Pseudo‐active actuators: A concept analysis

The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force–velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple struct...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical system dynamics Vol. 1; no. 2; pp. 230 - 247
Main Authors Bai, Xianxu, He, Guannan
Format Journal Article
LanguageEnglish
Published Nanjing John Wiley & Sons, Inc 01.12.2021
Wiley
Subjects
Online AccessGet full text
ISSN2767-1402
2767-1399
2767-1402
DOI10.1002/msd2.12018

Cover

Abstract The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force–velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple structure, and high reliability, the system performance is not comparable to active control systems, due to the partial capability in only the first and third quadrants. On the basis of the comprehensive advantages of active and semi‐active actuators, to reform the design philosophy of semi‐active actuators to realize pseudo‐active actuators that have both mechanical properties of active actuators and energy consumption advantages of semi‐active actuators, that is, new semi‐active actuators with four‐quadrant controllable execution capability, will very likely cause a revolution in the related fields of mechanical design and system control. The basic design principle of pseudo‐active actuators that use semi‐active controllable actuators to achieve active actuator performance in the way of conceptual analysis is proposed. The proposed pseudo‐active actuators should consist of two half‐four‐quadrant actuators, that is, one is for the first and third quadrants and the other one for the second and fourth quadrants. This study employs two semi‐active controllable damping actuators and one mechanical compensation mechanism. One of the actuators provides the damping force in the first and third quadrants, and the other one combining with the mechanical compensation mechanism is for the second and fourth quadrants. A global mathematical model of the proposed actuator is established to describe the four different operational modes of the proposed actuator. It is proved that the two operational modes of the proposed actuator can realize active vibration control, and a case study of realizing active control is presented. The other two operational modes are compared with the conventional two‐degree‐of‐freedom model. More specifically, the application cases of the pseudo‐active operational mode of the proposed actuator in the quarter‐car/body‐powertrain suspension system are given, a pseudo‐active suspension named dual‐hook automobile suspension is presented. Furthermore, an equivalent expression of the electrical network is given for the mechanical network under different operational modes of the proposed actuator.
AbstractList The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force‐velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple structure, and high reliability, the system performance is not comparable to active control systems, due to the partial capability in only the first and third quadrants. On the basis of the comprehensive advantages of active and semi‐active actuators, to reform the design philosophy of semi‐active actuators to realize pseudo‐active actuators that have both mechanical properties of active actuators and energy consumption advantages of semi‐active actuators, that is, new semi‐active actuators with four‐quadrant controllable execution capability, will very likely cause a revolution in the related fields of mechanical design and system control. The basic design principle of pseudo‐active actuators that use semi‐active controllable actuators to achieve active actuator performance in the way of conceptual analysis is proposed. The proposed pseudo‐active actuators should consist of two half‐four‐quadrant actuators, that is, one is for the first and third quadrants and the other one for the second and fourth quadrants. This study employs two semi‐active controllable damping actuators and one mechanical compensation mechanism. One of the actuators provides the damping force in the first and third quadrants, and the other one combining with the mechanical compensation mechanism is for the second and fourth quadrants. A global mathematical model of the proposed actuator is established to describe the four different operational modes of the proposed actuator. It is proved that the two operational modes of the proposed actuator can realize active vibration control, and a case study of realizing active control is presented. The other two operational modes are compared with the conventional two‐degree‐of‐freedom model. More specifically, the application cases of the pseudo‐active operational mode of the proposed actuator in the quarter‐car/body‐powertrain suspension system are given, a pseudo‐active suspension named dual‐hook automobile suspension is presented. Furthermore, an equivalent expression of the electrical network is given for the mechanical network under different operational modes of the proposed actuator.
Abstract The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available force‐velocity diagram of active actuators. Although semi‐active vibration control systems have the advantages of low energy consumption, simple structure, and high reliability, the system performance is not comparable to active control systems, due to the partial capability in only the first and third quadrants. On the basis of the comprehensive advantages of active and semi‐active actuators, to reform the design philosophy of semi‐active actuators to realize pseudo‐active actuators that have both mechanical properties of active actuators and energy consumption advantages of semi‐active actuators, that is, new semi‐active actuators with four‐quadrant controllable execution capability, will very likely cause a revolution in the related fields of mechanical design and system control. The basic design principle of pseudo‐active actuators that use semi‐active controllable actuators to achieve active actuator performance in the way of conceptual analysis is proposed. The proposed pseudo‐active actuators should consist of two half‐four‐quadrant actuators, that is, one is for the first and third quadrants and the other one for the second and fourth quadrants. This study employs two semi‐active controllable damping actuators and one mechanical compensation mechanism. One of the actuators provides the damping force in the first and third quadrants, and the other one combining with the mechanical compensation mechanism is for the second and fourth quadrants. A global mathematical model of the proposed actuator is established to describe the four different operational modes of the proposed actuator. It is proved that the two operational modes of the proposed actuator can realize active vibration control, and a case study of realizing active control is presented. The other two operational modes are compared with the conventional two‐degree‐of‐freedom model. More specifically, the application cases of the pseudo‐active operational mode of the proposed actuator in the quarter‐car/body‐powertrain suspension system are given, a pseudo‐active suspension named dual‐hook automobile suspension is presented. Furthermore, an equivalent expression of the electrical network is given for the mechanical network under different operational modes of the proposed actuator.
Author Bai, Xianxu
He, Guannan
Author_xml – sequence: 1
  givenname: Xianxu
  orcidid: 0000-0003-4477-8335
  surname: Bai
  fullname: Bai, Xianxu
  email: bai@hfut.edu.cn
  organization: Hefei University of Technology
– sequence: 2
  givenname: Guannan
  surname: He
  fullname: He, Guannan
  organization: Hefei University of Technology
BookMark eNp9kM1KAzEUhYMoWGs3PkHBnTA1f5PJuCv1r1BRUNchv5IyndRkqnTnI_iMPonTjoKIuDqXy3cO954DsFuH2gJwhOAIQYhPF8ngEcIQ8R3QwwUrMkQh3v0x74NBSnPYwhwhwvIeyO6SXZnw8fYudeNf7LCVlWxCTGfD8VCHWttlM5S1rNbJp0Ow52SV7OBL--Dx8uJhcp3Nbq-mk_Es0xQSnjFllSHGWAYh5zTPseNM6dw5VhJrmOSqpMyUEilXYqqJU8pQpyAlBbROkT6YdrkmyLlYRr-QcS2C9GK7CPFJyNh4XVmhC1I4xShluaSO59JoSxCyDDubc-jarOMuaxnD88qmRszDKrYPJUFgiQkuS4hbCnaUjiGlaJ3QvpGND3UTpa8EgmLTsdh0LLYdt5aTX5bvQ_-EUQe_-squ_yHFzf057jyfsluNuQ
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_112502
crossref_primary_10_1177_1045389X231194376
crossref_primary_10_1177_1045389X241227247
crossref_primary_10_1002_msd2_12101
crossref_primary_10_1177_1045389X241288324
crossref_primary_10_3390_machines11020284
crossref_primary_10_1016_j_jsv_2023_117851
crossref_primary_10_1177_1045389X221136298
crossref_primary_10_1016_j_engstruct_2023_117082
crossref_primary_10_1177_09544070251321555
crossref_primary_10_1109_ACCESS_2024_3445874
Cites_doi 10.1002/stc.25
10.1142/S0219455421501078
10.1002/stc.12
10.1007/s12555-017-0663-4
10.1016/j.sna.2017.01.012
10.1177/1077546320909985
10.1119/1.16590
10.1016/j.energy.2020.116927
10.1016/j.apenergy.2019.114180
10.1016/j.ymssp.2020.107071
10.1088/0964-1726/24/7/072002
10.1016/j.engstruct.2019.109464
10.1016/0094-114X(79)90036-3
10.1002/stc.2810
10.1080/00423114.2015.1037313
10.1016/j.mechatronics.2012.02.002
10.1088/0964-1726/24/11/115015
10.1006/jsvi.2001.4256
10.1109/TAC.2002.803532
10.3389/fmats.2019.00017
10.1109/TII.2018.2866518
10.1016/j.jsv.2017.05.018
10.1080/00423114.2011.586707
10.1177/1369433219900311
10.1088/0964-1726/20/1/015012
10.2514/3.20029
10.1177/1045389X16642535
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/msd2.12018
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-1402
EndPage 247
ExternalDocumentID oai_doaj_org_article_c737fb64465a4f85adce311e62fe580f
10_1002_msd2_12018
MSD212018
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: JD2019JGPY0018
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
M7S
OK1
PIMPY
PTHSS
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c4038-6bebd3dde600884552f86bc5ff693ed6a8b946d9a1bf924c3fbbd4fb04370efb3
IEDL.DBID DOA
ISSN 2767-1402
2767-1399
IngestDate Wed Aug 27 01:24:21 EDT 2025
Wed Aug 13 08:54:23 EDT 2025
Tue Jul 01 03:33:57 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Wed Jan 22 16:28:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4038-6bebd3dde600884552f86bc5ff693ed6a8b946d9a1bf924c3fbbd4fb04370efb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4477-8335
OpenAccessLink https://doaj.org/article/c737fb64465a4f85adce311e62fe580f
PQID 3092329902
PQPubID 6853477
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_c737fb64465a4f85adce311e62fe580f
proquest_journals_3092329902
crossref_citationtrail_10_1002_msd2_12018
crossref_primary_10_1002_msd2_12018
wiley_primary_10_1002_msd2_12018_MSD212018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationTitle International journal of mechanical system dynamics
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 21
2019; 6
1991; 59
1979; 14
2002; 9
2002; 253
2017; 28
2021; 147
2015; 53
1985; 8
2021; 28
2020; 260
2017; 255
2018; 21
2003; 10
2015; 24
2002; 47
2010; 20
2020; 195
2020
2020; 26
2020; 23
2011; 49
2012; 22
2018; 16
2017; 402
2018; 15
2019; 198
e_1_2_11_10_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Bai XX (e_1_2_11_9_1) 2020
Shi X (e_1_2_11_18_1) 2018; 21
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 53
  start-page: 1034
  issue: 7
  year: 2015
  end-page: 1062
  article-title: State of the art survey: active and semi‐active suspension control
  publication-title: Veh Syst Dyn
– volume: 47
  start-page: 1648
  issue: 10
  year: 2002
  end-page: 1662
  article-title: Synthesis of mechanical networks: the inerter
  publication-title: IEEE Trans Autom Control
– volume: 147
  year: 2021
  article-title: A semi‐active suspension using a magnetorheological damper with nonlinear negative‐stiffness component
  publication-title: Mech Syst Signal Process
– volume: 9
  start-page: 189
  issue: 3
  year: 2002
  end-page: 204
  article-title: Passive and semi‐active seismic response control of a cable‐stayed bridge
  publication-title: J Struct Control
– volume: 260
  year: 2020
  article-title: Regenerative active suspension system with residual energy for in‐wheel motor driven electric vehicle
  publication-title: Appl Energy
– volume: 21
  year: 2021
  article-title: Modified adaptive negative stiffness device with variable negative stiffness and geometrically nonlinear damping for seismic protection of structures
  publication-title: Int J Struct Stab Dyn
– volume: 15
  start-page: 2073
  issue: 4
  year: 2018
  end-page: 2082
  article-title: Nonlinear output feedback finite‐time control for vehicle active suspension systems
  publication-title: IEEE Trans Ind Inf
– volume: 20
  issue: 1
  year: 2010
  article-title: An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper
  publication-title: Smart Mater Struct
– volume: 24
  issue: 7
  year: 2015
  article-title: Magnetic negative stiffness dampers
  publication-title: Smart Mater Struct
– volume: 21
  start-page: 653
  issue: 5
  year: 2018
  end-page: 668
  article-title: Vibration suppression in high‐speed trains with negative stiffness dampers
  publication-title: Smart Struct Syst
– volume: 22
  start-page: 629
  issue: 5
  year: 2012
  end-page: 638
  article-title: Digitally controlled electrorheological valves and their application in vehicle dampers
  publication-title: Mechatronics.
– volume: 402
  start-page: 122
  year: 2017
  end-page: 141
  article-title: On 4‐degree‐of‐freedom biodynamic models of seated occupants: lumped‐parameter modeling
  publication-title: J Sound Vib
– volume: 14
  start-page: 1
  issue: 1
  year: 1979
  end-page: 9
  article-title: Plate spring mechanism with constant negative stiffness
  publication-title: Mech Mach Theory
– volume: 23
  start-page: 1739
  issue: 8
  year: 2020
  end-page: 1755
  article-title: Negative stiffness devices for vibration isolation applications: a review
  publication-title: Adv Struct Eng
– volume: 28
  issue: 10
  year: 2021
  article-title: A novel structural seismic protection system with negative stiffness and controllable damping
  publication-title: Struct Control Health Monit
– volume: 16
  start-page: 2489
  issue: 5
  year: 2018
  end-page: 2500
  article-title: Fuzzy preview control for half‐vehicle electro‐hydraulic suspension system
  publication-title: Int J Control Autom Syst
– start-page: 1
  year: 2020
  end-page: 12
  article-title: Principle of four‐quadrant output characteristics of semi‐active actuators
  publication-title: Chin Pat
– volume: 195
  year: 2020
  article-title: Optimum power analysis of a self‐reactive wave energy point absorber with mechanically‐driven power take‐offs
  publication-title: Energy.
– volume: 59
  start-page: 118
  issue: 2
  year: 1991
  end-page: 124
  article-title: Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks
  publication-title: Am J Phys
– volume: 198
  year: 2019
  article-title: Optimal tuned inerter dampers for performance enhancement of vibration isolation
  publication-title: Eng Struct
– volume: 253
  start-page: 195
  issue: 1
  year: 2002
  end-page: 213
  article-title: Evaluation of whole‐body vibration in vehicles
  publication-title: J Sound Vib
– volume: 8
  start-page: 605
  issue: 5
  year: 1985
  end-page: 611
  article-title: Distributed piezoelectric‐polymer active vibration control of a cantilever beam
  publication-title: J Guid Control Dyn
– volume: 255
  start-page: 104
  year: 2017
  end-page: 117
  article-title: A novel type of tunable magnetorheological dampers operated by permanent magnets
  publication-title: Sens Actuators A: Phys
– volume: 6
  start-page: 17
  year: 2019
  article-title: Principle study of a semi‐active inerter featuring magnetorheological effect
  publication-title: Front Mater
– volume: 10
  start-page: 187
  issue: 3‐4
  year: 2003
  end-page: 203
  article-title: Application of pseudo‐negative stiffness control to the benchmark cable‐stayed bridge
  publication-title: J Struct Control
– volume: 26
  start-page: 1873
  issue: 21‐22
  year: 2020
  end-page: 1885
  article-title: Adaptive compensation control of an electromagnetic active suspension system based on nonlinear characteristics of the linear motor
  publication-title: J Vib Control
– volume: 49
  start-page: 1073
  issue: 7
  year: 2011
  end-page: 1111
  article-title: Vehicle dynamics applications of optimal control theory
  publication-title: Veh Syst Dyn
– volume: 28
  start-page: 339
  issue: 3
  year: 2017
  end-page: 356
  article-title: Synchronized bias‐flip interface circuits for piezoelectric energy harvesting enhancement: a general model and prospects
  publication-title: J Intell Mater Syst Struct
– volume: 24
  issue: 11
  year: 2015
  article-title: Semi‐active damping with negative stiffness for multi‐mode cable vibration mitigation: approximate collocated control solution
  publication-title: Smart Mater Struct
– ident: e_1_2_11_22_1
  doi: 10.1002/stc.25
– ident: e_1_2_11_26_1
  doi: 10.1142/S0219455421501078
– ident: e_1_2_11_21_1
  doi: 10.1002/stc.12
– ident: e_1_2_11_12_1
  doi: 10.1007/s12555-017-0663-4
– ident: e_1_2_11_15_1
  doi: 10.1016/j.sna.2017.01.012
– start-page: 1
  year: 2020
  ident: e_1_2_11_9_1
  article-title: Principle of four‐quadrant output characteristics of semi‐active actuators
  publication-title: Chin Pat
– ident: e_1_2_11_11_1
  doi: 10.1177/1077546320909985
– ident: e_1_2_11_2_1
  doi: 10.1119/1.16590
– volume: 21
  start-page: 653
  issue: 5
  year: 2018
  ident: e_1_2_11_18_1
  article-title: Vibration suppression in high‐speed trains with negative stiffness dampers
  publication-title: Smart Struct Syst
– ident: e_1_2_11_6_1
  doi: 10.1016/j.energy.2020.116927
– ident: e_1_2_11_16_1
  doi: 10.1016/j.apenergy.2019.114180
– ident: e_1_2_11_28_1
  doi: 10.1016/j.ymssp.2020.107071
– ident: e_1_2_11_25_1
  doi: 10.1088/0964-1726/24/7/072002
– ident: e_1_2_11_5_1
  doi: 10.1016/j.engstruct.2019.109464
– ident: e_1_2_11_19_1
  doi: 10.1016/0094-114X(79)90036-3
– ident: e_1_2_11_27_1
  doi: 10.1002/stc.2810
– ident: e_1_2_11_7_1
  doi: 10.1080/00423114.2015.1037313
– ident: e_1_2_11_14_1
  doi: 10.1016/j.mechatronics.2012.02.002
– ident: e_1_2_11_24_1
  doi: 10.1088/0964-1726/24/11/115015
– ident: e_1_2_11_3_1
  doi: 10.1006/jsvi.2001.4256
– ident: e_1_2_11_13_1
  doi: 10.1109/TAC.2002.803532
– ident: e_1_2_11_29_1
  doi: 10.3389/fmats.2019.00017
– ident: e_1_2_11_8_1
  doi: 10.1109/TII.2018.2866518
– ident: e_1_2_11_4_1
  doi: 10.1016/j.jsv.2017.05.018
– ident: e_1_2_11_17_1
  doi: 10.1080/00423114.2011.586707
– ident: e_1_2_11_20_1
  doi: 10.1177/1369433219900311
– ident: e_1_2_11_23_1
  doi: 10.1088/0964-1726/20/1/015012
– ident: e_1_2_11_10_1
  doi: 10.2514/3.20029
– ident: e_1_2_11_30_1
  doi: 10.1177/1045389X16642535
SSID ssj0002811365
Score 2.3142385
Snippet The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available...
Abstract The superior performance of active vibration control systems largely depends on the four‐quadrant controllable execution capability in the available...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 230
SubjectTerms Active control
Active damping
Actuators
Compensation
Control systems
Controllability
Design analysis
Electrical networks
Energy consumption
four‐quadrant
Mechanical properties
Pneumatics
Powertrain
pseudo‐active actuator
pseudo‐active suspension
Quadrants
semi‐active actuator
Shock absorbers
Structural reliability
Suspension systems
System reliability
topology
Vibration analysis
Vibration control
Vibration damping
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxELYgXMoBAW3VlFCtRC-ttGXXf-vlglJKQJVaVWoj5WZ5PDYXSFIS7jxCn7FPgu04KZGq3FYra3c1v9-Ox98Q8h5awRojfInUspJzCD5XIZQOoEVoZIMusX1-l9dD_nUkRrngNsttlcuYmAI1TmyskZ-yKkCRGDvp-fR3GadGxd3VPEJjm-zUIdNEO1eDq1WNhao4sSR2MdLw1jKAnXbFUEpP72ZIP9UhAaq1nJSo-9fw5nPUmtLOYJ_sZbxY9BcKPiBbbnxIdp-xCL4k5Y-Ze8DJ38c_JgWvwsRDIXGKzlnRL-ziXGJhMvvIKzIcXP66uC7zFITS8ipEIwkOkIUoFKCJUlwI6pUEK7yXLXMojYKWS2xNDT78TFnmAZB7iKRFlfPAXpPOeDJ2b0ghWmUZazkyLrhnymBIVegEUmnQUdolH5Zy0DZThMdJFbd6QW5MdZSZTjLrkpPV2umCGOO_qz5Hca5WRDLrdGNyf6Ozb2jbsMaDjNRthnslDFrH6tpJ6p1Qle-S3lIZOnvYTP-zhy75mBS04TP0t59faLp6u_lZR-QFjU0rqV-lRzrz-wd3HFDHHN4l03oC7ZfUgA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEIDDul70ID5xfVHQi0K1zaupeFkfiwjKggreQiYPL7orW737E_yN_hKTtLurIIK3UqY0TDqPhplvENqDkpFCMZcarElKKXibywykFqA0UPDC2Ej7vOGX9_TqgT200Mm4F6bmQ0wO3IJlRH8dDFxBdTSFhj5XBh_mPn6JGTQbemvD4AZM-5MTFizCvJJQw4j9O9M8lvI0fFJ8NH38R0SK4P4f2eb3nDUGnd4iWmiyxaRbb-8SatnBMpr_xhBcQWm_sm9m-Pn-oaLrSlRoCQkzdI6TbqLrrsRENeyRVXTfu7g7u0ybGQipppn3RRwsGOJ9kE9MhKCMYSc4aOYcL4k1XAkoKTelysH5XylNHIChDgKyKLMOyBpqD4YDu44SVgpNSEkNoYw6IpTxgcpYZjBXxmLcQftjPUjdAMLDnIonWaONsQw6k1FnHbQ7kX2psRi_Sp0GdU4kAso63hiOHmVjGVIXpHDAA7hNUSeYMtqSPLccO8tE5jpoa7wZsrGvSpLMJ6YhkvpVH8QN-mMZ8vr2HMerjf8Ib6I5HApYYu3KFmq_jt7sts9AXmEnfmhfrQrVGA
  priority: 102
  providerName: Wiley-Blackwell
Title Pseudo‐active actuators: A concept analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12018
https://www.proquest.com/docview/3092329902
https://doaj.org/article/c737fb64465a4f85adce311e62fe580f
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEICD1osexCfWR1nQi8LqNq_NerNqFUEpPsBbyORxEG3Ftnd_gr_RX2KSXcsWRC9elmWZwzCTzEyWyTcI7UHBSK6YSw3WJKUU_J7LDKQWoDCQ89zYSPu84ZcP9OqRPdZGfYWesBIPXBruSOckd8AD10tRJ5gy2pJ223LsLBOZC9E3K7LaYeop_jIKs0rYhEeKj16GBh-2fboTUxkogvqnqst6jRqTTHcJLVbVYXJSarWMZmx_BS3UmIGrKO0N7dgMPt8_VAxViQpXQMLMnOPkJNHlLcREVayRNfTQPb8_vUyrmQepppmPPRwsGOJjji9EhKCMYSc4aOYcL4g1XAkoKDeFaoPzRydNHIChDgKiKLMOyDpq9Ad9u4ESVghNSEENoYw6IpTxiclYZjBXxmLcRPvfdpC6AoKHuRTPskQZYxlsJqPNmmh3IvtaYjB-lOoEc04kAro6fvAOlZVD5V8ObaLtb2fIaj8NJcl8IRoyp9f6IDroFzXk9d0Zjm-b_6HQFprHoZEl9rBso8bobWx3fCUyghaaxbTnn6J70UJznfOb3m0rLsQvhK7fAQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7R5dD2gOifukAhUttDK6Vk_RenUlVBAS0FVqgFiZtre-xeYBdYEOLGI_AkPFSfpLaTbEGquHGLIstKxvNne-b7AN6ZitNSc58jsTRnzASbK9DkzpgKTSlKdAntcyD6--z7AT-Ygpu2FyaWVbY-MTlqHNl4Rr5Mi5CKRN9Jvh6f5JE1Kt6uthQatVpsucuLsGUbf9lcC-v7npCN9b1v_bxhFcgtK4J1C-MM0mDVIdRLyTgnXgpjufeiog6FlqZiAivdMz5sTiz1xiDzJoIAFc4bGuZ9BNMsdrR2YHp1fbD7Y3KqQ2TkSIl1kyT8Zx7Sq2qCiUqWj8ZIPvVCyJV3omAiC7iT4d7Ok1Og25iFmSZDzVZqlXoGU274HJ7ewi18Afnu2J3j6M_VtU7uMtOxDSXy9nzOVjJbd0JmusE7eQn7DyKhV9AZjobuNWS8kpbSiiFlnHkqNYbgiI4jERodIV340MpB2QaUPHJjHKoaTpmoKDOVZNaFt5OxxzUUx39HrUZxTkZE-Oz0YnT6WzXWqGxJS29EBIvTzEuu0Tra6zlBvOOy8F1YaBdDNTY9Vv80sAsf0wLd8xlq5-caSU9z98-1BI_7ezvbantzsDUPT0gsmUnVMgvQOTs9d29CznNmFhtFy-DXQ-v2X-TgFII
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT9wwEIBHPKSKHqrSFrEtLZHaSysFEr_ioF5oYUVbQCsBEjfL47F7aXcRC_f-hP7G_hJsJ7uAVCFxi6KJYo0zj9jjbwA-YCt5Y2UoiTleCoHR5irC0iO2hI1qyGfa57E6OBPfz-X5AnyenYXp-BDzBbdkGdlfJwO_oLB9Cw39PSW2Vcf4pRdhOe32JbNkYjRfYWE69StJNYwsvrOscylPzydl27eP34tIGdx_L9u8m7PmoDN8Ds_6bLHY7aZ3FRb8-AU8vcMQfAnlaOqvafLvz1-bXVdh05GQ1ENnp9gtXHcqsbA9e-QVnA33T78elH0PhNKJKvoihR6JRx8UExOthZQsaIVOhqBa7klZja1Q1NoaQ_yVcjwgkgiYkEWVD8jXYGk8Gft1KGSrHeetIC6kCFxbioGKvCSmLHnGBvBxpgfjekB46lPxy3RoY2aSzkzW2QDez2UvOizGf6W-JHXOJRLKOt-YXP40vWUY1_AmoErgNiuClpac53XtFQte6ioMYGM2Gaa3r6nhVUxMUySNo_6UJ-iBYZijkz2Wr14_RngTnoz2hubw2_GPN7DCUi1LLmPZgKWry2v_NiYjV_guf3M3E3DXtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo%E2%80%90active+actuators%3A+A+concept+analysis&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Xianxu+Bai&rft.au=Guannan+He&rft.date=2021-12-01&rft.pub=Wiley&rft.eissn=2767-1402&rft.volume=1&rft.issue=2&rft.spage=230&rft.epage=247&rft_id=info:doi/10.1002%2Fmsd2.12018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c737fb64465a4f85adce311e62fe580f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon