High‐throughput screening of phase‐engineered atomically thin transition‐metal dichalcogenides for van der Waals contacts at the Schottky–Mott limit
A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usual...
Saved in:
Published in | InfoMat Vol. 5; no. 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.07.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics.
An attractive strategy via the formation of van der Waals (vdW) contacts between atomically thin metallic and semiconducting transition‐metal dichalcogenides (TMDs) is proposed to suppress strong Fermi‐level pinning at the metal–semiconductor interfaces. By means of high‐throughput first‐principles calculations, a series of phase‐engineered TMD‐based vdW metal–semiconductor junctions with weak Fermi‐level pining and high carrier tunneling probability have been screened. |
---|---|
AbstractList | Abstract A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. An attractive strategy via the formation of van der Waals (vdW) contacts between atomically thin metallic and semiconducting transition‐metal dichalcogenides (TMDs) is proposed to suppress strong Fermi‐level pinning at the metal–semiconductor interfaces. By means of high‐throughput first‐principles calculations, a series of phase‐engineered TMD‐based vdW metal–semiconductor junctions with weak Fermi‐level pining and high carrier tunneling probability have been screened. A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi-level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high-throughput first-principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase-engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high-performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe2/ZrSe2, NiTe2/PdSe2, HfTe2/PdTe2, TaSe2/MoTe2) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of metal–semiconductor junctions (MSJs) with low contact resistance and high charge transport capability. However, traditional metal–TMD junctions usually suffer from strong Fermi‐level pinning (FLP) and chemical disorder at the interfaces, resulting in weak device performance and high energy consumption. By means of high‐throughput first‐principles calculations, we report an attractive solution via the formation of van der Waals (vdW) contacts between metallic and semiconducting TMDs. We apply a phase‐engineering strategy to create a monolayer TMD database for achieving a wide range of work functions and band gaps, hence offering a large degree of freedom to construct TMD vdW MSJs with desired contact types. The Schottky barrier heights and contact types of 728 MSJs have been identified and they exhibit weak FLP (−0.62 to −0.90) as compared with the traditional metal–TMD junctions. We find that the interfacial interactions of the MSJs bring a delicate competition between the FLP strength and carrier tunneling efficiency, which can be utilized to screen high‐performance MSJs. Based on a set of screening criteria, four potential TMD vdW MSJs (e.g., NiTe 2 /ZrSe 2 , NiTe 2 /PdSe 2 , HfTe 2 /PdTe 2 , TaSe 2 /MoTe 2 ) with Ohmic contact, weak FLP, and high carrier tunneling probability have been predicted. This work not only provides a fundamental understanding of contact properties of TMD vdW MSJs but also renders their huge potential for electronics and optoelectronics. image |
Author | Luo, Qingyuan Su, Liqin Chen, Xiaoshuang Li, Yanyan Lu, Yanan Liang, Pei Shu, Haibo |
Author_xml | – sequence: 1 givenname: Yanyan surname: Li fullname: Li, Yanyan organization: China Jiliang University – sequence: 2 givenname: Liqin surname: Su fullname: Su, Liqin organization: China Jiliang University – sequence: 3 givenname: Yanan surname: Lu fullname: Lu, Yanan organization: China Jiliang University – sequence: 4 givenname: Qingyuan surname: Luo fullname: Luo, Qingyuan organization: China Jiliang University – sequence: 5 givenname: Pei surname: Liang fullname: Liang, Pei organization: China Jiliang University – sequence: 6 givenname: Haibo orcidid: 0000-0003-1728-2190 surname: Shu fullname: Shu, Haibo email: shuhaibo@cjlu.edu.cn organization: China Jiliang University – sequence: 7 givenname: Xiaoshuang surname: Chen fullname: Chen, Xiaoshuang organization: Chinese Academy of Science |
BookMark | eNp9kc9qVDEUxi9SwVq78QkC7oRpk5P7dynF2oGqCxWX4Uzuyb0Z7yRjkqnMro8guO3T9UnM9CqIiKsccn7fx-H7nhZHzjsqiueCnwnO4dw6A2cCSt48Ko6hqpuFFHV19Mf8pDiNcc0zXPESKnFc3F3ZYby__Z7G4HfDuN0lFnUgctYNzBu2HTFS3pMbrCMK1DNMfmM1TtOepdE6lgK6aJP1LnMbSjix3uoRJ-2H7NNTZMYHdoOO9RTYZ8QpMu1dQp1idssuxD7o0af0ZX9_--NtHthkNzY9Kx6bDNPpr_ek-HT5-uPF1eL6_ZvlxavrhS65bBZCECC01arWq7IWKCTQSnS4MpKXTQk8Z1ILYVrEegVVg9jxWhMBdEKX0siTYjn79h7XahvsBsNeebTq4cOHQWFIVk-kGgm6B5TSAJWdqFttQEsjur5qK2p59noxe22D_7qjmNTa74LL5ytoSykqCVJmis-UDj7GQEZpm_CQYU7TTkpwdahUHSpVD5Vmycu_JL8P_ScsZvibnWj_H1It313CrPkJVuu49w |
CitedBy_id | crossref_primary_10_1016_j_commatsci_2024_113488 crossref_primary_10_1002_pssr_202300152 crossref_primary_10_1007_s11705_023_2382_0 crossref_primary_10_1007_s40843_024_2861_2 crossref_primary_10_1002_smsc_202300093 crossref_primary_10_1039_D4CC05133E crossref_primary_10_1021_acsnano_4c15341 crossref_primary_10_1039_D3NR02466K crossref_primary_10_1002_pssb_202400076 crossref_primary_10_1063_5_0163908 crossref_primary_10_1088_2752_5724_ad7c6c crossref_primary_10_1016_j_sna_2024_116080 crossref_primary_10_1016_j_apsusc_2023_158061 crossref_primary_10_1021_acsaelm_3c00922 crossref_primary_10_1021_acsaelm_4c00300 crossref_primary_10_1002_aelm_202400269 crossref_primary_10_1039_D4QM00494A crossref_primary_10_1021_acsanm_3c05817 crossref_primary_10_1063_5_0176937 crossref_primary_10_1002_adfm_202410429 crossref_primary_10_1002_smll_202303675 |
Cites_doi | 10.1088/1367-2630/ab7d7a 10.1038/s41565-019-0466-2 10.1038/s41586-018-0129-8 10.1021/acsnano.6b07159 10.1103/PhysRevB.105.224105 10.1103/PhysRevB.63.245407 10.1021/acs.jpcc.5b02950 10.1002/inf2.12155 10.1002/adfm.202105132 10.1039/C5NR07909H 10.1002/adma.201804422 10.1021/acsnano.8b08677 10.1039/C4CS00287C 10.1039/D0TA00009D 10.1039/D1CS00236H 10.1002/adma.201901392 10.1002/adma.202109899 10.1103/PhysRevB.105.024108 10.1063/1.3382344 10.1038/s41586-019-1052-3 10.1002/adfm.202010303 10.1126/sciadv.aax6061 10.1038/nmat4452 10.1021/nl303583v 10.1038/s41928-022-00746-6 10.1103/PhysRevX.4.031005 10.1038/s41598-017-04224-4 10.1103/PhysRevB.59.1758 10.1039/D0TA10098F 10.1103/PhysRevB.50.17953 10.1039/D0TC01405B 10.1021/acs.nanolett.9b02497 10.1002/adfm.201806611 10.1021/acs.nanolett.9b01898 10.1002/pssb.201800597 10.1021/nn4044035 10.1039/C9TC06410A 10.1038/nnano.2012.193 10.1039/C7CS00828G 10.1021/nn506512j 10.1021/acs.chemrev.7b00618 10.1021/acsnano.9b08288 10.1038/ncomms10671 10.1103/PhysRevB.103.085404 10.1021/acsami.0c01025 10.1103/RevModPhys.64.1045 10.1038/nphoton.2015.282 10.1063/1.2187006 10.1021/acs.nanolett.7b05338 10.1002/adts.202000045 10.1021/acsami.5b06897 10.1021/acs.jpcc.8b10971 10.1103/PhysRevB.54.11169 10.1021/nl501275p 10.1038/nnano.2011.196 10.1088/2053-1583/aa5a99 10.1038/natrevmats.2017.33 10.1063/5.0021180 10.1039/C8SC02609B |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.1002/inf2.12407 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Science Database ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_732cd2a33f2e49168cf2c3f19d585e80 10_1002_inf2_12407 INF212407 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62174151 – fundername: Natural Science Foundation of Zhejiang Province funderid: LZ22F040003; Q21A050007 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c4037-11e2a285b6cb461a132eb19abf3047420124611f8aa6b257aa906cee2291c43f3 |
IEDL.DBID | 24P |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:27:35 EDT 2025 Wed Aug 13 03:27:17 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Wed Jan 22 16:18:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4037-11e2a285b6cb461a132eb19abf3047420124611f8aa6b257aa906cee2291c43f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1728-2190 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12407 |
PQID | 2843153233 |
PQPubID | 5068510 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_732cd2a33f2e49168cf2c3f19d585e80 proquest_journals_2843153233 crossref_citationtrail_10_1002_inf2_12407 crossref_primary_10_1002_inf2_12407 wiley_primary_10_1002_inf2_12407_INF212407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 7 2017; 2 2019; 13 2019; 14 2019; 19 2017; 4(2) 2020; 14 2020; 12 2019; 568 2013; 7 2019; 123 2018; 47 2020; 8 2018; 9 2021; 31 2020; 3 2014; 4 2013; 13 2015; 44 1999; 59 2022; 34 2014; 14 2019; 29 2019; 5(12) 2006; 124 2021; 9 2015; 14 2021; 3 2019; 31 2021; 103 2016; 10 2021; 50 2015; 9 2011; 6 2015; 7 1996; 54 2001; 63 2018; 18 2016; 7 2018; 557 2022; 5 2018; 118 2017; 11 2010; 132 2020; 117 2019; 256 2015; 119 2020; 22 1992; 64 2012; 7 1994; 50 2016; 8 2022; 105 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 7 start-page: 25709 issue: 46 year: 2015 end-page: 25715 article-title: 3D behavior of Schottky barriers of 2D transition‐metal dichalcogenides publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 4432 issue: 13 year: 2020 end-page: 4440 article-title: Electron‐injection driven phase transition in two‐dimensional transition metal dichalcogenides publication-title: J Mater Chem C – volume: 568 start-page: 70 issue: 7750 year: 2019 end-page: 74 article-title: Van der Waals contacts between three‐dimensional metals and two‐dimensional semiconductors publication-title: Nature – volume: 117 issue: 16 year: 2020 article-title: Atomic observation of phase transition in layered SnS driven by in situ heating and electron beam irradiation publication-title: Appl Phys Lett – volume: 14 start-page: 3594 issue: 6 year: 2014 end-page: 3601 article-title: High mobility WSe p‐ and n‐type field‐effect transistors contacted by high doped graphene for low‐resistance contacts publication-title: Nano Lett – volume: 63 issue: 24 year: 2001 article-title: Ab initio modeling of quantum transport properties of molecular electronic devices publication-title: Phys Rev B. – volume: 19 start-page: 6819 issue: 10 year: 2019 end-page: 6826 article-title: In situ probing molecular intercalation in two‐dimensional layered semiconductors publication-title: Nano Lett – volume: 18 start-page: 1937 issue: 3 year: 2018 end-page: 1945 article-title: Vertical and in‐plane current devices using NbS /n‐MoS van der Waals Schottky junction and graphene contact publication-title: Nano Lett – volume: 123 start-page: 5411 issue: 9 year: 2019 end-page: 5420 article-title: Universal Fermi‐level pinning in transition‐metal dichalcogenides publication-title: J Phys Chem C – volume: 44 start-page: 2664 issue: 9 year: 2015 end-page: 2680 article-title: Physical and chemical tuning of two‐dimensional transition metal dichalcogenides publication-title: Chem Soc Rev – volume: 7 start-page: 699 issue: 11 year: 2012 end-page: 712 article-title: Electronics and optoelectronics of two‐dimensional transition metal dichalcogenides publication-title: Nat Nanotechnol – volume: 31 start-page: 1901392 issue: 24 year: 2019 article-title: Gate‐tunable graphene‐WSe heterojunctions at the Schottky‐Mott limit publication-title: Adv Mater – volume: 10 start-page: 216 issue: 4 year: 2016 end-page: 226 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat Photon – volume: 9 start-page: 7727 issue: 40 year: 2018 end-page: 7745 article-title: Charge carrier injection and transport engineering in two‐dimensional transition metal dichalcogenides publication-title: Chem Sci – volume: 54 start-page: 11169 issue: 16 year: 1996 end-page: 11185 article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set publication-title: Phys Rev B – volume: 14 start-page: 985 issue: 1 year: 2020 end-page: 992 article-title: Graphene‐transition metal dichalcogenide heterojunctions for scalable and low‐power complementary integrated circuits publication-title: ACS Nano – volume: 103 issue: 8 year: 2021 article-title: Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations publication-title: Phys Rev B. – volume: 29 start-page: 1806611 issue: 12 year: 2019 article-title: Van der Waals epitaxial growth of atomically thin 2D metals on dangling‐bond‐free WSe and WS publication-title: Adv Funct Mater – volume: 132 issue: 15 year: 2010 article-title: A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu publication-title: J Chem Phys – volume: 7 start-page: 10167 issue: 11 year: 2013 end-page: 10174 article-title: Control of radiation damage in MoS by graphene encapsulation publication-title: ACS Nano – volume: 2 start-page: 17033 issue: 8 year: 2017 article-title: 2D transition metal dichalcogenides publication-title: Nat Rev Mater – volume: 3 start-page: 201 issue: 2 year: 2021 end-page: 211 article-title: Band structure engineering through van der Waals heterostructing superlattices of two‐dimensional transition metal dichalcogenides publication-title: InfoMat – volume: 8 start-page: 2918 issue: 5 year: 2016 end-page: 2926 article-title: The capacity fading mechanism and improvement of cycling stability in MoS ‐based anode materials for lithium‐ion batteries publication-title: Nanoscale – volume: 64 start-page: 1045 issue: 4 year: 1992 end-page: 1097 article-title: Iterative minimization techniques for ab initio total‐energy calculations: molecular dynamics and conjugate gradients publication-title: Rev Mod Phys – volume: 11 start-page: 1588 issue: 2 year: 2017 end-page: 1596 article-title: Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides publication-title: ACS Nano – volume: 256 issue: 8 year: 2019 article-title: Interfacial properties for a monolayer CrS contact with metal: a theoretical perspective publication-title: Phys Status Solidi B – volume: 118 start-page: 6297 issue: 13 year: 2018 end-page: 6336 article-title: Van der Waals metallic transition metal dichalcogenides publication-title: Chem Rev – volume: 557 start-page: 696 issue: 7707 year: 2018 end-page: 700 article-title: Approaching the Schottky–Mott limit in van der Waals metal‐semiconductor junctions publication-title: Nature – volume: 19 start-page: 6352 issue: 9 year: 2019 end-page: 6362 article-title: Contact engineering high‐performance n‐type MoTe transistors publication-title: Nano Lett – volume: 31 start-page: 1804422 issue: 2 year: 2019 article-title: Lowering the Schottky barrier height by graphene/Ag electrodes for high‐mobility MoS field‐effect transistors publication-title: Adv Mater – volume: 105 issue: 2 year: 2022 article-title: Hole‐ and electron‐injection driven phase transitions in transition metal dichalcogenides and beyond: a unified understanding publication-title: Phys Rev B. – volume: 3 issue: 6 year: 2020 article-title: Theoretical study of interfacial and electronic properties of transition metal dichalcogenides and organic molecules based on van der Waals heterostructures publication-title: Adv Theory Simul – volume: 5 start-page: 241 issue: 4 year: 2022 end-page: 247 article-title: Interaction‐and defect‐free van der Waals contacts between metals and two‐dimensional semiconductors publication-title: Nat Electron – volume: 4 issue: 3 year: 2014 article-title: Computational study of metal contacts to monolayer transition‐metal dichalcogenide semiconductors publication-title: Phys Rev X – volume: 6 start-page: 773 issue: 12 year: 2011 end-page: 783 article-title: Electrical contacts to one‐ and two‐dimensional nanomaterials publication-title: Nat Nanotechnol – volume: 22 issue: 5 year: 2020 article-title: Layer‐dependent band engineering of Pd dichalcogenides: a first‐principles study publication-title: New J Phys – volume: 50 start-page: 17953 issue: 24 year: 1994 end-page: 17979 article-title: Projector augmented‐wave method publication-title: Phys Rev B – volume: 5(12) year: 2019 article-title: A new metal transfer process for van der Waals contacts to vertical Schottky‐junction transition metal dichalcogenide photovoltaics publication-title: Sci Adv – volume: 124 issue: 15 year: 2006 article-title: Screened hybrid density functionals applied to solids publication-title: J Chem Phys – volume: 9 start-page: 6476 issue: 10 year: 2021 end-page: 6486 article-title: Hierarchical computational screening of layered lead‐free metal halide perovskites for optoelectronic applications publication-title: J Mater Chem A – volume: 13 start-page: 885 issue: 1 year: 2019 end-page: 893 article-title: Epitaxial growth of two‐dimensional metal‐semiconductor transition‐metal dichalcogenide vertical stacks (VSe /MX ) and their band alignments publication-title: ACS Nano – volume: 34 start-page: 2109899 issue: 19 year: 2022 article-title: Fermi‐level pinning‐free WSe transistors via 2D van der Waals metal contacts and their complementary logic gate circuits publication-title: Adv Mater – volume: 7 start-page: 3836 issue: 1 year: 2017 article-title: Evidence for chemical vapor induced 2H to 1T phase transition in MoX (X = Se, S) transition metal dichalcogenide film publication-title: Sci Rep – volume: 9 start-page: 7904 issue: 8 year: 2015 end-page: 7912 article-title: Impact of contact on the operation and performance of back‐gated monolayer MoS field‐effect‐transistors publication-title: ACS Nano – volume: 4(2) year: 2017 article-title: Ferromagnetic contact between Ni and MoX (X = S, Se, or Te) with Fermi‐level pinning publication-title: 2D Mater – volume: 59 start-page: 1758 issue: 3 year: 1999 end-page: 1775 article-title: From ultrasoft pseudopotentials to the projector augmented‐wave method publication-title: Phys Rev B – volume: 50 start-page: 10087 issue: 18 year: 2021 end-page: 10115 article-title: Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi‐)metallic phases publication-title: Chem Soc Rev – volume: 8 start-page: 7350 issue: 22 year: 2020 end-page: 7357 article-title: Interface and polarization effects induced Schottky‐barrier‐free contacts in two‐dimensional MXene/GaN heterojunctions publication-title: J Mater Chem C. – volume: 14 start-page: 668 issue: 7 year: 2019 end-page: 673 article-title: Strain‐based room‐temperature non‐volatile MoTe ferroelectric phase change transistor publication-title: Nat Nanotechnol – volume: 8 start-page: 8586 issue: 17 year: 2020 end-page: 8592 article-title: Work functions and band alignment of few‐layer violet phosphorene publication-title: J Mater Chem A – volume: 47 start-page: 3037 issue: 9 year: 2018 end-page: 3058 article-title: Contact engineering for 2D materials and devices publication-title: Chem Soc Rev – volume: 7 issue: 1 year: 2016 article-title: Structural semiconductor‐to‐semimetal phase transition in two‐dimensional materials induced by electrostatic gating publication-title: Nat Comm – volume: 13 start-page: 100 issue: 1 year: 2013 end-page: 105 article-title: High performance multilayer MoS transistors with scandium contacts publication-title: Nano Lett – volume: 14 start-page: 1195 issue: 12 year: 2015 end-page: 1205 article-title: Electrical contacts to two‐dimensional semiconductors publication-title: Nat Mater – volume: 31 issue: 21 year: 2021 article-title: High performance β‐Ga O Schottky barrier transistors with large work function TMD gate of NbS and TaS publication-title: Adv Funct Mater – volume: 31 issue: 48 year: 2021 article-title: 2D metallic transition‐metal dichalcogenides: structures, synthesis, properties, and applications publication-title: Adv Funct Mater – volume: 119 start-page: 13169 issue: 23 year: 2015 end-page: 13183 article-title: Computational 2D materials database: electronic structure of transition‐metal dichalcogenides and oxides publication-title: J Phys Chem C – volume: 105 issue: 22 year: 2022 article-title: Quasi‐bonding‐induced gap states in metal/two‐dimensional semiconductor junctions: route for Schottky barrier height reduction publication-title: Phys Rev B – volume: 12 start-page: 18667 issue: 16 year: 2020 end-page: 18673 article-title: Ultralow Schottky barriers in hexagonal boron nitride‐encapsulated monolayer WSe tunnel field‐effect transistors publication-title: ACS Appl Mater Interfaces – ident: e_1_2_7_39_1 doi: 10.1088/1367-2630/ab7d7a – ident: e_1_2_7_33_1 doi: 10.1038/s41565-019-0466-2 – ident: e_1_2_7_14_1 doi: 10.1038/s41586-018-0129-8 – ident: e_1_2_7_8_1 doi: 10.1021/acsnano.6b07159 – ident: e_1_2_7_53_1 doi: 10.1103/PhysRevB.105.224105 – ident: e_1_2_7_60_1 doi: 10.1103/PhysRevB.63.245407 – ident: e_1_2_7_29_1 doi: 10.1021/acs.jpcc.5b02950 – ident: e_1_2_7_30_1 doi: 10.1002/inf2.12155 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.202105132 – ident: e_1_2_7_32_1 doi: 10.1039/C5NR07909H – ident: e_1_2_7_12_1 doi: 10.1002/adma.201804422 – ident: e_1_2_7_24_1 doi: 10.1021/acsnano.8b08677 – ident: e_1_2_7_2_1 doi: 10.1039/C4CS00287C – ident: e_1_2_7_42_1 doi: 10.1039/D0TA00009D – ident: e_1_2_7_21_1 doi: 10.1039/D1CS00236H – ident: e_1_2_7_15_1 doi: 10.1002/adma.201901392 – ident: e_1_2_7_26_1 doi: 10.1002/adma.202109899 – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevB.105.024108 – ident: e_1_2_7_58_1 doi: 10.1063/1.3382344 – ident: e_1_2_7_19_1 doi: 10.1038/s41586-019-1052-3 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.202010303 – ident: e_1_2_7_18_1 doi: 10.1126/sciadv.aax6061 – ident: e_1_2_7_9_1 doi: 10.1038/nmat4452 – ident: e_1_2_7_46_1 doi: 10.1021/nl303583v – ident: e_1_2_7_47_1 doi: 10.1038/s41928-022-00746-6 – ident: e_1_2_7_50_1 doi: 10.1103/PhysRevX.4.031005 – ident: e_1_2_7_35_1 doi: 10.1038/s41598-017-04224-4 – ident: e_1_2_7_54_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_7_31_1 doi: 10.1039/D0TA10098F – ident: e_1_2_7_56_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_7_45_1 doi: 10.1039/D0TC01405B – ident: e_1_2_7_49_1 doi: 10.1021/acs.nanolett.9b02497 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201806611 – ident: e_1_2_7_23_1 doi: 10.1021/acs.nanolett.9b01898 – ident: e_1_2_7_52_1 doi: 10.1002/pssb.201800597 – ident: e_1_2_7_7_1 doi: 10.1021/nn4044035 – ident: e_1_2_7_22_1 doi: 10.1039/C9TC06410A – ident: e_1_2_7_3_1 doi: 10.1038/nnano.2012.193 – ident: e_1_2_7_6_1 doi: 10.1039/C7CS00828G – ident: e_1_2_7_10_1 doi: 10.1021/nn506512j – ident: e_1_2_7_27_1 doi: 10.1021/acs.chemrev.7b00618 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.9b08288 – ident: e_1_2_7_34_1 doi: 10.1038/ncomms10671 – ident: e_1_2_7_43_1 doi: 10.1103/PhysRevB.103.085404 – ident: e_1_2_7_13_1 doi: 10.1021/acsami.0c01025 – ident: e_1_2_7_57_1 doi: 10.1103/RevModPhys.64.1045 – ident: e_1_2_7_4_1 doi: 10.1038/nphoton.2015.282 – ident: e_1_2_7_59_1 doi: 10.1063/1.2187006 – ident: e_1_2_7_40_1 doi: 10.1021/acs.nanolett.7b05338 – ident: e_1_2_7_38_1 doi: 10.1002/adts.202000045 – ident: e_1_2_7_11_1 doi: 10.1021/acsami.5b06897 – ident: e_1_2_7_48_1 doi: 10.1021/acs.jpcc.8b10971 – ident: e_1_2_7_55_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_17_1 doi: 10.1021/nl501275p – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2011.196 – ident: e_1_2_7_51_1 doi: 10.1088/2053-1583/aa5a99 – ident: e_1_2_7_20_1 doi: 10.1038/natrevmats.2017.33 – ident: e_1_2_7_36_1 doi: 10.1063/5.0021180 – ident: e_1_2_7_37_1 doi: 10.1039/C8SC02609B |
SSID | ssj0002504251 |
Score | 2.3787582 |
Snippet | A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of... A main challenge for the development of two-dimensional devices based on atomically thin transition-metal dichalcogenides (TMDs) is the realization of... Abstract A main challenge for the development of two‐dimensional devices based on atomically thin transition‐metal dichalcogenides (TMDs) is the realization of... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chalcogenides Charge transport Chemical elements Contact resistance density functional theory Energy consumption Fermi‐level pinning First principles Graphene Interfaces Mathematical analysis Metals metal–semiconductor junctions Optoelectronics Phase transitions Screening Semiconductor junctions Semiconductors Transition metal compounds transition‐metal dichalcogenides van der Waals contact Work functions |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ_iT5y_COhFobokbdccVRwq6Mmht5CkCYpzG1t32M0_QfDqX7e_xPfSbmwgevFSSvNaQt9Lv-_Rl-8RcpQmiZZMyiizuYAExesoS5mLjDQG8I9npdjz3X163Ypvn5KnmVZfWBNWygOXL-6sIbjNuRbCcxcDl8ms51Z4JnMgui4L2Tpg3kwyhd9gFOYC5J7qkfIz8Bc_ZZi_zCFQEOqfY5ezHDWATHOVrFTskJ6Xs1ojC66zTpZnNAM3yBdWZozfP6oGO71hQWHlQzYKo7Trae8ZcAnGXXWTyynk1UEUoD2ixfNLhxaIT6FUC-zeHNBvmmP1fNt2IZxecjegQGUpcGyauz591BCiFGvatS0G8DR4iqMo31kUr6Px--cdnNA27pTaJK3m1cPldVS1WIhsjBsEGXNc8ywxqTVxyjTkpvDxltp4_B0XAztAvTnmM61TA6tba1lPAVc5l8zGwoststjpdtw2oRJyXZE3bJ2bNMZj3SZSxC7xRja0bdTI8eS1K1vpj2MbjLYqlZO5Qhep4KIaOZza9krVjR-tLtB7UwtUyg4XIH5UFT_qr_ipkb2J71W1fAcKMFsAFHAhauQkxMMv01A3900eznb-Y0K7ZAlb2pclwXtksegP3T4Qn8IchBj_Bi_dBT0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELYoXNpD1dJW3ZZWluDSSi5rO8nGJ1QqVoDEqqqKys3yL6BuN9vdcODWd0DiAXmSzjjeBSTEJYoSx4oyf9_Yk28I2arK0iiuFKudl5CgRMPqigdmlbUQ_0TdkT0fjar94-LwpDzJC27zXFa58InJUfvG4Rr5NrhRCdYppNyZ_mXYNQp3V3MLjSdkDVxwDcnX2u7e6PuP5SoLEnRBBF_ykoptkJv4wjGPuReJEmH_PZR5F6umYDN8QZ5nlEi_dmJ9SVbCZJ08u8Md-IpcY4UGy212phctBfuHnBTu0SbS6RlEJxbyA8FTyK0TMcD4krZn5xPaYoxK5VrsTwAATj3Wz49dAwp17sOcApilgLKpDzP6y4CSUqxqN66dw1wwR6BI4Nm2vy9v_l0dwQkd479Sr8nxcO_nt32WmywwV-AvgpwHYURd2srZouIGslNw38rYiBtyBeADZJzjsTamsmDfxqh-BZFVCMVdIaN8Q1YnzSS8JVRBtiv9wPWFrQo89l2pZBHKaNXAuEGPfFp8cO0yAzk2whjrjjtZaBSOTsLpkc3l2GnHu_HgqF2U23IEcmWnC83sVGfT0wMpnBdGyihCAWi4dlE4GbnykCqFut8jGwup62zAc32rbj3yOWnCI6-hD0ZDkc7ePT7Xe_IU29V35b4bZLWdXYQPAGpa-zFr7n9mM_jo priority: 102 providerName: ProQuest |
Title | High‐throughput screening of phase‐engineered atomically thin transition‐metal dichalcogenides for van der Waals contacts at the Schottky–Mott limit |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12407 https://www.proquest.com/docview/2843153233 https://doaj.org/article/732cd2a33f2e49168cf2c3f19d585e80 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEB3S5NIeSj-p28QstJcW1Hg_tNZCL02JkxZiQmlobmJ3tduEuraxlUNu-QmFXvvr8ksys5KVBEKhFyGkkTCanX1v1rNvAN7oPLeGG5MVvpKYoESbFZqHzBnnEP9E0Yg9H4z1_pH6cpwfr8GH1V6YRh-iW3CjyEjzNQW4dcvta9FQdIB4zykhuQcbtLeWlPOFOuxWWEicS6T-iwjrtBin806fVGxfP34LkZJw_y22eZOzJtAZPYKHLVtkHxv3Poa1MH0CD25oCD6Fv1SpcXnxu224Mz-rGc4EmJ3iXTaLbH6COIX3Q_tQqBjm2UkkYHLO6pPTKasJr1LpFtr9CkjHWUXV9BM_w-F1WoUlQ2rLkHOzKizYd4tDllGNu_X1Et-GbwmM5Dzr-uf55cWfAzxhE9o59QyORrvfPu1nbcuFzCvaMMh5EFYUudPeKc0t5qo4mRvrIv09p5AtkP4cj4W12mG0W2sGGnFWCMO9klE-h_XpbBpeADOY-8pq6AfCaUXHgc-NVCGPzgytH_bg7eqzl77VI6e2GJOyUVIWJbmoTC7qwevOdt6ocNxptUPe6yxIOTtdmC1-lG0glkMpfCWslFEEhdy48FF4GbmpMHEKxaAHmyvfl204L0vEcInQIKTswbs0Hv7xM8rP45FIZy__x_gV3KdW9k0p8Cas14uzsIWEp3b9NK7xWIz2-rCxszs-_NpPiwdXZjwC3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoAeEL9ioYAl4ABS6MZ2svEBIf6WXdrdUyt6M7bjtBXLZtlNVe2t74DEY_BQPAkzTrK0EuqtlyhKHCvK_H3jjL8BeJYmiVGxUlHmcoEJSmGiLI19ZJW1GP94VpM9j8bpYE9-3k_21-B3uxeGyipbnxgcdV46WiPfQjcq0Dq5EG9mPyLqGkV_V9sWGrVabPvlCaZsi9fDDyjf55z3P-6-H0RNV4HISdoTF8eeG54lNnVWprHBdAz9lTK2oD9QEgMiUazFRWZMalGhjVHdFEMJ5yp2UhQC570CV6UQiiwq639arekQHRjihRULKt9CLeGvYsqazsW90B7gHKY9i4xDaOvfhBsNJmVvayW6BWt-ehs2zjAV3oFfVA8SNU19ZscVQ2-DGTDeY2XBZocYCyPfPOBzhpl8oCGYLFl1eDRlFUXEUBwWffcI91lO1foTV6L6HuV-wRA6M8T0LPdz9sWgSTCqoTeuWuBcOIdnRBdaVd-Wf05_jvCETWhn1l3Yu5SPfw_Wp-XU3wemMLcWec91uU0lHbsuUUL6pLCqZ1yvAy_aD65dw3dObTcmumZq5pqEo4NwOvB0NXZWs3z8d9Q7kttqBDFzhwvl_EA3hq57grucGyEK7iVi78wV3IkiVjkmZj7rdmCzlbpu3MVC_1PuDrwMmnDBa-jhuM_D2YOL53oC1wa7ox29MxxvP4TrHOFZXWi8CevV_Ng_QjhV2cdBhxl8vWyj-QsahzKd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYg-iFdcrTqgPijETWZymwcRa7t0rV2KWOzbODOZscV1s-6myL75HwR_jD_HX-I5uawtSN_6EkIyGULO7TuTM98BeJImiZaRlEFuC4EJitdBnkYuMNIYjH88b8ie98bpzkH89jA5XIPf3V4YKqvsfGLtqIvS0hr5AN2oQOvkQgx8WxaxvzV8NfsWUAcp-tPatdNoVGTXLb9j-rZ4OdpCWT_lfLj94c1O0HYYCGxM--OiyHHN88Sk1sRppDE1Q98ltfH0NyrG4Eh0a5HPtU4NKrfWMkwxrHAuIxsLL3DeS7CeYVYU9mB9c3u8_361wkPkYIgeVpyofIA6w19ElEOdiYJ1s4AzCPc0Tq4D3fA6XGsRKnvdqNQNWHPTm3D1FG_hLfhF1SFB2-JndlIx9D2YD-M9Vno2O8LIGLj2AVcwzOtrUoLJklVHx1NWUXysS8WCrw7BPyuodn9iS1Tm48ItGAJphgifFW7OPmo0EEYV9dpWC5wL53CMyEOr6svyz4-fe3jCJrRP6zYcXMjnvwO9aTl1d4FJzLRFkdmQmzSmY2gTKWKXeCMzbbM-POs-uLIt-zk14ZiohreZKxKOqoXTh8ersbOG8-O_ozZJbqsRxNNdXyjnn1Vr9ioT3BZcC-G5ixGJ59ZzK3wkC0zTXB72YaOTumqdx0L9U_U-PK814ZzXUKPxkNdn986f6xFcRoNR70bj3ftwhSNWa6qON6BXzU_cA8RWlXnYKjGDTxdtN38BYKg4Lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90throughput+screening+of+phase%E2%80%90engineered+atomically+thin+transition%E2%80%90metal+dichalcogenides+for+van+der+Waals+contacts+at+the+Schottky%E2%80%93Mott+limit&rft.jtitle=InfoMat&rft.au=Li%2C+Yanyan&rft.au=Su%2C+Liqin&rft.au=Lu%2C+Yanan&rft.au=Luo%2C+Qingyuan&rft.date=2023-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=5&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Finf2.12407&rft.externalDBID=10.1002%252Finf2.12407&rft.externalDocID=INF212407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |