Cortical electrophysiological evidence for individual‐specific temporal organization of brain functional networks
The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across indiv...
Saved in:
Published in | Human brain mapping Vol. 41; no. 8; pp. 2160 - 2172 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5‐min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network‐switching pattern (i.e., transition probability and mean interval time) and the time‐allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5–48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific. |
---|---|
AbstractList | The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5‐min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network‐switching pattern (i.e., transition probability and mean interval time) and the time‐allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5–48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific. The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5-min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network-switching pattern (i.e., transition probability and mean interval time) and the time-allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5-48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5-min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network-switching pattern (i.e., transition probability and mean interval time) and the time-allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5-48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific. |
Author | Yin, Yayan Han, Meizhen Cui, Wei Gao, Jia‐Hong Shu, Su Qin, Lang |
AuthorAffiliation | 3 McGovern Institute for Brain Research, Peking University Beijing China 1 Beijing City Key Lab for Medical Physics and Engineering Institution of Heavy Ion Physics, School of Physics, Peking University Beijing China 2 Center for MRI Research, Academy for Advanced Interdisciplinary Studies Peking University Beijing China 5 Department of Radiology Xuanwu Hospital of Capital Medical University Beijing China 6 Center for Biomedical Engineering University of Science and Technology of China Hefei Anhui China 4 Department of Linguistics The University of Hong Kong Hong Kong, China |
AuthorAffiliation_xml | – name: 3 McGovern Institute for Brain Research, Peking University Beijing China – name: 5 Department of Radiology Xuanwu Hospital of Capital Medical University Beijing China – name: 2 Center for MRI Research, Academy for Advanced Interdisciplinary Studies Peking University Beijing China – name: 6 Center for Biomedical Engineering University of Science and Technology of China Hefei Anhui China – name: 4 Department of Linguistics The University of Hong Kong Hong Kong, China – name: 1 Beijing City Key Lab for Medical Physics and Engineering Institution of Heavy Ion Physics, School of Physics, Peking University Beijing China |
Author_xml | – sequence: 1 givenname: Su surname: Shu fullname: Shu, Su organization: McGovern Institute for Brain Research, Peking University – sequence: 2 givenname: Lang surname: Qin fullname: Qin, Lang organization: The University of Hong Kong – sequence: 3 givenname: Yayan surname: Yin fullname: Yin, Yayan organization: Xuanwu Hospital of Capital Medical University – sequence: 4 givenname: Meizhen surname: Han fullname: Han, Meizhen organization: McGovern Institute for Brain Research, Peking University – sequence: 5 givenname: Wei surname: Cui fullname: Cui, Wei organization: University of Science and Technology of China – sequence: 6 givenname: Jia‐Hong orcidid: 0000-0002-9311-0297 surname: Gao fullname: Gao, Jia‐Hong email: jgao@pku.edu.cn organization: McGovern Institute for Brain Research, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31961469$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c1u1DAQB3ALFdEPOPACKBIXOKT1V-L1BQlWhSIVcYGz5TiTXZfEE-yk1XLqI_CMPAleUipA4mR7_PNorP8xOQgYgJCnjJ4ySvnZthlOudRCPSBHjGpVUqbFwX5fV6WWih2S45SuKGWsouwRORRM10zW-oikNcbJO9sX0IObIo7bXfLY42YpXvsWgoOiw1j40Pp8nm3_4_Z7GsH5zrtigmHEmC3GjQ3-m508hgK7oonWh6Kbg9tXMggw3WD8kh6Th53tEzy5W0_I57fnn9YX5eXHd-_Xry9LJ6lQpQS-ArAaOLeWdZK1rG1FI1aNqtgqlyoFLYjaWcmda4BxYWGloBONUlxbcUJeLX3HuRmgdRCmPKcZox9s3Bm03vx9E_zWbPDaKF4rTUVu8OKuQcSvM6TJDD456HsbAOdkuJCCikppnunzf-gVzjH_eq-0ElTKqsrq2Z8T3Y_yO48MXi7ARUwpQndPGDX7rE3O2vzKOtuzxd74Hnb_h-bizYflxU8TZ6-R |
Cites_doi | 10.1016/j.ijpsycho.2005.12.008 10.1016/j.neuroimage.2016.08.061 10.1016/j.neuroimage.2013.09.022 10.1109/10.623056 10.1007/1-84628-119-9_14 10.1016/j.nicl.2018.05.028 10.1093/cercor/bhv185 10.1073/pnas.1713532115 10.1038/s41467-018-03462-y 10.1016/j.neuroimage.2014.09.007 10.1523/JNEUROSCI.5587-06.2007 10.1038/s41467-018-04920-3 10.1073/pnas.1112685108 10.1002/hbm.20102 10.1016/j.neuroimage.2018.10.068 10.1007/s10519-009-9330-8 10.1155/2011/879716 10.1038/nn.4164 10.1016/j.neuroimage.2017.10.003 10.1038/s41562-017-0184-4 10.1038/srep42117 10.1016/j.neuroimage.2012.03.048 10.1155/2011/156869 10.1152/jn.00338.2011 10.1073/pnas.0913863107 10.1002/hbm.22279 10.1371/journal.pbio.2007032 10.1016/j.neuroimage.2015.03.071 10.1016/j.neuroimage.2017.07.001 10.1016/j.neuron.2018.03.035 10.1146/annurev-neuro-071013-014030 10.1016/j.neuron.2018.04.007 10.1073/pnas.0800005105 10.1126/science.aad8127 10.1016/j.neuroimage.2011.11.005 10.1016/j.neuroimage.2013.05.079 10.1073/pnas.98.2.676 10.1098/rsta.2007.2092 10.1093/cercor/bhs352 10.1007/s00429-005-0025-5 10.1088/0031-9155/48/22/002 10.1006/nimg.1999.0454 10.1371/journal.pcbi.1003548 10.7554/eLife.01867 10.1016/j.neuroimage.2016.05.070 10.1038/nrn2201 10.1016/j.neuron.2012.12.028 10.1016/j.tics.2012.02.004 10.1016/j.neuroimage.2011.10.018 10.1002/hbm.23285 10.1073/pnas.1705120114 10.1126/science.1195870 10.1016/j.neuroimage.2014.06.044 10.1016/j.neuroimage.2013.12.066 10.1016/j.neuron.2013.10.002 10.1093/cercor/bhy123 10.1038/nrn.2016.56 10.1006/nimg.2001.0978 10.1002/hbm.23890 10.1016/j.neuroimage.2018.03.008 10.1038/385157a0 10.1038/s41467-018-05316-z 10.1002/hbm.22943 10.1002/hbm.20627 10.1016/j.tics.2010.04.004 10.1002/hbm.20468 10.1016/j.neuroimage.2019.02.002 10.1016/j.neuroimage.2018.02.029 10.1038/nn.4135 10.1016/j.neuroimage.2013.03.036 10.1016/j.neuroimage.2017.09.063 10.1073/pnas.1814785115 10.1016/j.neuroimage.2015.04.030 10.1016/j.neuron.2016.07.031 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.24937 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Shu et al |
EISSN | 1097-0193 |
EndPage | 2172 |
ExternalDocumentID | PMC7267903 31961469 10_1002_hbm_24937 HBM24937 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81790651; 81790650; 81727808; 31421003 – fundername: Guangdong Pearl River Talents Plan funderid: 2016ZT06S220 – fundername: Beijing Municipal Science & Technology Commission funderid: Z171100000117012 – fundername: Guangdong key basic research grant funderid: 2018B030332001 – fundername: Beijing Brain Initiative of Beijing Municipal Science & Technology Commission funderid: Z181100001518003 – fundername: Guangdong key basic research grant grantid: 2018B030332001 – fundername: ; grantid: 81790651; 81790650; 81727808; 31421003 – fundername: Beijing Municipal Science & Technology Commission grantid: Z171100000117012 – fundername: Beijing Brain Initiative of Beijing Municipal Science & Technology Commission grantid: Z181100001518003 – fundername: Guangdong Pearl River Talents Plan grantid: 2016ZT06S220 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 7X7 8FI 8FJ AAFWJ AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACRPL ACSCC ACYXJ ADNMO AFKRA AFPKN AGQPQ ASPBG AVWKF AZFZN BENPR BFHJK CCPQU CITATION EJD FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI UKHRP WXSBR NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4037-4e28eea9e22aa1f41d1dd3b38b7518aa157ede36ca42ccbe123ae87ef3b7729a3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:07:04 EDT 2025 Fri Jul 11 10:05:08 EDT 2025 Sat Jul 26 02:25:39 EDT 2025 Thu Apr 03 07:07:18 EDT 2025 Tue Jul 01 01:10:57 EDT 2025 Wed Jan 22 16:34:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | dynamic functional connectivity default mode network static functional connectivity temporal organization large-scale network magnetoencephalography |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4037-4e28eea9e22aa1f41d1dd3b38b7518aa157ede36ca42ccbe123ae87ef3b7729a3 |
Notes | Funding information Beijing Brain Initiative of Beijing Municipal Science & Technology Commission, Grant/Award Number: Z181100001518003; Beijing Municipal Science & Technology Commission, Grant/Award Number: Z171100000117012; Guangdong key basic research grant, Grant/Award Number: 2018B030332001; Guangdong Pearl River Talents Plan, Grant/Award Number: 2016ZT06S220; National Natural Science Foundation of China, Grant/Award Numbers: 81790651, 81790650, 81727808, 31421003 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Beijing Brain Initiative of Beijing Municipal Science & Technology Commission, Grant/Award Number: Z181100001518003; Beijing Municipal Science & Technology Commission, Grant/Award Number: Z171100000117012; Guangdong key basic research grant, Grant/Award Number: 2018B030332001; Guangdong Pearl River Talents Plan, Grant/Award Number: 2016ZT06S220; National Natural Science Foundation of China, Grant/Award Numbers: 81790651, 81790650, 81727808, 31421003 |
ORCID | 0000-0002-9311-0297 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24937 |
PMID | 31961469 |
PQID | 2397304455 |
PQPubID | 996345 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7267903 proquest_miscellaneous_2343035792 proquest_journals_2397304455 pubmed_primary_31961469 crossref_primary_10_1002_hbm_24937 wiley_primary_10_1002_hbm_24937_HBM24937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 1, 2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2002; 15 2015; 36 2017; 1 2015; 38 2010; 14 2010; 107 2015; 104 1997; 44 2005; 210 2019; 17 2014; 24 2008; 105 2012; 16 2012; 59 2016; 37 2017; 114 2005; 25 2006; 60 2018; 174 2018; 9 2018; 39 2014; 3 2018; 173 2008; 29 1997; 385 2007; 8 2003; 48 2019; 29 2016; 352 1999; 10 2018; 180 2012; 63 2014; 10 2001; 98 2007; 27 2014; 91 2015; 18 2012 2005 2008; 366 2016; 91 2014; 84 2016; 17 2018; 20 2011; 331 2019; 189 2010; 40 2019; 186 2011; 2011 2009; 30 2011; 108 2011; 106 2013; 77 2015; 115 2018; 115 2013; 80 2014; 35 2016; 138 2015; 117 2014; 100 2018; 98 2017; 146 2016; 26 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Seung S. (e_1_2_8_59_1) 2012 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 115 start-page: 13376 year: 2018 end-page: 13381 article-title: Multilayer network switching rate predicts brain performance publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 27 start-page: 2349 year: 2007 end-page: 2356 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: The Journal of Neuroscience – volume: 106 start-page: 1125 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 77 start-page: 586 year: 2013 end-page: 595 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron – volume: 77 start-page: 77 year: 2013 end-page: 92 article-title: Dynamic state allocation for MEG source reconstruction publication-title: NeuroImage – year: 2005 – volume: 17 start-page: 513 year: 2016 end-page: 523 article-title: Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex publication-title: Nature Reviews. Neuroscience – volume: 180 start-page: 559 year: 2018 end-page: 576 article-title: Dynamics of large‐scale electrophysiological networks: A technical review publication-title: NeuroImage – volume: 17 year: 2019 article-title: Performing group‐level functional image analyses based on homologous functional regions mapped in individuals publication-title: PLoS Biology – volume: 59 start-page: 3909 year: 2012 end-page: 3921 article-title: Frequency‐dependent functional connectivity within resting‐state networks: an atlas‐based MEG beamformer solution publication-title: NeuroImage – volume: 114 start-page: 12827 year: 2017 end-page: 12832 article-title: Brain network dynamics are hierarchically organized in time publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 year: 2017 article-title: Dynamic hub load predicts cognitive decline after resective neurosurgery publication-title: Scientific Reports – volume: 40 start-page: 167 year: 2010 end-page: 177 article-title: Endophenotypes in a dynamically connected brain publication-title: Behavior Genetics – volume: 63 start-page: 910 year: 2012 end-page: 920 article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage publication-title: NeuroImage – volume: 186 start-page: 70 year: 2019 end-page: 82 article-title: Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching publication-title: NeuroImage – volume: 36 start-page: 4604 year: 2015 end-page: 4621 article-title: A geometric correction scheme for spatial leakage effects in MEG/EEG seed‐based functional connectivity mapping publication-title: Human Brain Mapping – volume: 26 start-page: 4015 year: 2016 end-page: 4033 article-title: A dynamic core network and global efficiency in the resting human brain publication-title: Cerebral Cortex – volume: 98 start-page: 439 year: 2018 end-page: 452 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron – volume: 20 start-page: 128 year: 2018 end-page: 152 article-title: Short timescale abnormalities in the states of spontaneous synchrony in the functional neural networks in Alzheimer's disease publication-title: NeuroImage: Clinical – volume: 16 start-page: 219 year: 2012 end-page: 230 article-title: Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs publication-title: Trends in Cognitive Sciences – volume: 105 start-page: 12569 year: 2008 end-page: 12574 article-title: A critical role for the right fronto‐insular cortex in switching between central‐executive and default‐mode networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 180 start-page: 505 year: 2018 end-page: 514 article-title: Just a thought: how mind‐wandering is represented in dynamic brain connectivity publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: NeuroImage – volume: 174 start-page: 563 year: 2018 end-page: 575 article-title: Altered temporal stability in dynamic neural networks underlies connectivity changes in neurodevelopment publication-title: NeuroImage – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 331 start-page: 83 year: 2011 end-page: 87 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science – volume: 91 start-page: 511 year: 2016 end-page: 528 article-title: Clinical concepts emerging from fMRI functional connectomics publication-title: Neuron – volume: 100 start-page: 471 year: 2014 end-page: 480 article-title: Dynamic functional connectivity of the default mode network tracks daydreaming publication-title: NeuroImage – volume: 104 start-page: 430 year: 2015 end-page: 436 article-title: On spurious and real fluctuations of dynamic functional connectivity during rest publication-title: NeuroImage – volume: 91 start-page: 282 year: 2014 end-page: 299 article-title: Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity publication-title: NeuroImage – volume: 9 year: 2018 article-title: Task‐induced brain state manipulation improves prediction of individual traits publication-title: Nature Communications – volume: 366 start-page: 329 year: 2008 end-page: 343 article-title: The criticality hypothesis: how local cortical networks might optimize information processing publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 2011 start-page: 1 year: 2011 end-page: 9 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Computational Intelligence and Neuroscience – volume: 44 start-page: 867 year: 1997 end-page: 880 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Transactions on Biomedical Engineering – volume: 117 start-page: 439 year: 2015 end-page: 448 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: NeuroImage – volume: 18 start-page: 1853 year: 2015 end-page: 1860 article-title: Parcellating cortical functional networks in individuals publication-title: Nature Neuroscience – volume: 180 start-page: 370 year: 2018 end-page: 382 article-title: Cortical cores in network dynamics publication-title: NeuroImage – volume: 35 start-page: 1642 year: 2014 end-page: 1653 article-title: A framework for the design of flexible cross‐talk functions for spatial filtering of EEG/MEG data: DeFleCT publication-title: Human Brain Mapping – volume: 29 start-page: 2533 year: 2019 end-page: 2551 article-title: Spatial topography of individual‐specific cortical networks predicts human cognition, personality, and emotion publication-title: Cerebral Cortex – volume: 146 start-page: 667 year: 2017 end-page: 678 article-title: Measurement of dynamic task related functional networks using MEG publication-title: NeuroImage – volume: 18 start-page: 1664 year: 2015 end-page: 1671 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature Neuroscience – volume: 80 start-page: 360 year: 2013 end-page: 378 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: NeuroImage – volume: 385 start-page: 157 year: 1997 end-page: 161 article-title: Visuomotor integration is associated with zero time‐lag synchronization among cortical areas publication-title: Nature – volume: 352 start-page: 216 year: 2016 end-page: 220 article-title: Task‐free MRI predicts individual differences in brain activity during task performance publication-title: Science – volume: 14 start-page: 277 year: 2010 end-page: 290 article-title: Large‐scale brain networks in cognition: emerging methods and principles publication-title: Trends in Cognitive Sciences – volume: 10 year: 2014 article-title: Mechanisms of zero‐lag synchronization in cortical motifs publication-title: PLoS Computational Biology – volume: 9 start-page: 1157 year: 2018 article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis publication-title: Nature Communications – volume: 8 start-page: 700 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Reviews. Neuroscience – volume: 98 start-page: 243 year: 2018 end-page: 245 article-title: Personalized Neuroscience: Common and Individual‐Specific Features in Functional Brain Networks publication-title: Neuron – volume: 98 start-page: 676 year: 2001 end-page: 682 article-title: A default mode of brain function publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 210 start-page: 343 year: 2005 end-page: 352 article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps publication-title: Anatomy and Embryology – volume: 38 start-page: 433 year: 2015 end-page: 447 article-title: The brain's default mode network publication-title: Annual Review of Neuroscience – year: 2012 – volume: 29 start-page: 1368 year: 2008 end-page: 1378 article-title: Heritability of "small‐world" networks in the brain: a graph theoretical analysis of resting‐state EEG functional connectivity publication-title: Human Brain Mapping – volume: 25 start-page: 199 year: 2005 end-page: 211 article-title: A new approach to neuroimaging with magnetoencephalography publication-title: Human Brain Mapping – volume: 48 start-page: 3637 year: 2003 end-page: 3652 article-title: The magnetic lead field theorem in the quasi‐static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors publication-title: Physics in Medicine and Biology – volume: 1 start-page: 713 year: 2017 end-page: 722 article-title: Language, mind and brain publication-title: Nature Human Behaviour – volume: 30 start-page: 1524 year: 2009 end-page: 1534 article-title: Removal of magnetoencephalographic artifacts with temporal signal‐space separation: demonstration with single‐trial auditory‐evoked responses publication-title: Human Brain Mapping – volume: 189 start-page: 676 year: 2019 end-page: 687 article-title: The individual functional connectome is unique and stable over months to years publication-title: NeuroImage – volume: 39 start-page: 902 year: 2018 end-page: 915 article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns publication-title: Human Brain Mapping – volume: 10 start-page: 173 year: 1999 end-page: 180 article-title: Visualization of magnetoencephalographic data using minimum current estimates publication-title: NeuroImage – volume: 2011 start-page: 879716 year: 2011 end-page: 879713 article-title: Brainstorm: A user‐friendly application for MEG/EEG analysis publication-title: Computational Intelligence and Neuroscience – volume: 3 year: 2014 article-title: Fast transient networks in spontaneous human brain activity publication-title: eLife – volume: 80 start-page: 751 year: 2013 end-page: 764 article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms publication-title: Neuron – volume: 84 start-page: 585 year: 2014 end-page: 604 article-title: MEG source imaging method using fast L1 minimum‐norm and its applications to signals with brain noise and human resting‐state source amplitude images publication-title: NeuroImage – volume: 173 start-page: 240 year: 2018 end-page: 248 article-title: Time scale properties of task and resting‐state functional connectivity: Detrended partial cross‐correlation analysis publication-title: NeuroImage – volume: 37 start-page: 3911 year: 2016 end-page: 3928 article-title: Dynamic functional connectivity shapes individual differences in associative learning publication-title: Human Brain Mapping – volume: 24 start-page: 663 year: 2014 end-page: 676 article-title: Tracking whole‐brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – volume: 115 start-page: 1087 year: 2018 end-page: 1092 article-title: Robust prediction of individual creative ability from brain functional connectivity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 115 start-page: 85 year: 2015 end-page: 95 article-title: Dynamic recruitment of resting state sub‐networks publication-title: NeuroImage – volume: 138 start-page: 284 year: 2016 end-page: 293 article-title: How reliable are MEG resting‐state connectivity metrics? publication-title: NeuroImage – volume: 9 start-page: 2987 year: 2018 article-title: Spontaneous cortical activity transiently organises into frequency specific phase‐coupling networks publication-title: Nature Communications – volume: 108 start-page: 16783 year: 2011 end-page: 16788 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 107 start-page: 6040 year: 2010 end-page: 6045 article-title: Temporal dynamics of spontaneous MEG activity in brain networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 60 start-page: 139 year: 2006 end-page: 148 article-title: Operational principles of neurocognitive networks publication-title: International Journal of Psychophysiology – ident: e_1_2_8_9_1 doi: 10.1016/j.ijpsycho.2005.12.008 – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2016.08.061 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2013.09.022 – ident: e_1_2_8_69_1 doi: 10.1109/10.623056 – ident: e_1_2_8_55_1 doi: 10.1007/1-84628-119-9_14 – ident: e_1_2_8_60_1 doi: 10.1016/j.nicl.2018.05.028 – ident: e_1_2_8_20_1 doi: 10.1093/cercor/bhv185 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1713532115 – ident: e_1_2_8_54_1 doi: 10.1038/s41467-018-03462-y – ident: e_1_2_8_38_1 doi: 10.1016/j.neuroimage.2014.09.007 – ident: e_1_2_8_58_1 doi: 10.1523/JNEUROSCI.5587-06.2007 – ident: e_1_2_8_27_1 doi: 10.1038/s41467-018-04920-3 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1112685108 – ident: e_1_2_8_30_1 doi: 10.1002/hbm.20102 – ident: e_1_2_8_41_1 doi: 10.1016/j.neuroimage.2018.10.068 – ident: e_1_2_8_61_1 doi: 10.1007/s10519-009-9330-8 – ident: e_1_2_8_64_1 doi: 10.1155/2011/879716 – ident: e_1_2_8_72_1 doi: 10.1038/nn.4164 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2017.10.003 – ident: e_1_2_8_24_1 doi: 10.1038/s41562-017-0184-4 – ident: e_1_2_8_15_1 doi: 10.1038/srep42117 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroimage.2012.03.048 – ident: e_1_2_8_48_1 doi: 10.1155/2011/156869 – ident: e_1_2_8_76_1 doi: 10.1152/jn.00338.2011 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.0913863107 – ident: e_1_2_8_28_1 doi: 10.1002/hbm.22279 – ident: e_1_2_8_39_1 doi: 10.1371/journal.pbio.2007032 – ident: e_1_2_8_16_1 doi: 10.1016/j.neuroimage.2015.03.071 – ident: e_1_2_8_36_1 doi: 10.1016/j.neuroimage.2017.07.001 – ident: e_1_2_8_26_1 doi: 10.1016/j.neuron.2018.03.035 – ident: e_1_2_8_52_1 doi: 10.1146/annurev-neuro-071013-014030 – ident: e_1_2_8_57_1 doi: 10.1016/j.neuron.2018.04.007 – ident: e_1_2_8_63_1 doi: 10.1073/pnas.0800005105 – ident: e_1_2_8_66_1 doi: 10.1126/science.aad8127 – ident: e_1_2_8_29_1 doi: 10.1016/j.neuroimage.2011.11.005 – ident: e_1_2_8_33_1 doi: 10.1016/j.neuroimage.2013.05.079 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.98.2.676 – ident: e_1_2_8_6_1 doi: 10.1098/rsta.2007.2092 – ident: e_1_2_8_2_1 doi: 10.1093/cercor/bhs352 – ident: e_1_2_8_3_1 doi: 10.1007/s00429-005-0025-5 – ident: e_1_2_8_44_1 doi: 10.1088/0031-9155/48/22/002 – ident: e_1_2_8_68_1 doi: 10.1006/nimg.1999.0454 – ident: e_1_2_8_25_1 doi: 10.1371/journal.pcbi.1003548 – volume-title: Connectome: How the brain's wiring makes us who we are year: 2012 ident: e_1_2_8_59_1 – ident: e_1_2_8_4_1 doi: 10.7554/eLife.01867 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuroimage.2016.05.070 – ident: e_1_2_8_23_1 doi: 10.1038/nrn2201 – ident: e_1_2_8_43_1 doi: 10.1016/j.neuron.2012.12.028 – ident: e_1_2_8_49_1 doi: 10.1016/j.tics.2012.02.004 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_8_21_1 doi: 10.1002/hbm.23285 – ident: e_1_2_8_71_1 doi: 10.1073/pnas.1705120114 – ident: e_1_2_8_7_1 doi: 10.1126/science.1195870 – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2014.06.044 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2013.12.066 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuron.2013.10.002 – ident: e_1_2_8_35_1 doi: 10.1093/cercor/bhy123 – ident: e_1_2_8_74_1 doi: 10.1038/nrn.2016.56 – ident: e_1_2_8_67_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_8_40_1 doi: 10.1002/hbm.23890 – ident: e_1_2_8_10_1 doi: 10.1016/j.neuroimage.2018.03.008 – ident: e_1_2_8_56_1 doi: 10.1038/385157a0 – ident: e_1_2_8_70_1 doi: 10.1038/s41467-018-05316-z – ident: e_1_2_8_73_1 doi: 10.1002/hbm.22943 – ident: e_1_2_8_65_1 doi: 10.1002/hbm.20627 – ident: e_1_2_8_8_1 doi: 10.1016/j.tics.2010.04.004 – ident: e_1_2_8_62_1 doi: 10.1002/hbm.20468 – ident: e_1_2_8_31_1 doi: 10.1016/j.neuroimage.2019.02.002 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2018.02.029 – ident: e_1_2_8_22_1 doi: 10.1038/nn.4135 – ident: e_1_2_8_75_1 doi: 10.1016/j.neuroimage.2013.03.036 – ident: e_1_2_8_18_1 doi: 10.1016/j.neuroimage.2017.09.063 – ident: e_1_2_8_50_1 doi: 10.1073/pnas.1814785115 – ident: e_1_2_8_45_1 doi: 10.1016/j.neuroimage.2015.04.030 – ident: e_1_2_8_42_1 doi: 10.1016/j.neuron.2016.07.031 |
SSID | ssj0011501 |
Score | 2.3159862 |
Snippet | The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2160 |
SubjectTerms | Brain Brain architecture Cognitive ability default mode network dynamic functional connectivity Electrophysiology Functional morphology large‐scale network Magnetoencephalography Markov chains Nervous system Networks Occupancy static functional connectivity Substrates temporal organization Transition probabilities |
Title | Cortical electrophysiological evidence for individual‐specific temporal organization of brain functional networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24937 https://www.ncbi.nlm.nih.gov/pubmed/31961469 https://www.proquest.com/docview/2397304455 https://www.proquest.com/docview/2343035792 https://pubmed.ncbi.nlm.nih.gov/PMC7267903 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4Bh4oLlN8G6MoghLhkydrOJlFPgIpWSKCqAokDUmQnjkB0kxW7e4ATj9Bn7JN0xk5StqgS6i2KJ4oTz3g-j2c-A-wbleDQInILoyT2ZcEjXyGI80VcRLTPKTNlE2Qv-4NreX4T3szBl6YWxvFDtAE3sgw7X5OBKz0--kMaeqeHXVw7CKokp1wtAkTfW-ooAjp2sYUu1k9wBm5YhQJ-1D4564veAMy3eZKv8at1QGfLcNt03eWdPHSnE93Nnv9idfzPb_sISzUwZcdOk1ZgzpSrsHZc4qJ8-MQOmE0VtTH4VfhwUe_Ir8H4tHq04XBWH6gzauTczfrQUobYmN23xV-_Xn5SiSelKbGaHOsHq16VhbKqYJpOr2DkeF28kpUuZX28DtdnX69OB359kIOfSSpDlIbHBrXCcK5Ur5C9vJfnQotY06YP3gojkxvRz5TkWaYNelNl4sgUQhP4V2IDFsqqNJ-AJRknAWF0oKU0udJ9hQhFIuzraRkoD_aaIU1Hjq8jdczMPMW_mtq_6sFOM9hpbbLjlCMyE4GUYejBbtuMxkY7KKo01ZRkJLp8VGvuwabTjfYtNJeh20k8iGa0phUgIu_ZlvL-zhJ6R7wfJYHw4NAqxb87ng5OLuzF1vtFt2GRU4zARo52YGHyODWfEUhNdAfmufzWsWGIjrWe3w3YIFc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8gJMqL8kelirAaY3zp0dvd3raJL0ggB3I8GEh4Mc1uuw0EaAl396BPfgQ_I5-Emd22chIT41vTTtM_O7Pz29mZ3wC8tzrFoUXkFqs0CWXJVagRxIUiKRXtc8pcuwTZo8HwRB6cxqdz8KmthfH8EF3AjSzDzddk4BSQ3vrNGnpmrnq4eBDqESxQR2-3oPrakUcR1HHLLXSyYYpzcMsrFPGt7tZZb_QAYj7MlLyPYJ0L2nsG39qX95knF73pxPTyH3_wOv7v1y3B0wabsm2vTMswZ6sVWN2ucF1-9Z19YC5b1IXhV-DxqNmUX4XxTn3jIuKs6alz3cr5k03fUobwmJ139V-3P39RlSdlKrGGH-uS1fcqQ1ldMkMNLBj5Xh-yZJXPWh8_h5O93eOdYdj0cghzSZWI0vLEomJYzrXul7Jf9ItCGJEY2vfBU7GyhRWDXEue58aiQ9U2UbYUhvC_Fi9gvqoruwYszTkJCGsiI6UttBloBCkSkV_fyEgH8K4d0-zaU3ZknpyZZ_hXM_dXA1hvRztrrHaccQRnIpIyjgN4211Ge6NNFF3ZekoyEr0-ajYP4KVXju4pNJ2h50kDUDNq0wkQl_fsler8zHF6Kz5QaSQC-Oi04u8vng0_j9zBq38X3YQnw-PRYXa4f_TlNSxyChm4QNI6zE9upvYN4qqJ2XDmcwdONSKm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlVcKLRQUlowCCEu2WZtJ07UU2lZLT-tEKJSD0iRnThqBU1W3d0DnHiEPmOfhBk7CV0qJMQtiieKE894Po9nPgO8sDrDoUXkFqssDWXFVagRxIUirRTtc8pCuwTZo2R8LN-dxCdLsNvVwnh-iD7gRpbh5msy8ElZ7fwmDT015wNcOwh1C27LJEpJpQ8-9dxRhHTcagt9bJjhFNzRCkV8p3900RndQJg3EyWvA1jngUar8KXru088-TqYz8yg-PEHreN_ftw9uNsiU7bnVek-LNl6Ddb3alyVn39nL5nLFXVB-DVYOWy35Ndhut9cuHg4a0_UmXRy_mZ7ailDcMzO-uqvq5-XVONJeUqsZcf6xpprdaGsqZih4ysYeV4fsGS1z1mfPoDj0ZvP--OwPckhLCTVIUrLU4tqYTnXeljJYTksS2FEamjXB2_FypZWJIWWvCiMRXeqbapsJQyhfy0ewnLd1PYRsKzgJCCsiYyUttQm0QhRJOK-oZGRDuB5N6T5xBN25J6amef4V3P3VwPY6gY7b212mnOEZiKSMo4DeNY3o7XRFoqubTMnGYk-H_WaB7DhdaN_C01m6HeyANSC1vQCxOS92FKfnTpGb8UTlUUigFdOKf7e8Xz8-tBdbP676FNY-Xgwyj-8PXr_GO5wihe4KNIWLM8u5nYbQdXMPHHG8wv-kSFe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+electrophysiological+evidence+for+individual-specific+temporal+organization+of+brain+functional+networks&rft.jtitle=Human+brain+mapping&rft.au=Shu%2C+Su&rft.au=Qin%2C+Lang&rft.au=Yin%2C+Yayan&rft.au=Han%2C+Meizhen&rft.date=2020-06-01&rft.eissn=1097-0193&rft.volume=41&rft.issue=8&rft.spage=2160&rft_id=info:doi/10.1002%2Fhbm.24937&rft_id=info%3Apmid%2F31961469&rft.externalDocID=31961469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |