Cortical electrophysiological evidence for individual‐specific temporal organization of brain functional networks

The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across indiv...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 8; pp. 2160 - 2172
Main Authors Shu, Su, Qin, Lang, Yin, Yayan, Han, Meizhen, Cui, Wei, Gao, Jia‐Hong
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5‐min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network‐switching pattern (i.e., transition probability and mean interval time) and the time‐allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5–48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.
AbstractList The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5‐min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network‐switching pattern (i.e., transition probability and mean interval time) and the time‐allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5–48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.
The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5-min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network-switching pattern (i.e., transition probability and mean interval time) and the time-allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5-48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5-min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network-switching pattern (i.e., transition probability and mean interval time) and the time-allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5-48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.
Author Yin, Yayan
Han, Meizhen
Cui, Wei
Gao, Jia‐Hong
Shu, Su
Qin, Lang
AuthorAffiliation 3 McGovern Institute for Brain Research, Peking University Beijing China
1 Beijing City Key Lab for Medical Physics and Engineering Institution of Heavy Ion Physics, School of Physics, Peking University Beijing China
2 Center for MRI Research, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
5 Department of Radiology Xuanwu Hospital of Capital Medical University Beijing China
6 Center for Biomedical Engineering University of Science and Technology of China Hefei Anhui China
4 Department of Linguistics The University of Hong Kong Hong Kong, China
AuthorAffiliation_xml – name: 3 McGovern Institute for Brain Research, Peking University Beijing China
– name: 5 Department of Radiology Xuanwu Hospital of Capital Medical University Beijing China
– name: 2 Center for MRI Research, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
– name: 6 Center for Biomedical Engineering University of Science and Technology of China Hefei Anhui China
– name: 4 Department of Linguistics The University of Hong Kong Hong Kong, China
– name: 1 Beijing City Key Lab for Medical Physics and Engineering Institution of Heavy Ion Physics, School of Physics, Peking University Beijing China
Author_xml – sequence: 1
  givenname: Su
  surname: Shu
  fullname: Shu, Su
  organization: McGovern Institute for Brain Research, Peking University
– sequence: 2
  givenname: Lang
  surname: Qin
  fullname: Qin, Lang
  organization: The University of Hong Kong
– sequence: 3
  givenname: Yayan
  surname: Yin
  fullname: Yin, Yayan
  organization: Xuanwu Hospital of Capital Medical University
– sequence: 4
  givenname: Meizhen
  surname: Han
  fullname: Han, Meizhen
  organization: McGovern Institute for Brain Research, Peking University
– sequence: 5
  givenname: Wei
  surname: Cui
  fullname: Cui, Wei
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Jia‐Hong
  orcidid: 0000-0002-9311-0297
  surname: Gao
  fullname: Gao, Jia‐Hong
  email: jgao@pku.edu.cn
  organization: McGovern Institute for Brain Research, Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31961469$$D View this record in MEDLINE/PubMed
BookMark eNp10c1u1DAQB3ALFdEPOPACKBIXOKT1V-L1BQlWhSIVcYGz5TiTXZfEE-yk1XLqI_CMPAleUipA4mR7_PNorP8xOQgYgJCnjJ4ySvnZthlOudRCPSBHjGpVUqbFwX5fV6WWih2S45SuKGWsouwRORRM10zW-oikNcbJO9sX0IObIo7bXfLY42YpXvsWgoOiw1j40Pp8nm3_4_Z7GsH5zrtigmHEmC3GjQ3-m508hgK7oonWh6Kbg9tXMggw3WD8kh6Th53tEzy5W0_I57fnn9YX5eXHd-_Xry9LJ6lQpQS-ArAaOLeWdZK1rG1FI1aNqtgqlyoFLYjaWcmda4BxYWGloBONUlxbcUJeLX3HuRmgdRCmPKcZox9s3Bm03vx9E_zWbPDaKF4rTUVu8OKuQcSvM6TJDD456HsbAOdkuJCCikppnunzf-gVzjH_eq-0ElTKqsrq2Z8T3Y_yO48MXi7ARUwpQndPGDX7rE3O2vzKOtuzxd74Hnb_h-bizYflxU8TZ6-R
Cites_doi 10.1016/j.ijpsycho.2005.12.008
10.1016/j.neuroimage.2016.08.061
10.1016/j.neuroimage.2013.09.022
10.1109/10.623056
10.1007/1-84628-119-9_14
10.1016/j.nicl.2018.05.028
10.1093/cercor/bhv185
10.1073/pnas.1713532115
10.1038/s41467-018-03462-y
10.1016/j.neuroimage.2014.09.007
10.1523/JNEUROSCI.5587-06.2007
10.1038/s41467-018-04920-3
10.1073/pnas.1112685108
10.1002/hbm.20102
10.1016/j.neuroimage.2018.10.068
10.1007/s10519-009-9330-8
10.1155/2011/879716
10.1038/nn.4164
10.1016/j.neuroimage.2017.10.003
10.1038/s41562-017-0184-4
10.1038/srep42117
10.1016/j.neuroimage.2012.03.048
10.1155/2011/156869
10.1152/jn.00338.2011
10.1073/pnas.0913863107
10.1002/hbm.22279
10.1371/journal.pbio.2007032
10.1016/j.neuroimage.2015.03.071
10.1016/j.neuroimage.2017.07.001
10.1016/j.neuron.2018.03.035
10.1146/annurev-neuro-071013-014030
10.1016/j.neuron.2018.04.007
10.1073/pnas.0800005105
10.1126/science.aad8127
10.1016/j.neuroimage.2011.11.005
10.1016/j.neuroimage.2013.05.079
10.1073/pnas.98.2.676
10.1098/rsta.2007.2092
10.1093/cercor/bhs352
10.1007/s00429-005-0025-5
10.1088/0031-9155/48/22/002
10.1006/nimg.1999.0454
10.1371/journal.pcbi.1003548
10.7554/eLife.01867
10.1016/j.neuroimage.2016.05.070
10.1038/nrn2201
10.1016/j.neuron.2012.12.028
10.1016/j.tics.2012.02.004
10.1016/j.neuroimage.2011.10.018
10.1002/hbm.23285
10.1073/pnas.1705120114
10.1126/science.1195870
10.1016/j.neuroimage.2014.06.044
10.1016/j.neuroimage.2013.12.066
10.1016/j.neuron.2013.10.002
10.1093/cercor/bhy123
10.1038/nrn.2016.56
10.1006/nimg.2001.0978
10.1002/hbm.23890
10.1016/j.neuroimage.2018.03.008
10.1038/385157a0
10.1038/s41467-018-05316-z
10.1002/hbm.22943
10.1002/hbm.20627
10.1016/j.tics.2010.04.004
10.1002/hbm.20468
10.1016/j.neuroimage.2019.02.002
10.1016/j.neuroimage.2018.02.029
10.1038/nn.4135
10.1016/j.neuroimage.2013.03.036
10.1016/j.neuroimage.2017.09.063
10.1073/pnas.1814785115
10.1016/j.neuroimage.2015.04.030
10.1016/j.neuron.2016.07.031
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24937
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

PubMed
Technology Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Shu et al
EISSN 1097-0193
EndPage 2172
ExternalDocumentID PMC7267903
31961469
10_1002_hbm_24937
HBM24937
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81790651; 81790650; 81727808; 31421003
– fundername: Guangdong Pearl River Talents Plan
  funderid: 2016ZT06S220
– fundername: Beijing Municipal Science & Technology Commission
  funderid: Z171100000117012
– fundername: Guangdong key basic research grant
  funderid: 2018B030332001
– fundername: Beijing Brain Initiative of Beijing Municipal Science & Technology Commission
  funderid: Z181100001518003
– fundername: Guangdong key basic research grant
  grantid: 2018B030332001
– fundername: ;
  grantid: 81790651; 81790650; 81727808; 31421003
– fundername: Beijing Municipal Science & Technology Commission
  grantid: Z171100000117012
– fundername: Beijing Brain Initiative of Beijing Municipal Science & Technology Commission
  grantid: Z181100001518003
– fundername: Guangdong Pearl River Talents Plan
  grantid: 2016ZT06S220
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
CITATION
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4037-4e28eea9e22aa1f41d1dd3b38b7518aa157ede36ca42ccbe123ae87ef3b7729a3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:07:04 EDT 2025
Fri Jul 11 10:05:08 EDT 2025
Sat Jul 26 02:25:39 EDT 2025
Thu Apr 03 07:07:18 EDT 2025
Tue Jul 01 01:10:57 EDT 2025
Wed Jan 22 16:34:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords dynamic functional connectivity
default mode network
static functional connectivity
temporal organization
large-scale network
magnetoencephalography
Language English
License Attribution-NonCommercial
2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4037-4e28eea9e22aa1f41d1dd3b38b7518aa157ede36ca42ccbe123ae87ef3b7729a3
Notes Funding information
Beijing Brain Initiative of Beijing Municipal Science & Technology Commission, Grant/Award Number: Z181100001518003; Beijing Municipal Science & Technology Commission, Grant/Award Number: Z171100000117012; Guangdong key basic research grant, Grant/Award Number: 2018B030332001; Guangdong Pearl River Talents Plan, Grant/Award Number: 2016ZT06S220; National Natural Science Foundation of China, Grant/Award Numbers: 81790651, 81790650, 81727808, 31421003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Beijing Brain Initiative of Beijing Municipal Science & Technology Commission, Grant/Award Number: Z181100001518003; Beijing Municipal Science & Technology Commission, Grant/Award Number: Z171100000117012; Guangdong key basic research grant, Grant/Award Number: 2018B030332001; Guangdong Pearl River Talents Plan, Grant/Award Number: 2016ZT06S220; National Natural Science Foundation of China, Grant/Award Numbers: 81790651, 81790650, 81727808, 31421003
ORCID 0000-0002-9311-0297
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24937
PMID 31961469
PQID 2397304455
PQPubID 996345
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7267903
proquest_miscellaneous_2343035792
proquest_journals_2397304455
pubmed_primary_31961469
crossref_primary_10_1002_hbm_24937
wiley_primary_10_1002_hbm_24937_HBM24937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2002; 15
2015; 36
2017; 1
2015; 38
2010; 14
2010; 107
2015; 104
1997; 44
2005; 210
2019; 17
2014; 24
2008; 105
2012; 16
2012; 59
2016; 37
2017; 114
2005; 25
2006; 60
2018; 174
2018; 9
2018; 39
2014; 3
2018; 173
2008; 29
1997; 385
2007; 8
2003; 48
2019; 29
2016; 352
1999; 10
2018; 180
2012; 63
2014; 10
2001; 98
2007; 27
2014; 91
2015; 18
2012
2005
2008; 366
2016; 91
2014; 84
2016; 17
2018; 20
2011; 331
2019; 189
2010; 40
2019; 186
2011; 2011
2009; 30
2011; 108
2011; 106
2013; 77
2015; 115
2018; 115
2013; 80
2014; 35
2016; 138
2015; 117
2014; 100
2018; 98
2017; 146
2016; 26
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Seung S. (e_1_2_8_59_1) 2012
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 115
  start-page: 13376
  year: 2018
  end-page: 13381
  article-title: Multilayer network switching rate predicts brain performance
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: The Journal of Neuroscience
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 77
  start-page: 586
  year: 2013
  end-page: 595
  article-title: Individual variability in functional connectivity architecture of the human brain
  publication-title: Neuron
– volume: 77
  start-page: 77
  year: 2013
  end-page: 92
  article-title: Dynamic state allocation for MEG source reconstruction
  publication-title: NeuroImage
– year: 2005
– volume: 17
  start-page: 513
  year: 2016
  end-page: 523
  article-title: Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex
  publication-title: Nature Reviews. Neuroscience
– volume: 180
  start-page: 559
  year: 2018
  end-page: 576
  article-title: Dynamics of large‐scale electrophysiological networks: A technical review
  publication-title: NeuroImage
– volume: 17
  year: 2019
  article-title: Performing group‐level functional image analyses based on homologous functional regions mapped in individuals
  publication-title: PLoS Biology
– volume: 59
  start-page: 3909
  year: 2012
  end-page: 3921
  article-title: Frequency‐dependent functional connectivity within resting‐state networks: an atlas‐based MEG beamformer solution
  publication-title: NeuroImage
– volume: 114
  start-page: 12827
  year: 2017
  end-page: 12832
  article-title: Brain network dynamics are hierarchically organized in time
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  year: 2017
  article-title: Dynamic hub load predicts cognitive decline after resective neurosurgery
  publication-title: Scientific Reports
– volume: 40
  start-page: 167
  year: 2010
  end-page: 177
  article-title: Endophenotypes in a dynamically connected brain
  publication-title: Behavior Genetics
– volume: 63
  start-page: 910
  year: 2012
  end-page: 920
  article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage
  publication-title: NeuroImage
– volume: 186
  start-page: 70
  year: 2019
  end-page: 82
  article-title: Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching
  publication-title: NeuroImage
– volume: 36
  start-page: 4604
  year: 2015
  end-page: 4621
  article-title: A geometric correction scheme for spatial leakage effects in MEG/EEG seed‐based functional connectivity mapping
  publication-title: Human Brain Mapping
– volume: 26
  start-page: 4015
  year: 2016
  end-page: 4033
  article-title: A dynamic core network and global efficiency in the resting human brain
  publication-title: Cerebral Cortex
– volume: 98
  start-page: 439
  year: 2018
  end-page: 452
  article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation
  publication-title: Neuron
– volume: 20
  start-page: 128
  year: 2018
  end-page: 152
  article-title: Short timescale abnormalities in the states of spontaneous synchrony in the functional neural networks in Alzheimer's disease
  publication-title: NeuroImage: Clinical
– volume: 16
  start-page: 219
  year: 2012
  end-page: 230
  article-title: Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs
  publication-title: Trends in Cognitive Sciences
– volume: 105
  start-page: 12569
  year: 2008
  end-page: 12574
  article-title: A critical role for the right fronto‐insular cortex in switching between central‐executive and default‐mode networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 180
  start-page: 505
  year: 2018
  end-page: 514
  article-title: Just a thought: how mind‐wandering is represented in dynamic brain connectivity
  publication-title: NeuroImage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: NeuroImage
– volume: 174
  start-page: 563
  year: 2018
  end-page: 575
  article-title: Altered temporal stability in dynamic neural networks underlies connectivity changes in neurodevelopment
  publication-title: NeuroImage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 331
  start-page: 83
  year: 2011
  end-page: 87
  article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
  publication-title: Science
– volume: 91
  start-page: 511
  year: 2016
  end-page: 528
  article-title: Clinical concepts emerging from fMRI functional connectomics
  publication-title: Neuron
– volume: 100
  start-page: 471
  year: 2014
  end-page: 480
  article-title: Dynamic functional connectivity of the default mode network tracks daydreaming
  publication-title: NeuroImage
– volume: 104
  start-page: 430
  year: 2015
  end-page: 436
  article-title: On spurious and real fluctuations of dynamic functional connectivity during rest
  publication-title: NeuroImage
– volume: 91
  start-page: 282
  year: 2014
  end-page: 299
  article-title: Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity
  publication-title: NeuroImage
– volume: 9
  year: 2018
  article-title: Task‐induced brain state manipulation improves prediction of individual traits
  publication-title: Nature Communications
– volume: 366
  start-page: 329
  year: 2008
  end-page: 343
  article-title: The criticality hypothesis: how local cortical networks might optimize information processing
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Computational Intelligence and Neuroscience
– volume: 44
  start-page: 867
  year: 1997
  end-page: 880
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 117
  start-page: 439
  year: 2015
  end-page: 448
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: NeuroImage
– volume: 18
  start-page: 1853
  year: 2015
  end-page: 1860
  article-title: Parcellating cortical functional networks in individuals
  publication-title: Nature Neuroscience
– volume: 180
  start-page: 370
  year: 2018
  end-page: 382
  article-title: Cortical cores in network dynamics
  publication-title: NeuroImage
– volume: 35
  start-page: 1642
  year: 2014
  end-page: 1653
  article-title: A framework for the design of flexible cross‐talk functions for spatial filtering of EEG/MEG data: DeFleCT
  publication-title: Human Brain Mapping
– volume: 29
  start-page: 2533
  year: 2019
  end-page: 2551
  article-title: Spatial topography of individual‐specific cortical networks predicts human cognition, personality, and emotion
  publication-title: Cerebral Cortex
– volume: 146
  start-page: 667
  year: 2017
  end-page: 678
  article-title: Measurement of dynamic task related functional networks using MEG
  publication-title: NeuroImage
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature Neuroscience
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: NeuroImage
– volume: 385
  start-page: 157
  year: 1997
  end-page: 161
  article-title: Visuomotor integration is associated with zero time‐lag synchronization among cortical areas
  publication-title: Nature
– volume: 352
  start-page: 216
  year: 2016
  end-page: 220
  article-title: Task‐free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
– volume: 14
  start-page: 277
  year: 2010
  end-page: 290
  article-title: Large‐scale brain networks in cognition: emerging methods and principles
  publication-title: Trends in Cognitive Sciences
– volume: 10
  year: 2014
  article-title: Mechanisms of zero‐lag synchronization in cortical motifs
  publication-title: PLoS Computational Biology
– volume: 9
  start-page: 1157
  year: 2018
  article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis
  publication-title: Nature Communications
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Reviews. Neuroscience
– volume: 98
  start-page: 243
  year: 2018
  end-page: 245
  article-title: Personalized Neuroscience: Common and Individual‐Specific Features in Functional Brain Networks
  publication-title: Neuron
– volume: 98
  start-page: 676
  year: 2001
  end-page: 682
  article-title: A default mode of brain function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 210
  start-page: 343
  year: 2005
  end-page: 352
  article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps
  publication-title: Anatomy and Embryology
– volume: 38
  start-page: 433
  year: 2015
  end-page: 447
  article-title: The brain's default mode network
  publication-title: Annual Review of Neuroscience
– year: 2012
– volume: 29
  start-page: 1368
  year: 2008
  end-page: 1378
  article-title: Heritability of "small‐world" networks in the brain: a graph theoretical analysis of resting‐state EEG functional connectivity
  publication-title: Human Brain Mapping
– volume: 25
  start-page: 199
  year: 2005
  end-page: 211
  article-title: A new approach to neuroimaging with magnetoencephalography
  publication-title: Human Brain Mapping
– volume: 48
  start-page: 3637
  year: 2003
  end-page: 3652
  article-title: The magnetic lead field theorem in the quasi‐static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors
  publication-title: Physics in Medicine and Biology
– volume: 1
  start-page: 713
  year: 2017
  end-page: 722
  article-title: Language, mind and brain
  publication-title: Nature Human Behaviour
– volume: 30
  start-page: 1524
  year: 2009
  end-page: 1534
  article-title: Removal of magnetoencephalographic artifacts with temporal signal‐space separation: demonstration with single‐trial auditory‐evoked responses
  publication-title: Human Brain Mapping
– volume: 189
  start-page: 676
  year: 2019
  end-page: 687
  article-title: The individual functional connectome is unique and stable over months to years
  publication-title: NeuroImage
– volume: 39
  start-page: 902
  year: 2018
  end-page: 915
  article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns
  publication-title: Human Brain Mapping
– volume: 10
  start-page: 173
  year: 1999
  end-page: 180
  article-title: Visualization of magnetoencephalographic data using minimum current estimates
  publication-title: NeuroImage
– volume: 2011
  start-page: 879716
  year: 2011
  end-page: 879713
  article-title: Brainstorm: A user‐friendly application for MEG/EEG analysis
  publication-title: Computational Intelligence and Neuroscience
– volume: 3
  year: 2014
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: eLife
– volume: 80
  start-page: 751
  year: 2013
  end-page: 764
  article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms
  publication-title: Neuron
– volume: 84
  start-page: 585
  year: 2014
  end-page: 604
  article-title: MEG source imaging method using fast L1 minimum‐norm and its applications to signals with brain noise and human resting‐state source amplitude images
  publication-title: NeuroImage
– volume: 173
  start-page: 240
  year: 2018
  end-page: 248
  article-title: Time scale properties of task and resting‐state functional connectivity: Detrended partial cross‐correlation analysis
  publication-title: NeuroImage
– volume: 37
  start-page: 3911
  year: 2016
  end-page: 3928
  article-title: Dynamic functional connectivity shapes individual differences in associative learning
  publication-title: Human Brain Mapping
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 115
  start-page: 1087
  year: 2018
  end-page: 1092
  article-title: Robust prediction of individual creative ability from brain functional connectivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 115
  start-page: 85
  year: 2015
  end-page: 95
  article-title: Dynamic recruitment of resting state sub‐networks
  publication-title: NeuroImage
– volume: 138
  start-page: 284
  year: 2016
  end-page: 293
  article-title: How reliable are MEG resting‐state connectivity metrics?
  publication-title: NeuroImage
– volume: 9
  start-page: 2987
  year: 2018
  article-title: Spontaneous cortical activity transiently organises into frequency specific phase‐coupling networks
  publication-title: Nature Communications
– volume: 108
  start-page: 16783
  year: 2011
  end-page: 16788
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 107
  start-page: 6040
  year: 2010
  end-page: 6045
  article-title: Temporal dynamics of spontaneous MEG activity in brain networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 139
  year: 2006
  end-page: 148
  article-title: Operational principles of neurocognitive networks
  publication-title: International Journal of Psychophysiology
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ijpsycho.2005.12.008
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuroimage.2016.08.061
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2013.09.022
– ident: e_1_2_8_69_1
  doi: 10.1109/10.623056
– ident: e_1_2_8_55_1
  doi: 10.1007/1-84628-119-9_14
– ident: e_1_2_8_60_1
  doi: 10.1016/j.nicl.2018.05.028
– ident: e_1_2_8_20_1
  doi: 10.1093/cercor/bhv185
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.1713532115
– ident: e_1_2_8_54_1
  doi: 10.1038/s41467-018-03462-y
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuroimage.2014.09.007
– ident: e_1_2_8_58_1
  doi: 10.1523/JNEUROSCI.5587-06.2007
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-018-04920-3
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1112685108
– ident: e_1_2_8_30_1
  doi: 10.1002/hbm.20102
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuroimage.2018.10.068
– ident: e_1_2_8_61_1
  doi: 10.1007/s10519-009-9330-8
– ident: e_1_2_8_64_1
  doi: 10.1155/2011/879716
– ident: e_1_2_8_72_1
  doi: 10.1038/nn.4164
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2017.10.003
– ident: e_1_2_8_24_1
  doi: 10.1038/s41562-017-0184-4
– ident: e_1_2_8_15_1
  doi: 10.1038/srep42117
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2012.03.048
– ident: e_1_2_8_48_1
  doi: 10.1155/2011/156869
– ident: e_1_2_8_76_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.0913863107
– ident: e_1_2_8_28_1
  doi: 10.1002/hbm.22279
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pbio.2007032
– ident: e_1_2_8_16_1
  doi: 10.1016/j.neuroimage.2015.03.071
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2017.07.001
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuron.2018.03.035
– ident: e_1_2_8_52_1
  doi: 10.1146/annurev-neuro-071013-014030
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neuron.2018.04.007
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.0800005105
– ident: e_1_2_8_66_1
  doi: 10.1126/science.aad8127
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuroimage.2011.11.005
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.98.2.676
– ident: e_1_2_8_6_1
  doi: 10.1098/rsta.2007.2092
– ident: e_1_2_8_2_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_8_3_1
  doi: 10.1007/s00429-005-0025-5
– ident: e_1_2_8_44_1
  doi: 10.1088/0031-9155/48/22/002
– ident: e_1_2_8_68_1
  doi: 10.1006/nimg.1999.0454
– ident: e_1_2_8_25_1
  doi: 10.1371/journal.pcbi.1003548
– volume-title: Connectome: How the brain's wiring makes us who we are
  year: 2012
  ident: e_1_2_8_59_1
– ident: e_1_2_8_4_1
  doi: 10.7554/eLife.01867
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroimage.2016.05.070
– ident: e_1_2_8_23_1
  doi: 10.1038/nrn2201
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuron.2012.12.028
– ident: e_1_2_8_49_1
  doi: 10.1016/j.tics.2012.02.004
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_21_1
  doi: 10.1002/hbm.23285
– ident: e_1_2_8_71_1
  doi: 10.1073/pnas.1705120114
– ident: e_1_2_8_7_1
  doi: 10.1126/science.1195870
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2014.06.044
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2013.12.066
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuron.2013.10.002
– ident: e_1_2_8_35_1
  doi: 10.1093/cercor/bhy123
– ident: e_1_2_8_74_1
  doi: 10.1038/nrn.2016.56
– ident: e_1_2_8_67_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_8_40_1
  doi: 10.1002/hbm.23890
– ident: e_1_2_8_10_1
  doi: 10.1016/j.neuroimage.2018.03.008
– ident: e_1_2_8_56_1
  doi: 10.1038/385157a0
– ident: e_1_2_8_70_1
  doi: 10.1038/s41467-018-05316-z
– ident: e_1_2_8_73_1
  doi: 10.1002/hbm.22943
– ident: e_1_2_8_65_1
  doi: 10.1002/hbm.20627
– ident: e_1_2_8_8_1
  doi: 10.1016/j.tics.2010.04.004
– ident: e_1_2_8_62_1
  doi: 10.1002/hbm.20468
– ident: e_1_2_8_31_1
  doi: 10.1016/j.neuroimage.2019.02.002
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2018.02.029
– ident: e_1_2_8_22_1
  doi: 10.1038/nn.4135
– ident: e_1_2_8_75_1
  doi: 10.1016/j.neuroimage.2013.03.036
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neuroimage.2017.09.063
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1814785115
– ident: e_1_2_8_45_1
  doi: 10.1016/j.neuroimage.2015.04.030
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuron.2016.07.031
SSID ssj0011501
Score 2.3159862
Snippet The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2160
SubjectTerms Brain
Brain architecture
Cognitive ability
default mode network
dynamic functional connectivity
Electrophysiology
Functional morphology
large‐scale network
Magnetoencephalography
Markov chains
Nervous system
Networks
Occupancy
static functional connectivity
Substrates
temporal organization
Transition probabilities
Title Cortical electrophysiological evidence for individual‐specific temporal organization of brain functional networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24937
https://www.ncbi.nlm.nih.gov/pubmed/31961469
https://www.proquest.com/docview/2397304455
https://www.proquest.com/docview/2343035792
https://pubmed.ncbi.nlm.nih.gov/PMC7267903
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4Bh4oLlN8G6MoghLhkydrOJlFPgIpWSKCqAokDUmQnjkB0kxW7e4ATj9Bn7JN0xk5StqgS6i2KJ4oTz3g-j2c-A-wbleDQInILoyT2ZcEjXyGI80VcRLTPKTNlE2Qv-4NreX4T3szBl6YWxvFDtAE3sgw7X5OBKz0--kMaeqeHXVw7CKokp1wtAkTfW-ooAjp2sYUu1k9wBm5YhQJ-1D4564veAMy3eZKv8at1QGfLcNt03eWdPHSnE93Nnv9idfzPb_sISzUwZcdOk1ZgzpSrsHZc4qJ8-MQOmE0VtTH4VfhwUe_Ir8H4tHq04XBWH6gzauTczfrQUobYmN23xV-_Xn5SiSelKbGaHOsHq16VhbKqYJpOr2DkeF28kpUuZX28DtdnX69OB359kIOfSSpDlIbHBrXCcK5Ur5C9vJfnQotY06YP3gojkxvRz5TkWaYNelNl4sgUQhP4V2IDFsqqNJ-AJRknAWF0oKU0udJ9hQhFIuzraRkoD_aaIU1Hjq8jdczMPMW_mtq_6sFOM9hpbbLjlCMyE4GUYejBbtuMxkY7KKo01ZRkJLp8VGvuwabTjfYtNJeh20k8iGa0phUgIu_ZlvL-zhJ6R7wfJYHw4NAqxb87ng5OLuzF1vtFt2GRU4zARo52YGHyODWfEUhNdAfmufzWsWGIjrWe3w3YIFc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8gJMqL8kelirAaY3zp0dvd3raJL0ggB3I8GEh4Mc1uuw0EaAl396BPfgQ_I5-Emd22chIT41vTTtM_O7Pz29mZ3wC8tzrFoUXkFqs0CWXJVagRxIUiKRXtc8pcuwTZo8HwRB6cxqdz8KmthfH8EF3AjSzDzddk4BSQ3vrNGnpmrnq4eBDqESxQR2-3oPrakUcR1HHLLXSyYYpzcMsrFPGt7tZZb_QAYj7MlLyPYJ0L2nsG39qX95knF73pxPTyH3_wOv7v1y3B0wabsm2vTMswZ6sVWN2ucF1-9Z19YC5b1IXhV-DxqNmUX4XxTn3jIuKs6alz3cr5k03fUobwmJ139V-3P39RlSdlKrGGH-uS1fcqQ1ldMkMNLBj5Xh-yZJXPWh8_h5O93eOdYdj0cghzSZWI0vLEomJYzrXul7Jf9ItCGJEY2vfBU7GyhRWDXEue58aiQ9U2UbYUhvC_Fi9gvqoruwYszTkJCGsiI6UttBloBCkSkV_fyEgH8K4d0-zaU3ZknpyZZ_hXM_dXA1hvRztrrHaccQRnIpIyjgN4211Ge6NNFF3ZekoyEr0-ajYP4KVXju4pNJ2h50kDUDNq0wkQl_fsler8zHF6Kz5QaSQC-Oi04u8vng0_j9zBq38X3YQnw-PRYXa4f_TlNSxyChm4QNI6zE9upvYN4qqJ2XDmcwdONSKm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlVcKLRQUlowCCEu2WZtJ07UU2lZLT-tEKJSD0iRnThqBU1W3d0DnHiEPmOfhBk7CV0qJMQtiieKE894Po9nPgO8sDrDoUXkFqssDWXFVagRxIUirRTtc8pCuwTZo2R8LN-dxCdLsNvVwnh-iD7gRpbh5msy8ElZ7fwmDT015wNcOwh1C27LJEpJpQ8-9dxRhHTcagt9bJjhFNzRCkV8p3900RndQJg3EyWvA1jngUar8KXru088-TqYz8yg-PEHreN_ftw9uNsiU7bnVek-LNl6Ddb3alyVn39nL5nLFXVB-DVYOWy35Ndhut9cuHg4a0_UmXRy_mZ7ailDcMzO-uqvq5-XVONJeUqsZcf6xpprdaGsqZih4ysYeV4fsGS1z1mfPoDj0ZvP--OwPckhLCTVIUrLU4tqYTnXeljJYTksS2FEamjXB2_FypZWJIWWvCiMRXeqbapsJQyhfy0ewnLd1PYRsKzgJCCsiYyUttQm0QhRJOK-oZGRDuB5N6T5xBN25J6amef4V3P3VwPY6gY7b212mnOEZiKSMo4DeNY3o7XRFoqubTMnGYk-H_WaB7DhdaN_C01m6HeyANSC1vQCxOS92FKfnTpGb8UTlUUigFdOKf7e8Xz8-tBdbP676FNY-Xgwyj-8PXr_GO5wihe4KNIWLM8u5nYbQdXMPHHG8wv-kSFe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+electrophysiological+evidence+for+individual-specific+temporal+organization+of+brain+functional+networks&rft.jtitle=Human+brain+mapping&rft.au=Shu%2C+Su&rft.au=Qin%2C+Lang&rft.au=Yin%2C+Yayan&rft.au=Han%2C+Meizhen&rft.date=2020-06-01&rft.eissn=1097-0193&rft.volume=41&rft.issue=8&rft.spage=2160&rft_id=info:doi/10.1002%2Fhbm.24937&rft_id=info%3Apmid%2F31961469&rft.externalDocID=31961469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon