Opacity Optimization for Surfaces
In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi‐transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective...
Saved in:
Published in | Computer graphics forum Vol. 33; no. 3; pp. 11 - 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi‐transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion problem. Starting with a partition of the surfaces into patches, we compute per‐patch opacity as minimizer of a bounded‐variable least‐squares problem. For the final rendering, opacity is interpolated on the surfaces. The resulting visualization technique is interactive, frame‐coherent, view‐dependent and driven by domain knowledge. |
---|---|
AbstractList | In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi‐transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion problem. Starting with a partition of the surfaces into patches, we compute per‐patch opacity as minimizer of a bounded‐variable least‐squares problem. For the final rendering, opacity is interpolated on the surfaces. The resulting visualization technique is interactive, frame‐coherent, view‐dependent and driven by domain knowledge. In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi-transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion problem. Starting with a partition of the surfaces into patches, we compute per-patch opacity as minimizer of a bounded-variable least-squares problem. For the final rendering, opacity is interpolated on the surfaces. The resulting visualization technique is interactive, frame-coherent, view-dependent and driven by domain knowledge. [PUBLICATION ABSTRACT] |
Author | Günther, Tobias Schulze, Maik Rössl, Christian Esturo, Janick Martinez Theisel, Holger |
Author_xml | – sequence: 1 givenname: Tobias surname: Günther fullname: Günther, Tobias organization: Visual Computing Group, University of Magdeburg – sequence: 2 givenname: Maik surname: Schulze fullname: Schulze, Maik organization: Visual Computing Group, University of Magdeburg – sequence: 3 givenname: Janick Martinez surname: Esturo fullname: Esturo, Janick Martinez organization: Max Planck Institute for Informatics, Saarbrücken – sequence: 4 givenname: Christian surname: Rössl fullname: Rössl, Christian organization: Visual Computing Group, University of Magdeburg – sequence: 5 givenname: Holger surname: Theisel fullname: Theisel, Holger organization: Visual Computing Group, University of Magdeburg |
BookMark | eNp9kMFOAjEQhhuDiYAefAOMFz0sdHbbbfdoUNAExESNx6aU1hSX3bXdjeLTW0E9kOhcZg7fP5n5OqhVlIVG6BhwH0IN1LPpQ5xQtofaQFIW8ZRmLdTGEGaGKT1AHe-XGGPCUtpGJ7NKKluve7Oqtiv7IWtbFj1Tut5944xU2h-ifSNzr4--exc9jq4ehtfRZDa-GV5MIkVwwiIAYtI5i6kxagE4A5OkMOca44SbDBjmseTzDKccEw0q1jrDRC1wzFUGXMuki862eytXvjba12JlvdJ5LgtdNl6EB4AmLMtIQE930GXZuCJcJ4ASGn4lnAfqfEspV3rvtBGVsyvp1gKw-JIlgiyxkRXYwQ4bpGxc1E7a_L_Em831-u_VYjge_SSibcL6Wr__JqR7ESlLGBVPt2MxmcZTAsNLcZd8Av4ZiLA |
CitedBy_id | crossref_primary_10_1109_MCG_2019_2959568 crossref_primary_10_1109_TVCG_2021_3074585 crossref_primary_10_1016_j_visinf_2023_05_002 crossref_primary_10_1111_cgf_14183 crossref_primary_10_1111_cgf_15096 crossref_primary_10_1109_TVCG_2016_2569080 crossref_primary_10_1002_cav_2250 crossref_primary_10_1109_TVCG_2019_2915222 crossref_primary_10_1111_cgf_13692 crossref_primary_10_1007_s00371_023_02828_8 crossref_primary_10_1111_cgf_13115 |
Cites_doi | 10.1016/j.cag.2011.07.006 10.1109/VISUAL.1992.235211 10.1109/TIT.1982.1056489 10.1111/1467-8659.t01-1-00591 10.1145/2461912.2461930 10.1145/1531326.1531331 10.1111/j.1467-8659.2010.01725.x 10.1145/2516971.2516977 10.1109/PacificVis.2013.6596151 10.1145/1276377.1276401 10.2514/6.2012-2913 10.1111/j.1467-8659.2009.01352.x 10.1109/VISUAL.2004.48 10.1137/1.9780898719703 10.1016/j.cag.2012.07.006 10.1111/j.1467-8659.2010.01650.x 10.1111/cgf.12031 10.1145/1507149.1507170 10.1145/882262.882352 10.1145/1730804.1730831 10.1145/1141911.1142016 10.1145/882262.882354 10.1145/97880.97901 10.1109/VISUAL.1996.568110 10.1111/j.1467-8659.2012.03102.x |
ContentType | Journal Article |
Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1111/cgf.12357 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 20 |
ExternalDocumentID | 3372545441 10_1111_cgf_12357 CGF12357 ark_67375_WNG_LM2M41CD_P |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c4037-114f6b725ffcd1091f361b8e0038f917082a8b906804e1c2ee904cd028c918ea3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 11 01:01:50 EDT 2025 Fri Jul 25 23:43:07 EDT 2025 Thu Apr 24 22:53:47 EDT 2025 Tue Jul 01 05:08:49 EDT 2025 Wed Jan 22 16:24:44 EST 2025 Wed Oct 30 09:54:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4037-114f6b725ffcd1091f361b8e0038f917082a8b906804e1c2ee904cd028c918ea3 |
Notes | ark:/67375/WNG-LM2M41CD-P ArticleID:CGF12357 istex:598CF59A5539850CE34A2072FAC5B7B481AB7ADC Supporting Information SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12357 |
PQID | 1545016488 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1671537994 proquest_journals_1545016488 crossref_primary_10_1111_cgf_12357 crossref_citationtrail_10_1111_cgf_12357 wiley_primary_10_1111_cgf_12357_CGF12357 istex_primary_ark_67375_WNG_LM2M41CD_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Luft T., Colditz C., Deussen O.: Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1206-1213. 2 Lloyd S.P.: Least square quantization in PCM. IEEE Information Theory 28, 2 (1982), 129-137. 4 Saito T., Takahashi T.: Comprehensible rendering of 3D shapes. SIGGRAPH Comp. Graph. 24, 4 (1990), 197-206. 2 DeCarlo D., Finkelstein A., Rusinkiewicz S., Santella A.: Suggestive contours for conveying shape. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 848-855. 2 Hummel M., Garth C., Hamann B., Hagen H., Joy K.I.: IRIS: Illustrative rendering for integral surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1319-1328. 2, 7, 8 Carnecky R., Fuchs R., Mehl S., Jang Y., Peikert R.: Smart transparency for illustrative visualization of complex flow surfaces. IEEE TVCG 19, 5 (2013), 838-851. 2, 3, 6, 7, 8, 9 McLoughlin T., Laramee R.S., Peikert R., Post F.H., Chen M.: Over two decades of integration-based, geometric flow visualization. CGF 29, 6 (2010), 1807-1829. 2 Judd T., Durand F., Adelson E.: Apparent ridges for line drawing. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007). 2 Agrawala M., Phan D., Heiser J., Haymaker J., Klingner J., Hanrahan P., Tversky B.: Designing effective step-by-step assembly instructions. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 828-837. 2 Martinez Esturo J., Schulze M., Rössl C., Theisel H.: Global selection of stream surfaces. CGF (Proc. Eurographics) 32, 2 (2013), 113-122. 5 Griebel M., Dornseifer T., Neunhoeffer T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, 1998. 7 Edmunds M., Laramee R., Malki R., Masters I., Croft T., Chen G., Zhang E.: Automatic stream surface seeding: A feature centered approach. CGF (Proc. EuroVis) 31, 3 (2012), 1095-1104. 5 Wang L., Giesen J., McDonnell K.T., Zolliker P., Mueller K.: Color design for illustrative visualization. IEEE TVCG (Proc. InfoVis) 14, 6 (2008), 1739-1754. 2 Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. AK Peters, 1993. 4 Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5 (2013), 152:1-152:11. 3, 9 Edmunds M., Laramee R.S., Chen G., Max N., Zhang E., Ware C.: Surface-based flow visualization. Computers & Graphics 36, 8 (2012), 974-990. 2 Frederich O., Wassen E., Thiele F.: Prediction of the flow around a short wall-mounted cylinder using LES and DES. JNAIAM 3, 3-4 (2008), 231-247. 7 Vergne R., Pacanowski R., Barla P., Granier X., Schlick C.: Light warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 25:1-8. 2 Chan M.-Y., Wu Y., Mak W.-H., Chen W., Qu H.: Perception-based transparency optimization for direct volume rendering. IEEE TVCG (Vis) 15, 6 (2009), 1283-1290. 2 Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (2011), 192-204. 2 Günther T., Rössl C., Theisel H.: Opacity optimization for 3D line fields. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013), 120:1-120:8. 2, 3, 4, 5, 6, 9 Carnecky R., Schindler B., Fuchs R., Peikert R.: Multi-layer illustrative dense flow visualization. CGF 31, 3 (2012), 895-904. 2 Born S., Wiebel A., Friedrich J., Scheuermann G., Bartz D.: Illustrative stream surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1329-1338. 2 Diepstraten J., Weiskopf D., Ertl T.: Transparency in interactive technical illustrations. CGF (Proc. Eurographics) 21, 3 (2002), 317-325. 2 Yang J.C., Hensley J., Grün H., Thibieroz N.: Real-time concurrent linked list construction on the GPU. CGF (Proc. EGSR) 29, 4 (2010), 1297-1304. 5, 6 Correa C., Silver D., Chen M.: Illustrative deformation for data exploration. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1320-1327. 2 Spencer B., Laramee R.S., Chen G., Zhang E.: Evenly spaced streamlines for surfaces: An image-based approach. CGF 28, 6 (2009), 1618-1631. 2 Schulze M., Martinez Esturo J., Günther T., Rössl C., Seidel H.-P., Weinkauf T., Theisel H.: Sets of globally optimal stream surfaces for flow visualization. CGF (Proc. EuroVis) 33, 3 (2014), to appear. 5 Bruckner S., Gröller E.: Enhancing depth-perception with flexible volumetric halos. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1344-1351. 2 Maule M., Comba J.L., Torchelsen R.P., Bastos R.: A survey of raster-based transparency techniques. Computers & Graphics 35, 6 (2011), 1023-1034. 6 Günther T., Rössl C., Theisel H.: Hierarchical opacity optimization for sets of 3D line fields. CGF (Proc. EG) 33, 2 (2014), to appear. 9 2010; 16 2012 2010 1998 2008; 14 2009 1996 2005 2011; 35 1993 2004 2008; 3 1992 2011; 17 2012; 36 2007; 13 2012; 31 2009; 28 2013; 19 1982; 28 1990; 24 2013; 32 2010; 29 2002; 21 2006; 25 1984 2013 2009; 15 2014; 33 2003; 22 2007; 26 Born S. (e_1_2_9_6_2) 2010; 16 e_1_2_9_30_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_31_2 e_1_2_9_32_2 Saito T. (e_1_2_9_38_2) 1990; 24 Bruckner S. (e_1_2_9_5_2) 2007; 13 Hummel M. (e_1_2_9_22_2) 2010; 16 e_1_2_9_14_2 e_1_2_9_13_2 Chan M.‐Y. (e_1_2_9_12_2) 2009; 15 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_17_2 Frederich O. (e_1_2_9_18_2) 2008; 3 e_1_2_9_39_2 Abraham R.H. (e_1_2_9_3_2) 1984 e_1_2_9_19_2 Hoschek J. (e_1_2_9_23_2) 1993 e_1_2_9_40_2 e_1_2_9_41_2 Schulze M. (e_1_2_9_37_2) 2014; 33 e_1_2_9_44_2 e_1_2_9_20_2 e_1_2_9_43_2 Wang L. (e_1_2_9_42_2) 2008; 14 Correa C. (e_1_2_9_10_2) 2007; 13 e_1_2_9_4_2 e_1_2_9_2_2 Carnecky R. (e_1_2_9_11_2) 2012; 31 e_1_2_9_9_2 Carnecky R. (e_1_2_9_7_2) 2013; 19 Günther T. (e_1_2_9_21_2) 2014; 33 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 Correa C.D. (e_1_2_9_8_2) 2011; 17 e_1_2_9_26_2 e_1_2_9_29_2 e_1_2_9_28_2 |
References_xml | – reference: Hummel M., Garth C., Hamann B., Hagen H., Joy K.I.: IRIS: Illustrative rendering for integral surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1319-1328. 2, 7, 8 – reference: Luft T., Colditz C., Deussen O.: Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1206-1213. 2 – reference: Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. AK Peters, 1993. 4 – reference: McLoughlin T., Laramee R.S., Peikert R., Post F.H., Chen M.: Over two decades of integration-based, geometric flow visualization. CGF 29, 6 (2010), 1807-1829. 2 – reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5 (2013), 152:1-152:11. 3, 9 – reference: Günther T., Rössl C., Theisel H.: Opacity optimization for 3D line fields. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013), 120:1-120:8. 2, 3, 4, 5, 6, 9 – reference: Born S., Wiebel A., Friedrich J., Scheuermann G., Bartz D.: Illustrative stream surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1329-1338. 2 – reference: Agrawala M., Phan D., Heiser J., Haymaker J., Klingner J., Hanrahan P., Tversky B.: Designing effective step-by-step assembly instructions. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 828-837. 2 – reference: Bruckner S., Gröller E.: Enhancing depth-perception with flexible volumetric halos. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1344-1351. 2 – reference: Correa C., Silver D., Chen M.: Illustrative deformation for data exploration. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1320-1327. 2 – reference: Saito T., Takahashi T.: Comprehensible rendering of 3D shapes. SIGGRAPH Comp. Graph. 24, 4 (1990), 197-206. 2 – reference: Edmunds M., Laramee R.S., Chen G., Max N., Zhang E., Ware C.: Surface-based flow visualization. Computers & Graphics 36, 8 (2012), 974-990. 2 – reference: Maule M., Comba J.L., Torchelsen R.P., Bastos R.: A survey of raster-based transparency techniques. Computers & Graphics 35, 6 (2011), 1023-1034. 6 – reference: Martinez Esturo J., Schulze M., Rössl C., Theisel H.: Global selection of stream surfaces. CGF (Proc. Eurographics) 32, 2 (2013), 113-122. 5 – reference: Carnecky R., Fuchs R., Mehl S., Jang Y., Peikert R.: Smart transparency for illustrative visualization of complex flow surfaces. IEEE TVCG 19, 5 (2013), 838-851. 2, 3, 6, 7, 8, 9 – reference: Lloyd S.P.: Least square quantization in PCM. IEEE Information Theory 28, 2 (1982), 129-137. 4 – reference: DeCarlo D., Finkelstein A., Rusinkiewicz S., Santella A.: Suggestive contours for conveying shape. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 848-855. 2 – reference: Frederich O., Wassen E., Thiele F.: Prediction of the flow around a short wall-mounted cylinder using LES and DES. JNAIAM 3, 3-4 (2008), 231-247. 7 – reference: Wang L., Giesen J., McDonnell K.T., Zolliker P., Mueller K.: Color design for illustrative visualization. IEEE TVCG (Proc. InfoVis) 14, 6 (2008), 1739-1754. 2 – reference: Diepstraten J., Weiskopf D., Ertl T.: Transparency in interactive technical illustrations. CGF (Proc. Eurographics) 21, 3 (2002), 317-325. 2 – reference: Vergne R., Pacanowski R., Barla P., Granier X., Schlick C.: Light warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 25:1-8. 2 – reference: Günther T., Rössl C., Theisel H.: Hierarchical opacity optimization for sets of 3D line fields. CGF (Proc. EG) 33, 2 (2014), to appear. 9 – reference: Carnecky R., Schindler B., Fuchs R., Peikert R.: Multi-layer illustrative dense flow visualization. CGF 31, 3 (2012), 895-904. 2 – reference: Edmunds M., Laramee R., Malki R., Masters I., Croft T., Chen G., Zhang E.: Automatic stream surface seeding: A feature centered approach. CGF (Proc. EuroVis) 31, 3 (2012), 1095-1104. 5 – reference: Griebel M., Dornseifer T., Neunhoeffer T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, 1998. 7 – reference: Yang J.C., Hensley J., Grün H., Thibieroz N.: Real-time concurrent linked list construction on the GPU. CGF (Proc. EGSR) 29, 4 (2010), 1297-1304. 5, 6 – reference: Schulze M., Martinez Esturo J., Günther T., Rössl C., Seidel H.-P., Weinkauf T., Theisel H.: Sets of globally optimal stream surfaces for flow visualization. CGF (Proc. EuroVis) 33, 3 (2014), to appear. 5 – reference: Judd T., Durand F., Adelson E.: Apparent ridges for line drawing. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007). 2 – reference: Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (2011), 192-204. 2 – reference: Chan M.-Y., Wu Y., Mak W.-H., Chen W., Qu H.: Perception-based transparency optimization for direct volume rendering. IEEE TVCG (Vis) 15, 6 (2009), 1283-1290. 2 – reference: Spencer B., Laramee R.S., Chen G., Zhang E.: Evenly spaced streamlines for surfaces: An image-based approach. CGF 28, 6 (2009), 1618-1631. 2 – volume: 28 start-page: 25:1 issue: 3 year: 2009 end-page: 8 article-title: Light warping for enhanced surface depiction publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – start-page: 49 year: 2004 end-page: 56 – volume: 36 start-page: 974 issue: 8 year: 2012 end-page: 990 article-title: Surface‐based flow visualization publication-title: Computers & Graphics – volume: 25 start-page: 1206 issue: 3 year: 2006 end-page: 1213 article-title: Image enhancement by unsharp masking the depth buffer publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – volume: 14 start-page: 1739 issue: 6 year: 2008 end-page: 1754 article-title: Color design for illustrative visualization publication-title: IEEE TVCG (Proc. InfoVis) – year: 2005 – volume: 3 start-page: 231 issue: 3–4 year: 2008 end-page: 247 article-title: Prediction of the flow around a short wall‐mounted cylinder using LES and DES publication-title: JNAIAM – start-page: 211 year: 1996 – volume: 22 start-page: 848 issue: 3 year: 2003 end-page: 855 article-title: Suggestive contours for conveying shape publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – volume: 33 issue: 3 year: 2014 article-title: Sets of globally optimal stream surfaces for flow visualization publication-title: CGF (Proc. EuroVis) – start-page: 139 year: 2004 end-page: 146 – volume: 32 start-page: 113 issue: 2 year: 2013 end-page: 122 article-title: Global selection of stream surfaces publication-title: CGF (Proc. Eurographics) – start-page: 241 year: 2013 end-page: 248 – start-page: 129 year: 2009 end-page: 136 – volume: 32 start-page: 152:1 issue: 5 year: 2013 end-page: 152:11 article-title: Geodesics in heat: A new approach to computing distance based on heat flow publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – volume: 35 start-page: 1023 issue: 6 year: 2011 end-page: 1034 article-title: A survey of raster‐based transparency techniques publication-title: Computers & Graphics – year: 1998 – volume: 28 start-page: 129 issue: 2 year: 1982 end-page: 137 article-title: Least square quantization in PCM publication-title: IEEE Information Theory – volume: 29 start-page: 1807 issue: 6 year: 2010 end-page: 1829 article-title: Over two decades of integration‐based, geometric flow visualization publication-title: CGF – year: 2012 – volume: 28 start-page: 1618 issue: 6 year: 2009 end-page: 1631 article-title: Evenly spaced streamlines for surfaces: An image‐based approach publication-title: CGF – volume: 31 start-page: 1095 issue: 3 year: 2012 end-page: 1104 article-title: Automatic stream surface seeding: A feature centered approach publication-title: CGF (Proc. EuroVis) – year: 1984 – volume: 13 start-page: 1320 issue: 6 year: 2007 end-page: 1327 article-title: Illustrative deformation for data exploration publication-title: IEEE TVCG (Proc. Vis) – start-page: 209 year: 2005 end-page: 216 – volume: 21 start-page: 317 issue: 3 year: 2002 end-page: 325 article-title: Transparency in interactive technical illustrations publication-title: CGF (Proc. Eurographics) – volume: 33 issue: 2 year: 2014 article-title: Hierarchical opacity optimization for sets of 3D line fields publication-title: CGF (Proc. EG) – volume: 16 start-page: 1319 issue: 6 year: 2010 end-page: 1328 article-title: IRIS: Illustrative rendering for integral surfaces publication-title: IEEE TVCG (Proc. Vis) – volume: 31 start-page: 895 issue: 3 year: 2012 end-page: 904 article-title: Multi‐layer illustrative dense flow visualization publication-title: CGF – start-page: 171 year: 1992 end-page: 178 – volume: 19 start-page: 838 issue: 5 year: 2013 end-page: 851 article-title: Smart transparency for illustrative visualization of complex flow surfaces publication-title: IEEE TVCG – volume: 32 start-page: 120:1 issue: 4 year: 2013 end-page: 120:8 article-title: Opacity optimization for 3D line fields publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – volume: 24 start-page: 197 issue: 4 year: 1990 end-page: 206 article-title: Comprehensible rendering of 3D shapes publication-title: SIGGRAPH Comp. Graph. – volume: 15 start-page: 1283 issue: 6 year: 2009 end-page: 1290 article-title: Perception‐based transparency optimization for direct volume rendering publication-title: IEEE TVCG (Vis) – volume: 13 start-page: 1344 issue: 6 year: 2007 end-page: 1351 article-title: Enhancing depth‐perception with flexible volumetric halos publication-title: IEEE TVCG (Proc. Vis) – volume: 29 start-page: 1297 issue: 4 year: 2010 end-page: 1304 article-title: Real‐time concurrent linked list construction on the GPU publication-title: CGF (Proc. EGSR) – volume: 17 start-page: 192 issue: 2 year: 2011 end-page: 204 article-title: Visibility histograms and visibility‐driven transfer functions publication-title: IEEE TVCG – start-page: 75 year: 2012 end-page: 94 – volume: 26 issue: 3 year: 2007 article-title: Apparent ridges for line drawing publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – year: 1993 – start-page: 165 year: 2010 end-page: 172 – volume: 22 start-page: 828 issue: 3 year: 2003 end-page: 837 article-title: Designing effective step‐by‐step assembly instructions publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – volume: 16 start-page: 1329 issue: 6 year: 2010 end-page: 1338 article-title: Illustrative stream surfaces publication-title: IEEE TVCG (Proc. Vis) – ident: e_1_2_9_31_2 doi: 10.1016/j.cag.2011.07.006 – volume: 19 start-page: 838 issue: 5 year: 2013 ident: e_1_2_9_7_2 article-title: Smart transparency for illustrative visualization of complex flow surfaces publication-title: IEEE TVCG – ident: e_1_2_9_24_2 doi: 10.1109/VISUAL.1992.235211 – ident: e_1_2_9_30_2 doi: 10.1109/TIT.1982.1056489 – ident: e_1_2_9_35_2 – volume: 16 start-page: 1329 issue: 6 year: 2010 ident: e_1_2_9_6_2 article-title: Illustrative stream surfaces publication-title: IEEE TVCG (Proc. Vis) – ident: e_1_2_9_15_2 doi: 10.1111/1467-8659.t01-1-00591 – ident: e_1_2_9_20_2 doi: 10.1145/2461912.2461930 – ident: e_1_2_9_41_2 doi: 10.1145/1531326.1531331 – ident: e_1_2_9_43_2 doi: 10.1111/j.1467-8659.2010.01725.x – ident: e_1_2_9_13_2 doi: 10.1145/2516971.2516977 – volume: 3 start-page: 231 issue: 3 year: 2008 ident: e_1_2_9_18_2 article-title: Prediction of the flow around a short wall‐mounted cylinder using LES and DES publication-title: JNAIAM – volume: 13 start-page: 1320 issue: 6 year: 2007 ident: e_1_2_9_10_2 article-title: Illustrative deformation for data exploration publication-title: IEEE TVCG (Proc. Vis) – volume: 15 start-page: 1283 issue: 6 year: 2009 ident: e_1_2_9_12_2 article-title: Perception‐based transparency optimization for direct volume rendering publication-title: IEEE TVCG (Vis) – volume: 14 start-page: 1739 issue: 6 year: 2008 ident: e_1_2_9_42_2 article-title: Color design for illustrative visualization publication-title: IEEE TVCG (Proc. InfoVis) – volume: 13 start-page: 1344 issue: 6 year: 2007 ident: e_1_2_9_5_2 article-title: Enhancing depth‐perception with flexible volumetric halos publication-title: IEEE TVCG (Proc. Vis) – ident: e_1_2_9_34_2 doi: 10.1109/PacificVis.2013.6596151 – volume-title: Fundamentals of Computer Aided Geometric Design year: 1993 ident: e_1_2_9_23_2 – ident: e_1_2_9_27_2 doi: 10.1145/1276377.1276401 – ident: e_1_2_9_28_2 doi: 10.2514/6.2012-2913 – volume-title: The Visual Mathematics Library year: 1984 ident: e_1_2_9_3_2 – volume: 17 start-page: 192 issue: 2 year: 2011 ident: e_1_2_9_8_2 article-title: Visibility histograms and visibility‐driven transfer functions publication-title: IEEE TVCG – ident: e_1_2_9_9_2 – ident: e_1_2_9_36_2 doi: 10.1111/j.1467-8659.2009.01352.x – ident: e_1_2_9_40_2 doi: 10.1109/VISUAL.2004.48 – ident: e_1_2_9_19_2 doi: 10.1137/1.9780898719703 – volume: 31 start-page: 895 issue: 3 year: 2012 ident: e_1_2_9_11_2 article-title: Multi‐layer illustrative dense flow visualization publication-title: CGF – ident: e_1_2_9_16_2 doi: 10.1016/j.cag.2012.07.006 – ident: e_1_2_9_32_2 doi: 10.1111/j.1467-8659.2010.01650.x – volume: 33 issue: 3 year: 2014 ident: e_1_2_9_37_2 article-title: Sets of globally optimal stream surfaces for flow visualization publication-title: CGF (Proc. EuroVis) – ident: e_1_2_9_33_2 doi: 10.1111/cgf.12031 – volume: 33 issue: 2 year: 2014 ident: e_1_2_9_21_2 article-title: Hierarchical opacity optimization for sets of 3D line fields publication-title: CGF (Proc. EG) – ident: e_1_2_9_4_2 – ident: e_1_2_9_44_2 doi: 10.1145/1507149.1507170 – ident: e_1_2_9_2_2 doi: 10.1145/882262.882352 – ident: e_1_2_9_26_2 doi: 10.1145/1730804.1730831 – ident: e_1_2_9_29_2 doi: 10.1145/1141911.1142016 – ident: e_1_2_9_14_2 doi: 10.1145/882262.882354 – ident: e_1_2_9_39_2 – volume: 16 start-page: 1319 issue: 6 year: 2010 ident: e_1_2_9_22_2 article-title: IRIS: Illustrative rendering for integral surfaces publication-title: IEEE TVCG (Proc. Vis) – volume: 24 start-page: 197 issue: 4 year: 1990 ident: e_1_2_9_38_2 article-title: Comprehensible rendering of 3D shapes publication-title: SIGGRAPH Comp. Graph. doi: 10.1145/97880.97901 – ident: e_1_2_9_25_2 doi: 10.1109/VISUAL.1996.568110 – ident: e_1_2_9_17_2 doi: 10.1111/j.1467-8659.2012.03102.x |
SSID | ssj0004765 |
Score | 2.1378634 |
Snippet | In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Analysis Balancing Categories and Subject Descriptors (according to ACM CCS) Computer graphics Fluids I.3.3 [Computer Graphics]: Three-Dimensional Graphics and Realism-Display Algorithms Image processing systems Interactive Least squares method Occlusion Opacity Optimization Rendering Studies Visualization |
Title | Opacity Optimization for Surfaces |
URI | https://api.istex.fr/ark:/67375/WNG-LM2M41CD-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12357 https://www.proquest.com/docview/1545016488 https://www.proquest.com/docview/1671537994 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvejBt1itEkXES0qbJtkET1Jti9hW1GIPwpLd7HqottI2IP56Z_KyFQXxFsgEdnd2Zr_JznwDcOJLRMmWpB5hDAMUS1mm7-jQVIq5eCSIQIZxtkXXbfft64EzKMB5VguT8EPkP9zIMmJ_TQYeiOmckctnXaFCT6okp1wtAkR3X9RRNnOdjNebGGNSViHK4sm_XDiLlmhZ3xeA5jxcjc-b5ho8ZSNN0kyGlWgmKvLjG4njP6eyDqspDjUuko2zAQU12oSVOXbCLTjqYTyNIN3ooVt5Tes1DQS5xn000ZTKtQ395tVDo22mHRVMaVM9IAY_2hXMcrSWIVGC6rpbE56i-0GNgRvigcATPvXjsFVNWkr5VRu1ZXnSr3kqqO9AcTQeqV0wqMTHEvXQY0S6Rk2uqJlZVQlXC810tQRn2dpymdKNU9eLF56FHThrHs-6BMe56FvCsfGT0GmsoFwimAwpKY05_LHb4jcdq2PXGpf8tgTlTIM8tccpJ6BIZGKeV4Kj_DVaEl2PBCM1jlDGZej-me_bOPZYXb-Phjdazfhh7--i-7CMaMtO8szKUJxNInWAiGYmDuOt-wlGKeyS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgPfovTqVVEfNnYurZpwReZblO3KbrhXiQ0WeKDOmVuIP713qUfbqIgvhV6haSXy_0uufsdwEEgESXbknqEMQxQbGXnA1f38koxD12CCGXPZFu0vHrHuei63Sk4TmphIn6I9MCNLMPs12TgdCA9ZuXyQReo0pNNwwx19DYB1c0XeZTDPDdh9ibOmJhXiPJ40k8nvNEM_dj3Cag5DliNx6kuwn0y1ijR5LEwGoqC_PhG4_jfySzBQgxFrZNo7SzDlOqvwPwYQeEq7F1hSI043brCneU5Ltm0EOdat6OBpmyuNehUz9qVej5uqpCXDpUEYvyjPcFsV2vZI1ZQXfZKwld0RagxdkNIEPoioJYcjipJW6mg6KDCbF8GJV-F5XXI9F_6agMsqvKxRbnnM-Jdoz5X1M-sqISnhWa6mIWj5OdyGTOOU-OLJ55EHjhrbmadhf1U9DWi2fhJ6NBoKJUIB4-Ul8Zcfteq8UbTbjqlyim_zkIuUSGPTfKNE1YkPjHfz8Je-hqNiW5Iwr56GaGMx9ADsCBwcOxGX7-PhldqVfOw-XfRXZitt5sN3jhvXW7BHIIvJ0o7y0FmOBipbQQ4Q7Fj1vEnHfLwrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gujBt1ifWxHx0tJus5tdPElrfdUqPrAHIWyyiYdqW2oL4q93Zl9WURBvCzsLSWYm-WYz8w3Anq8QJduKeoRxDFBsbRd9x4RFrbmLR4IMVBhlW7Tc03t23nbaE3CY1sLE_BDZDzfyjGi_Jgfvh2bMydWTKVGhJ5-EKeaWPTLp-s0ndxTjrpMSexNlTEIrRGk82adfDqMpWte3L0hzHK9GB05jHh7TocZ5Jp3SaChL6v0bi-M_57IAcwkQtY5iy1mECd1dgtkxesJlKFxhQI0o3brCfeUlKdi0EOVat6OBoVyuFbhvHN_VTotJS4WiYlQQiNGPcSW3HWNUSJygpupWpKfpgtBg5IaAIPCkTw05mK4oW2u_zFBdtqf8iqeD6irkur2uXgOLanxsWQ09Tqxr1OWKupmVtXSNNNyU83CQrq1QCd84tb14FmncgbMW0azzsJuJ9mOSjZ-E9iMFZRLBoENZadwRD60T0by0L1mlVhfXedhMNSgSh3wVhBSJTczz8lDIXqMr0f1I0NW9Ecq4HPd_7vsMxx6p6_fRiNpJI3pY_7voDkxf1xuieda62IAZRF4szjnbhNxwMNJbiG6Gcjuy4g9qZ-9l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opacity+Optimization+for+Surfaces&rft.jtitle=Computer+graphics+forum&rft.au=G%C3%BCnther%2C+Tobias&rft.au=Schulze%2C+Maik&rft.au=Esturo%2C+Janick+Martinez&rft.au=R%C3%B6ssl%2C+Christian&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=11&rft.epage=20&rft_id=info:doi/10.1111%2Fcgf.12357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |