.1007/b97593
10.1098/rspa.2007.1892
ContentType Journal Article
Copyright SFoCM 2012
COPYRIGHT 2013 Springer
SFoCM 2013
Copyright_xml – notice: SFoCM 2012
– notice: COPYRIGHT 2013 Springer
– notice: SFoCM 2013
DBID AAYXX
CITATION
ISR
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-012-9126-8
DatabaseName CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Civil Engineering Abstracts



DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 477
ExternalDocumentID 3037157421
A343364394
10_1007_s10208_012_9126_8
Genre Feature
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
AEIIB
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4038-6f3fc896446d962502caeb3697a7d5ca5bc74a77d96a1cdff8fb8b92a40ada223
IEDL.DBID U2A
ISSN 1615-3375
IngestDate Fri Jul 11 11:57:56 EDT 2025
Fri Jul 25 19:09:24 EDT 2025
Tue Jun 17 21:26:17 EDT 2025
Thu Jun 12 23:04:33 EDT 2025
Tue Jun 10 20:19:20 EDT 2025
Fri Jun 27 04:25:24 EDT 2025
Tue Jul 01 04:30:04 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Fri Feb 21 02:36:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Conservation laws
Hamiltonian structures
Symmetries
37K05
Variational principles
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4038-6f3fc896446d962502caeb3697a7d5ca5bc74a77d96a1cdff8fb8b92a40ada223
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1417956255
PQPubID 43692
PageCount 21
ParticipantIDs proquest_miscellaneous_1429882386
proquest_journals_1417956255
gale_infotracmisc_A343364394
gale_infotracgeneralonefile_A343364394
gale_infotracacademiconefile_A343364394
gale_incontextgauss_ISR_A343364394
crossref_primary_10_1007_s10208_012_9126_8
crossref_citationtrail_10_1007_s10208_012_9126_8
springer_journals_10_1007_s10208_012_9126_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130800
2013-8-00
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 8
  year: 2013
  text: 20130800
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2013
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Brizard (CR6) 2010; 17
CR18
Padhye, Morrison (CR27) 1996; 219
Ertel (CR10) 1942; 59
Holm, Marsden (CR14) 2004; 232
Olver (CR23) 1984; 85
Padhye, Morrison (CR28) 1996; 22
Muriel, Romero, Olver (CR20) 2006; 222
Pavlov, Mullen, Tong, Kanso, Marsden, Desbrun (CR29) 2011; 240
Abarbanel, Holm (CR1) 1987; 30
Bak, Cangemi, Jackiw (CR4) 1994; 49
Dewar (CR9) 1978; 18
Olver (CR24) 1984; 85
Holm, Marsden, Ratiu (CR15) 1998; 137
CR8
Soper (CR31) 1976
Gay-Balmaz, Ratiu (CR11) 2011; 3
Kosmann-Schwarzbach (CR19) 2004
Olver (CR22) 1984; 85
Holm, Holm, Marsden, Ratiu (CR12) 1994
Similon (CR30) 1985; 112
Benjamin, Olver (CR5) 1982; 125
CR21
Arnold, Khesin (CR3) 1998
Olver (CR26) 1993
Arnold (CR2) 1965; 6
Olver, Nicholaenko, Holm, Hyman (CR25) 1986
Holm, Newton, Holmes, Weinstein (CR13) 2002
Holm, Ratnanather, Trouvé, Younes (CR17) 2004; 23
Cotter, Holm (CR7) 2009; 9
Holm, Marsden, Ratiu, Weinstein (CR16) 1985; 123
D.D. Holm (9126_CR17) 2004; 23
H. Ertel (9126_CR10) 1942; 59
P.J. Olver (9126_CR25) 1986
C. Muriel (9126_CR20) 2006; 222
9126_CR18
N. Padhye (9126_CR27) 1996; 219
F. Gay-Balmaz (9126_CR11) 2011; 3
D.D. Holm (9126_CR16) 1985; 123
D.E. Soper (9126_CR31) 1976
V.I. Arnold (9126_CR2) 1965; 6
P.J. Olver (9126_CR24) 1984; 85
D.D. Holm (9126_CR12) 1994
V.I. Arnold (9126_CR3) 1998
D. Bak (9126_CR4) 1994; 49
R.L. Dewar (9126_CR9) 1978; 18
Y. Kosmann-Schwarzbach (9126_CR19) 2004
C.J. Cotter (9126_CR7) 2009; 9
T.B. Benjamin (9126_CR5) 1982; 125
D. Pavlov (9126_CR29) 2011; 240
D.D. Holm (9126_CR14) 2004; 232
D.D. Holm (9126_CR15) 1998; 137
9126_CR8
P.J. Olver (9126_CR22) 1984; 85
N. Padhye (9126_CR28) 1996; 22
A.J. Brizard (9126_CR6) 2010; 17
P.J. Olver (9126_CR23) 1984; 85
P.J. Olver (9126_CR26) 1993
P.L. Similon (9126_CR30) 1985; 112
H.D.I. Abarbanel (9126_CR1) 1987; 30
9126_CR21
D.D. Holm (9126_CR13) 2002
References_xml – year: 1993
  ident: CR26
  publication-title: Applications of Lie Groups to Differential Equations
  doi: 10.1007/978-1-4612-4350-2
– ident: CR18
– volume: 23
  start-page: 170
  year: 2004
  end-page: 178
  ident: CR17
  article-title: Soliton dynamics in computational anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.017
– year: 2004
  ident: CR19
  publication-title: Les Théorèmes de Noether
– volume: 85
  start-page: 167
  year: 1984
  end-page: 181
  ident: CR24
  article-title: Conservation laws in elasticity, III: planar linear anisotropic elastostatics
  publication-title: Arch. Ration. Mech. Anal.
– volume: 85
  start-page: 119
  year: 1984
  end-page: 129
  ident: CR22
  article-title: Conservation laws in elasticity, I: general results
  publication-title: Arch. Ration. Mech. Anal.
– volume: 85
  start-page: 131
  year: 1984
  end-page: 160
  ident: CR23
  article-title: Conservation laws in elasticity, II: linear homogeneous isotropic elastostatics
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281448
– volume: 125
  start-page: 137
  year: 1982
  end-page: 185
  ident: CR5
  article-title: Hamiltonian structure, symmetries and conservation laws for water waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082003292
– volume: 59
  start-page: 277
  year: 1942
  end-page: 281
  ident: CR10
  article-title: Ein neuer hydrodynamischer Wirbelsatz
  publication-title: Meteorol. Z. Braunschw.
– volume: 17
  year: 2010
  ident: CR6
  article-title: Noether derivation of exact conservation laws for dissipationless reduced-fluid models
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3515303
– volume: 49
  start-page: 5173
  issue: 10
  year: 1994
  end-page: 5181
  ident: CR4
  article-title: Energy-momentum conservation in gravity theories
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.5173
– ident: CR8
– volume: 219
  start-page: 287
  year: 1996
  end-page: 292
  ident: CR27
  article-title: Fluid element relabeling symmetry
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00472-0
– start-page: 125
  year: 1994
  end-page: 208
  ident: CR12
  article-title: Lyapunov stability of ideal compressible and incompressible fluid equilibria in three dimensions
  publication-title: Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics
– volume: 112
  start-page: 33
  issue: 1
  year: 1985
  end-page: 37
  ident: CR30
  article-title: Conservation laws for relativistic guiding-center plasma
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(85)90456-6
– volume: 137
  start-page: 1
  year: 1998
  end-page: 81
  ident: CR15
  article-title: The Euler–Poincaré equations and semidirect products with applications to continuum theories
  publication-title: Adv. Math.
  doi: 10.1006/aima.1998.1721
– year: 1976
  ident: CR31
  publication-title: Classical Field Theory
– volume: 9
  start-page: 221
  issue: 2
  year: 2009
  end-page: 242
  ident: CR7
  article-title: Continuous and discrete Clebsch variational principles
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-007-9022-9
– ident: CR21
– volume: 30
  start-page: 3369
  year: 1987
  end-page: 3382
  ident: CR1
  article-title: Nonlinear stability of inviscid flows in three dimensions: incompressible fluids and barotropic fluids
  publication-title: Phys. Fluids
  doi: 10.1063/1.866469
– start-page: 169
  year: 2002
  end-page: 180
  ident: CR13
  article-title: Euler–Poincaré dynamics of perfect complex fluids
  publication-title: Geometry, Mechanics, and Dynamics
  doi: 10.1007/0-387-21791-6_4
– volume: 123
  start-page: 1
  year: 1985
  end-page: 116
  ident: CR16
  article-title: Nonlinear stability of fluid and plasma equilibria
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(85)90028-6
– volume: 18
  start-page: 1541
  year: 1978
  end-page: 1553
  ident: CR9
  article-title: Hamilton’s principle for a hydromagnetic fluid with a free boundary
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/18/11/007
– volume: 222
  start-page: 164
  year: 2006
  end-page: 184
  ident: CR20
  article-title: Variational symmetries and Euler–Lagrange equations
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2005.01.012
– year: 1998
  ident: CR3
  publication-title: Topological Methods in Hydrodynamics
– volume: 3
  start-page: 41
  issue: 1
  year: 2011
  end-page: 79
  ident: CR11
  article-title: Clebsch optimal control formulation in mechanics
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2011.3.41
– volume: 6
  start-page: 773
  year: 1965
  end-page: 777
  ident: CR2
  article-title: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid
  publication-title: Sov. Math.
– volume: 240
  start-page: 333
  issue: 6
  year: 2011
  end-page: 458
  ident: CR29
  article-title: Structure-preserving discretization of incompressible fluids
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.10.012
– volume: 232
  start-page: 203
  year: 2004
  end-page: 235
  ident: CR14
  article-title: Momentum maps and measure valued solutions of the Euler–Poincaré equations for the diffeomorphism group
  publication-title: Prog. Math.
  doi: 10.1007/0-8176-4419-9_8
– start-page: 81
  year: 1986
  end-page: 104
  ident: CR25
  article-title: Noether’s theorems and systems of Cauchy–Kovalevskaya type
  publication-title: Nonlinear Systems of Partial Differential Equations in Applied Mathematics
– volume: 22
  start-page: 869
  year: 1996
  end-page: 877
  ident: CR28
  article-title: Relabeling symmetries in hydrodynamics and magnetohydrodynamics
  publication-title: Plasma Phys. Rep.
– volume-title: Applications of Lie Groups to Differential Equations
  year: 1993
  ident: 9126_CR26
  doi: 10.1007/978-1-4612-4350-2
– volume: 6
  start-page: 773
  year: 1965
  ident: 9126_CR2
  publication-title: Sov. Math.
– volume: 240
  start-page: 333
  issue: 6
  year: 2011
  ident: 9126_CR29
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.10.012
– volume-title: Classical Field Theory
  year: 1976
  ident: 9126_CR31
– volume: 232
  start-page: 203
  year: 2004
  ident: 9126_CR14
  publication-title: Prog. Math.
  doi: 10.1007/0-8176-4419-9_8
– start-page: 81
  volume-title: Nonlinear Systems of Partial Differential Equations in Applied Mathematics
  year: 1986
  ident: 9126_CR25
– volume: 85
  start-page: 131
  year: 1984
  ident: 9126_CR23
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281448
– volume: 112
  start-page: 33
  issue: 1
  year: 1985
  ident: 9126_CR30
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(85)90456-6
– volume: 85
  start-page: 167
  year: 1984
  ident: 9126_CR24
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281447
– volume: 137
  start-page: 1
  year: 1998
  ident: 9126_CR15
  publication-title: Adv. Math.
  doi: 10.1006/aima.1998.1721
– volume: 125
  start-page: 137
  year: 1982
  ident: 9126_CR5
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082003292
– ident: 9126_CR21
– volume: 59
  start-page: 277
  year: 1942
  ident: 9126_CR10
  publication-title: Meteorol. Z. Braunschw.
– volume-title: Les Théorèmes de Noether
  year: 2004
  ident: 9126_CR19
– volume: 3
  start-page: 41
  issue: 1
  year: 2011
  ident: 9126_CR11
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2011.3.41
– volume: 23
  start-page: 170
  year: 2004
  ident: 9126_CR17
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.017
– ident: 9126_CR18
– volume: 18
  start-page: 1541
  year: 1978
  ident: 9126_CR9
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/18/11/007
– volume: 85
  start-page: 119
  year: 1984
  ident: 9126_CR22
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281448
– volume: 22
  start-page: 869
  year: 1996
  ident: 9126_CR28
  publication-title: Plasma Phys. Rep.
– volume: 17
  year: 2010
  ident: 9126_CR6
  publication-title: Phys. Plasmas
– volume: 9
  start-page: 221
  issue: 2
  year: 2009
  ident: 9126_CR7
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-007-9022-9
– volume: 49
  start-page: 5173
  issue: 10
  year: 1994
  ident: 9126_CR4
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.5173
– volume: 222
  start-page: 164
  year: 2006
  ident: 9126_CR20
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2005.01.012
– volume: 219
  start-page: 287
  year: 1996
  ident: 9126_CR27
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00472-0
– volume: 123
  start-page: 1
  year: 1985
  ident: 9126_CR16
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(85)90028-6
– volume: 30
  start-page: 3369
  year: 1987
  ident: 9126_CR1
  publication-title: Phys. Fluids
  doi: 10.1063/1.866469
– volume-title: Topological Methods in Hydrodynamics
  year: 1998
  ident: 9126_CR3
  doi: 10.1007/b97593
– start-page: 169
  volume-title: Geometry, Mechanics, and Dynamics
  year: 2002
  ident: 9126_CR13
  doi: 10.1007/0-387-21791-6_4
– ident: 9126_CR8
  doi: 10.1098/rspa.2007.1892
– start-page: 125
  volume-title: Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics
  year: 1994
  ident: 9126_CR12
SSID ssj0015914
Score 2.0784318
Snippet We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler–Poincaré theory of ideal fluids with advected...
We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler-Poincare theory of ideal fluids with advected...
We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler-Poincaré theory of ideal fluids with advected...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 457
SubjectTerms Applications of Mathematics
Computational mathematics
Computer Science
Conservation laws
Density
Differential equations
Economics
Eulers equations
Evolution
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Symmetry
Theorems
Theorems (Mathematics)
Vector space
Vector spaces
Vectors (mathematics)
Title On Noether’s Theorem for the Euler–Poincaré Equation on the Diffeomorphism Group with Advected Quantities
URI https://link.springer.com/article/10.1007/s10208-012-9126-8
https://www.proquest.com/docview/1417956255
https://www.proquest.com/docview/1429882386
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELWgfQAeuBQQW0plEAIJFGnrSy6PW9ilgLpcV2qfLNuxq0rdhDbNO__AE5_Ad_AnfAkzXmdpoCAhRYrkmWS1noxzJp45Q8hDbUrPteeJk9wnIhMyMdoXid5KnRFeMhdaJ-xO052ZeLUn92Idd9Nlu3dbkmGlPlPsxkLiFQMHZWmSXySrEkJ3zOOasdFy60AWgdAbkUzCeSa7rczzbtF7Gf2-JP-xNxpeOZPr5GrEinS0MO4NcsFVa-RaxI00emUDQ11rhm5sjVzqCo5BfGV3Sc3a3CTVm4pO61Dm--Pz14aG4nw3pwBeKQzScXuEki9v68PK6pPv3-j4eEEHTuFAjefYU6We12Chw2ZOw9crit9zKXZ3tgBh6btWR67WW2Q2GX98tpPEpguJFUNY_FLPvc0LgElpWUBwNGRWQ8CdFpnOSmm1NDYTOstAqLds6X3uTW4KpsVQlxrAxm2yUtWVu0MoYD9fWpdybgWgMqSK98xww7l2GLoNyLCbfWUjIzk2xjhSv7iU0WAKDKbQYCofkCfLSz4t6Dj-pfwATaqQ5qLCPJoD3TaNevnhvRpxwTmCMTEgj6OSr-HHrY5lCfAXkBmrp_mop3mw4AU_T3GjpwgOa_vi7hFTccFoIAKDlRGDUTkg95divBKT4CpXt6jDCgiIeA4z97R7NM_c4m_zsP5f2nfJZRZafqCjbJCV05PW3QPgdWo2yeposr09xfOL_dfjzeB4PwGnRyiq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcigcoBQQCy24iB-JKtLWdv4OHFZ0q13aXf66Um_GceyqUjeBphHixjtw4syJ5-BNeBJmvM62gYLEodKe7Ek28XjG38Sebwh5qLLccmV5YEJuAxGLMMiUTQO1GZlM2JAZVzphNI4GE_FiP9xfIN-aXBh32r3ZknSe-kyyG3MHrxgYKIuCxJ-k3DGfPkKcVj0bboFSHzG23d97Pgh8KYFAiy6YdGS51UkKi3-UpwD5u0wrCCOjNFZxHmoVZjoWKo6hU23q3NrEZkmWMiW6KlcM2Q3Az18C7JGg6UxYb75VEaaOQByRU8B5HDZbp-c9cmvx-30J-GMv1i1x28vkqsemtDebTNfJgilWyDWPU6n3AhU0NaUgmrYVstQkOEP3ldGcCra6QYqXBR2XLq345-evFXVkAGZKASxTaKT9-gh7vrwqDwutjn98p_0PM_pxCj-U2MIaLuW0hBlxWE2p-1pG8fsxxWrSGiAzfV0rzw17k0wuRDO3yGJRFuY2oYA1ba5NxLkWgAKRmt6yjGecK4OhYod0m9GX2jOgYyGOI3nK3YwKk6AwiQqTSYc8nV_yfkb_8S_hB6hSibQaBZ7bOVB1Vcnh2zeyxwXnCP5EhzzxQraEP9fKp0HAKyATV0vycUvyYMZDfp7gaksQHIRudzdTTHoHVUHEB54Yg9-wQ9bn3XglHrorTFmjDEshAOMJjNxGMzXP3OJv43Dnv6Tvk6XB3mhX7g7HO3fJZebKjaDRrJLFk-ParAHoO8nuOaOj5N1FW_kv0w5jfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIvFz4KeAWChgED8SKOrWdv4OHFbsrrqULgW6Um_GceyqUjcpza4QN96BE4_AiYfgTXgSZhxnaaAgcai0J3uSTTye8Tex5xtCHqgst1xZHpiQ20DEIgwyZdNArUcmEzZkxpVO2BpHGxPxYjfcXSLfmlwYd9q92ZKscxqQpamYrR3mdu1Y4htzh7AYGCuLgsSfqtw0Hz9AzFY9G_VBwQ8ZGw52nm8EvqxAoEUXzDuy3OokBSAQ5SnA_y7TCkLKKI1VnIdahZmOhYpj6FTrOrc2sVmSpUyJrsoVQ6YD8PlnBCYfgwFNWG-xbRGmjkwcUVTAeRw226gnPXJrIfx9OfhjX9Ytd8PL5KLHqbRXT6wrZMkUK-SSx6zUe4QKmpqyEE3bCjnXJDtD94WtBS1sdZUUrwo6Ll2K8Y9PXyrqiAHMlAJwptBIB_MD7Pm8Xe4XWh19_0oH72sqcgo_lOhjPZdyWsLs2K-m1H05o_gtmWJlaQ3wmb6eK88Te41MTkUz18lyURbmBqGAO22uTcS5FoAIkabesoxnnCuDYWOHdJvRl9qzoWNRjgP5i8cZFSZBYRIVJpMOebK45LCmAvmX8H1UqUSKjQLP8OypeVXJ0ds3sscF5wgERYc89kK2hD_XyqdEwCsgK1dL8lFLcq_mJD9JcLUlCM5Ct7ubKSa9s6og-gOvjIFw2CH3Ft14JR7AK0w5RxmWQjDGExi5p83UPHaLv43Dzf-SvkvObveH8uVovHmLnGeu8gjazCpZnh3NzW3Af7PsjrM5St6dtpH_BNf5Z7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Noether%27s+theorem+for+the+Euler-Poincare+equation+on+the+diffeomorphism+group+with+advected+quantities&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Cotter%2C+C.J&rft.au=Holm%2C+D.D&rft.date=2013-08-01&rft.pub=Springer&rft.issn=1615-3375&rft.volume=13&rft.issue=4&rft.spage=457&rft_id=info:doi/10.1007%2Fs10208-012-9126-8&rft.externalDocID=A343364394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon