Pseudo‐active actuators: A concept analysis
The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force–velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple struct...
Saved in:
Published in | International journal of mechanical system dynamics Vol. 1; no. 2; pp. 230 - 247 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Nanjing
John Wiley & Sons, Inc
01.12.2021
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2767-1402 2767-1399 2767-1402 |
DOI | 10.1002/msd2.12018 |
Cover
Abstract | The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force–velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple structure, and high reliability, the system performance is not comparable to active control systems, due to the partial capability in only the first and third quadrants. On the basis of the comprehensive advantages of active and semi‐active actuators, to reform the design philosophy of semi‐active actuators to realize pseudo‐active actuators that have both mechanical properties of active actuators and energy consumption advantages of semi‐active actuators, that is, new semi‐active actuators with four‐quadrant controllable execution capability, will very likely cause a revolution in the related fields of mechanical design and system control. The basic design principle of pseudo‐active actuators that use semi‐active controllable actuators to achieve active actuator performance in the way of conceptual analysis is proposed. The proposed pseudo‐active actuators should consist of two half‐four‐quadrant actuators, that is, one is for the first and third quadrants and the other one for the second and fourth quadrants. This study employs two semi‐active controllable damping actuators and one mechanical compensation mechanism. One of the actuators provides the damping force in the first and third quadrants, and the other one combining with the mechanical compensation mechanism is for the second and fourth quadrants. A global mathematical model of the proposed actuator is established to describe the four different operational modes of the proposed actuator. It is proved that the two operational modes of the proposed actuator can realize active vibration control, and a case study of realizing active control is presented. The other two operational modes are compared with the conventional two‐degree‐of‐freedom model. More specifically, the application cases of the pseudo‐active operational mode of the proposed actuator in the quarter‐car/body‐powertrain suspension system are given, a pseudo‐active suspension named dual‐hook automobile suspension is presented. Furthermore, an equivalent expression of the electrical network is given for the mechanical network under different operational modes of the proposed actuator. |
---|---|
AbstractList | The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force‐velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple structure, and high reliability, the system performance is not comparable to active control systems, due to the partial capability in only the first and third quadrants. On the basis of the comprehensive advantages of active and semi‐active actuators, to reform the design philosophy of semi‐active actuators to realize pseudo‐active actuators that have both mechanical properties of active actuators and energy consumption advantages of semi‐active actuators, that is, new semi‐active actuators with four‐quadrant controllable execution capability, will very likely cause a revolution in the related fields of mechanical design and system control. The basic design principle of pseudo‐active actuators that use semi‐active controllable actuators to achieve active actuator performance in the way of conceptual analysis is proposed. The proposed pseudo‐active actuators should consist of two half‐four‐quadrant actuators, that is, one is for the first and third quadrants and the other one for the second and fourth quadrants. This study employs two semi‐active controllable damping actuators and one mechanical compensation mechanism. One of the actuators provides the damping force in the first and third quadrants, and the other one combining with the mechanical compensation mechanism is for the second and fourth quadrants. A global mathematical model of the proposed actuator is established to describe the four different operational modes of the proposed actuator. It is proved that the two operational modes of the proposed actuator can realize active vibration control, and a case study of realizing active control is presented. The other two operational modes are compared with the conventional two‐degree‐of‐freedom model. More specifically, the application cases of the pseudo‐active operational mode of the proposed actuator in the quarter‐car/body‐powertrain suspension system are given, a pseudo‐active suspension named dual‐hook automobile suspension is presented. Furthermore, an equivalent expression of the electrical network is given for the mechanical network under different operational modes of the proposed actuator. Abstract The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force‐velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple structure, and high reliability, the system performance is not comparable to active control systems, due to the partial capability in only the first and third quadrants. On the basis of the comprehensive advantages of active and semi‐active actuators, to reform the design philosophy of semi‐active actuators to realize pseudo‐active actuators that have both mechanical properties of active actuators and energy consumption advantages of semi‐active actuators, that is, new semi‐active actuators with four‐quadrant controllable execution capability, will very likely cause a revolution in the related fields of mechanical design and system control. The basic design principle of pseudo‐active actuators that use semi‐active controllable actuators to achieve active actuator performance in the way of conceptual analysis is proposed. The proposed pseudo‐active actuators should consist of two half‐four‐quadrant actuators, that is, one is for the first and third quadrants and the other one for the second and fourth quadrants. This study employs two semi‐active controllable damping actuators and one mechanical compensation mechanism. One of the actuators provides the damping force in the first and third quadrants, and the other one combining with the mechanical compensation mechanism is for the second and fourth quadrants. A global mathematical model of the proposed actuator is established to describe the four different operational modes of the proposed actuator. It is proved that the two operational modes of the proposed actuator can realize active vibration control, and a case study of realizing active control is presented. The other two operational modes are compared with the conventional two‐degree‐of‐freedom model. More specifically, the application cases of the pseudo‐active operational mode of the proposed actuator in the quarter‐car/body‐powertrain suspension system are given, a pseudo‐active suspension named dual‐hook automobile suspension is presented. Furthermore, an equivalent expression of the electrical network is given for the mechanical network under different operational modes of the proposed actuator. |
Author | Bai, Xianxu He, Guannan |
Author_xml | – sequence: 1 givenname: Xianxu orcidid: 0000-0003-4477-8335 surname: Bai fullname: Bai, Xianxu email: bai@hfut.edu.cn organization: Hefei University of Technology – sequence: 2 givenname: Guannan surname: He fullname: He, Guannan organization: Hefei University of Technology |
BookMark | eNp9kM1KAzEUhYMoWGs3PkHBnTA1f5PJuCv1r1BRUNchv5IyndRkqnTnI_iMPonTjoKIuDqXy3cO954DsFuH2gJwhOAIQYhPF8ngEcIQ8R3QwwUrMkQh3v0x74NBSnPYwhwhwvIeyO6SXZnw8fYudeNf7LCVlWxCTGfD8VCHWttlM5S1rNbJp0Ow52SV7OBL--Dx8uJhcp3Nbq-mk_Es0xQSnjFllSHGWAYh5zTPseNM6dw5VhJrmOSqpMyUEilXYqqJU8pQpyAlBbROkT6YdrkmyLlYRr-QcS2C9GK7CPFJyNh4XVmhC1I4xShluaSO59JoSxCyDDubc-jarOMuaxnD88qmRszDKrYPJUFgiQkuS4hbCnaUjiGlaJ3QvpGND3UTpa8EgmLTsdh0LLYdt5aTX5bvQ_-EUQe_-squ_yHFzf057jyfsluNuQ |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112502 crossref_primary_10_1177_1045389X231194376 crossref_primary_10_1177_1045389X241227247 crossref_primary_10_1002_msd2_12101 crossref_primary_10_1177_1045389X241288324 crossref_primary_10_3390_machines11020284 crossref_primary_10_1016_j_jsv_2023_117851 crossref_primary_10_1177_1045389X221136298 crossref_primary_10_1016_j_engstruct_2023_117082 crossref_primary_10_1177_09544070251321555 crossref_primary_10_1109_ACCESS_2024_3445874 |
Cites_doi | 10.1002/stc.25 10.1142/S0219455421501078 10.1002/stc.12 10.1007/s12555-017-0663-4 10.1016/j.sna.2017.01.012 10.1177/1077546320909985 10.1119/1.16590 10.1016/j.energy.2020.116927 10.1016/j.apenergy.2019.114180 10.1016/j.ymssp.2020.107071 10.1088/0964-1726/24/7/072002 10.1016/j.engstruct.2019.109464 10.1016/0094-114X(79)90036-3 10.1002/stc.2810 10.1080/00423114.2015.1037313 10.1016/j.mechatronics.2012.02.002 10.1088/0964-1726/24/11/115015 10.1006/jsvi.2001.4256 10.1109/TAC.2002.803532 10.3389/fmats.2019.00017 10.1109/TII.2018.2866518 10.1016/j.jsv.2017.05.018 10.1080/00423114.2011.586707 10.1177/1369433219900311 10.1088/0964-1726/20/1/015012 10.2514/3.20029 10.1177/1045389X16642535 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/msd2.12018 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2767-1402 |
EndPage | 247 |
ExternalDocumentID | oai_doaj_org_article_c737fb64465a4f85adce311e62fe580f 10_1002_msd2_12018 MSD212018 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: JD2019JGPY0018 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ M7S OK1 PIMPY PTHSS AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c4038-6bebd3dde600884552f86bc5ff693ed6a8b946d9a1bf924c3fbbd4fb04370efb3 |
IEDL.DBID | DOA |
ISSN | 2767-1402 2767-1399 |
IngestDate | Wed Aug 27 01:24:21 EDT 2025 Wed Aug 13 08:54:23 EDT 2025 Tue Jul 01 03:33:57 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Wed Jan 22 16:28:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4038-6bebd3dde600884552f86bc5ff693ed6a8b946d9a1bf924c3fbbd4fb04370efb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4477-8335 |
OpenAccessLink | https://doaj.org/article/c737fb64465a4f85adce311e62fe580f |
PQID | 3092329902 |
PQPubID | 6853477 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c737fb64465a4f85adce311e62fe580f proquest_journals_3092329902 crossref_citationtrail_10_1002_msd2_12018 crossref_primary_10_1002_msd2_12018 wiley_primary_10_1002_msd2_12018_MSD212018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing |
PublicationTitle | International journal of mechanical system dynamics |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 21 2019; 6 1991; 59 1979; 14 2002; 9 2002; 253 2017; 28 2021; 147 2015; 53 1985; 8 2021; 28 2020; 260 2017; 255 2018; 21 2003; 10 2015; 24 2002; 47 2010; 20 2020; 195 2020 2020; 26 2020; 23 2011; 49 2012; 22 2018; 16 2017; 402 2018; 15 2019; 198 e_1_2_11_10_1 e_1_2_11_30_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Bai XX (e_1_2_11_9_1) 2020 Shi X (e_1_2_11_18_1) 2018; 21 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_19_1 |
References_xml | – volume: 53 start-page: 1034 issue: 7 year: 2015 end-page: 1062 article-title: State of the art survey: active and semi‐active suspension control publication-title: Veh Syst Dyn – volume: 47 start-page: 1648 issue: 10 year: 2002 end-page: 1662 article-title: Synthesis of mechanical networks: the inerter publication-title: IEEE Trans Autom Control – volume: 147 year: 2021 article-title: A semi‐active suspension using a magnetorheological damper with nonlinear negative‐stiffness component publication-title: Mech Syst Signal Process – volume: 9 start-page: 189 issue: 3 year: 2002 end-page: 204 article-title: Passive and semi‐active seismic response control of a cable‐stayed bridge publication-title: J Struct Control – volume: 260 year: 2020 article-title: Regenerative active suspension system with residual energy for in‐wheel motor driven electric vehicle publication-title: Appl Energy – volume: 21 year: 2021 article-title: Modified adaptive negative stiffness device with variable negative stiffness and geometrically nonlinear damping for seismic protection of structures publication-title: Int J Struct Stab Dyn – volume: 15 start-page: 2073 issue: 4 year: 2018 end-page: 2082 article-title: Nonlinear output feedback finite‐time control for vehicle active suspension systems publication-title: IEEE Trans Ind Inf – volume: 20 issue: 1 year: 2010 article-title: An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper publication-title: Smart Mater Struct – volume: 24 issue: 7 year: 2015 article-title: Magnetic negative stiffness dampers publication-title: Smart Mater Struct – volume: 21 start-page: 653 issue: 5 year: 2018 end-page: 668 article-title: Vibration suppression in high‐speed trains with negative stiffness dampers publication-title: Smart Struct Syst – volume: 22 start-page: 629 issue: 5 year: 2012 end-page: 638 article-title: Digitally controlled electrorheological valves and their application in vehicle dampers publication-title: Mechatronics. – volume: 402 start-page: 122 year: 2017 end-page: 141 article-title: On 4‐degree‐of‐freedom biodynamic models of seated occupants: lumped‐parameter modeling publication-title: J Sound Vib – volume: 14 start-page: 1 issue: 1 year: 1979 end-page: 9 article-title: Plate spring mechanism with constant negative stiffness publication-title: Mech Mach Theory – volume: 23 start-page: 1739 issue: 8 year: 2020 end-page: 1755 article-title: Negative stiffness devices for vibration isolation applications: a review publication-title: Adv Struct Eng – volume: 28 issue: 10 year: 2021 article-title: A novel structural seismic protection system with negative stiffness and controllable damping publication-title: Struct Control Health Monit – volume: 16 start-page: 2489 issue: 5 year: 2018 end-page: 2500 article-title: Fuzzy preview control for half‐vehicle electro‐hydraulic suspension system publication-title: Int J Control Autom Syst – start-page: 1 year: 2020 end-page: 12 article-title: Principle of four‐quadrant output characteristics of semi‐active actuators publication-title: Chin Pat – volume: 195 year: 2020 article-title: Optimum power analysis of a self‐reactive wave energy point absorber with mechanically‐driven power take‐offs publication-title: Energy. – volume: 59 start-page: 118 issue: 2 year: 1991 end-page: 124 article-title: Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks publication-title: Am J Phys – volume: 198 year: 2019 article-title: Optimal tuned inerter dampers for performance enhancement of vibration isolation publication-title: Eng Struct – volume: 253 start-page: 195 issue: 1 year: 2002 end-page: 213 article-title: Evaluation of whole‐body vibration in vehicles publication-title: J Sound Vib – volume: 8 start-page: 605 issue: 5 year: 1985 end-page: 611 article-title: Distributed piezoelectric‐polymer active vibration control of a cantilever beam publication-title: J Guid Control Dyn – volume: 255 start-page: 104 year: 2017 end-page: 117 article-title: A novel type of tunable magnetorheological dampers operated by permanent magnets publication-title: Sens Actuators A: Phys – volume: 6 start-page: 17 year: 2019 article-title: Principle study of a semi‐active inerter featuring magnetorheological effect publication-title: Front Mater – volume: 10 start-page: 187 issue: 3‐4 year: 2003 end-page: 203 article-title: Application of pseudo‐negative stiffness control to the benchmark cable‐stayed bridge publication-title: J Struct Control – volume: 26 start-page: 1873 issue: 21‐22 year: 2020 end-page: 1885 article-title: Adaptive compensation control of an electromagnetic active suspension system based on nonlinear characteristics of the linear motor publication-title: J Vib Control – volume: 49 start-page: 1073 issue: 7 year: 2011 end-page: 1111 article-title: Vehicle dynamics applications of optimal control theory publication-title: Veh Syst Dyn – volume: 28 start-page: 339 issue: 3 year: 2017 end-page: 356 article-title: Synchronized bias‐flip interface circuits for piezoelectric energy harvesting enhancement: a general model and prospects publication-title: J Intell Mater Syst Struct – volume: 24 issue: 11 year: 2015 article-title: Semi‐active damping with negative stiffness for multi‐mode cable vibration mitigation: approximate collocated control solution publication-title: Smart Mater Struct – ident: e_1_2_11_22_1 doi: 10.1002/stc.25 – ident: e_1_2_11_26_1 doi: 10.1142/S0219455421501078 – ident: e_1_2_11_21_1 doi: 10.1002/stc.12 – ident: e_1_2_11_12_1 doi: 10.1007/s12555-017-0663-4 – ident: e_1_2_11_15_1 doi: 10.1016/j.sna.2017.01.012 – start-page: 1 year: 2020 ident: e_1_2_11_9_1 article-title: Principle of four‐quadrant output characteristics of semi‐active actuators publication-title: Chin Pat – ident: e_1_2_11_11_1 doi: 10.1177/1077546320909985 – ident: e_1_2_11_2_1 doi: 10.1119/1.16590 – volume: 21 start-page: 653 issue: 5 year: 2018 ident: e_1_2_11_18_1 article-title: Vibration suppression in high‐speed trains with negative stiffness dampers publication-title: Smart Struct Syst – ident: e_1_2_11_6_1 doi: 10.1016/j.energy.2020.116927 – ident: e_1_2_11_16_1 doi: 10.1016/j.apenergy.2019.114180 – ident: e_1_2_11_28_1 doi: 10.1016/j.ymssp.2020.107071 – ident: e_1_2_11_25_1 doi: 10.1088/0964-1726/24/7/072002 – ident: e_1_2_11_5_1 doi: 10.1016/j.engstruct.2019.109464 – ident: e_1_2_11_19_1 doi: 10.1016/0094-114X(79)90036-3 – ident: e_1_2_11_27_1 doi: 10.1002/stc.2810 – ident: e_1_2_11_7_1 doi: 10.1080/00423114.2015.1037313 – ident: e_1_2_11_14_1 doi: 10.1016/j.mechatronics.2012.02.002 – ident: e_1_2_11_24_1 doi: 10.1088/0964-1726/24/11/115015 – ident: e_1_2_11_3_1 doi: 10.1006/jsvi.2001.4256 – ident: e_1_2_11_13_1 doi: 10.1109/TAC.2002.803532 – ident: e_1_2_11_29_1 doi: 10.3389/fmats.2019.00017 – ident: e_1_2_11_8_1 doi: 10.1109/TII.2018.2866518 – ident: e_1_2_11_4_1 doi: 10.1016/j.jsv.2017.05.018 – ident: e_1_2_11_17_1 doi: 10.1080/00423114.2011.586707 – ident: e_1_2_11_20_1 doi: 10.1177/1369433219900311 – ident: e_1_2_11_23_1 doi: 10.1088/0964-1726/20/1/015012 – ident: e_1_2_11_10_1 doi: 10.2514/3.20029 – ident: e_1_2_11_30_1 doi: 10.1177/1045389X16642535 |
SSID | ssj0002811365 |
Score | 2.3142385 |
Snippet | The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available... Abstract The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 230 |
SubjectTerms | Active control Active damping Actuators Compensation Control systems Controllability Design analysis Electrical networks Energy consumption four‐quadrant Mechanical properties Pneumatics Powertrain pseudo‐active actuator pseudo‐active suspension Quadrants semi‐active actuator Shock absorbers Structural reliability Suspension systems System reliability topology Vibration analysis Vibration control Vibration damping |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxELYgXMoBAW3VlFCtRC-ttGXXf-vlglJKQJVaVWoj5WZ5PDYXSFIS7jxCn7FPgu04KZGq3FYra3c1v9-Ox98Q8h5awRojfInUspJzCD5XIZQOoEVoZIMusX1-l9dD_nUkRrngNsttlcuYmAI1TmyskZ-yKkCRGDvp-fR3GadGxd3VPEJjm-zUIdNEO1eDq1WNhao4sSR2MdLw1jKAnXbFUEpP72ZIP9UhAaq1nJSo-9fw5nPUmtLOYJ_sZbxY9BcKPiBbbnxIdp-xCL4k5Y-Ze8DJ38c_JgWvwsRDIXGKzlnRL-ziXGJhMvvIKzIcXP66uC7zFITS8ipEIwkOkIUoFKCJUlwI6pUEK7yXLXMojYKWS2xNDT78TFnmAZB7iKRFlfPAXpPOeDJ2b0ghWmUZazkyLrhnymBIVegEUmnQUdolH5Zy0DZThMdJFbd6QW5MdZSZTjLrkpPV2umCGOO_qz5Hca5WRDLrdGNyf6Ozb2jbsMaDjNRthnslDFrH6tpJ6p1Qle-S3lIZOnvYTP-zhy75mBS04TP0t59faLp6u_lZR-QFjU0rqV-lRzrz-wd3HFDHHN4l03oC7ZfUgA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEIDDul70ID5xfVHQi0K1zaupeFkfiwjKggreQiYPL7orW737E_yN_hKTtLurIIK3UqY0TDqPhplvENqDkpFCMZcarElKKXibywykFqA0UPDC2Ej7vOGX9_TqgT200Mm4F6bmQ0wO3IJlRH8dDFxBdTSFhj5XBh_mPn6JGTQbemvD4AZM-5MTFizCvJJQw4j9O9M8lvI0fFJ8NH38R0SK4P4f2eb3nDUGnd4iWmiyxaRbb-8SatnBMpr_xhBcQWm_sm9m-Pn-oaLrSlRoCQkzdI6TbqLrrsRENeyRVXTfu7g7u0ybGQipppn3RRwsGOJ9kE9MhKCMYSc4aOYcL4k1XAkoKTelysH5XylNHIChDgKyKLMOyBpqD4YDu44SVgpNSEkNoYw6IpTxgcpYZjBXxmLcQftjPUjdAMLDnIonWaONsQw6k1FnHbQ7kX2psRi_Sp0GdU4kAso63hiOHmVjGVIXpHDAA7hNUSeYMtqSPLccO8tE5jpoa7wZsrGvSpLMJ6YhkvpVH8QN-mMZ8vr2HMerjf8Ib6I5HApYYu3KFmq_jt7sts9AXmEnfmhfrQrVGA priority: 102 providerName: Wiley-Blackwell |
Title | Pseudo‐active actuators: A concept analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12018 https://www.proquest.com/docview/3092329902 https://doaj.org/article/c737fb64465a4f85adce311e62fe580f |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEICD1osexCfWR1nQi8LqNq_NerNqFUEpPsBbyORxEG3Ftnd_gr_RX2KSXcsWRC9elmWZwzCTzEyWyTcI7UHBSK6YSw3WJKUU_J7LDKQWoDCQ89zYSPu84ZcP9OqRPdZGfYWesBIPXBruSOckd8AD10tRJ5gy2pJ223LsLBOZC9E3K7LaYeop_jIKs0rYhEeKj16GBh-2fboTUxkogvqnqst6jRqTTHcJLVbVYXJSarWMZmx_BS3UmIGrKO0N7dgMPt8_VAxViQpXQMLMnOPkJNHlLcREVayRNfTQPb8_vUyrmQepppmPPRwsGOJjji9EhKCMYSc4aOYcL4g1XAkoKDeFaoPzRydNHIChDgKiKLMOyDpq9Ad9u4ESVghNSEENoYw6IpTxiclYZjBXxmLcRPvfdpC6AoKHuRTPskQZYxlsJqPNmmh3IvtaYjB-lOoEc04kAro6fvAOlZVD5V8ObaLtb2fIaj8NJcl8IRoyp9f6IDroFzXk9d0Zjm-b_6HQFprHoZEl9rBso8bobWx3fCUyghaaxbTnn6J70UJznfOb3m0rLsQvhK7fAQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7R5dD2gOifukAhUttDK6Vk_RenUlVBAS0FVqgFiZtre-xeYBdYEOLGI_AkPFSfpLaTbEGquHGLIstKxvNne-b7AN6ZitNSc58jsTRnzASbK9DkzpgKTSlKdAntcyD6--z7AT-Ygpu2FyaWVbY-MTlqHNl4Rr5Mi5CKRN9Jvh6f5JE1Kt6uthQatVpsucuLsGUbf9lcC-v7npCN9b1v_bxhFcgtK4J1C-MM0mDVIdRLyTgnXgpjufeiog6FlqZiAivdMz5sTiz1xiDzJoIAFc4bGuZ9BNMsdrR2YHp1fbD7Y3KqQ2TkSIl1kyT8Zx7Sq2qCiUqWj8ZIPvVCyJV3omAiC7iT4d7Ok1Og25iFmSZDzVZqlXoGU274HJ7ewi18Afnu2J3j6M_VtU7uMtOxDSXy9nzOVjJbd0JmusE7eQn7DyKhV9AZjobuNWS8kpbSiiFlnHkqNYbgiI4jERodIV340MpB2QaUPHJjHKoaTpmoKDOVZNaFt5OxxzUUx39HrUZxTkZE-Oz0YnT6WzXWqGxJS29EBIvTzEuu0Tra6zlBvOOy8F1YaBdDNTY9Vv80sAsf0wLd8xlq5-caSU9z98-1BI_7ezvbantzsDUPT0gsmUnVMgvQOTs9d29CznNmFhtFy-DXQ-v2X-TgFII |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwEIBHPKSKHqrSFrEtLZHaSysFEr_ioF5oYUVbQCsBEjfL47F7aXcRC_f-hP7G_hJsJ7uAVCFxi6KJYo0zj9jjbwA-YCt5Y2UoiTleCoHR5irC0iO2hI1qyGfa57E6OBPfz-X5AnyenYXp-BDzBbdkGdlfJwO_oLB9Cw39PSW2Vcf4pRdhOe32JbNkYjRfYWE69StJNYwsvrOscylPzydl27eP34tIGdx_L9u8m7PmoDN8Ds_6bLHY7aZ3FRb8-AU8vcMQfAnlaOqvafLvz1-bXVdh05GQ1ENnp9gtXHcqsbA9e-QVnA33T78elH0PhNKJKvoihR6JRx8UExOthZQsaIVOhqBa7klZja1Q1NoaQ_yVcjwgkgiYkEWVD8jXYGk8Gft1KGSrHeetIC6kCFxbioGKvCSmLHnGBvBxpgfjekB46lPxy3RoY2aSzkzW2QDez2UvOizGf6W-JHXOJRLKOt-YXP40vWUY1_AmoErgNiuClpac53XtFQte6ioMYGM2Gaa3r6nhVUxMUySNo_6UJ-iBYZijkz2Wr14_RngTnoz2hubw2_GPN7DCUi1LLmPZgKWry2v_NiYjV_guf3M3E3DXtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo%E2%80%90active+actuators%3A+A+concept+analysis&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Xianxu+Bai&rft.au=Guannan+He&rft.date=2021-12-01&rft.pub=Wiley&rft.eissn=2767-1402&rft.volume=1&rft.issue=2&rft.spage=230&rft.epage=247&rft_id=info:doi/10.1002%2Fmsd2.12018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c737fb64465a4f85adce311e62fe580f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon |