Dynamics of triboelectric nanogenerators: A review

Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. Howev...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical system dynamics Vol. 2; no. 4; pp. 311 - 324
Main Authors Xu, Guoqiang, Li, Chuanyang, Chen, Chaojie, Fu, Jingjing, Hou, Tingting, Zi, Yunlong
Format Journal Article
LanguageEnglish
Published Nanjing John Wiley & Sons, Inc 01.12.2022
Wiley
Subjects
Online AccessGet full text
ISSN2767-1402
2767-1399
2767-1402
DOI10.1002/msd2.12058

Cover

Abstract Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.
AbstractList Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.
Abstract Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs.
Author Xu, Guoqiang
Zi, Yunlong
Li, Chuanyang
Hou, Tingting
Chen, Chaojie
Fu, Jingjing
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Xu
  fullname: Xu, Guoqiang
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Chuanyang
  surname: Li
  fullname: Li, Chuanyang
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Chaojie
  surname: Chen
  fullname: Chen, Chaojie
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Jingjing
  surname: Fu
  fullname: Fu, Jingjing
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Tingting
  surname: Hou
  fullname: Hou, Tingting
  organization: The Chinese University of Hong Kong
– sequence: 6
  givenname: Yunlong
  orcidid: 0000-0002-5133-4057
  surname: Zi
  fullname: Zi, Yunlong
  email: yunlongzi@gmail.com
  organization: The Hong Kong University of Science and Technology
BookMark eNp9kF9LwzAUxYMoqHMvfoKCb8L05iZtU9-GfwcTH9TncJumI6NrNKnKvr3dqiAiPt3D5XcOh3PIdlvfWsaOOZxxADxfxQrPOEKqdtgB5lk-4RJw94feZ-MYl9DDinORpQcMr9YtrZyJia-TLrjS28aaXpikpdYvbGsDdT7Ei2SaBPvu7McR26upiXb8dUfs-eb66fJuMn-4nV1O5xMjQaiJqEAiZbzOSZa8BMnTnECWxtQZYCUKVci6grLI00KgEKosSjS9J-WmJiPEiM2G3MrTUr8Et6Kw1p6c3j58WGgKnTON1dz2maByK1Ul8woJSQijFBnALM2gzzoZsl6Cf32zsdNL_xbavr4WUKDAAlXRUzBQJvgYg621cR11zrddINdoDnoztN4MrbdD95bTX5bvon_CfIA_XGPX_5D6_vEKB88nYIOMnA
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_111551
crossref_primary_10_1016_j_nanoen_2025_110872
crossref_primary_10_1016_j_ijmecsci_2024_109555
crossref_primary_10_1016_j_nanoen_2023_108182
crossref_primary_10_1002_admt_202301588
crossref_primary_10_1007_s43939_025_00178_x
crossref_primary_10_1002_smsc_202400096
crossref_primary_10_1002_aenm_202401739
crossref_primary_10_1007_s42417_024_01703_7
crossref_primary_10_1088_1361_6463_ad3374
crossref_primary_10_1016_j_apenergy_2024_123468
crossref_primary_10_1038_s41467_024_53235_z
crossref_primary_10_1088_1361_6463_ace4d8
crossref_primary_10_1016_j_nanoen_2024_109637
crossref_primary_10_1016_j_cej_2025_161035
crossref_primary_10_1002_msd2_12088
crossref_primary_10_1021_acsomega_4c03625
crossref_primary_10_3390_c11010003
Cites_doi 10.1016/j.enconman.2022.115523
10.1016/j.nanoen.2019.104148
10.1088/0964-1726/22/3/035013
10.1016/j.energy.2022.124028
10.1002/9781119991151
10.1088/0964-1726/23/10/105004
10.1016/j.jsv.2010.11.018
10.1002/aenm.202000064
10.1007/s11071-020-05645-z
10.1088/1361-665X/ac1a21
10.1007/s12274-018-1997-9
10.1016/j.nanoen.2016.12.004
10.1016/j.nanoen.2022.107070
10.1109/TMECH.2011.2160275
10.1016/j.nanoen.2019.103908
10.1007/s12274-021-3797-x
10.1016/j.nanoen.2016.12.061
10.1016/j.nanoen.2017.01.059
10.1002/adma.201402428
10.1016/j.nanoen.2021.105836
10.1016/j.enconman.2020.112670
10.1109/MPRV.2005.9
10.1038/srep41396
10.1039/C4EE00498A
10.1177/1045389X07085639
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2022.107522
10.1115/1.2802517
10.1021/nn405209u
10.1002/adma.202101262
10.1038/s41598-019-44683-5
10.1002/adfm.201900327
10.1002/adfm.202203884
10.1039/c3ee42571a
10.3390/electronics8121526
10.1038/s41467-020-17619-1
10.1021/acsami.0c17601
10.1109/TII.2014.2300753
10.1002/adfm.201304211
10.1002/admt.202100496
10.1038/s41528-017-0007-8
10.1039/D1NR04769H
10.1016/j.ijnonlinmec.2021.103773
10.1016/j.nanoen.2014.11.034
10.1002/aenm.201301322
10.1021/acsnano.1c02790
10.1002/adfm.202112155
10.1021/acsnano.2c01594
10.1002/aenm.202103408
10.1007/s11705-020-1956-3
10.1021/acsami.0c21246
10.1016/j.nanoen.2022.107164
10.1016/j.rser.2016.08.039
10.1021/acsnano.8b04654
10.1021/acsami.1c06031
10.1039/C9EE03258D
10.1016/j.compind.2020.103224
10.1016/j.nanoen.2019.02.035
10.3390/en15165807
10.3390/ma15103696
10.1016/j.enconman.2019.111973
10.1016/j.enconman.2014.09.026
10.1088/1361-665X/ab3a6a
10.1002/smll.202107034
10.1016/j.eml.2017.05.002
10.1039/C4TA04137B
10.1002/aenm.202000137
10.1016/j.nanoen.2022.107209
10.1088/2516-1083/abdbba
10.1039/c1ee01388b
10.1002/aenm.201900801
10.1016/j.nanoen.2019.104440
10.1016/j.nanoen.2014.11.050
10.1002/adfm.202202048
10.1016/j.ensm.2021.02.032
10.1002/aenm.201703133
10.1002/advs.202001757
10.1016/j.nanoen.2022.107431
10.1177/1045389X08099468
10.1364/OE.18.009739
10.1021/acsnano.6b03293
10.1002/aenm.201802906
10.23919/IEN.2022.0028
10.1016/j.nanoen.2020.104684
10.1088/0964-1726/21/8/085008
10.1021/acs.nanolett.2c01912
10.1016/j.nanoen.2021.106776
10.1002/aenm.201902824
10.1002/aenm.201700565
10.1021/acsnano.5b06329
10.1021/nn5054365
10.1016/j.dsp.2021.103038
10.1016/j.matt.2021.01.006
10.1016/j.mattod.2016.12.001
10.1115/1.4025996
10.1016/j.nanoen.2022.107622
10.1039/D0EE01258K
10.1016/j.nanoen.2019.02.012
10.1016/j.nanoen.2018.11.056
10.1016/j.nanoen.2020.105740
10.1016/j.energy.2022.124431
10.1002/adma.201302397
10.1016/j.nanoen.2022.107430
10.1016/j.nanoen.2016.11.037
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/msd2.12058
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-1402
EndPage 324
ExternalDocumentID oai_doaj_org_article_1ef60087e48d47d2a2a33c88ac026560
10_1002_msd2_12058
MSD212058
Genre reviewArticle
GrantInformation_xml – fundername: HKSAR, the Research Grants Council Early Career Scheme
  funderid: 24206919
– fundername: Hetao Shenzhen‐Hong Kong Science and Technology Innovation Cooperation Zone
  funderid: HZQB‐KCZYB‐2020083
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2020A1515111161
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
M7S
OK1
PIMPY
PTHSS
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c4038-3d042a61f7a4b1b04157a04bccf602d39894fd0b975932338b9b2c04251cfac33
IEDL.DBID 8FG
ISSN 2767-1402
2767-1399
IngestDate Wed Aug 27 01:13:13 EDT 2025
Wed Aug 13 02:10:47 EDT 2025
Tue Jul 01 03:33:58 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
Wed Jan 22 16:20:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4038-3d042a61f7a4b1b04157a04bccf602d39894fd0b975932338b9b2c04251cfac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5133-4057
OpenAccessLink https://www.proquest.com/docview/3092329289?pq-origsite=%requestingapplication%
PQID 3092329289
PQPubID 6853477
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1ef60087e48d47d2a2a33c88ac026560
proquest_journals_3092329289
crossref_citationtrail_10_1002_msd2_12058
crossref_primary_10_1002_msd2_12058
wiley_primary_10_1002_msd2_12058_MSD212058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationTitle International journal of mechanical system dynamics
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2022; 254
2017; 7
2022; 252
2017; 1
2013; 25
2013; 22
2020; 120
2010; 18
2019; 13
2019; 56
2019; 59
2019; 58
1999; 121
2014; 26
2014; 24
2020; 13
2012; 17
2020; 12
2020; 11
2020; 10
2022; 22
2013; 7
2021; 30
2013; 6
2014; 136
2014; 23
2022; 258
2020; 7
2017; 31
2021; 37
2018; 8
2014; 4
2021; 33
2014; 2
2021; 113
2019; 64
2019; 66
2017; 33
2017; 32
2019; 28
2019; 29
2020; 210
2022; 32
2021; 83
2014; 8
2021; 82
2014; 7
2012; 21
2019; 199
2014; 10
2019; 8
2017; 20
2019; 9
2015; 14
2021; 6
2021; 4
2021; 3
2009; 20
2011
2022; 93
2008; 19
2017; 67
2016; 10
2020; 100
2011; 4
2014; 88
2011; 330
2022; 100
2021; 13
2021; 15
2012; 1
2017; 15
2021; 136
2020; 72
2022; 12
2005; 4
2022; 15
2020; 69
2022; 96
2022; 97
2022; 1
2022; 98
2022; 99
2018; 12
2018; 11
2022; 16
2022; 18
2022; 102
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
Xu M (e_1_2_10_77_1) 2019; 13
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – year: 2011
– volume: 13
  start-page: 1932
  issue: 2
  year: 2019
  end-page: 1939
  article-title: High power density tower‐like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 6
  issue: 11
  year: 2021
  article-title: Swing‐structured triboelectric–electromagnetic hybridized nanogenerator for breeze wind energy harvesting
  publication-title: Adv Mater Technol
– volume: 96
  year: 2022
  article-title: An improved equivalent capacitance model of the triboelectric nanogenerator incorporating its surface roughness
  publication-title: Nano Energy
– volume: 1
  start-page: 10
  issue: 1
  year: 2017
  article-title: Triboelectric nanogenerators as flexible power sources
  publication-title: npj Flex Electron
– volume: 8
  issue: 12
  year: 2018
  article-title: Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy
  publication-title: Adv Energy Mater
– volume: 69
  year: 2020
  article-title: A chaotic pendulum triboelectric‐electromagnetic hybridized nanogenerator for wave energy scavenging and self‐powered wireless sensing system
  publication-title: Nano Energy
– volume: 210
  year: 2020
  article-title: A review of mechanical energy storage systems combined with wind and solar applications
  publication-title: Energy Convers Manage
– volume: 11
  start-page: 3823
  issue: 1
  year: 2020
  article-title: Ultra‐conformal drawn‐on‐skin electronics for multifunctional motion artifact‐free sensing and point‐of‐care treatment
  publication-title: Nat Commun
– volume: 58
  start-page: 669
  year: 2019
  end-page: 672
  article-title: Entropy theory of distributed energy for Internet of things
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  issue: 2
  year: 2012
  end-page: 334
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 4
  start-page: 845
  issue: 3
  year: 2021
  end-page: 887
  article-title: Leveraging triboelectric nanogenerators for bioengineering
  publication-title: Matter
– volume: 258
  year: 2022
  article-title: Cooperative compliant traction mechanism for human‐friendly biomechanical energy harvesting
  publication-title: Energy Convers Manage
– volume: 26
  start-page: 6599
  issue: 38
  year: 2014
  end-page: 6607
  article-title: Grating‐structured freestanding triboelectric‐layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
  publication-title: Adv Mater
– volume: 33
  start-page: 515
  year: 2017
  end-page: 521
  article-title: Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies
  publication-title: Nano Energy
– volume: 252
  year: 2022
  article-title: On a spring‐assisted multi‐stable hybrid‐integrated vibration energy harvester for ultra‐low‐frequency excitations
  publication-title: Energy
– volume: 15
  start-page: 238
  issue: 2
  year: 2021
  end-page: 250
  article-title: Integrated energy storage system based on triboelectric nanogenerator in electronic devices
  publication-title: Front Chem Sci Eng
– volume: 102
  year: 2022
  article-title: Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
  publication-title: Nano Energy
– volume: 9
  issue: 46
  year: 2019
  article-title: Dual‐tube Helmholtz resonator‐based triboelectric nanogenerator for highly efficient harvesting of acoustic energy
  publication-title: Adv Energy Mater
– volume: 7
  issue: 19
  year: 2017
  article-title: A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer
  publication-title: Adv Energy Mater
– volume: 99
  year: 2022
  article-title: Influence of temperature difference on performance of solid‐liquid triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 199
  year: 2019
  article-title: A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes
  publication-title: Energy Convers Manage
– volume: 10
  start-page: 6526
  issue: 7
  year: 2016
  end-page: 6534
  article-title: Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
– volume: 22
  start-page: 5584
  issue: 13
  year: 2022
  end-page: 5591
  article-title: Vibration‐driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines
  publication-title: Nano Lett
– volume: 28
  issue: 10
  year: 2019
  article-title: Efficient acoustic energy harvesting by deploying magnetic restoring force
  publication-title: Smart Mater Struct
– volume: 136
  issue: 2
  year: 2014
  article-title: The power and efficiency limits of piezoelectric energy harvesting
  publication-title: J Vib Acoust
– volume: 15
  start-page: 26
  year: 2017
  end-page: 37
  article-title: On the efficiency of piezoelectric energy harvesters
  publication-title: Extreme Mech Lett
– volume: 56
  start-page: 307
  year: 2019
  end-page: 321
  article-title: Mechanical energy conversion systems for triboelectric nanogenerators: kinematic and vibrational designs
  publication-title: Nano Energy
– volume: 120
  year: 2020
  article-title: Towards a characterisation of smart systems: a systematic literature review
  publication-title: Comput Ind
– volume: 98
  year: 2022
  article-title: Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 20
  start-page: 505
  issue: 5
  year: 2009
  end-page: 514
  article-title: Structural effects and energy conversion efficiency of power harvesting
  publication-title: J Intell Mater Syst Struct
– volume: 32
  year: 2022
  article-title: Improving and quantifying surface charge density via charge injection enabled by air breakdown
  publication-title: Adv Funct Mater
– volume: 25
  start-page: 6094
  issue: 42
  year: 2013
  end-page: 6099
  article-title: Harmonic‐resonator‐based triboelectric nanogenerator as a sustainable power source and a self‐powered active vibration sensor
  publication-title: Adv Mater
– volume: 72
  year: 2020
  article-title: A self‐powered and self‐functional tracking system based on triboelectric‐electromagnetic hybridized blue energy harvesting module
  publication-title: Nano Energy
– volume: 29
  issue: 41
  year: 2019
  article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting
  publication-title: Adv Funct Mater
– volume: 21
  issue: 8
  year: 2012
  article-title: Designing maximum power output into piezoelectric energy harvesters
  publication-title: Smart Mater Struct
– volume: 18
  start-page: 9739
  issue: 10
  year: 2010
  end-page: 9746
  article-title: Simple piezoelectric‐actuated mirror with 180 kHz servo bandwidth
  publication-title: Opt Express
– volume: 4
  start-page: 18
  issue: 1
  year: 2005
  end-page: 27
  article-title: Energy scavenging for mobile and wireless electronics
  publication-title: IEEE Pervasive Comput
– volume: 88
  start-page: 829
  year: 2014
  end-page: 833
  article-title: High‐efficiency compressive‐mode energy harvester enhanced by a multi‐stage force amplification mechanism
  publication-title: Energy Convers Manage
– volume: 10
  issue: 17
  year: 2020
  article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution
  publication-title: Adv Energy Mater
– volume: 7
  issue: 24
  year: 2020
  article-title: Achieving ultrahigh output energy density of triboelectric nanogenerators in high‐pressure gas environment
  publication-title: Adv Sci
– volume: 9
  issue: 1
  year: 2019
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 10424
  issue: 11
  year: 2013
  end-page: 10432
  article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester
  publication-title: ACS Nano
– volume: 13
  start-page: 6331
  issue: 5
  year: 2021
  end-page: 6338
  article-title: Boosting the output performance of the triboelectric nanogenerator through the nonlinear oscillator
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 9433
  issue: 9
  year: 2018
  end-page: 9440
  article-title: An ultra‐low‐friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self‐powered wind speed sensor
  publication-title: ACS Nano
– volume: 16
  start-page: 6781
  issue: 4
  year: 2022
  end-page: 6788
  article-title: Gyroscope‐structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
– volume: 20
  start-page: 74
  issue: 2
  year: 2017
  end-page: 82
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater Today
– volume: 15
  start-page: 5807
  issue: 16
  year: 2022
  article-title: Research progress on triboelectric nanogenerator for sports applications
  publication-title: Energies
– volume: 31
  start-page: 560
  year: 2017
  end-page: 567
  article-title: Spring‐assisted triboelectric nanogenerator for efficiently harvesting water wave energy
  publication-title: Nano Energy
– volume: 13
  start-page: 2657
  issue: 9
  year: 2020
  end-page: 2683
  article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives
  publication-title: Energy Environ Sci
– volume: 13
  start-page: 277
  issue: 1
  year: 2020
  end-page: 285
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ Sci
– volume: 15
  start-page: 3696
  issue: 10
  year: 2022
  article-title: A high‐performance flag‐type triboelectric nanogenerator for scavenging wind energy toward self‐powered IoTs
  publication-title: Materials
– volume: 15
  start-page: 2060
  issue: 3
  year: 2022
  end-page: 2068
  article-title: Transparent, stretchable, temperature‐stable and self‐healing ionogel‐based triboelectric nanogenerator for biomechanical energy collection
  publication-title: Nano Res
– volume: 59
  start-page: 154
  year: 2019
  end-page: 161
  article-title: On the force and energy conversion in triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 24
  start-page: 4090
  issue: 26
  year: 2014
  end-page: 4096
  article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy
  publication-title: Adv Funct Mater
– volume: 254
  year: 2022
  article-title: Design, modeling and experiments of a novel biaxial‐pendulum vibration energy harvester
  publication-title: Energy
– volume: 3
  issue: 2
  year: 2021
  article-title: Progress and prospects of thermo‐mechanical energy storage—a critical review
  publication-title: Prog Energy
– volume: 100
  start-page: 1941
  issue: 3
  year: 2020
  end-page: 1962
  article-title: Nonlinear structural dynamics of a new sliding‐mode triboelectric energy harvester with multistability
  publication-title: Nonlinear Dyn
– volume: 9
  start-page: 8223
  issue: 1
  year: 2019
  article-title: Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure
  publication-title: Sci Rep
– volume: 23
  issue: 10
  year: 2014
  article-title: Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
  publication-title: Smart Mater Struct
– volume: 330
  start-page: 2339
  issue: 10
  year: 2011
  end-page: 2353
  article-title: Broadband piezoelectric power generation on high‐energy orbits of the bistable duffing oscillator with electromechanical coupling
  publication-title: J Sound Vib
– volume: 8
  start-page: 1526
  issue: 12
  year: 2019
  article-title: A two‐degree‐of‐freedom cantilever‐based vibration triboelectric nanogenerator for low‐frequency and broadband operation
  publication-title: Electronics
– volume: 6
  start-page: 3576
  issue: 12
  year: 2013
  end-page: 3583
  article-title: Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source
  publication-title: Energy Environ Sci
– volume: 33
  issue: 35
  year: 2021
  article-title: Self‐powered respiration monitoring enabled by a triboelectric nanogenerator
  publication-title: Adv Mater
– volume: 4
  issue: 6
  year: 2014
  article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator
  publication-title: Adv Energy Mater
– volume: 10
  start-page: 1017
  issue: 1
  year: 2016
  end-page: 1024
  article-title: Triboelectric nanogenerator based on the internal motion of powder with a package structure design
  publication-title: ACS Nano
– volume: 83
  year: 2021
  article-title: Spherical triboelectric nanogenerator based on spring‐assisted swing structure for effective water wave energy harvesting
  publication-title: Nano Energy
– volume: 9
  issue: 26
  year: 2019
  article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting
  publication-title: Adv Energy Mater
– volume: 22
  issue: 3
  year: 2013
  article-title: Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting
  publication-title: Smart Mater Struct
– volume: 97
  year: 2022
  article-title: A self‐powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator
  publication-title: Nano Energy
– volume: 17
  start-page: 1145
  issue: 6
  year: 2012
  end-page: 1157
  article-title: Impedance modeling and analysis for piezoelectric energy harvesting systems
  publication-title: IEEE/ASME Trans Mechatron
– volume: 67
  start-page: 491
  year: 2017
  end-page: 506
  article-title: The environmental impact of Li‐Ion batteries and the role of key parameters—a review
  publication-title: Renew Sustain Energy Rev
– volume: 1
  start-page: 236
  issue: 2
  year: 2022
  end-page: 242
  article-title: A nonlinear triboelectric nanogenerator with a broadened bandwidth for effective harvesting of vibration energy
  publication-title: iEnergy
– volume: 100
  year: 2022
  article-title: Strategies for effectively harvesting wind energy based on triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 82
  year: 2021
  article-title: Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
  publication-title: Nano Energy
– volume: 10
  start-page: 2233
  issue: 4
  year: 2014
  end-page: 2243
  article-title: Internet of things in industries: a survey
  publication-title: IEEE Trans Ind Inform
– volume: 31
  start-page: 351
  year: 2017
  end-page: 358
  article-title: Integrated triboelectric nanogenerator array based on air‐driven membrane structures for water wave energy harvesting
  publication-title: Nano Energy
– volume: 93
  year: 2022
  article-title: Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self‐powered seawater electrolysis
  publication-title: Nano Energy
– volume: 32
  year: 2022
  article-title: Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting
  publication-title: Adv Funct Mater
– volume: 10
  issue: 23
  year: 2020
  article-title: Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting
  publication-title: Adv Energy Mater
– volume: 11
  start-page: 2951
  issue: 6
  year: 2018
  end-page: 2969
  article-title: Development, applications, and future directions of triboelectric nanogenerators
  publication-title: Nano Res
– volume: 121
  start-page: 566
  issue: 3
  year: 1999
  end-page: 571
  article-title: On the efficiency of electric power generation with piezoelectric ceramic
  publication-title: J Dyn Sys Meas Control
– volume: 7
  issue: 1
  year: 2017
  article-title: Broadband energy harvester using non‐linear polymer spring and electromagnetic/triboelectric hybrid mechanism
  publication-title: Sci Rep
– volume: 113
  year: 2021
  article-title: Triboelectric nanogenerator‐based wearable electronic devices and systems: toward informatization and intelligence
  publication-title: Digit Signal Process
– volume: 99
  year: 2022
  article-title: Self‐driven real‐time angle vector sensor as security dialer based on bi‐directional backstop triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 13
  start-page: 26084
  issue: 22
  year: 2021
  end-page: 26092
  article-title: Frequency band characteristics of a triboelectric nanogenerator and ultra‐wide‐band vibrational energy harvesting
  publication-title: ACS Appl Mater Interfaces
– volume: 32
  start-page: 287
  year: 2017
  end-page: 293
  article-title: A spring‐based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low‐frequency vibration energy
  publication-title: Nano Energy
– volume: 12
  start-page: 56060
  issue: 50
  year: 2020
  end-page: 56067
  article-title: Fully biodegradable water droplet energy harvester based on leaves of living plants
  publication-title: ACS Appl Mater Interfaces
– volume: 15
  start-page: 13200
  issue: 8
  year: 2021
  end-page: 13208
  article-title: All‐weather droplet‐based triboelectric nanogenerator for wave energy harvesting
  publication-title: ACS Nano
– volume: 18
  year: 2022
  article-title: Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy
  publication-title: Small
– volume: 37
  start-page: 433
  year: 2021
  end-page: 465
  article-title: Recycling and environmental issues of lithium‐ion batteries: advances, challenges and opportunities
  publication-title: Energy Stor Mater
– volume: 66
  year: 2019
  article-title: Textile‐based triboelectric nanogenerator with alternating positive and negative freestanding grating structure
  publication-title: Nano Energy
– volume: 12
  issue: 3
  year: 2022
  article-title: Interaction between water wave and geometrical structures of floating triboelectric nanogenerators
  publication-title: Adv Energy Mater
– volume: 19
  start-page: 1311
  issue: 11
  year: 2008
  end-page: 1325
  article-title: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters
  publication-title: J Intell Mater Syst Struct
– volume: 13
  start-page: 17417
  issue: 41
  year: 2021
  end-page: 17427
  article-title: High output achieved by sliding electrification of an electrospun nano‐grating
  publication-title: Nanoscale
– volume: 136
  year: 2021
  article-title: Electromechanical coupling modeling and analysis of contact‐separation mode triboelectric nanogenerators
  publication-title: Int J Non Linear Mech
– volume: 14
  start-page: 126
  year: 2015
  end-page: 138
  article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications
  publication-title: Nano Energy
– volume: 8
  start-page: 12004
  issue: 12
  year: 2014
  end-page: 12013
  article-title: Quantitative measurements of vibration amplitude using a contact‐mode freestanding triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 64
  year: 2019
  article-title: Super‐robust and frequency‐multiplied triboelectric nanogenerator for efficient harvesting water and wind energy
  publication-title: Nano Energy
– volume: 7
  start-page: 2339
  issue: 7
  year: 2014
  end-page: 2349
  article-title: A theoretical study of grating structured triboelectric nanogenerators
  publication-title: Energy Environ Sci
– volume: 32
  issue: 15
  year: 2022
  article-title: Intelligent sound monitoring and identification system combining triboelectric nanogenerator‐based self‐powered sensor with deep learning technique
  publication-title: Adv Funct Mater
– volume: 30
  issue: 9
  year: 2021
  article-title: Theoretical investigation and experiment of a disc‐shaped triboelectric energy harvester with a magnetic bistable mechanism
  publication-title: Smart Mater Struct
– volume: 4
  start-page: 3287
  issue: 9
  year: 2011
  end-page: 3295
  article-title: Lithium‐ion batteries. A look into the future
  publication-title: Energy Environ Sci
– volume: 2
  start-page: 19427
  issue: 45
  year: 2014
  end-page: 19434
  article-title: Flexible interdigital‐electrodes‐based triboelectric generators for harvesting sliding and rotating mechanical energy
  publication-title: J Mater Chem A
– ident: e_1_2_10_101_1
  doi: 10.1016/j.enconman.2022.115523
– ident: e_1_2_10_25_1
  doi: 10.1016/j.nanoen.2019.104148
– ident: e_1_2_10_38_1
  doi: 10.1088/0964-1726/22/3/035013
– ident: e_1_2_10_73_1
  doi: 10.1016/j.energy.2022.124028
– ident: e_1_2_10_36_1
  doi: 10.1002/9781119991151
– ident: e_1_2_10_42_1
  doi: 10.1088/0964-1726/23/10/105004
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jsv.2010.11.018
– ident: e_1_2_10_80_1
  doi: 10.1002/aenm.202000064
– ident: e_1_2_10_85_1
  doi: 10.1007/s11071-020-05645-z
– ident: e_1_2_10_86_1
  doi: 10.1088/1361-665X/ac1a21
– ident: e_1_2_10_14_1
  doi: 10.1007/s12274-018-1997-9
– ident: e_1_2_10_65_1
  doi: 10.1016/j.nanoen.2016.12.004
– ident: e_1_2_10_54_1
  doi: 10.1016/j.nanoen.2022.107070
– ident: e_1_2_10_31_1
  doi: 10.1109/TMECH.2011.2160275
– ident: e_1_2_10_78_1
  doi: 10.1016/j.nanoen.2019.103908
– ident: e_1_2_10_47_1
  doi: 10.1007/s12274-021-3797-x
– ident: e_1_2_10_66_1
  doi: 10.1016/j.nanoen.2016.12.061
– ident: e_1_2_10_75_1
  doi: 10.1016/j.nanoen.2017.01.059
– ident: e_1_2_10_63_1
  doi: 10.1002/adma.201402428
– ident: e_1_2_10_70_1
  doi: 10.1016/j.nanoen.2021.105836
– ident: e_1_2_10_9_1
  doi: 10.1016/j.enconman.2020.112670
– ident: e_1_2_10_8_1
  doi: 10.1109/MPRV.2005.9
– ident: e_1_2_10_93_1
  doi: 10.1038/srep41396
– ident: e_1_2_10_24_1
  doi: 10.1039/C4EE00498A
– ident: e_1_2_10_30_1
  doi: 10.1177/1045389X07085639
– ident: e_1_2_10_12_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_10_62_1
  doi: 10.1016/j.nanoen.2022.107522
– ident: e_1_2_10_40_1
  doi: 10.1115/1.2802517
– ident: e_1_2_10_58_1
  doi: 10.1021/nn405209u
– ident: e_1_2_10_19_1
  doi: 10.1002/adma.202101262
– ident: e_1_2_10_67_1
  doi: 10.1038/s41598-019-44683-5
– ident: e_1_2_10_105_1
  doi: 10.1002/adfm.201900327
– ident: e_1_2_10_52_1
  doi: 10.1002/adfm.202203884
– ident: e_1_2_10_50_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_10_68_1
  doi: 10.3390/electronics8121526
– ident: e_1_2_10_82_1
  doi: 10.1038/s41467-020-17619-1
– ident: e_1_2_10_104_1
  doi: 10.1021/acsami.0c17601
– ident: e_1_2_10_4_1
  doi: 10.1109/TII.2014.2300753
– ident: e_1_2_10_57_1
  doi: 10.1002/adfm.201304211
– ident: e_1_2_10_83_1
  doi: 10.1002/admt.202100496
– ident: e_1_2_10_22_1
  doi: 10.1038/s41528-017-0007-8
– ident: e_1_2_10_26_1
  doi: 10.1039/D1NR04769H
– ident: e_1_2_10_59_1
  doi: 10.1016/j.ijnonlinmec.2021.103773
– ident: e_1_2_10_21_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_10_64_1
  doi: 10.1002/aenm.201301322
– ident: e_1_2_10_61_1
  doi: 10.1021/acsnano.1c02790
– ident: e_1_2_10_97_1
  doi: 10.1002/adfm.202112155
– ident: e_1_2_10_72_1
  doi: 10.1021/acsnano.2c01594
– ident: e_1_2_10_95_1
  doi: 10.1002/aenm.202103408
– ident: e_1_2_10_46_1
  doi: 10.1007/s11705-020-1956-3
– ident: e_1_2_10_69_1
  doi: 10.1021/acsami.0c21246
– ident: e_1_2_10_96_1
  doi: 10.1016/j.nanoen.2022.107164
– ident: e_1_2_10_7_1
  doi: 10.1016/j.rser.2016.08.039
– ident: e_1_2_10_53_1
  doi: 10.1021/acsnano.8b04654
– ident: e_1_2_10_90_1
  doi: 10.1021/acsami.1c06031
– ident: e_1_2_10_100_1
  doi: 10.1039/C9EE03258D
– ident: e_1_2_10_3_1
  doi: 10.1016/j.compind.2020.103224
– ident: e_1_2_10_49_1
  doi: 10.1016/j.nanoen.2019.02.035
– ident: e_1_2_10_45_1
  doi: 10.3390/en15165807
– ident: e_1_2_10_55_1
  doi: 10.3390/ma15103696
– ident: e_1_2_10_39_1
  doi: 10.1016/j.enconman.2019.111973
– ident: e_1_2_10_32_1
  doi: 10.1016/j.enconman.2014.09.026
– ident: e_1_2_10_84_1
  doi: 10.1088/1361-665X/ab3a6a
– ident: e_1_2_10_16_1
  doi: 10.1002/smll.202107034
– ident: e_1_2_10_33_1
  doi: 10.1016/j.eml.2017.05.002
– ident: e_1_2_10_28_1
  doi: 10.1039/C4TA04137B
– ident: e_1_2_10_13_1
  doi: 10.1002/aenm.202000137
– ident: e_1_2_10_98_1
  doi: 10.1016/j.nanoen.2022.107209
– ident: e_1_2_10_10_1
  doi: 10.1088/2516-1083/abdbba
– ident: e_1_2_10_5_1
  doi: 10.1039/c1ee01388b
– ident: e_1_2_10_79_1
  doi: 10.1002/aenm.201900801
– ident: e_1_2_10_81_1
  doi: 10.1016/j.nanoen.2019.104440
– ident: e_1_2_10_23_1
  doi: 10.1016/j.nanoen.2014.11.050
– volume: 13
  start-page: 1932
  issue: 2
  year: 2019
  ident: e_1_2_10_77_1
  article-title: High power density tower‐like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– ident: e_1_2_10_56_1
  doi: 10.1002/adfm.202202048
– ident: e_1_2_10_6_1
  doi: 10.1016/j.ensm.2021.02.032
– ident: e_1_2_10_11_1
  doi: 10.1002/aenm.201703133
– ident: e_1_2_10_51_1
  doi: 10.1002/advs.202001757
– ident: e_1_2_10_106_1
  doi: 10.1016/j.nanoen.2022.107431
– ident: e_1_2_10_41_1
  doi: 10.1177/1045389X08099468
– ident: e_1_2_10_43_1
  doi: 10.1364/OE.18.009739
– ident: e_1_2_10_76_1
  doi: 10.1021/acsnano.6b03293
– ident: e_1_2_10_15_1
  doi: 10.1002/aenm.201802906
– ident: e_1_2_10_87_1
  doi: 10.23919/IEN.2022.0028
– ident: e_1_2_10_88_1
  doi: 10.1016/j.nanoen.2020.104684
– ident: e_1_2_10_34_1
  doi: 10.1088/0964-1726/21/8/085008
– ident: e_1_2_10_44_1
  doi: 10.1021/acs.nanolett.2c01912
– ident: e_1_2_10_99_1
  doi: 10.1016/j.nanoen.2021.106776
– ident: e_1_2_10_102_1
  doi: 10.1002/aenm.201902824
– ident: e_1_2_10_29_1
  doi: 10.1002/aenm.201700565
– ident: e_1_2_10_71_1
  doi: 10.1021/acsnano.5b06329
– ident: e_1_2_10_27_1
  doi: 10.1021/nn5054365
– ident: e_1_2_10_18_1
  doi: 10.1016/j.dsp.2021.103038
– ident: e_1_2_10_17_1
  doi: 10.1016/j.matt.2021.01.006
– ident: e_1_2_10_20_1
  doi: 10.1016/j.mattod.2016.12.001
– ident: e_1_2_10_35_1
  doi: 10.1115/1.4025996
– ident: e_1_2_10_94_1
  doi: 10.1016/j.nanoen.2022.107622
– ident: e_1_2_10_60_1
  doi: 10.1039/D0EE01258K
– ident: e_1_2_10_2_1
  doi: 10.1016/j.nanoen.2019.02.012
– ident: e_1_2_10_89_1
  doi: 10.1016/j.nanoen.2018.11.056
– ident: e_1_2_10_103_1
  doi: 10.1016/j.nanoen.2020.105740
– ident: e_1_2_10_74_1
  doi: 10.1016/j.energy.2022.124431
– ident: e_1_2_10_91_1
  doi: 10.1002/adma.201302397
– ident: e_1_2_10_48_1
  doi: 10.1016/j.nanoen.2022.107430
– ident: e_1_2_10_92_1
  doi: 10.1016/j.nanoen.2016.11.037
SSID ssj0002811365
Score 2.3487854
SecondaryResourceType review_article
Snippet Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting...
Abstract Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 311
SubjectTerms Bandwidths
broad bandwidth
Commercialization
Dynamic models
Efficiency
electromechanical coupling model
Energy
Energy flow
Energy harvesting
Energy technology
Mechanical properties
Modelling
Nanogenerators
Random vibration
Springs (elastic)
triboelectric nanogenerator
Vibration
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skx7ET6xWWdCLwtpskt3NeqvWUoR60UJvIV8riu6Krf_fTLItK4hevC1hDsPMTuZNSN5D6MzYgqa5wg65cRs7BC5jXgA9Hs50SnVpcwtHA5P7bDxld7N01pL6gjthgR44BK6f2DID3jTLuGG5IZJISjXnUrvpwbVr2H1xgVvD1Is_MgKtknTFR0r6b3NDLhOCQdu91YE8Uf83dNnGqL7JjLbQZoMOo0Hwahut2WoHbbQ4A3cRGQYN-XlUlxHIVdVByeZZR5Ws6idPIw0SOlfRIAoPU_bQdHT7eDOOG-GDWDPsNiBqXCnJLClzyVSi4BV9LjFTWrtYEEOBNL00WBV56uCXGzJVoYiG8kt0KTWl-6hT1ZU9QBGmNC-MdoOK4cw1f84MIZZrw0mJrZRddL4MhtANKziIU7yKwGdMBARO-MB10enK9j1wYfxodQ0xXVkAf7VfcFkVTVbFX1ntot4yI6Ipqrmg2KFRUrgRsYsufJZ-cUNMHobEfx3-h0NHaJ3Awwd_kaWHOouPT3vs4MhCnfg_7wtYR9hg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB7O64s-SK2KZ68SaF8UTjezm9tN6YvVHkfhRFDBt2V_5RBsUjz7_3dnkzsVRPAthAkks5ndb4aZ7wP45kPJC2lZRG4qjCICNyNVEj0eG7uCuyrIQKWB2cV4eiN-3xa3PfixnIVp-SFWBTeKjLRfU4Abuzh5Ig39s_B4nCMr1Bp8oNlaEm5AcbmqsKAivRLqYUQZd4M8tfJ0_KR48vT4ixMpEfe_QJvPMWs6dCYfYbNDi9lpu7xb0Av1J9h4xiG4DXjeasovsqbKSL6qaZVt7lxWm7qZJ1ppktT5np1m7aDKDtxMfl2fTUedEMLICRY3JO5jaJlxXkkjbG5pql4aJqxz1Zih50SiXnlmS1lEOBaTTltadBSOuauM43wX-nVThz3IGOey9C4mLl6JCAaU8IhBOa-wYsGYARwunaFdxxJOYhX3uuU3Rk2O08lxA_i6sv3bcmO8avWTfLqyID7rdKN5mOsuPHQe4pcwJYNQXkiPBg3nTinjYo4YQdkAhssV0V2QLTRnEZ1iGVPGARylVXrjNfTs6hzT1f57jD_DOtLAQ2pgGUL_8eFf-BJhyKM9SH_bf7jt0xg
  priority: 102
  providerName: Wiley-Blackwell
Title Dynamics of triboelectric nanogenerators: A review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12058
https://www.proquest.com/docview/3092329289
https://doaj.org/article/1ef60087e48d47d2a2a33c88ac026560
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VuJRD1ZZWLB-rSO2lSCnO2Lt2uKDdwhZVAqG2SNwsx3ZQpZJQFv5_Z5zsspUqblFkRcnYM34zGb8H8DHEUo50JQi5mZgTAne5KZkeT4z9SPo66silgfOL8dmV-nY9uu4LbvO-rXIRE1OgDq3nGvmhFARFsKT84PjuT86qUfx3tZfQWIONgnYaXudm9nVZY0HDiiXcxYia4gGBnXLJUIqHt_OAnwsUrPa-sicl6v5_8OYqak3bzuw1vOrxYjbpJvgNvIjNW9hcYRHcAjzpVOXnWVtnLGDVdto2v3zWuKa9ScTSLKpzlE2y7qjKO7ianf78cpb3Ugi5V4JCkgzkXG5c1Nqpqqj4XL12QlXe12OBQTKNeh1EVeoRATJKO6uyQs8OWfjaeSnfw3rTNnEbMiGlLoOn1CUYRXDAqIAYjQ8GaxGdG8CnhTGs73nCWa7it-0YjtGy4Wwy3AA-LMfedewY_x01ZZsuRzCjdbrR3t_Y3kFsEelLhNFRmaB0QIdOSm-M85QlEiwbwN5iRmzvZnP7tCgGcJBm6ZnXsOc_TjBd7Tz_rF14iXzIITWt7MH6w_1j3Cfo8VANYQ3V5TCtsiFsTE8vLr8PUxr_F74h1eo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7K9UF9EH_iadWA-qAQu5ndu2wEkdZrudreIdpC37ab3U0RNKm9ivhP-Tc6s0nOE6RvfQthCcns7Ow3k53vA3juQyFHeSkIuemQEgK3qS6YHk-M3Ui6KuSBSwOz-Xh6pD4cj47X4HffC8PHKvuYGAO1bxzXyDelICiCBeUH786-p6waxX9XewmN1i32w6-flLIt3u5NaH5fIO7uHL6fpp2qQOqUoNUtPfmpHWdVblWZldyinluhSueqsUAvmZG88qIs8hFhG8rgyqJEx76duco6LoBSyF9X3NE6gPXtnfnHT8uqDmrWSOFzk5hTBCJ4VSw5UXHz28Lj6wwF68uv7IJRLOAfhLuKk-NGt3sLbnYINdlqXeo2rIX6DtxY4S28CzhpdewXSVMlLJnVtGo6X1xS27o5jVTWLOPzJtlK2uaYe3B0JWa6D4O6qcMDSISUeeEdJUteKwIgWnnEoJ3XWIlg7RBe9sYwrmMmZ4GMr6blVEbDhjPRcEN4thx71vJx_HfUNtt0OYI5tOON5vzUdEvSZIG-ROg8KO1V7tGildJpbR3lpQQEh7DRz4jpFvbC_HXDIbyKs3TJa5jZ5wnGq4eXP-spXJsezg7Mwd58_xFcR26xiEdmNmBwcf4jPCbgc1E-6bwtgZOrdvA_Q88PMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bSsQwEB28gOiDeMX1WtAXhdV00m5S8UVdF-8IKvgW0iQVQVtx9f_NpN1VQQTfSplCO-lJz6SZcwC2rMt4KnLmmZt0bc_AdVtmJI_HOiblpnDC0dLA1XXn9D45f0gfRuBg0AtT60MMF9wIGWG-JoC_2mLvSzT0pW9xN0aWylEYp799BEtMboYrLCjJr4T2MKLws0EctvI0-qS493X5jy9SEO7_wTa_c9bw0enNwHTDFqPDenhnYcSVczD1TUNwHrBbe8r3o6qIyL6qqp1tnkxU6rJ6DLLSZKmzHx1GdaPKAtz3Tu6OT9uNEULbJMxPSNx6aOlOXAid5HFOXfVCsyQ3pugwtJxE1AvL8kykno75ojPPcjQEx9gU2nC-CGNlVboliBjnIrPGFy7WZyxjMrGIThorsWBO6xZsD5KhTKMSTmYVz6rWN0ZFiVMhcS3YHMa-1toYv0YdUU6HEaRnHU5Ub4-qgYeKnX8SJoVLpE2ERY2acyOlNr5G9KSsBauDEVENyPqKM89OMfMlYwt2wij9cRvq6raL4Wj5P8EbMHHT7anLs-uLFZhE6n0Ie1lWYez97cOteUbynq-HF-8TCY7VtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+triboelectric+nanogenerators%3A+A+review&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Xu%2C+Guoqiang&rft.au=Li%2C+Chuanyang&rft.au=Chen%2C+Chaojie&rft.au=Fu%2C+Jingjing&rft.date=2022-12-01&rft.issn=2767-1399&rft.eissn=2767-1402&rft.volume=2&rft.issue=4&rft.spage=311&rft.epage=324&rft_id=info:doi/10.1002%2Fmsd2.12058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_msd2_12058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon