Dynamics of triboelectric nanogenerators: A review
Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. Howev...
Saved in:
Published in | International journal of mechanical system dynamics Vol. 2; no. 4; pp. 311 - 324 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Nanjing
John Wiley & Sons, Inc
01.12.2022
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2767-1402 2767-1399 2767-1402 |
DOI | 10.1002/msd2.12058 |
Cover
Abstract | Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs. |
---|---|
AbstractList | Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs. Abstract Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting vibration energy in the environment due to their advantages of lightweight, broad range of material choices, low cost, and no pollution. However, issues such as input force irregularity, working bandwidth, efficiency calculation, and dynamic modeling hinder the use of TENGs in industrial or practical applications. In this paper, the modeling process of the dynamical system of a TENG is reviewed from the perspective of energy flow. In addition, this paper reviews the main contributions made in recent years to achieve optimized output based on springs, magnetic forces, and pendulums, and introduces different ways to increase the bandwidth of TENGs. Finally, the main problems of TENGs in the process of harvesting vibration energy are discussed. This review may serve as a practical reference for methods to convert irregular mechanical input sources into optimized output performance toward the commercialization of TENGs. |
Author | Xu, Guoqiang Zi, Yunlong Li, Chuanyang Hou, Tingting Chen, Chaojie Fu, Jingjing |
Author_xml | – sequence: 1 givenname: Guoqiang surname: Xu fullname: Xu, Guoqiang organization: The Chinese University of Hong Kong – sequence: 2 givenname: Chuanyang surname: Li fullname: Li, Chuanyang organization: The Chinese University of Hong Kong – sequence: 3 givenname: Chaojie surname: Chen fullname: Chen, Chaojie organization: The Chinese University of Hong Kong – sequence: 4 givenname: Jingjing surname: Fu fullname: Fu, Jingjing organization: The Chinese University of Hong Kong – sequence: 5 givenname: Tingting surname: Hou fullname: Hou, Tingting organization: The Chinese University of Hong Kong – sequence: 6 givenname: Yunlong orcidid: 0000-0002-5133-4057 surname: Zi fullname: Zi, Yunlong email: yunlongzi@gmail.com organization: The Hong Kong University of Science and Technology |
BookMark | eNp9kF9LwzAUxYMoqHMvfoKCb8L05iZtU9-GfwcTH9TncJumI6NrNKnKvr3dqiAiPt3D5XcOh3PIdlvfWsaOOZxxADxfxQrPOEKqdtgB5lk-4RJw94feZ-MYl9DDinORpQcMr9YtrZyJia-TLrjS28aaXpikpdYvbGsDdT7Ei2SaBPvu7McR26upiXb8dUfs-eb66fJuMn-4nV1O5xMjQaiJqEAiZbzOSZa8BMnTnECWxtQZYCUKVci6grLI00KgEKosSjS9J-WmJiPEiM2G3MrTUr8Et6Kw1p6c3j58WGgKnTON1dz2maByK1Ul8woJSQijFBnALM2gzzoZsl6Cf32zsdNL_xbavr4WUKDAAlXRUzBQJvgYg621cR11zrddINdoDnoztN4MrbdD95bTX5bvon_CfIA_XGPX_5D6_vEKB88nYIOMnA |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2025_111551 crossref_primary_10_1016_j_nanoen_2025_110872 crossref_primary_10_1016_j_ijmecsci_2024_109555 crossref_primary_10_1016_j_nanoen_2023_108182 crossref_primary_10_1002_admt_202301588 crossref_primary_10_1007_s43939_025_00178_x crossref_primary_10_1002_smsc_202400096 crossref_primary_10_1002_aenm_202401739 crossref_primary_10_1007_s42417_024_01703_7 crossref_primary_10_1088_1361_6463_ad3374 crossref_primary_10_1016_j_apenergy_2024_123468 crossref_primary_10_1038_s41467_024_53235_z crossref_primary_10_1088_1361_6463_ace4d8 crossref_primary_10_1016_j_nanoen_2024_109637 crossref_primary_10_1016_j_cej_2025_161035 crossref_primary_10_1002_msd2_12088 crossref_primary_10_1021_acsomega_4c03625 crossref_primary_10_3390_c11010003 |
Cites_doi | 10.1016/j.enconman.2022.115523 10.1016/j.nanoen.2019.104148 10.1088/0964-1726/22/3/035013 10.1016/j.energy.2022.124028 10.1002/9781119991151 10.1088/0964-1726/23/10/105004 10.1016/j.jsv.2010.11.018 10.1002/aenm.202000064 10.1007/s11071-020-05645-z 10.1088/1361-665X/ac1a21 10.1007/s12274-018-1997-9 10.1016/j.nanoen.2016.12.004 10.1016/j.nanoen.2022.107070 10.1109/TMECH.2011.2160275 10.1016/j.nanoen.2019.103908 10.1007/s12274-021-3797-x 10.1016/j.nanoen.2016.12.061 10.1016/j.nanoen.2017.01.059 10.1002/adma.201402428 10.1016/j.nanoen.2021.105836 10.1016/j.enconman.2020.112670 10.1109/MPRV.2005.9 10.1038/srep41396 10.1039/C4EE00498A 10.1177/1045389X07085639 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2022.107522 10.1115/1.2802517 10.1021/nn405209u 10.1002/adma.202101262 10.1038/s41598-019-44683-5 10.1002/adfm.201900327 10.1002/adfm.202203884 10.1039/c3ee42571a 10.3390/electronics8121526 10.1038/s41467-020-17619-1 10.1021/acsami.0c17601 10.1109/TII.2014.2300753 10.1002/adfm.201304211 10.1002/admt.202100496 10.1038/s41528-017-0007-8 10.1039/D1NR04769H 10.1016/j.ijnonlinmec.2021.103773 10.1016/j.nanoen.2014.11.034 10.1002/aenm.201301322 10.1021/acsnano.1c02790 10.1002/adfm.202112155 10.1021/acsnano.2c01594 10.1002/aenm.202103408 10.1007/s11705-020-1956-3 10.1021/acsami.0c21246 10.1016/j.nanoen.2022.107164 10.1016/j.rser.2016.08.039 10.1021/acsnano.8b04654 10.1021/acsami.1c06031 10.1039/C9EE03258D 10.1016/j.compind.2020.103224 10.1016/j.nanoen.2019.02.035 10.3390/en15165807 10.3390/ma15103696 10.1016/j.enconman.2019.111973 10.1016/j.enconman.2014.09.026 10.1088/1361-665X/ab3a6a 10.1002/smll.202107034 10.1016/j.eml.2017.05.002 10.1039/C4TA04137B 10.1002/aenm.202000137 10.1016/j.nanoen.2022.107209 10.1088/2516-1083/abdbba 10.1039/c1ee01388b 10.1002/aenm.201900801 10.1016/j.nanoen.2019.104440 10.1016/j.nanoen.2014.11.050 10.1002/adfm.202202048 10.1016/j.ensm.2021.02.032 10.1002/aenm.201703133 10.1002/advs.202001757 10.1016/j.nanoen.2022.107431 10.1177/1045389X08099468 10.1364/OE.18.009739 10.1021/acsnano.6b03293 10.1002/aenm.201802906 10.23919/IEN.2022.0028 10.1016/j.nanoen.2020.104684 10.1088/0964-1726/21/8/085008 10.1021/acs.nanolett.2c01912 10.1016/j.nanoen.2021.106776 10.1002/aenm.201902824 10.1002/aenm.201700565 10.1021/acsnano.5b06329 10.1021/nn5054365 10.1016/j.dsp.2021.103038 10.1016/j.matt.2021.01.006 10.1016/j.mattod.2016.12.001 10.1115/1.4025996 10.1016/j.nanoen.2022.107622 10.1039/D0EE01258K 10.1016/j.nanoen.2019.02.012 10.1016/j.nanoen.2018.11.056 10.1016/j.nanoen.2020.105740 10.1016/j.energy.2022.124431 10.1002/adma.201302397 10.1016/j.nanoen.2022.107430 10.1016/j.nanoen.2016.11.037 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/msd2.12058 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2767-1402 |
EndPage | 324 |
ExternalDocumentID | oai_doaj_org_article_1ef60087e48d47d2a2a33c88ac026560 10_1002_msd2_12058 MSD212058 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: HKSAR, the Research Grants Council Early Career Scheme funderid: 24206919 – fundername: Hetao Shenzhen‐Hong Kong Science and Technology Innovation Cooperation Zone funderid: HZQB‐KCZYB‐2020083 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2020A1515111161 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ M7S OK1 PIMPY PTHSS AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c4038-3d042a61f7a4b1b04157a04bccf602d39894fd0b975932338b9b2c04251cfac33 |
IEDL.DBID | 8FG |
ISSN | 2767-1402 2767-1399 |
IngestDate | Wed Aug 27 01:13:13 EDT 2025 Wed Aug 13 02:10:47 EDT 2025 Tue Jul 01 03:33:58 EDT 2025 Thu Apr 24 22:55:22 EDT 2025 Wed Jan 22 16:20:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4038-3d042a61f7a4b1b04157a04bccf602d39894fd0b975932338b9b2c04251cfac33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5133-4057 |
OpenAccessLink | https://www.proquest.com/docview/3092329289?pq-origsite=%requestingapplication% |
PQID | 3092329289 |
PQPubID | 6853477 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ef60087e48d47d2a2a33c88ac026560 proquest_journals_3092329289 crossref_citationtrail_10_1002_msd2_12058 crossref_primary_10_1002_msd2_12058 wiley_primary_10_1002_msd2_12058_MSD212058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing |
PublicationTitle | International journal of mechanical system dynamics |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2022; 254 2017; 7 2022; 252 2017; 1 2013; 25 2013; 22 2020; 120 2010; 18 2019; 13 2019; 56 2019; 59 2019; 58 1999; 121 2014; 26 2014; 24 2020; 13 2012; 17 2020; 12 2020; 11 2020; 10 2022; 22 2013; 7 2021; 30 2013; 6 2014; 136 2014; 23 2022; 258 2020; 7 2017; 31 2021; 37 2018; 8 2014; 4 2021; 33 2014; 2 2021; 113 2019; 64 2019; 66 2017; 33 2017; 32 2019; 28 2019; 29 2020; 210 2022; 32 2021; 83 2014; 8 2021; 82 2014; 7 2012; 21 2019; 199 2014; 10 2019; 8 2017; 20 2019; 9 2015; 14 2021; 6 2021; 4 2021; 3 2009; 20 2011 2022; 93 2008; 19 2017; 67 2016; 10 2020; 100 2011; 4 2014; 88 2011; 330 2022; 100 2021; 13 2021; 15 2012; 1 2017; 15 2021; 136 2020; 72 2022; 12 2005; 4 2022; 15 2020; 69 2022; 96 2022; 97 2022; 1 2022; 98 2022; 99 2018; 12 2018; 11 2022; 16 2022; 18 2022; 102 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 Xu M (e_1_2_10_77_1) 2019; 13 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – year: 2011 – volume: 13 start-page: 1932 issue: 2 year: 2019 end-page: 1939 article-title: High power density tower‐like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 6 issue: 11 year: 2021 article-title: Swing‐structured triboelectric–electromagnetic hybridized nanogenerator for breeze wind energy harvesting publication-title: Adv Mater Technol – volume: 96 year: 2022 article-title: An improved equivalent capacitance model of the triboelectric nanogenerator incorporating its surface roughness publication-title: Nano Energy – volume: 1 start-page: 10 issue: 1 year: 2017 article-title: Triboelectric nanogenerators as flexible power sources publication-title: npj Flex Electron – volume: 8 issue: 12 year: 2018 article-title: Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy publication-title: Adv Energy Mater – volume: 69 year: 2020 article-title: A chaotic pendulum triboelectric‐electromagnetic hybridized nanogenerator for wave energy scavenging and self‐powered wireless sensing system publication-title: Nano Energy – volume: 210 year: 2020 article-title: A review of mechanical energy storage systems combined with wind and solar applications publication-title: Energy Convers Manage – volume: 11 start-page: 3823 issue: 1 year: 2020 article-title: Ultra‐conformal drawn‐on‐skin electronics for multifunctional motion artifact‐free sensing and point‐of‐care treatment publication-title: Nat Commun – volume: 58 start-page: 669 year: 2019 end-page: 672 article-title: Entropy theory of distributed energy for Internet of things publication-title: Nano Energy – volume: 1 start-page: 328 issue: 2 year: 2012 end-page: 334 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 4 start-page: 845 issue: 3 year: 2021 end-page: 887 article-title: Leveraging triboelectric nanogenerators for bioengineering publication-title: Matter – volume: 258 year: 2022 article-title: Cooperative compliant traction mechanism for human‐friendly biomechanical energy harvesting publication-title: Energy Convers Manage – volume: 26 start-page: 6599 issue: 38 year: 2014 end-page: 6607 article-title: Grating‐structured freestanding triboelectric‐layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency publication-title: Adv Mater – volume: 33 start-page: 515 year: 2017 end-page: 521 article-title: Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies publication-title: Nano Energy – volume: 252 year: 2022 article-title: On a spring‐assisted multi‐stable hybrid‐integrated vibration energy harvester for ultra‐low‐frequency excitations publication-title: Energy – volume: 15 start-page: 238 issue: 2 year: 2021 end-page: 250 article-title: Integrated energy storage system based on triboelectric nanogenerator in electronic devices publication-title: Front Chem Sci Eng – volume: 102 year: 2022 article-title: Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy publication-title: Nano Energy – volume: 9 issue: 46 year: 2019 article-title: Dual‐tube Helmholtz resonator‐based triboelectric nanogenerator for highly efficient harvesting of acoustic energy publication-title: Adv Energy Mater – volume: 7 issue: 19 year: 2017 article-title: A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer publication-title: Adv Energy Mater – volume: 99 year: 2022 article-title: Influence of temperature difference on performance of solid‐liquid triboelectric nanogenerators publication-title: Nano Energy – volume: 199 year: 2019 article-title: A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes publication-title: Energy Convers Manage – volume: 10 start-page: 6526 issue: 7 year: 2016 end-page: 6534 article-title: Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator publication-title: ACS Nano – volume: 22 start-page: 5584 issue: 13 year: 2022 end-page: 5591 article-title: Vibration‐driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines publication-title: Nano Lett – volume: 28 issue: 10 year: 2019 article-title: Efficient acoustic energy harvesting by deploying magnetic restoring force publication-title: Smart Mater Struct – volume: 136 issue: 2 year: 2014 article-title: The power and efficiency limits of piezoelectric energy harvesting publication-title: J Vib Acoust – volume: 15 start-page: 26 year: 2017 end-page: 37 article-title: On the efficiency of piezoelectric energy harvesters publication-title: Extreme Mech Lett – volume: 56 start-page: 307 year: 2019 end-page: 321 article-title: Mechanical energy conversion systems for triboelectric nanogenerators: kinematic and vibrational designs publication-title: Nano Energy – volume: 120 year: 2020 article-title: Towards a characterisation of smart systems: a systematic literature review publication-title: Comput Ind – volume: 98 year: 2022 article-title: Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators publication-title: Nano Energy – volume: 14 start-page: 161 year: 2015 end-page: 192 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 20 start-page: 505 issue: 5 year: 2009 end-page: 514 article-title: Structural effects and energy conversion efficiency of power harvesting publication-title: J Intell Mater Syst Struct – volume: 32 year: 2022 article-title: Improving and quantifying surface charge density via charge injection enabled by air breakdown publication-title: Adv Funct Mater – volume: 25 start-page: 6094 issue: 42 year: 2013 end-page: 6099 article-title: Harmonic‐resonator‐based triboelectric nanogenerator as a sustainable power source and a self‐powered active vibration sensor publication-title: Adv Mater – volume: 72 year: 2020 article-title: A self‐powered and self‐functional tracking system based on triboelectric‐electromagnetic hybridized blue energy harvesting module publication-title: Nano Energy – volume: 29 issue: 41 year: 2019 article-title: Self‐powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting publication-title: Adv Funct Mater – volume: 21 issue: 8 year: 2012 article-title: Designing maximum power output into piezoelectric energy harvesters publication-title: Smart Mater Struct – volume: 18 start-page: 9739 issue: 10 year: 2010 end-page: 9746 article-title: Simple piezoelectric‐actuated mirror with 180 kHz servo bandwidth publication-title: Opt Express – volume: 4 start-page: 18 issue: 1 year: 2005 end-page: 27 article-title: Energy scavenging for mobile and wireless electronics publication-title: IEEE Pervasive Comput – volume: 88 start-page: 829 year: 2014 end-page: 833 article-title: High‐efficiency compressive‐mode energy harvester enhanced by a multi‐stage force amplification mechanism publication-title: Energy Convers Manage – volume: 10 issue: 17 year: 2020 article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution publication-title: Adv Energy Mater – volume: 7 issue: 24 year: 2020 article-title: Achieving ultrahigh output energy density of triboelectric nanogenerators in high‐pressure gas environment publication-title: Adv Sci – volume: 9 issue: 1 year: 2019 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv Energy Mater – volume: 7 start-page: 10424 issue: 11 year: 2013 end-page: 10432 article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester publication-title: ACS Nano – volume: 13 start-page: 6331 issue: 5 year: 2021 end-page: 6338 article-title: Boosting the output performance of the triboelectric nanogenerator through the nonlinear oscillator publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 9433 issue: 9 year: 2018 end-page: 9440 article-title: An ultra‐low‐friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self‐powered wind speed sensor publication-title: ACS Nano – volume: 16 start-page: 6781 issue: 4 year: 2022 end-page: 6788 article-title: Gyroscope‐structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano – volume: 20 start-page: 74 issue: 2 year: 2017 end-page: 82 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater Today – volume: 15 start-page: 5807 issue: 16 year: 2022 article-title: Research progress on triboelectric nanogenerator for sports applications publication-title: Energies – volume: 31 start-page: 560 year: 2017 end-page: 567 article-title: Spring‐assisted triboelectric nanogenerator for efficiently harvesting water wave energy publication-title: Nano Energy – volume: 13 start-page: 2657 issue: 9 year: 2020 end-page: 2683 article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives publication-title: Energy Environ Sci – volume: 13 start-page: 277 issue: 1 year: 2020 end-page: 285 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ Sci – volume: 15 start-page: 3696 issue: 10 year: 2022 article-title: A high‐performance flag‐type triboelectric nanogenerator for scavenging wind energy toward self‐powered IoTs publication-title: Materials – volume: 15 start-page: 2060 issue: 3 year: 2022 end-page: 2068 article-title: Transparent, stretchable, temperature‐stable and self‐healing ionogel‐based triboelectric nanogenerator for biomechanical energy collection publication-title: Nano Res – volume: 59 start-page: 154 year: 2019 end-page: 161 article-title: On the force and energy conversion in triboelectric nanogenerators publication-title: Nano Energy – volume: 24 start-page: 4090 issue: 26 year: 2014 end-page: 4096 article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy publication-title: Adv Funct Mater – volume: 254 year: 2022 article-title: Design, modeling and experiments of a novel biaxial‐pendulum vibration energy harvester publication-title: Energy – volume: 3 issue: 2 year: 2021 article-title: Progress and prospects of thermo‐mechanical energy storage—a critical review publication-title: Prog Energy – volume: 100 start-page: 1941 issue: 3 year: 2020 end-page: 1962 article-title: Nonlinear structural dynamics of a new sliding‐mode triboelectric energy harvester with multistability publication-title: Nonlinear Dyn – volume: 9 start-page: 8223 issue: 1 year: 2019 article-title: Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure publication-title: Sci Rep – volume: 23 issue: 10 year: 2014 article-title: Energy harvester for rotating environments using offset pendulum and nonlinear dynamics publication-title: Smart Mater Struct – volume: 330 start-page: 2339 issue: 10 year: 2011 end-page: 2353 article-title: Broadband piezoelectric power generation on high‐energy orbits of the bistable duffing oscillator with electromechanical coupling publication-title: J Sound Vib – volume: 8 start-page: 1526 issue: 12 year: 2019 article-title: A two‐degree‐of‐freedom cantilever‐based vibration triboelectric nanogenerator for low‐frequency and broadband operation publication-title: Electronics – volume: 6 start-page: 3576 issue: 12 year: 2013 end-page: 3583 article-title: Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source publication-title: Energy Environ Sci – volume: 33 issue: 35 year: 2021 article-title: Self‐powered respiration monitoring enabled by a triboelectric nanogenerator publication-title: Adv Mater – volume: 4 issue: 6 year: 2014 article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator publication-title: Adv Energy Mater – volume: 10 start-page: 1017 issue: 1 year: 2016 end-page: 1024 article-title: Triboelectric nanogenerator based on the internal motion of powder with a package structure design publication-title: ACS Nano – volume: 83 year: 2021 article-title: Spherical triboelectric nanogenerator based on spring‐assisted swing structure for effective water wave energy harvesting publication-title: Nano Energy – volume: 9 issue: 26 year: 2019 article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting publication-title: Adv Energy Mater – volume: 22 issue: 3 year: 2013 article-title: Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting publication-title: Smart Mater Struct – volume: 97 year: 2022 article-title: A self‐powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator publication-title: Nano Energy – volume: 17 start-page: 1145 issue: 6 year: 2012 end-page: 1157 article-title: Impedance modeling and analysis for piezoelectric energy harvesting systems publication-title: IEEE/ASME Trans Mechatron – volume: 67 start-page: 491 year: 2017 end-page: 506 article-title: The environmental impact of Li‐Ion batteries and the role of key parameters—a review publication-title: Renew Sustain Energy Rev – volume: 1 start-page: 236 issue: 2 year: 2022 end-page: 242 article-title: A nonlinear triboelectric nanogenerator with a broadened bandwidth for effective harvesting of vibration energy publication-title: iEnergy – volume: 100 year: 2022 article-title: Strategies for effectively harvesting wind energy based on triboelectric nanogenerators publication-title: Nano Energy – volume: 82 year: 2021 article-title: Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy publication-title: Nano Energy – volume: 10 start-page: 2233 issue: 4 year: 2014 end-page: 2243 article-title: Internet of things in industries: a survey publication-title: IEEE Trans Ind Inform – volume: 31 start-page: 351 year: 2017 end-page: 358 article-title: Integrated triboelectric nanogenerator array based on air‐driven membrane structures for water wave energy harvesting publication-title: Nano Energy – volume: 93 year: 2022 article-title: Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self‐powered seawater electrolysis publication-title: Nano Energy – volume: 32 year: 2022 article-title: Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting publication-title: Adv Funct Mater – volume: 10 issue: 23 year: 2020 article-title: Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting publication-title: Adv Energy Mater – volume: 11 start-page: 2951 issue: 6 year: 2018 end-page: 2969 article-title: Development, applications, and future directions of triboelectric nanogenerators publication-title: Nano Res – volume: 121 start-page: 566 issue: 3 year: 1999 end-page: 571 article-title: On the efficiency of electric power generation with piezoelectric ceramic publication-title: J Dyn Sys Meas Control – volume: 7 issue: 1 year: 2017 article-title: Broadband energy harvester using non‐linear polymer spring and electromagnetic/triboelectric hybrid mechanism publication-title: Sci Rep – volume: 113 year: 2021 article-title: Triboelectric nanogenerator‐based wearable electronic devices and systems: toward informatization and intelligence publication-title: Digit Signal Process – volume: 99 year: 2022 article-title: Self‐driven real‐time angle vector sensor as security dialer based on bi‐directional backstop triboelectric nanogenerator publication-title: Nano Energy – volume: 13 start-page: 26084 issue: 22 year: 2021 end-page: 26092 article-title: Frequency band characteristics of a triboelectric nanogenerator and ultra‐wide‐band vibrational energy harvesting publication-title: ACS Appl Mater Interfaces – volume: 32 start-page: 287 year: 2017 end-page: 293 article-title: A spring‐based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low‐frequency vibration energy publication-title: Nano Energy – volume: 12 start-page: 56060 issue: 50 year: 2020 end-page: 56067 article-title: Fully biodegradable water droplet energy harvester based on leaves of living plants publication-title: ACS Appl Mater Interfaces – volume: 15 start-page: 13200 issue: 8 year: 2021 end-page: 13208 article-title: All‐weather droplet‐based triboelectric nanogenerator for wave energy harvesting publication-title: ACS Nano – volume: 18 year: 2022 article-title: Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy publication-title: Small – volume: 37 start-page: 433 year: 2021 end-page: 465 article-title: Recycling and environmental issues of lithium‐ion batteries: advances, challenges and opportunities publication-title: Energy Stor Mater – volume: 66 year: 2019 article-title: Textile‐based triboelectric nanogenerator with alternating positive and negative freestanding grating structure publication-title: Nano Energy – volume: 12 issue: 3 year: 2022 article-title: Interaction between water wave and geometrical structures of floating triboelectric nanogenerators publication-title: Adv Energy Mater – volume: 19 start-page: 1311 issue: 11 year: 2008 end-page: 1325 article-title: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters publication-title: J Intell Mater Syst Struct – volume: 13 start-page: 17417 issue: 41 year: 2021 end-page: 17427 article-title: High output achieved by sliding electrification of an electrospun nano‐grating publication-title: Nanoscale – volume: 136 year: 2021 article-title: Electromechanical coupling modeling and analysis of contact‐separation mode triboelectric nanogenerators publication-title: Int J Non Linear Mech – volume: 14 start-page: 126 year: 2015 end-page: 138 article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications publication-title: Nano Energy – volume: 8 start-page: 12004 issue: 12 year: 2014 end-page: 12013 article-title: Quantitative measurements of vibration amplitude using a contact‐mode freestanding triboelectric nanogenerator publication-title: ACS Nano – volume: 64 year: 2019 article-title: Super‐robust and frequency‐multiplied triboelectric nanogenerator for efficient harvesting water and wind energy publication-title: Nano Energy – volume: 7 start-page: 2339 issue: 7 year: 2014 end-page: 2349 article-title: A theoretical study of grating structured triboelectric nanogenerators publication-title: Energy Environ Sci – volume: 32 issue: 15 year: 2022 article-title: Intelligent sound monitoring and identification system combining triboelectric nanogenerator‐based self‐powered sensor with deep learning technique publication-title: Adv Funct Mater – volume: 30 issue: 9 year: 2021 article-title: Theoretical investigation and experiment of a disc‐shaped triboelectric energy harvester with a magnetic bistable mechanism publication-title: Smart Mater Struct – volume: 4 start-page: 3287 issue: 9 year: 2011 end-page: 3295 article-title: Lithium‐ion batteries. A look into the future publication-title: Energy Environ Sci – volume: 2 start-page: 19427 issue: 45 year: 2014 end-page: 19434 article-title: Flexible interdigital‐electrodes‐based triboelectric generators for harvesting sliding and rotating mechanical energy publication-title: J Mater Chem A – ident: e_1_2_10_101_1 doi: 10.1016/j.enconman.2022.115523 – ident: e_1_2_10_25_1 doi: 10.1016/j.nanoen.2019.104148 – ident: e_1_2_10_38_1 doi: 10.1088/0964-1726/22/3/035013 – ident: e_1_2_10_73_1 doi: 10.1016/j.energy.2022.124028 – ident: e_1_2_10_36_1 doi: 10.1002/9781119991151 – ident: e_1_2_10_42_1 doi: 10.1088/0964-1726/23/10/105004 – ident: e_1_2_10_37_1 doi: 10.1016/j.jsv.2010.11.018 – ident: e_1_2_10_80_1 doi: 10.1002/aenm.202000064 – ident: e_1_2_10_85_1 doi: 10.1007/s11071-020-05645-z – ident: e_1_2_10_86_1 doi: 10.1088/1361-665X/ac1a21 – ident: e_1_2_10_14_1 doi: 10.1007/s12274-018-1997-9 – ident: e_1_2_10_65_1 doi: 10.1016/j.nanoen.2016.12.004 – ident: e_1_2_10_54_1 doi: 10.1016/j.nanoen.2022.107070 – ident: e_1_2_10_31_1 doi: 10.1109/TMECH.2011.2160275 – ident: e_1_2_10_78_1 doi: 10.1016/j.nanoen.2019.103908 – ident: e_1_2_10_47_1 doi: 10.1007/s12274-021-3797-x – ident: e_1_2_10_66_1 doi: 10.1016/j.nanoen.2016.12.061 – ident: e_1_2_10_75_1 doi: 10.1016/j.nanoen.2017.01.059 – ident: e_1_2_10_63_1 doi: 10.1002/adma.201402428 – ident: e_1_2_10_70_1 doi: 10.1016/j.nanoen.2021.105836 – ident: e_1_2_10_9_1 doi: 10.1016/j.enconman.2020.112670 – ident: e_1_2_10_8_1 doi: 10.1109/MPRV.2005.9 – ident: e_1_2_10_93_1 doi: 10.1038/srep41396 – ident: e_1_2_10_24_1 doi: 10.1039/C4EE00498A – ident: e_1_2_10_30_1 doi: 10.1177/1045389X07085639 – ident: e_1_2_10_12_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_10_62_1 doi: 10.1016/j.nanoen.2022.107522 – ident: e_1_2_10_40_1 doi: 10.1115/1.2802517 – ident: e_1_2_10_58_1 doi: 10.1021/nn405209u – ident: e_1_2_10_19_1 doi: 10.1002/adma.202101262 – ident: e_1_2_10_67_1 doi: 10.1038/s41598-019-44683-5 – ident: e_1_2_10_105_1 doi: 10.1002/adfm.201900327 – ident: e_1_2_10_52_1 doi: 10.1002/adfm.202203884 – ident: e_1_2_10_50_1 doi: 10.1039/c3ee42571a – ident: e_1_2_10_68_1 doi: 10.3390/electronics8121526 – ident: e_1_2_10_82_1 doi: 10.1038/s41467-020-17619-1 – ident: e_1_2_10_104_1 doi: 10.1021/acsami.0c17601 – ident: e_1_2_10_4_1 doi: 10.1109/TII.2014.2300753 – ident: e_1_2_10_57_1 doi: 10.1002/adfm.201304211 – ident: e_1_2_10_83_1 doi: 10.1002/admt.202100496 – ident: e_1_2_10_22_1 doi: 10.1038/s41528-017-0007-8 – ident: e_1_2_10_26_1 doi: 10.1039/D1NR04769H – ident: e_1_2_10_59_1 doi: 10.1016/j.ijnonlinmec.2021.103773 – ident: e_1_2_10_21_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_10_64_1 doi: 10.1002/aenm.201301322 – ident: e_1_2_10_61_1 doi: 10.1021/acsnano.1c02790 – ident: e_1_2_10_97_1 doi: 10.1002/adfm.202112155 – ident: e_1_2_10_72_1 doi: 10.1021/acsnano.2c01594 – ident: e_1_2_10_95_1 doi: 10.1002/aenm.202103408 – ident: e_1_2_10_46_1 doi: 10.1007/s11705-020-1956-3 – ident: e_1_2_10_69_1 doi: 10.1021/acsami.0c21246 – ident: e_1_2_10_96_1 doi: 10.1016/j.nanoen.2022.107164 – ident: e_1_2_10_7_1 doi: 10.1016/j.rser.2016.08.039 – ident: e_1_2_10_53_1 doi: 10.1021/acsnano.8b04654 – ident: e_1_2_10_90_1 doi: 10.1021/acsami.1c06031 – ident: e_1_2_10_100_1 doi: 10.1039/C9EE03258D – ident: e_1_2_10_3_1 doi: 10.1016/j.compind.2020.103224 – ident: e_1_2_10_49_1 doi: 10.1016/j.nanoen.2019.02.035 – ident: e_1_2_10_45_1 doi: 10.3390/en15165807 – ident: e_1_2_10_55_1 doi: 10.3390/ma15103696 – ident: e_1_2_10_39_1 doi: 10.1016/j.enconman.2019.111973 – ident: e_1_2_10_32_1 doi: 10.1016/j.enconman.2014.09.026 – ident: e_1_2_10_84_1 doi: 10.1088/1361-665X/ab3a6a – ident: e_1_2_10_16_1 doi: 10.1002/smll.202107034 – ident: e_1_2_10_33_1 doi: 10.1016/j.eml.2017.05.002 – ident: e_1_2_10_28_1 doi: 10.1039/C4TA04137B – ident: e_1_2_10_13_1 doi: 10.1002/aenm.202000137 – ident: e_1_2_10_98_1 doi: 10.1016/j.nanoen.2022.107209 – ident: e_1_2_10_10_1 doi: 10.1088/2516-1083/abdbba – ident: e_1_2_10_5_1 doi: 10.1039/c1ee01388b – ident: e_1_2_10_79_1 doi: 10.1002/aenm.201900801 – ident: e_1_2_10_81_1 doi: 10.1016/j.nanoen.2019.104440 – ident: e_1_2_10_23_1 doi: 10.1016/j.nanoen.2014.11.050 – volume: 13 start-page: 1932 issue: 2 year: 2019 ident: e_1_2_10_77_1 article-title: High power density tower‐like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – ident: e_1_2_10_56_1 doi: 10.1002/adfm.202202048 – ident: e_1_2_10_6_1 doi: 10.1016/j.ensm.2021.02.032 – ident: e_1_2_10_11_1 doi: 10.1002/aenm.201703133 – ident: e_1_2_10_51_1 doi: 10.1002/advs.202001757 – ident: e_1_2_10_106_1 doi: 10.1016/j.nanoen.2022.107431 – ident: e_1_2_10_41_1 doi: 10.1177/1045389X08099468 – ident: e_1_2_10_43_1 doi: 10.1364/OE.18.009739 – ident: e_1_2_10_76_1 doi: 10.1021/acsnano.6b03293 – ident: e_1_2_10_15_1 doi: 10.1002/aenm.201802906 – ident: e_1_2_10_87_1 doi: 10.23919/IEN.2022.0028 – ident: e_1_2_10_88_1 doi: 10.1016/j.nanoen.2020.104684 – ident: e_1_2_10_34_1 doi: 10.1088/0964-1726/21/8/085008 – ident: e_1_2_10_44_1 doi: 10.1021/acs.nanolett.2c01912 – ident: e_1_2_10_99_1 doi: 10.1016/j.nanoen.2021.106776 – ident: e_1_2_10_102_1 doi: 10.1002/aenm.201902824 – ident: e_1_2_10_29_1 doi: 10.1002/aenm.201700565 – ident: e_1_2_10_71_1 doi: 10.1021/acsnano.5b06329 – ident: e_1_2_10_27_1 doi: 10.1021/nn5054365 – ident: e_1_2_10_18_1 doi: 10.1016/j.dsp.2021.103038 – ident: e_1_2_10_17_1 doi: 10.1016/j.matt.2021.01.006 – ident: e_1_2_10_20_1 doi: 10.1016/j.mattod.2016.12.001 – ident: e_1_2_10_35_1 doi: 10.1115/1.4025996 – ident: e_1_2_10_94_1 doi: 10.1016/j.nanoen.2022.107622 – ident: e_1_2_10_60_1 doi: 10.1039/D0EE01258K – ident: e_1_2_10_2_1 doi: 10.1016/j.nanoen.2019.02.012 – ident: e_1_2_10_89_1 doi: 10.1016/j.nanoen.2018.11.056 – ident: e_1_2_10_103_1 doi: 10.1016/j.nanoen.2020.105740 – ident: e_1_2_10_74_1 doi: 10.1016/j.energy.2022.124431 – ident: e_1_2_10_91_1 doi: 10.1002/adma.201302397 – ident: e_1_2_10_48_1 doi: 10.1016/j.nanoen.2022.107430 – ident: e_1_2_10_92_1 doi: 10.1016/j.nanoen.2016.11.037 |
SSID | ssj0002811365 |
Score | 2.3487854 |
SecondaryResourceType | review_article |
Snippet | Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for harvesting... Abstract Triboelectric nanogenerators (TENGs) represent a promising next‐generation renewable energy technology. TENGs have become increasingly popular for... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 311 |
SubjectTerms | Bandwidths broad bandwidth Commercialization Dynamic models Efficiency electromechanical coupling model Energy Energy flow Energy harvesting Energy technology Mechanical properties Modelling Nanogenerators Random vibration Springs (elastic) triboelectric nanogenerator Vibration |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Skx7ET6xWWdCLwtpskt3NeqvWUoR60UJvIV8riu6Krf_fTLItK4hevC1hDsPMTuZNSN5D6MzYgqa5wg65cRs7BC5jXgA9Hs50SnVpcwtHA5P7bDxld7N01pL6gjthgR44BK6f2DID3jTLuGG5IZJISjXnUrvpwbVr2H1xgVvD1Is_MgKtknTFR0r6b3NDLhOCQdu91YE8Uf83dNnGqL7JjLbQZoMOo0Hwahut2WoHbbQ4A3cRGQYN-XlUlxHIVdVByeZZR5Ws6idPIw0SOlfRIAoPU_bQdHT7eDOOG-GDWDPsNiBqXCnJLClzyVSi4BV9LjFTWrtYEEOBNL00WBV56uCXGzJVoYiG8kt0KTWl-6hT1ZU9QBGmNC-MdoOK4cw1f84MIZZrw0mJrZRddL4MhtANKziIU7yKwGdMBARO-MB10enK9j1wYfxodQ0xXVkAf7VfcFkVTVbFX1ntot4yI6Ipqrmg2KFRUrgRsYsufJZ-cUNMHobEfx3-h0NHaJ3Awwd_kaWHOouPT3vs4MhCnfg_7wtYR9hg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB7O64s-SK2KZ68SaF8UTjezm9tN6YvVHkfhRFDBt2V_5RBsUjz7_3dnkzsVRPAthAkks5ndb4aZ7wP45kPJC2lZRG4qjCICNyNVEj0eG7uCuyrIQKWB2cV4eiN-3xa3PfixnIVp-SFWBTeKjLRfU4Abuzh5Ig39s_B4nCMr1Bp8oNlaEm5AcbmqsKAivRLqYUQZd4M8tfJ0_KR48vT4ixMpEfe_QJvPMWs6dCYfYbNDi9lpu7xb0Av1J9h4xiG4DXjeasovsqbKSL6qaZVt7lxWm7qZJ1ppktT5np1m7aDKDtxMfl2fTUedEMLICRY3JO5jaJlxXkkjbG5pql4aJqxz1Zih50SiXnlmS1lEOBaTTltadBSOuauM43wX-nVThz3IGOey9C4mLl6JCAaU8IhBOa-wYsGYARwunaFdxxJOYhX3uuU3Rk2O08lxA_i6sv3bcmO8avWTfLqyID7rdKN5mOsuPHQe4pcwJYNQXkiPBg3nTinjYo4YQdkAhssV0V2QLTRnEZ1iGVPGARylVXrjNfTs6hzT1f57jD_DOtLAQ2pgGUL_8eFf-BJhyKM9SH_bf7jt0xg priority: 102 providerName: Wiley-Blackwell |
Title | Dynamics of triboelectric nanogenerators: A review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12058 https://www.proquest.com/docview/3092329289 https://doaj.org/article/1ef60087e48d47d2a2a33c88ac026560 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VuJRD1ZZWLB-rSO2lSCnO2Lt2uKDdwhZVAqG2SNwsx3ZQpZJQFv5_Z5zsspUqblFkRcnYM34zGb8H8DHEUo50JQi5mZgTAne5KZkeT4z9SPo66silgfOL8dmV-nY9uu4LbvO-rXIRE1OgDq3nGvmhFARFsKT84PjuT86qUfx3tZfQWIONgnYaXudm9nVZY0HDiiXcxYia4gGBnXLJUIqHt_OAnwsUrPa-sicl6v5_8OYqak3bzuw1vOrxYjbpJvgNvIjNW9hcYRHcAjzpVOXnWVtnLGDVdto2v3zWuKa9ScTSLKpzlE2y7qjKO7ianf78cpb3Ugi5V4JCkgzkXG5c1Nqpqqj4XL12QlXe12OBQTKNeh1EVeoRATJKO6uyQs8OWfjaeSnfw3rTNnEbMiGlLoOn1CUYRXDAqIAYjQ8GaxGdG8CnhTGs73nCWa7it-0YjtGy4Wwy3AA-LMfedewY_x01ZZsuRzCjdbrR3t_Y3kFsEelLhNFRmaB0QIdOSm-M85QlEiwbwN5iRmzvZnP7tCgGcJBm6ZnXsOc_TjBd7Tz_rF14iXzIITWt7MH6w_1j3Cfo8VANYQ3V5TCtsiFsTE8vLr8PUxr_F74h1eo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7K9UF9EH_iadWA-qAQu5ndu2wEkdZrudreIdpC37ab3U0RNKm9ivhP-Tc6s0nOE6RvfQthCcns7Ow3k53vA3juQyFHeSkIuemQEgK3qS6YHk-M3Ui6KuSBSwOz-Xh6pD4cj47X4HffC8PHKvuYGAO1bxzXyDelICiCBeUH786-p6waxX9XewmN1i32w6-flLIt3u5NaH5fIO7uHL6fpp2qQOqUoNUtPfmpHWdVblWZldyinluhSueqsUAvmZG88qIs8hFhG8rgyqJEx76duco6LoBSyF9X3NE6gPXtnfnHT8uqDmrWSOFzk5hTBCJ4VSw5UXHz28Lj6wwF68uv7IJRLOAfhLuKk-NGt3sLbnYINdlqXeo2rIX6DtxY4S28CzhpdewXSVMlLJnVtGo6X1xS27o5jVTWLOPzJtlK2uaYe3B0JWa6D4O6qcMDSISUeeEdJUteKwIgWnnEoJ3XWIlg7RBe9sYwrmMmZ4GMr6blVEbDhjPRcEN4thx71vJx_HfUNtt0OYI5tOON5vzUdEvSZIG-ROg8KO1V7tGildJpbR3lpQQEh7DRz4jpFvbC_HXDIbyKs3TJa5jZ5wnGq4eXP-spXJsezg7Mwd58_xFcR26xiEdmNmBwcf4jPCbgc1E-6bwtgZOrdvA_Q88PMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bSsQwEB28gOiDeMX1WtAXhdV00m5S8UVdF-8IKvgW0iQVQVtx9f_NpN1VQQTfSplCO-lJz6SZcwC2rMt4KnLmmZt0bc_AdVtmJI_HOiblpnDC0dLA1XXn9D45f0gfRuBg0AtT60MMF9wIGWG-JoC_2mLvSzT0pW9xN0aWylEYp799BEtMboYrLCjJr4T2MKLws0EctvI0-qS493X5jy9SEO7_wTa_c9bw0enNwHTDFqPDenhnYcSVczD1TUNwHrBbe8r3o6qIyL6qqp1tnkxU6rJ6DLLSZKmzHx1GdaPKAtz3Tu6OT9uNEULbJMxPSNx6aOlOXAid5HFOXfVCsyQ3pugwtJxE1AvL8kykno75ojPPcjQEx9gU2nC-CGNlVboliBjnIrPGFy7WZyxjMrGIThorsWBO6xZsD5KhTKMSTmYVz6rWN0ZFiVMhcS3YHMa-1toYv0YdUU6HEaRnHU5Ub4-qgYeKnX8SJoVLpE2ERY2acyOlNr5G9KSsBauDEVENyPqKM89OMfMlYwt2wij9cRvq6raL4Wj5P8EbMHHT7anLs-uLFZhE6n0Ie1lWYez97cOteUbynq-HF-8TCY7VtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+triboelectric+nanogenerators%3A+A+review&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Xu%2C+Guoqiang&rft.au=Li%2C+Chuanyang&rft.au=Chen%2C+Chaojie&rft.au=Fu%2C+Jingjing&rft.date=2022-12-01&rft.issn=2767-1399&rft.eissn=2767-1402&rft.volume=2&rft.issue=4&rft.spage=311&rft.epage=324&rft_id=info:doi/10.1002%2Fmsd2.12058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_msd2_12058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon |