High‐throughput screening of phase‐engineered atomically thin transition‐metal dichalcogenides for van der Waals contacts at the Schottky–Mott limit

A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usual...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 5; no. 7
Main Authors Li, Yanyan, Su, Liqin, Lu, Yanan, Luo, Qingyuan, Liang, Pei, Shu, Haibo, Chen, Xiaoshuang
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.07.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. An attractive strategy via the formation of van der Waals (vdW) contacts between atomically thin metallic and semiconducting transition‐metal dichalcogenides (TMDs) is proposed to suppress strong Fermi‐level pinning at the metal–semiconductor interfaces. By means of high‐throughput first‐principles calculations, a series of phase‐engineered TMD‐based vdW metal–semiconductor junctions with weak Fermi‐level pining and high carrier tunneling probability have been screened.
AbstractList Abstract A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics.
A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. An attractive strategy via the formation of van der Waals (vdW) contacts between atomically thin metallic and semiconducting transition‐metal dichalcogenides (TMDs) is proposed to suppress strong Fermi‐level pinning at the metal–semiconductor interfaces. By means of high‐throughput first‐principles calculations, a series of phase‐engineered TMD‐based vdW metal–semiconductor junctions with weak Fermi‐level pining and high carrier tunneling probability have been screened.
A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi-level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high-throughput first-principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase-engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high-performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics.
A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe 2 /ZrSe 2 , NiTe 2 /PdSe 2 , HfTe 2 /PdTe 2 , TaSe 2 /MoTe 2 ) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. image
Author Luo, Qingyuan
Su, Liqin
Chen, Xiaoshuang
Li, Yanyan
Lu, Yanan
Liang, Pei
Shu, Haibo
Author_xml – sequence: 1
  givenname: Yanyan
  surname: Li
  fullname: Li, Yanyan
  organization: China Jiliang University
– sequence: 2
  givenname: Liqin
  surname: Su
  fullname: Su, Liqin
  organization: China Jiliang University
– sequence: 3
  givenname: Yanan
  surname: Lu
  fullname: Lu, Yanan
  organization: China Jiliang University
– sequence: 4
  givenname: Qingyuan
  surname: Luo
  fullname: Luo, Qingyuan
  organization: China Jiliang University
– sequence: 5
  givenname: Pei
  surname: Liang
  fullname: Liang, Pei
  organization: China Jiliang University
– sequence: 6
  givenname: Haibo
  orcidid: 0000-0003-1728-2190
  surname: Shu
  fullname: Shu, Haibo
  email: shuhaibo@cjlu.edu.cn
  organization: China Jiliang University
– sequence: 7
  givenname: Xiaoshuang
  surname: Chen
  fullname: Chen, Xiaoshuang
  organization: Chinese Academy of Science
BookMark eNp9kc9qVDEUxi9SwVq78QkC7oRpk5P7dynF2oGqCxWX4Uzuyb0Z7yRjkqnMro8guO3T9UnM9CqIiKsccn7fx-H7nhZHzjsqiueCnwnO4dw6A2cCSt48Ko6hqpuFFHV19Mf8pDiNcc0zXPESKnFc3F3ZYby__Z7G4HfDuN0lFnUgctYNzBu2HTFS3pMbrCMK1DNMfmM1TtOepdE6lgK6aJP1LnMbSjix3uoRJ-2H7NNTZMYHdoOO9RTYZ8QpMu1dQp1idssuxD7o0af0ZX9_--NtHthkNzY9Kx6bDNPpr_ek-HT5-uPF1eL6_ZvlxavrhS65bBZCECC01arWq7IWKCTQSnS4MpKXTQk8Z1ILYVrEegVVg9jxWhMBdEKX0siTYjn79h7XahvsBsNeebTq4cOHQWFIVk-kGgm6B5TSAJWdqFttQEsjur5qK2p59noxe22D_7qjmNTa74LL5ytoSykqCVJmis-UDj7GQEZpm_CQYU7TTkpwdahUHSpVD5Vmycu_JL8P_ScsZvibnWj_H1It313CrPkJVuu49w
CitedBy_id crossref_primary_10_1016_j_commatsci_2024_113488
crossref_primary_10_1002_pssr_202300152
crossref_primary_10_1007_s11705_023_2382_0
crossref_primary_10_1007_s40843_024_2861_2
crossref_primary_10_1002_smsc_202300093
crossref_primary_10_1039_D4CC05133E
crossref_primary_10_1021_acsnano_4c15341
crossref_primary_10_1039_D3NR02466K
crossref_primary_10_1002_pssb_202400076
crossref_primary_10_1063_5_0163908
crossref_primary_10_1088_2752_5724_ad7c6c
crossref_primary_10_1016_j_sna_2024_116080
crossref_primary_10_1016_j_apsusc_2023_158061
crossref_primary_10_1021_acsaelm_3c00922
crossref_primary_10_1021_acsaelm_4c00300
crossref_primary_10_1002_aelm_202400269
crossref_primary_10_1039_D4QM00494A
crossref_primary_10_1021_acsanm_3c05817
crossref_primary_10_1063_5_0176937
crossref_primary_10_1002_adfm_202410429
crossref_primary_10_1002_smll_202303675
Cites_doi 10.1088/1367-2630/ab7d7a
10.1038/s41565-019-0466-2
10.1038/s41586-018-0129-8
10.1021/acsnano.6b07159
10.1103/PhysRevB.105.224105
10.1103/PhysRevB.63.245407
10.1021/acs.jpcc.5b02950
10.1002/inf2.12155
10.1002/adfm.202105132
10.1039/C5NR07909H
10.1002/adma.201804422
10.1021/acsnano.8b08677
10.1039/C4CS00287C
10.1039/D0TA00009D
10.1039/D1CS00236H
10.1002/adma.201901392
10.1002/adma.202109899
10.1103/PhysRevB.105.024108
10.1063/1.3382344
10.1038/s41586-019-1052-3
10.1002/adfm.202010303
10.1126/sciadv.aax6061
10.1038/nmat4452
10.1021/nl303583v
10.1038/s41928-022-00746-6
10.1103/PhysRevX.4.031005
10.1038/s41598-017-04224-4
10.1103/PhysRevB.59.1758
10.1039/D0TA10098F
10.1103/PhysRevB.50.17953
10.1039/D0TC01405B
10.1021/acs.nanolett.9b02497
10.1002/adfm.201806611
10.1021/acs.nanolett.9b01898
10.1002/pssb.201800597
10.1021/nn4044035
10.1039/C9TC06410A
10.1038/nnano.2012.193
10.1039/C7CS00828G
10.1021/nn506512j
10.1021/acs.chemrev.7b00618
10.1021/acsnano.9b08288
10.1038/ncomms10671
10.1103/PhysRevB.103.085404
10.1021/acsami.0c01025
10.1103/RevModPhys.64.1045
10.1038/nphoton.2015.282
10.1063/1.2187006
10.1021/acs.nanolett.7b05338
10.1002/adts.202000045
10.1021/acsami.5b06897
10.1021/acs.jpcc.8b10971
10.1103/PhysRevB.54.11169
10.1021/nl501275p
10.1038/nnano.2011.196
10.1088/2053-1583/aa5a99
10.1038/natrevmats.2017.33
10.1063/5.0021180
10.1039/C8SC02609B
ContentType Journal Article
Copyright 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1002/inf2.12407
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Collection (ProQuest)
Materials Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_732cd2a33f2e49168cf2c3f19d585e80
10_1002_inf2_12407
INF212407
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62174151
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LZ22F040003; Q21A050007
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PIMPY
PTHSS
WIN
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c4037-11e2a285b6cb461a132eb19abf3047420124611f8aa6b257aa906cee2291c43f3
IEDL.DBID 24P
ISSN 2567-3165
IngestDate Wed Aug 27 01:27:35 EDT 2025
Wed Aug 13 03:27:17 EDT 2025
Tue Jul 01 01:33:44 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
Wed Jan 22 16:18:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4037-11e2a285b6cb461a132eb19abf3047420124611f8aa6b257aa906cee2291c43f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1728-2190
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12407
PQID 2843153233
PQPubID 5068510
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_732cd2a33f2e49168cf2c3f19d585e80
proquest_journals_2843153233
crossref_citationtrail_10_1002_inf2_12407
crossref_primary_10_1002_inf2_12407
wiley_primary_10_1002_inf2_12407_INF212407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 7
2017; 2
2019; 13
2019; 14
2019; 19
2017; 4(2)
2020; 14
2020; 12
2019; 568
2013; 7
2019; 123
2018; 47
2020; 8
2018; 9
2021; 31
2020; 3
2014; 4
2013; 13
2015; 44
1999; 59
2022; 34
2014; 14
2019; 29
2019; 5(12)
2006; 124
2021; 9
2015; 14
2021; 3
2019; 31
2021; 103
2016; 10
2021; 50
2015; 9
2011; 6
2015; 7
1996; 54
2001; 63
2018; 18
2016; 7
2018; 557
2022; 5
2018; 118
2017; 11
2010; 132
2020; 117
2019; 256
2015; 119
2020; 22
1992; 64
2012; 7
1994; 50
2016; 8
2022; 105
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 7
  start-page: 25709
  issue: 46
  year: 2015
  end-page: 25715
  article-title: 3D behavior of Schottky barriers of 2D transition‐metal dichalcogenides
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 4432
  issue: 13
  year: 2020
  end-page: 4440
  article-title: Electron‐injection driven phase transition in two‐dimensional transition metal dichalcogenides
  publication-title: J Mater Chem C
– volume: 568
  start-page: 70
  issue: 7750
  year: 2019
  end-page: 74
  article-title: Van der Waals contacts between three‐dimensional metals and two‐dimensional semiconductors
  publication-title: Nature
– volume: 117
  issue: 16
  year: 2020
  article-title: Atomic observation of phase transition in layered SnS driven by in situ heating and electron beam irradiation
  publication-title: Appl Phys Lett
– volume: 14
  start-page: 3594
  issue: 6
  year: 2014
  end-page: 3601
  article-title: High mobility WSe p‐ and n‐type field‐effect transistors contacted by high doped graphene for low‐resistance contacts
  publication-title: Nano Lett
– volume: 63
  issue: 24
  year: 2001
  article-title: Ab initio modeling of quantum transport properties of molecular electronic devices
  publication-title: Phys Rev B.
– volume: 19
  start-page: 6819
  issue: 10
  year: 2019
  end-page: 6826
  article-title: In situ probing molecular intercalation in two‐dimensional layered semiconductors
  publication-title: Nano Lett
– volume: 18
  start-page: 1937
  issue: 3
  year: 2018
  end-page: 1945
  article-title: Vertical and in‐plane current devices using NbS /n‐MoS van der Waals Schottky junction and graphene contact
  publication-title: Nano Lett
– volume: 123
  start-page: 5411
  issue: 9
  year: 2019
  end-page: 5420
  article-title: Universal Fermi‐level pinning in transition‐metal dichalcogenides
  publication-title: J Phys Chem C
– volume: 44
  start-page: 2664
  issue: 9
  year: 2015
  end-page: 2680
  article-title: Physical and chemical tuning of two‐dimensional transition metal dichalcogenides
  publication-title: Chem Soc Rev
– volume: 7
  start-page: 699
  issue: 11
  year: 2012
  end-page: 712
  article-title: Electronics and optoelectronics of two‐dimensional transition metal dichalcogenides
  publication-title: Nat Nanotechnol
– volume: 31
  start-page: 1901392
  issue: 24
  year: 2019
  article-title: Gate‐tunable graphene‐WSe heterojunctions at the Schottky‐Mott limit
  publication-title: Adv Mater
– volume: 10
  start-page: 216
  issue: 4
  year: 2016
  end-page: 226
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat Photon
– volume: 9
  start-page: 7727
  issue: 40
  year: 2018
  end-page: 7745
  article-title: Charge carrier injection and transport engineering in two‐dimensional transition metal dichalcogenides
  publication-title: Chem Sci
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  end-page: 11185
  article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set
  publication-title: Phys Rev B
– volume: 14
  start-page: 985
  issue: 1
  year: 2020
  end-page: 992
  article-title: Graphene‐transition metal dichalcogenide heterojunctions for scalable and low‐power complementary integrated circuits
  publication-title: ACS Nano
– volume: 103
  issue: 8
  year: 2021
  article-title: Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations
  publication-title: Phys Rev B.
– volume: 29
  start-page: 1806611
  issue: 12
  year: 2019
  article-title: Van der Waals epitaxial growth of atomically thin 2D metals on dangling‐bond‐free WSe and WS
  publication-title: Adv Funct Mater
– volume: 132
  issue: 15
  year: 2010
  article-title: A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu
  publication-title: J Chem Phys
– volume: 7
  start-page: 10167
  issue: 11
  year: 2013
  end-page: 10174
  article-title: Control of radiation damage in MoS by graphene encapsulation
  publication-title: ACS Nano
– volume: 2
  start-page: 17033
  issue: 8
  year: 2017
  article-title: 2D transition metal dichalcogenides
  publication-title: Nat Rev Mater
– volume: 3
  start-page: 201
  issue: 2
  year: 2021
  end-page: 211
  article-title: Band structure engineering through van der Waals heterostructing superlattices of two‐dimensional transition metal dichalcogenides
  publication-title: InfoMat
– volume: 8
  start-page: 2918
  issue: 5
  year: 2016
  end-page: 2926
  article-title: The capacity fading mechanism and improvement of cycling stability in MoS ‐based anode materials for lithium‐ion batteries
  publication-title: Nanoscale
– volume: 64
  start-page: 1045
  issue: 4
  year: 1992
  end-page: 1097
  article-title: Iterative minimization techniques for ab initio total‐energy calculations: molecular dynamics and conjugate gradients
  publication-title: Rev Mod Phys
– volume: 11
  start-page: 1588
  issue: 2
  year: 2017
  end-page: 1596
  article-title: Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides
  publication-title: ACS Nano
– volume: 256
  issue: 8
  year: 2019
  article-title: Interfacial properties for a monolayer CrS contact with metal: a theoretical perspective
  publication-title: Phys Status Solidi B
– volume: 118
  start-page: 6297
  issue: 13
  year: 2018
  end-page: 6336
  article-title: Van der Waals metallic transition metal dichalcogenides
  publication-title: Chem Rev
– volume: 557
  start-page: 696
  issue: 7707
  year: 2018
  end-page: 700
  article-title: Approaching the Schottky–Mott limit in van der Waals metal‐semiconductor junctions
  publication-title: Nature
– volume: 19
  start-page: 6352
  issue: 9
  year: 2019
  end-page: 6362
  article-title: Contact engineering high‐performance n‐type MoTe transistors
  publication-title: Nano Lett
– volume: 31
  start-page: 1804422
  issue: 2
  year: 2019
  article-title: Lowering the Schottky barrier height by graphene/Ag electrodes for high‐mobility MoS field‐effect transistors
  publication-title: Adv Mater
– volume: 105
  issue: 2
  year: 2022
  article-title: Hole‐ and electron‐injection driven phase transitions in transition metal dichalcogenides and beyond: a unified understanding
  publication-title: Phys Rev B.
– volume: 3
  issue: 6
  year: 2020
  article-title: Theoretical study of interfacial and electronic properties of transition metal dichalcogenides and organic molecules based on van der Waals heterostructures
  publication-title: Adv Theory Simul
– volume: 5
  start-page: 241
  issue: 4
  year: 2022
  end-page: 247
  article-title: Interaction‐and defect‐free van der Waals contacts between metals and two‐dimensional semiconductors
  publication-title: Nat Electron
– volume: 4
  issue: 3
  year: 2014
  article-title: Computational study of metal contacts to monolayer transition‐metal dichalcogenide semiconductors
  publication-title: Phys Rev X
– volume: 6
  start-page: 773
  issue: 12
  year: 2011
  end-page: 783
  article-title: Electrical contacts to one‐ and two‐dimensional nanomaterials
  publication-title: Nat Nanotechnol
– volume: 22
  issue: 5
  year: 2020
  article-title: Layer‐dependent band engineering of Pd dichalcogenides: a first‐principles study
  publication-title: New J Phys
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  end-page: 17979
  article-title: Projector augmented‐wave method
  publication-title: Phys Rev B
– volume: 5(12)
  year: 2019
  article-title: A new metal transfer process for van der Waals contacts to vertical Schottky‐junction transition metal dichalcogenide photovoltaics
  publication-title: Sci Adv
– volume: 124
  issue: 15
  year: 2006
  article-title: Screened hybrid density functionals applied to solids
  publication-title: J Chem Phys
– volume: 9
  start-page: 6476
  issue: 10
  year: 2021
  end-page: 6486
  article-title: Hierarchical computational screening of layered lead‐free metal halide perovskites for optoelectronic applications
  publication-title: J Mater Chem A
– volume: 13
  start-page: 885
  issue: 1
  year: 2019
  end-page: 893
  article-title: Epitaxial growth of two‐dimensional metal‐semiconductor transition‐metal dichalcogenide vertical stacks (VSe /MX ) and their band alignments
  publication-title: ACS Nano
– volume: 34
  start-page: 2109899
  issue: 19
  year: 2022
  article-title: Fermi‐level pinning‐free WSe transistors via 2D van der Waals metal contacts and their complementary logic gate circuits
  publication-title: Adv Mater
– volume: 7
  start-page: 3836
  issue: 1
  year: 2017
  article-title: Evidence for chemical vapor induced 2H to 1T phase transition in MoX (X = Se, S) transition metal dichalcogenide film
  publication-title: Sci Rep
– volume: 9
  start-page: 7904
  issue: 8
  year: 2015
  end-page: 7912
  article-title: Impact of contact on the operation and performance of back‐gated monolayer MoS field‐effect‐transistors
  publication-title: ACS Nano
– volume: 4(2)
  year: 2017
  article-title: Ferromagnetic contact between Ni and MoX (X = S, Se, or Te) with Fermi‐level pinning
  publication-title: 2D Mater
– volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  end-page: 1775
  article-title: From ultrasoft pseudopotentials to the projector augmented‐wave method
  publication-title: Phys Rev B
– volume: 50
  start-page: 10087
  issue: 18
  year: 2021
  end-page: 10115
  article-title: Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi‐)metallic phases
  publication-title: Chem Soc Rev
– volume: 8
  start-page: 7350
  issue: 22
  year: 2020
  end-page: 7357
  article-title: Interface and polarization effects induced Schottky‐barrier‐free contacts in two‐dimensional MXene/GaN heterojunctions
  publication-title: J Mater Chem C.
– volume: 14
  start-page: 668
  issue: 7
  year: 2019
  end-page: 673
  article-title: Strain‐based room‐temperature non‐volatile MoTe ferroelectric phase change transistor
  publication-title: Nat Nanotechnol
– volume: 8
  start-page: 8586
  issue: 17
  year: 2020
  end-page: 8592
  article-title: Work functions and band alignment of few‐layer violet phosphorene
  publication-title: J Mater Chem A
– volume: 47
  start-page: 3037
  issue: 9
  year: 2018
  end-page: 3058
  article-title: Contact engineering for 2D materials and devices
  publication-title: Chem Soc Rev
– volume: 7
  issue: 1
  year: 2016
  article-title: Structural semiconductor‐to‐semimetal phase transition in two‐dimensional materials induced by electrostatic gating
  publication-title: Nat Comm
– volume: 13
  start-page: 100
  issue: 1
  year: 2013
  end-page: 105
  article-title: High performance multilayer MoS transistors with scandium contacts
  publication-title: Nano Lett
– volume: 14
  start-page: 1195
  issue: 12
  year: 2015
  end-page: 1205
  article-title: Electrical contacts to two‐dimensional semiconductors
  publication-title: Nat Mater
– volume: 31
  issue: 21
  year: 2021
  article-title: High performance β‐Ga O Schottky barrier transistors with large work function TMD gate of NbS and TaS
  publication-title: Adv Funct Mater
– volume: 31
  issue: 48
  year: 2021
  article-title: 2D metallic transition‐metal dichalcogenides: structures, synthesis, properties, and applications
  publication-title: Adv Funct Mater
– volume: 119
  start-page: 13169
  issue: 23
  year: 2015
  end-page: 13183
  article-title: Computational 2D materials database: electronic structure of transition‐metal dichalcogenides and oxides
  publication-title: J Phys Chem C
– volume: 105
  issue: 22
  year: 2022
  article-title: Quasi‐bonding‐induced gap states in metal/two‐dimensional semiconductor junctions: route for Schottky barrier height reduction
  publication-title: Phys Rev B
– volume: 12
  start-page: 18667
  issue: 16
  year: 2020
  end-page: 18673
  article-title: Ultralow Schottky barriers in hexagonal boron nitride‐encapsulated monolayer WSe tunnel field‐effect transistors
  publication-title: ACS Appl Mater Interfaces
– ident: e_1_2_7_39_1
  doi: 10.1088/1367-2630/ab7d7a
– ident: e_1_2_7_33_1
  doi: 10.1038/s41565-019-0466-2
– ident: e_1_2_7_14_1
  doi: 10.1038/s41586-018-0129-8
– ident: e_1_2_7_8_1
  doi: 10.1021/acsnano.6b07159
– ident: e_1_2_7_53_1
  doi: 10.1103/PhysRevB.105.224105
– ident: e_1_2_7_60_1
  doi: 10.1103/PhysRevB.63.245407
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.jpcc.5b02950
– ident: e_1_2_7_30_1
  doi: 10.1002/inf2.12155
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.202105132
– ident: e_1_2_7_32_1
  doi: 10.1039/C5NR07909H
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201804422
– ident: e_1_2_7_24_1
  doi: 10.1021/acsnano.8b08677
– ident: e_1_2_7_2_1
  doi: 10.1039/C4CS00287C
– ident: e_1_2_7_42_1
  doi: 10.1039/D0TA00009D
– ident: e_1_2_7_21_1
  doi: 10.1039/D1CS00236H
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201901392
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.202109899
– ident: e_1_2_7_44_1
  doi: 10.1103/PhysRevB.105.024108
– ident: e_1_2_7_58_1
  doi: 10.1063/1.3382344
– ident: e_1_2_7_19_1
  doi: 10.1038/s41586-019-1052-3
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.202010303
– ident: e_1_2_7_18_1
  doi: 10.1126/sciadv.aax6061
– ident: e_1_2_7_9_1
  doi: 10.1038/nmat4452
– ident: e_1_2_7_46_1
  doi: 10.1021/nl303583v
– ident: e_1_2_7_47_1
  doi: 10.1038/s41928-022-00746-6
– ident: e_1_2_7_50_1
  doi: 10.1103/PhysRevX.4.031005
– ident: e_1_2_7_35_1
  doi: 10.1038/s41598-017-04224-4
– ident: e_1_2_7_54_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_7_31_1
  doi: 10.1039/D0TA10098F
– ident: e_1_2_7_56_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_7_45_1
  doi: 10.1039/D0TC01405B
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.nanolett.9b02497
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.201806611
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.nanolett.9b01898
– ident: e_1_2_7_52_1
  doi: 10.1002/pssb.201800597
– ident: e_1_2_7_7_1
  doi: 10.1021/nn4044035
– ident: e_1_2_7_22_1
  doi: 10.1039/C9TC06410A
– ident: e_1_2_7_3_1
  doi: 10.1038/nnano.2012.193
– ident: e_1_2_7_6_1
  doi: 10.1039/C7CS00828G
– ident: e_1_2_7_10_1
  doi: 10.1021/nn506512j
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.chemrev.7b00618
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.9b08288
– ident: e_1_2_7_34_1
  doi: 10.1038/ncomms10671
– ident: e_1_2_7_43_1
  doi: 10.1103/PhysRevB.103.085404
– ident: e_1_2_7_13_1
  doi: 10.1021/acsami.0c01025
– ident: e_1_2_7_57_1
  doi: 10.1103/RevModPhys.64.1045
– ident: e_1_2_7_4_1
  doi: 10.1038/nphoton.2015.282
– ident: e_1_2_7_59_1
  doi: 10.1063/1.2187006
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.nanolett.7b05338
– ident: e_1_2_7_38_1
  doi: 10.1002/adts.202000045
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.5b06897
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.jpcc.8b10971
– ident: e_1_2_7_55_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_17_1
  doi: 10.1021/nl501275p
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2011.196
– ident: e_1_2_7_51_1
  doi: 10.1088/2053-1583/aa5a99
– ident: e_1_2_7_20_1
  doi: 10.1038/natrevmats.2017.33
– ident: e_1_2_7_36_1
  doi: 10.1063/5.0021180
– ident: e_1_2_7_37_1
  doi: 10.1039/C8SC02609B
SSID ssj0002504251
Score 2.3787582
Snippet A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of...
A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides (TMDs) is the realization of...
Abstract A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chalcogenides
Charge transport
Chemical elements
Contact resistance
density functional theory
Energy consumption
Fermi‐level pinning
First principles
Graphene
Interfaces
Mathematical analysis
Metals
metal–semiconductor junctions
Optoelectronics
Phase transitions
Screening
Semiconductor junctions
Semiconductors
Transition metal compounds
transition‐metal dichalcogenides
van der Waals contact
Work functions
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ_iT5y_COhFobokbdccVRwq6Mmht5CkCYpzG1t32M0_QfDqX7e_xPfSbmwgevFSSvNaQt9Lv-_Rl-8RcpQmiZZMyiizuYAExesoS5mLjDQG8I9npdjz3X163Ypvn5KnmVZfWBNWygOXL-6sIbjNuRbCcxcDl8ms51Z4JnMgui4L2Tpg3kwyhd9gFOYC5J7qkfIz8Bc_ZZi_zCFQEOqfY5ezHDWATHOVrFTskJ6Xs1ojC66zTpZnNAM3yBdWZozfP6oGO71hQWHlQzYKo7Trae8ZcAnGXXWTyynk1UEUoD2ixfNLhxaIT6FUC-zeHNBvmmP1fNt2IZxecjegQGUpcGyauz591BCiFGvatS0G8DR4iqMo31kUr6Px--cdnNA27pTaJK3m1cPldVS1WIhsjBsEGXNc8ywxqTVxyjTkpvDxltp4_B0XAztAvTnmM61TA6tba1lPAVc5l8zGwoststjpdtw2oRJyXZE3bJ2bNMZj3SZSxC7xRja0bdTI8eS1K1vpj2MbjLYqlZO5Qhep4KIaOZza9krVjR-tLtB7UwtUyg4XIH5UFT_qr_ipkb2J71W1fAcKMFsAFHAhauQkxMMv01A3900eznb-Y0K7ZAlb2pclwXtksegP3T4Qn8IchBj_Bi_dBT0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELYoXNpD1dJW3ZZWluDSSi5rO8nGJ1QqVoDEqqqKys3yL6BuN9vdcODWd0DiAXmSzjjeBSTEJYoSx4oyf9_Yk28I2arK0iiuFKudl5CgRMPqigdmlbUQ_0TdkT0fjar94-LwpDzJC27zXFa58InJUfvG4Rr5NrhRCdYppNyZ_mXYNQp3V3MLjSdkDVxwDcnX2u7e6PuP5SoLEnRBBF_ykoptkJv4wjGPuReJEmH_PZR5F6umYDN8QZ5nlEi_dmJ9SVbCZJ08u8Md-IpcY4UGy212phctBfuHnBTu0SbS6RlEJxbyA8FTyK0TMcD4krZn5xPaYoxK5VrsTwAATj3Wz49dAwp17sOcApilgLKpDzP6y4CSUqxqN66dw1wwR6BI4Nm2vy9v_l0dwQkd479Sr8nxcO_nt32WmywwV-AvgpwHYURd2srZouIGslNw38rYiBtyBeADZJzjsTamsmDfxqh-BZFVCMVdIaN8Q1YnzSS8JVRBtiv9wPWFrQo89l2pZBHKaNXAuEGPfFp8cO0yAzk2whjrjjtZaBSOTsLpkc3l2GnHu_HgqF2U23IEcmWnC83sVGfT0wMpnBdGyihCAWi4dlE4GbnykCqFut8jGwup62zAc32rbj3yOWnCI6-hD0ZDkc7ePT7Xe_IU29V35b4bZLWdXYQPAGpa-zFr7n9mM_jo
  priority: 102
  providerName: ProQuest
Title High‐throughput screening of phase‐engineered atomically thin transition‐metal dichalcogenides for van der Waals contacts at the Schottky–Mott limit
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12407
https://www.proquest.com/docview/2843153233
https://doaj.org/article/732cd2a33f2e49168cf2c3f19d585e80
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEB3S5NIeSj-p28QstJcW1Hg_tNZCL02JkxZiQmlobmJ3tduEuraxlUNu-QmFXvvr8ksys5KVBEKhFyGkkTCanX1v1rNvAN7oPLeGG5MVvpKYoESbFZqHzBnnEP9E0Yg9H4z1_pH6cpwfr8GH1V6YRh-iW3CjyEjzNQW4dcvta9FQdIB4zykhuQcbtLeWlPOFOuxWWEicS6T-iwjrtBin806fVGxfP34LkZJw_y22eZOzJtAZPYKHLVtkHxv3Poa1MH0CD25oCD6Fv1SpcXnxu224Mz-rGc4EmJ3iXTaLbH6COIX3Q_tQqBjm2UkkYHLO6pPTKasJr1LpFtr9CkjHWUXV9BM_w-F1WoUlQ2rLkHOzKizYd4tDllGNu_X1Et-GbwmM5Dzr-uf55cWfAzxhE9o59QyORrvfPu1nbcuFzCvaMMh5EFYUudPeKc0t5qo4mRvrIv09p5AtkP4cj4W12mG0W2sGGnFWCMO9klE-h_XpbBpeADOY-8pq6AfCaUXHgc-NVCGPzgytH_bg7eqzl77VI6e2GJOyUVIWJbmoTC7qwevOdt6ocNxptUPe6yxIOTtdmC1-lG0glkMpfCWslFEEhdy48FF4GbmpMHEKxaAHmyvfl204L0vEcInQIKTswbs0Hv7xM8rP45FIZy__x_gV3KdW9k0p8Cas14uzsIWEp3b9NK7xWIz2-rCxszs-_NpPiwdXZjwC3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeEL9ioYAl4ABS6MZ2svEBIf6WXdrdUyt6M7bjtBXLZtlNVe2t74DEY_BQPAkzTrK0EuqtlyhKHCvK_H3jjL8BeJYmiVGxUlHmcoEJSmGiLI19ZJW1GP94VpM9j8bpYE9-3k_21-B3uxeGyipbnxgcdV46WiPfQjcq0Dq5EG9mPyLqGkV_V9sWGrVabPvlCaZsi9fDDyjf55z3P-6-H0RNV4HISdoTF8eeG54lNnVWprHBdAz9lTK2oD9QEgMiUazFRWZMalGhjVHdFEMJ5yp2UhQC570CV6UQiiwq639arekQHRjihRULKt9CLeGvYsqazsW90B7gHKY9i4xDaOvfhBsNJmVvayW6BWt-ehs2zjAV3oFfVA8SNU19ZscVQ2-DGTDeY2XBZocYCyPfPOBzhpl8oCGYLFl1eDRlFUXEUBwWffcI91lO1foTV6L6HuV-wRA6M8T0LPdz9sWgSTCqoTeuWuBcOIdnRBdaVd-Wf05_jvCETWhn1l3Yu5SPfw_Wp-XU3wemMLcWec91uU0lHbsuUUL6pLCqZ1yvAy_aD65dw3dObTcmumZq5pqEo4NwOvB0NXZWs3z8d9Q7kttqBDFzhwvl_EA3hq57grucGyEK7iVi78wV3IkiVjkmZj7rdmCzlbpu3MVC_1PuDrwMmnDBa-jhuM_D2YOL53oC1wa7ox29MxxvP4TrHOFZXWi8CevV_Ng_QjhV2cdBhxl8vWyj-QsahzKd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYg-iFdcrTqgPijETWZymwcRa7t0rV2KWOzbODOZscV1s-6myL75HwR_jD_HX-I5uawtSN_6EkIyGULO7TuTM98BeJImiZaRlEFuC4EJitdBnkYuMNIYjH88b8ie98bpzkH89jA5XIPf3V4YKqvsfGLtqIvS0hr5AN2oQOvkQgx8WxaxvzV8NfsWUAcp-tPatdNoVGTXLb9j-rZ4OdpCWT_lfLj94c1O0HYYCGxM--OiyHHN88Sk1sRppDE1Q98ltfH0NyrG4Eh0a5HPtU4NKrfWMkwxrHAuIxsLL3DeS7CeYVYU9mB9c3u8_361wkPkYIgeVpyofIA6w19ElEOdiYJ1s4AzCPc0Tq4D3fA6XGsRKnvdqNQNWHPTm3D1FG_hLfhF1SFB2-JndlIx9D2YD-M9Vno2O8LIGLj2AVcwzOtrUoLJklVHx1NWUXysS8WCrw7BPyuodn9iS1Tm48ItGAJphgifFW7OPmo0EEYV9dpWC5wL53CMyEOr6svyz4-fe3jCJrRP6zYcXMjnvwO9aTl1d4FJzLRFkdmQmzSmY2gTKWKXeCMzbbM-POs-uLIt-zk14ZiohreZKxKOqoXTh8ersbOG8-O_ozZJbqsRxNNdXyjnn1Vr9ioT3BZcC-G5ixGJ59ZzK3wkC0zTXB72YaOTumqdx0L9U_U-PK814ZzXUKPxkNdn986f6xFcRoNR70bj3ftwhSNWa6qON6BXzU_cA8RWlXnYKjGDTxdtN38BYKg4Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90throughput+screening+of+phase%E2%80%90engineered+atomically+thin+transition%E2%80%90metal+dichalcogenides+for+van+der+Waals+contacts+at+the+Schottky%E2%80%93Mott+limit&rft.jtitle=InfoMat&rft.au=Li%2C+Yanyan&rft.au=Su%2C+Liqin&rft.au=Lu%2C+Yanan&rft.au=Luo%2C+Qingyuan&rft.date=2023-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=5&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Finf2.12407&rft.externalDBID=10.1002%252Finf2.12407&rft.externalDocID=INF212407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon