Opacity Optimization for Surfaces

In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi‐transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 33; no. 3; pp. 11 - 20
Main Authors Günther, Tobias, Schulze, Maik, Esturo, Janick Martinez, Rössl, Christian, Theisel, Holger
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi‐transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion problem. Starting with a partition of the surfaces into patches, we compute per‐patch opacity as minimizer of a bounded‐variable least‐squares problem. For the final rendering, opacity is interpolated on the surfaces. The resulting visualization technique is interactive, frame‐coherent, view‐dependent and driven by domain knowledge.
AbstractList In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi‐transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion problem. Starting with a partition of the surfaces into patches, we compute per‐patch opacity as minimizer of a bounded‐variable least‐squares problem. For the final rendering, opacity is interpolated on the surfaces. The resulting visualization technique is interactive, frame‐coherent, view‐dependent and driven by domain knowledge.
In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local transparency mappings proved useful for semi-transparent depictions, they still introduce visual clutter when surfaces grow more complex. An effective visualization of the flow requires a balance between the presentation of interesting surface parts and the avoidance of occlusions that hinder the view. In this paper, we extend the concept of opacity optimization to surfaces to obtain a global approach to the occlusion problem. Starting with a partition of the surfaces into patches, we compute per-patch opacity as minimizer of a bounded-variable least-squares problem. For the final rendering, opacity is interpolated on the surfaces. The resulting visualization technique is interactive, frame-coherent, view-dependent and driven by domain knowledge. [PUBLICATION ABSTRACT]
Author Günther, Tobias
Schulze, Maik
Rössl, Christian
Esturo, Janick Martinez
Theisel, Holger
Author_xml – sequence: 1
  givenname: Tobias
  surname: Günther
  fullname: Günther, Tobias
  organization: Visual Computing Group, University of Magdeburg
– sequence: 2
  givenname: Maik
  surname: Schulze
  fullname: Schulze, Maik
  organization: Visual Computing Group, University of Magdeburg
– sequence: 3
  givenname: Janick Martinez
  surname: Esturo
  fullname: Esturo, Janick Martinez
  organization: Max Planck Institute for Informatics, Saarbrücken
– sequence: 4
  givenname: Christian
  surname: Rössl
  fullname: Rössl, Christian
  organization: Visual Computing Group, University of Magdeburg
– sequence: 5
  givenname: Holger
  surname: Theisel
  fullname: Theisel, Holger
  organization: Visual Computing Group, University of Magdeburg
BookMark eNp9kMFOAjEQhhuDiYAefAOMFz0sdHbbbfdoUNAExESNx6aU1hSX3bXdjeLTW0E9kOhcZg7fP5n5OqhVlIVG6BhwH0IN1LPpQ5xQtofaQFIW8ZRmLdTGEGaGKT1AHe-XGGPCUtpGJ7NKKluve7Oqtiv7IWtbFj1Tut5944xU2h-ifSNzr4--exc9jq4ehtfRZDa-GV5MIkVwwiIAYtI5i6kxagE4A5OkMOca44SbDBjmseTzDKccEw0q1jrDRC1wzFUGXMuki862eytXvjba12JlvdJ5LgtdNl6EB4AmLMtIQE930GXZuCJcJ4ASGn4lnAfqfEspV3rvtBGVsyvp1gKw-JIlgiyxkRXYwQ4bpGxc1E7a_L_Em831-u_VYjge_SSibcL6Wr__JqR7ESlLGBVPt2MxmcZTAsNLcZd8Av4ZiLA
CitedBy_id crossref_primary_10_1109_MCG_2019_2959568
crossref_primary_10_1109_TVCG_2021_3074585
crossref_primary_10_1016_j_visinf_2023_05_002
crossref_primary_10_1111_cgf_14183
crossref_primary_10_1111_cgf_15096
crossref_primary_10_1109_TVCG_2016_2569080
crossref_primary_10_1002_cav_2250
crossref_primary_10_1109_TVCG_2019_2915222
crossref_primary_10_1111_cgf_13692
crossref_primary_10_1007_s00371_023_02828_8
crossref_primary_10_1111_cgf_13115
Cites_doi 10.1016/j.cag.2011.07.006
10.1109/VISUAL.1992.235211
10.1109/TIT.1982.1056489
10.1111/1467-8659.t01-1-00591
10.1145/2461912.2461930
10.1145/1531326.1531331
10.1111/j.1467-8659.2010.01725.x
10.1145/2516971.2516977
10.1109/PacificVis.2013.6596151
10.1145/1276377.1276401
10.2514/6.2012-2913
10.1111/j.1467-8659.2009.01352.x
10.1109/VISUAL.2004.48
10.1137/1.9780898719703
10.1016/j.cag.2012.07.006
10.1111/j.1467-8659.2010.01650.x
10.1111/cgf.12031
10.1145/1507149.1507170
10.1145/882262.882352
10.1145/1730804.1730831
10.1145/1141911.1142016
10.1145/882262.882354
10.1145/97880.97901
10.1109/VISUAL.1996.568110
10.1111/j.1467-8659.2012.03102.x
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12357
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 20
ExternalDocumentID 3372545441
10_1111_cgf_12357
CGF12357
ark_67375_WNG_LM2M41CD_P
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4037-114f6b725ffcd1091f361b8e0038f917082a8b906804e1c2ee904cd028c918ea3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 11 01:01:50 EDT 2025
Fri Jul 25 23:43:07 EDT 2025
Thu Apr 24 22:53:47 EDT 2025
Tue Jul 01 05:08:49 EDT 2025
Wed Jan 22 16:24:44 EST 2025
Wed Oct 30 09:54:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4037-114f6b725ffcd1091f361b8e0038f917082a8b906804e1c2ee904cd028c918ea3
Notes ark:/67375/WNG-LM2M41CD-P
ArticleID:CGF12357
istex:598CF59A5539850CE34A2072FAC5B7B481AB7ADC
Supporting Information
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12357
PQID 1545016488
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1671537994
proquest_journals_1545016488
crossref_primary_10_1111_cgf_12357
crossref_citationtrail_10_1111_cgf_12357
wiley_primary_10_1111_cgf_12357_CGF12357
istex_primary_ark_67375_WNG_LM2M41CD_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Luft T., Colditz C., Deussen O.: Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1206-1213. 2
Lloyd S.P.: Least square quantization in PCM. IEEE Information Theory 28, 2 (1982), 129-137. 4
Saito T., Takahashi T.: Comprehensible rendering of 3D shapes. SIGGRAPH Comp. Graph. 24, 4 (1990), 197-206. 2
DeCarlo D., Finkelstein A., Rusinkiewicz S., Santella A.: Suggestive contours for conveying shape. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 848-855. 2
Hummel M., Garth C., Hamann B., Hagen H., Joy K.I.: IRIS: Illustrative rendering for integral surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1319-1328. 2, 7, 8
Carnecky R., Fuchs R., Mehl S., Jang Y., Peikert R.: Smart transparency for illustrative visualization of complex flow surfaces. IEEE TVCG 19, 5 (2013), 838-851. 2, 3, 6, 7, 8, 9
McLoughlin T., Laramee R.S., Peikert R., Post F.H., Chen M.: Over two decades of integration-based, geometric flow visualization. CGF 29, 6 (2010), 1807-1829. 2
Judd T., Durand F., Adelson E.: Apparent ridges for line drawing. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007). 2
Agrawala M., Phan D., Heiser J., Haymaker J., Klingner J., Hanrahan P., Tversky B.: Designing effective step-by-step assembly instructions. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 828-837. 2
Martinez Esturo J., Schulze M., Rössl C., Theisel H.: Global selection of stream surfaces. CGF (Proc. Eurographics) 32, 2 (2013), 113-122. 5
Griebel M., Dornseifer T., Neunhoeffer T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, 1998. 7
Edmunds M., Laramee R., Malki R., Masters I., Croft T., Chen G., Zhang E.: Automatic stream surface seeding: A feature centered approach. CGF (Proc. EuroVis) 31, 3 (2012), 1095-1104. 5
Wang L., Giesen J., McDonnell K.T., Zolliker P., Mueller K.: Color design for illustrative visualization. IEEE TVCG (Proc. InfoVis) 14, 6 (2008), 1739-1754. 2
Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. AK Peters, 1993. 4
Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5 (2013), 152:1-152:11. 3, 9
Edmunds M., Laramee R.S., Chen G., Max N., Zhang E., Ware C.: Surface-based flow visualization. Computers & Graphics 36, 8 (2012), 974-990. 2
Frederich O., Wassen E., Thiele F.: Prediction of the flow around a short wall-mounted cylinder using LES and DES. JNAIAM 3, 3-4 (2008), 231-247. 7
Vergne R., Pacanowski R., Barla P., Granier X., Schlick C.: Light warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 25:1-8. 2
Chan M.-Y., Wu Y., Mak W.-H., Chen W., Qu H.: Perception-based transparency optimization for direct volume rendering. IEEE TVCG (Vis) 15, 6 (2009), 1283-1290. 2
Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (2011), 192-204. 2
Günther T., Rössl C., Theisel H.: Opacity optimization for 3D line fields. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013), 120:1-120:8. 2, 3, 4, 5, 6, 9
Carnecky R., Schindler B., Fuchs R., Peikert R.: Multi-layer illustrative dense flow visualization. CGF 31, 3 (2012), 895-904. 2
Born S., Wiebel A., Friedrich J., Scheuermann G., Bartz D.: Illustrative stream surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1329-1338. 2
Diepstraten J., Weiskopf D., Ertl T.: Transparency in interactive technical illustrations. CGF (Proc. Eurographics) 21, 3 (2002), 317-325. 2
Yang J.C., Hensley J., Grün H., Thibieroz N.: Real-time concurrent linked list construction on the GPU. CGF (Proc. EGSR) 29, 4 (2010), 1297-1304. 5, 6
Correa C., Silver D., Chen M.: Illustrative deformation for data exploration. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1320-1327. 2
Spencer B., Laramee R.S., Chen G., Zhang E.: Evenly spaced streamlines for surfaces: An image-based approach. CGF 28, 6 (2009), 1618-1631. 2
Schulze M., Martinez Esturo J., Günther T., Rössl C., Seidel H.-P., Weinkauf T., Theisel H.: Sets of globally optimal stream surfaces for flow visualization. CGF (Proc. EuroVis) 33, 3 (2014), to appear. 5
Bruckner S., Gröller E.: Enhancing depth-perception with flexible volumetric halos. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1344-1351. 2
Maule M., Comba J.L., Torchelsen R.P., Bastos R.: A survey of raster-based transparency techniques. Computers & Graphics 35, 6 (2011), 1023-1034. 6
Günther T., Rössl C., Theisel H.: Hierarchical opacity optimization for sets of 3D line fields. CGF (Proc. EG) 33, 2 (2014), to appear. 9
2010; 16
2012
2010
1998
2008; 14
2009
1996
2005
2011; 35
1993
2004
2008; 3
1992
2011; 17
2012; 36
2007; 13
2012; 31
2009; 28
2013; 19
1982; 28
1990; 24
2013; 32
2010; 29
2002; 21
2006; 25
1984
2013
2009; 15
2014; 33
2003; 22
2007; 26
Born S. (e_1_2_9_6_2) 2010; 16
e_1_2_9_30_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_31_2
e_1_2_9_32_2
Saito T. (e_1_2_9_38_2) 1990; 24
Bruckner S. (e_1_2_9_5_2) 2007; 13
Hummel M. (e_1_2_9_22_2) 2010; 16
e_1_2_9_14_2
e_1_2_9_13_2
Chan M.‐Y. (e_1_2_9_12_2) 2009; 15
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_17_2
Frederich O. (e_1_2_9_18_2) 2008; 3
e_1_2_9_39_2
Abraham R.H. (e_1_2_9_3_2) 1984
e_1_2_9_19_2
Hoschek J. (e_1_2_9_23_2) 1993
e_1_2_9_40_2
e_1_2_9_41_2
Schulze M. (e_1_2_9_37_2) 2014; 33
e_1_2_9_44_2
e_1_2_9_20_2
e_1_2_9_43_2
Wang L. (e_1_2_9_42_2) 2008; 14
Correa C. (e_1_2_9_10_2) 2007; 13
e_1_2_9_4_2
e_1_2_9_2_2
Carnecky R. (e_1_2_9_11_2) 2012; 31
e_1_2_9_9_2
Carnecky R. (e_1_2_9_7_2) 2013; 19
Günther T. (e_1_2_9_21_2) 2014; 33
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
Correa C.D. (e_1_2_9_8_2) 2011; 17
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – reference: Hummel M., Garth C., Hamann B., Hagen H., Joy K.I.: IRIS: Illustrative rendering for integral surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1319-1328. 2, 7, 8
– reference: Luft T., Colditz C., Deussen O.: Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1206-1213. 2
– reference: Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. AK Peters, 1993. 4
– reference: McLoughlin T., Laramee R.S., Peikert R., Post F.H., Chen M.: Over two decades of integration-based, geometric flow visualization. CGF 29, 6 (2010), 1807-1829. 2
– reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 5 (2013), 152:1-152:11. 3, 9
– reference: Günther T., Rössl C., Theisel H.: Opacity optimization for 3D line fields. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013), 120:1-120:8. 2, 3, 4, 5, 6, 9
– reference: Born S., Wiebel A., Friedrich J., Scheuermann G., Bartz D.: Illustrative stream surfaces. IEEE TVCG (Proc. Vis) 16, 6 (2010), 1329-1338. 2
– reference: Agrawala M., Phan D., Heiser J., Haymaker J., Klingner J., Hanrahan P., Tversky B.: Designing effective step-by-step assembly instructions. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 828-837. 2
– reference: Bruckner S., Gröller E.: Enhancing depth-perception with flexible volumetric halos. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1344-1351. 2
– reference: Correa C., Silver D., Chen M.: Illustrative deformation for data exploration. IEEE TVCG (Proc. Vis) 13, 6 (2007), 1320-1327. 2
– reference: Saito T., Takahashi T.: Comprehensible rendering of 3D shapes. SIGGRAPH Comp. Graph. 24, 4 (1990), 197-206. 2
– reference: Edmunds M., Laramee R.S., Chen G., Max N., Zhang E., Ware C.: Surface-based flow visualization. Computers & Graphics 36, 8 (2012), 974-990. 2
– reference: Maule M., Comba J.L., Torchelsen R.P., Bastos R.: A survey of raster-based transparency techniques. Computers & Graphics 35, 6 (2011), 1023-1034. 6
– reference: Martinez Esturo J., Schulze M., Rössl C., Theisel H.: Global selection of stream surfaces. CGF (Proc. Eurographics) 32, 2 (2013), 113-122. 5
– reference: Carnecky R., Fuchs R., Mehl S., Jang Y., Peikert R.: Smart transparency for illustrative visualization of complex flow surfaces. IEEE TVCG 19, 5 (2013), 838-851. 2, 3, 6, 7, 8, 9
– reference: Lloyd S.P.: Least square quantization in PCM. IEEE Information Theory 28, 2 (1982), 129-137. 4
– reference: DeCarlo D., Finkelstein A., Rusinkiewicz S., Santella A.: Suggestive contours for conveying shape. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3 (2003), 848-855. 2
– reference: Frederich O., Wassen E., Thiele F.: Prediction of the flow around a short wall-mounted cylinder using LES and DES. JNAIAM 3, 3-4 (2008), 231-247. 7
– reference: Wang L., Giesen J., McDonnell K.T., Zolliker P., Mueller K.: Color design for illustrative visualization. IEEE TVCG (Proc. InfoVis) 14, 6 (2008), 1739-1754. 2
– reference: Diepstraten J., Weiskopf D., Ertl T.: Transparency in interactive technical illustrations. CGF (Proc. Eurographics) 21, 3 (2002), 317-325. 2
– reference: Vergne R., Pacanowski R., Barla P., Granier X., Schlick C.: Light warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009), 25:1-8. 2
– reference: Günther T., Rössl C., Theisel H.: Hierarchical opacity optimization for sets of 3D line fields. CGF (Proc. EG) 33, 2 (2014), to appear. 9
– reference: Carnecky R., Schindler B., Fuchs R., Peikert R.: Multi-layer illustrative dense flow visualization. CGF 31, 3 (2012), 895-904. 2
– reference: Edmunds M., Laramee R., Malki R., Masters I., Croft T., Chen G., Zhang E.: Automatic stream surface seeding: A feature centered approach. CGF (Proc. EuroVis) 31, 3 (2012), 1095-1104. 5
– reference: Griebel M., Dornseifer T., Neunhoeffer T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, 1998. 7
– reference: Yang J.C., Hensley J., Grün H., Thibieroz N.: Real-time concurrent linked list construction on the GPU. CGF (Proc. EGSR) 29, 4 (2010), 1297-1304. 5, 6
– reference: Schulze M., Martinez Esturo J., Günther T., Rössl C., Seidel H.-P., Weinkauf T., Theisel H.: Sets of globally optimal stream surfaces for flow visualization. CGF (Proc. EuroVis) 33, 3 (2014), to appear. 5
– reference: Judd T., Durand F., Adelson E.: Apparent ridges for line drawing. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007). 2
– reference: Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (2011), 192-204. 2
– reference: Chan M.-Y., Wu Y., Mak W.-H., Chen W., Qu H.: Perception-based transparency optimization for direct volume rendering. IEEE TVCG (Vis) 15, 6 (2009), 1283-1290. 2
– reference: Spencer B., Laramee R.S., Chen G., Zhang E.: Evenly spaced streamlines for surfaces: An image-based approach. CGF 28, 6 (2009), 1618-1631. 2
– volume: 28
  start-page: 25:1
  issue: 3
  year: 2009
  end-page: 8
  article-title: Light warping for enhanced surface depiction
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– start-page: 49
  year: 2004
  end-page: 56
– volume: 36
  start-page: 974
  issue: 8
  year: 2012
  end-page: 990
  article-title: Surface‐based flow visualization
  publication-title: Computers & Graphics
– volume: 25
  start-page: 1206
  issue: 3
  year: 2006
  end-page: 1213
  article-title: Image enhancement by unsharp masking the depth buffer
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 14
  start-page: 1739
  issue: 6
  year: 2008
  end-page: 1754
  article-title: Color design for illustrative visualization
  publication-title: IEEE TVCG (Proc. InfoVis)
– year: 2005
– volume: 3
  start-page: 231
  issue: 3–4
  year: 2008
  end-page: 247
  article-title: Prediction of the flow around a short wall‐mounted cylinder using LES and DES
  publication-title: JNAIAM
– start-page: 211
  year: 1996
– volume: 22
  start-page: 848
  issue: 3
  year: 2003
  end-page: 855
  article-title: Suggestive contours for conveying shape
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 33
  issue: 3
  year: 2014
  article-title: Sets of globally optimal stream surfaces for flow visualization
  publication-title: CGF (Proc. EuroVis)
– start-page: 139
  year: 2004
  end-page: 146
– volume: 32
  start-page: 113
  issue: 2
  year: 2013
  end-page: 122
  article-title: Global selection of stream surfaces
  publication-title: CGF (Proc. Eurographics)
– start-page: 241
  year: 2013
  end-page: 248
– start-page: 129
  year: 2009
  end-page: 136
– volume: 32
  start-page: 152:1
  issue: 5
  year: 2013
  end-page: 152:11
  article-title: Geodesics in heat: A new approach to computing distance based on heat flow
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 35
  start-page: 1023
  issue: 6
  year: 2011
  end-page: 1034
  article-title: A survey of raster‐based transparency techniques
  publication-title: Computers & Graphics
– year: 1998
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  end-page: 137
  article-title: Least square quantization in PCM
  publication-title: IEEE Information Theory
– volume: 29
  start-page: 1807
  issue: 6
  year: 2010
  end-page: 1829
  article-title: Over two decades of integration‐based, geometric flow visualization
  publication-title: CGF
– year: 2012
– volume: 28
  start-page: 1618
  issue: 6
  year: 2009
  end-page: 1631
  article-title: Evenly spaced streamlines for surfaces: An image‐based approach
  publication-title: CGF
– volume: 31
  start-page: 1095
  issue: 3
  year: 2012
  end-page: 1104
  article-title: Automatic stream surface seeding: A feature centered approach
  publication-title: CGF (Proc. EuroVis)
– year: 1984
– volume: 13
  start-page: 1320
  issue: 6
  year: 2007
  end-page: 1327
  article-title: Illustrative deformation for data exploration
  publication-title: IEEE TVCG (Proc. Vis)
– start-page: 209
  year: 2005
  end-page: 216
– volume: 21
  start-page: 317
  issue: 3
  year: 2002
  end-page: 325
  article-title: Transparency in interactive technical illustrations
  publication-title: CGF (Proc. Eurographics)
– volume: 33
  issue: 2
  year: 2014
  article-title: Hierarchical opacity optimization for sets of 3D line fields
  publication-title: CGF (Proc. EG)
– volume: 16
  start-page: 1319
  issue: 6
  year: 2010
  end-page: 1328
  article-title: IRIS: Illustrative rendering for integral surfaces
  publication-title: IEEE TVCG (Proc. Vis)
– volume: 31
  start-page: 895
  issue: 3
  year: 2012
  end-page: 904
  article-title: Multi‐layer illustrative dense flow visualization
  publication-title: CGF
– start-page: 171
  year: 1992
  end-page: 178
– volume: 19
  start-page: 838
  issue: 5
  year: 2013
  end-page: 851
  article-title: Smart transparency for illustrative visualization of complex flow surfaces
  publication-title: IEEE TVCG
– volume: 32
  start-page: 120:1
  issue: 4
  year: 2013
  end-page: 120:8
  article-title: Opacity optimization for 3D line fields
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 24
  start-page: 197
  issue: 4
  year: 1990
  end-page: 206
  article-title: Comprehensible rendering of 3D shapes
  publication-title: SIGGRAPH Comp. Graph.
– volume: 15
  start-page: 1283
  issue: 6
  year: 2009
  end-page: 1290
  article-title: Perception‐based transparency optimization for direct volume rendering
  publication-title: IEEE TVCG (Vis)
– volume: 13
  start-page: 1344
  issue: 6
  year: 2007
  end-page: 1351
  article-title: Enhancing depth‐perception with flexible volumetric halos
  publication-title: IEEE TVCG (Proc. Vis)
– volume: 29
  start-page: 1297
  issue: 4
  year: 2010
  end-page: 1304
  article-title: Real‐time concurrent linked list construction on the GPU
  publication-title: CGF (Proc. EGSR)
– volume: 17
  start-page: 192
  issue: 2
  year: 2011
  end-page: 204
  article-title: Visibility histograms and visibility‐driven transfer functions
  publication-title: IEEE TVCG
– start-page: 75
  year: 2012
  end-page: 94
– volume: 26
  issue: 3
  year: 2007
  article-title: Apparent ridges for line drawing
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– year: 1993
– start-page: 165
  year: 2010
  end-page: 172
– volume: 22
  start-page: 828
  issue: 3
  year: 2003
  end-page: 837
  article-title: Designing effective step‐by‐step assembly instructions
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 16
  start-page: 1329
  issue: 6
  year: 2010
  end-page: 1338
  article-title: Illustrative stream surfaces
  publication-title: IEEE TVCG (Proc. Vis)
– ident: e_1_2_9_31_2
  doi: 10.1016/j.cag.2011.07.006
– volume: 19
  start-page: 838
  issue: 5
  year: 2013
  ident: e_1_2_9_7_2
  article-title: Smart transparency for illustrative visualization of complex flow surfaces
  publication-title: IEEE TVCG
– ident: e_1_2_9_24_2
  doi: 10.1109/VISUAL.1992.235211
– ident: e_1_2_9_30_2
  doi: 10.1109/TIT.1982.1056489
– ident: e_1_2_9_35_2
– volume: 16
  start-page: 1329
  issue: 6
  year: 2010
  ident: e_1_2_9_6_2
  article-title: Illustrative stream surfaces
  publication-title: IEEE TVCG (Proc. Vis)
– ident: e_1_2_9_15_2
  doi: 10.1111/1467-8659.t01-1-00591
– ident: e_1_2_9_20_2
  doi: 10.1145/2461912.2461930
– ident: e_1_2_9_41_2
  doi: 10.1145/1531326.1531331
– ident: e_1_2_9_43_2
  doi: 10.1111/j.1467-8659.2010.01725.x
– ident: e_1_2_9_13_2
  doi: 10.1145/2516971.2516977
– volume: 3
  start-page: 231
  issue: 3
  year: 2008
  ident: e_1_2_9_18_2
  article-title: Prediction of the flow around a short wall‐mounted cylinder using LES and DES
  publication-title: JNAIAM
– volume: 13
  start-page: 1320
  issue: 6
  year: 2007
  ident: e_1_2_9_10_2
  article-title: Illustrative deformation for data exploration
  publication-title: IEEE TVCG (Proc. Vis)
– volume: 15
  start-page: 1283
  issue: 6
  year: 2009
  ident: e_1_2_9_12_2
  article-title: Perception‐based transparency optimization for direct volume rendering
  publication-title: IEEE TVCG (Vis)
– volume: 14
  start-page: 1739
  issue: 6
  year: 2008
  ident: e_1_2_9_42_2
  article-title: Color design for illustrative visualization
  publication-title: IEEE TVCG (Proc. InfoVis)
– volume: 13
  start-page: 1344
  issue: 6
  year: 2007
  ident: e_1_2_9_5_2
  article-title: Enhancing depth‐perception with flexible volumetric halos
  publication-title: IEEE TVCG (Proc. Vis)
– ident: e_1_2_9_34_2
  doi: 10.1109/PacificVis.2013.6596151
– volume-title: Fundamentals of Computer Aided Geometric Design
  year: 1993
  ident: e_1_2_9_23_2
– ident: e_1_2_9_27_2
  doi: 10.1145/1276377.1276401
– ident: e_1_2_9_28_2
  doi: 10.2514/6.2012-2913
– volume-title: The Visual Mathematics Library
  year: 1984
  ident: e_1_2_9_3_2
– volume: 17
  start-page: 192
  issue: 2
  year: 2011
  ident: e_1_2_9_8_2
  article-title: Visibility histograms and visibility‐driven transfer functions
  publication-title: IEEE TVCG
– ident: e_1_2_9_9_2
– ident: e_1_2_9_36_2
  doi: 10.1111/j.1467-8659.2009.01352.x
– ident: e_1_2_9_40_2
  doi: 10.1109/VISUAL.2004.48
– ident: e_1_2_9_19_2
  doi: 10.1137/1.9780898719703
– volume: 31
  start-page: 895
  issue: 3
  year: 2012
  ident: e_1_2_9_11_2
  article-title: Multi‐layer illustrative dense flow visualization
  publication-title: CGF
– ident: e_1_2_9_16_2
  doi: 10.1016/j.cag.2012.07.006
– ident: e_1_2_9_32_2
  doi: 10.1111/j.1467-8659.2010.01650.x
– volume: 33
  issue: 3
  year: 2014
  ident: e_1_2_9_37_2
  article-title: Sets of globally optimal stream surfaces for flow visualization
  publication-title: CGF (Proc. EuroVis)
– ident: e_1_2_9_33_2
  doi: 10.1111/cgf.12031
– volume: 33
  issue: 2
  year: 2014
  ident: e_1_2_9_21_2
  article-title: Hierarchical opacity optimization for sets of 3D line fields
  publication-title: CGF (Proc. EG)
– ident: e_1_2_9_4_2
– ident: e_1_2_9_44_2
  doi: 10.1145/1507149.1507170
– ident: e_1_2_9_2_2
  doi: 10.1145/882262.882352
– ident: e_1_2_9_26_2
  doi: 10.1145/1730804.1730831
– ident: e_1_2_9_29_2
  doi: 10.1145/1141911.1142016
– ident: e_1_2_9_14_2
  doi: 10.1145/882262.882354
– ident: e_1_2_9_39_2
– volume: 16
  start-page: 1319
  issue: 6
  year: 2010
  ident: e_1_2_9_22_2
  article-title: IRIS: Illustrative rendering for integral surfaces
  publication-title: IEEE TVCG (Proc. Vis)
– volume: 24
  start-page: 197
  issue: 4
  year: 1990
  ident: e_1_2_9_38_2
  article-title: Comprehensible rendering of 3D shapes
  publication-title: SIGGRAPH Comp. Graph.
  doi: 10.1145/97880.97901
– ident: e_1_2_9_25_2
  doi: 10.1109/VISUAL.1996.568110
– ident: e_1_2_9_17_2
  doi: 10.1111/j.1467-8659.2012.03102.x
SSID ssj0004765
Score 2.1378634
Snippet In flow visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts of occlusion. While silhouette enhancements and local...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Analysis
Balancing
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Fluids
I.3.3 [Computer Graphics]: Three-Dimensional Graphics and Realism-Display Algorithms
Image processing systems
Interactive
Least squares method
Occlusion
Opacity
Optimization
Rendering
Studies
Visualization
Title Opacity Optimization for Surfaces
URI https://api.istex.fr/ark:/67375/WNG-LM2M41CD-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12357
https://www.proquest.com/docview/1545016488
https://www.proquest.com/docview/1671537994
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvejBt1itEkXES0qbJtkET1Jti9hW1GIPwpLd7HqottI2IP56Z_KyFQXxFsgEdnd2Zr_JznwDcOJLRMmWpB5hDAMUS1mm7-jQVIq5eCSIQIZxtkXXbfft64EzKMB5VguT8EPkP9zIMmJ_TQYeiOmckctnXaFCT6okp1wtAkR3X9RRNnOdjNebGGNSViHK4sm_XDiLlmhZ3xeA5jxcjc-b5ho8ZSNN0kyGlWgmKvLjG4njP6eyDqspDjUuko2zAQU12oSVOXbCLTjqYTyNIN3ooVt5Tes1DQS5xn000ZTKtQ395tVDo22mHRVMaVM9IAY_2hXMcrSWIVGC6rpbE56i-0GNgRvigcATPvXjsFVNWkr5VRu1ZXnSr3kqqO9AcTQeqV0wqMTHEvXQY0S6Rk2uqJlZVQlXC810tQRn2dpymdKNU9eLF56FHThrHs-6BMe56FvCsfGT0GmsoFwimAwpKY05_LHb4jcdq2PXGpf8tgTlTIM8tccpJ6BIZGKeV4Kj_DVaEl2PBCM1jlDGZej-me_bOPZYXb-Phjdazfhh7--i-7CMaMtO8szKUJxNInWAiGYmDuOt-wlGKeyS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgPfovTqVVEfNnYurZpwReZblO3KbrhXiQ0WeKDOmVuIP713qUfbqIgvhV6haSXy_0uufsdwEEgESXbknqEMQxQbGXnA1f38koxD12CCGXPZFu0vHrHuei63Sk4TmphIn6I9MCNLMPs12TgdCA9ZuXyQReo0pNNwwx19DYB1c0XeZTDPDdh9ibOmJhXiPJ40k8nvNEM_dj3Cag5DliNx6kuwn0y1ijR5LEwGoqC_PhG4_jfySzBQgxFrZNo7SzDlOqvwPwYQeEq7F1hSI043brCneU5Ltm0EOdat6OBpmyuNehUz9qVej5uqpCXDpUEYvyjPcFsV2vZI1ZQXfZKwld0RagxdkNIEPoioJYcjipJW6mg6KDCbF8GJV-F5XXI9F_6agMsqvKxRbnnM-Jdoz5X1M-sqISnhWa6mIWj5OdyGTOOU-OLJ55EHjhrbmadhf1U9DWi2fhJ6NBoKJUIB4-Ul8Zcfteq8UbTbjqlyim_zkIuUSGPTfKNE1YkPjHfz8Je-hqNiW5Iwr56GaGMx9ADsCBwcOxGX7-PhldqVfOw-XfRXZitt5sN3jhvXW7BHIIvJ0o7y0FmOBipbQQ4Q7Fj1vEnHfLwrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gujBt1ifWxHx0tJus5tdPElrfdUqPrAHIWyyiYdqW2oL4q93Zl9WURBvCzsLSWYm-WYz8w3Anq8QJduKeoRxDFBsbRd9x4RFrbmLR4IMVBhlW7Tc03t23nbaE3CY1sLE_BDZDzfyjGi_Jgfvh2bMydWTKVGhJ5-EKeaWPTLp-s0ndxTjrpMSexNlTEIrRGk82adfDqMpWte3L0hzHK9GB05jHh7TocZ5Jp3SaChL6v0bi-M_57IAcwkQtY5iy1mECd1dgtkxesJlKFxhQI0o3brCfeUlKdi0EOVat6OBoVyuFbhvHN_VTotJS4WiYlQQiNGPcSW3HWNUSJygpupWpKfpgtBg5IaAIPCkTw05mK4oW2u_zFBdtqf8iqeD6irkur2uXgOLanxsWQ09Tqxr1OWKupmVtXSNNNyU83CQrq1QCd84tb14FmncgbMW0azzsJuJ9mOSjZ-E9iMFZRLBoENZadwRD60T0by0L1mlVhfXedhMNSgSh3wVhBSJTczz8lDIXqMr0f1I0NW9Ecq4HPd_7vsMxx6p6_fRiNpJI3pY_7voDkxf1xuieda62IAZRF4szjnbhNxwMNJbiG6Gcjuy4g9qZ-9l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opacity+Optimization+for+Surfaces&rft.jtitle=Computer+graphics+forum&rft.au=G%C3%BCnther%2C+Tobias&rft.au=Schulze%2C+Maik&rft.au=Esturo%2C+Janick+Martinez&rft.au=R%C3%B6ssl%2C+Christian&rft.date=2014-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=11&rft.epage=20&rft_id=info:doi/10.1111%2Fcgf.12357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon