Reweighting neural network examples for robust object detection at sea

Deep neural networks have had profound significance in addressing visual object detection and classification tasks. However, though with the caveat of needing large amounts of annotated training data. Furthermore, the possibility of neural networks overfitting to the biases and faults included in th...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 57; no. 16; pp. 608 - 610
Main Authors Becktor, J., Boukas, E., Blanke, M., Nalpantidis, L.
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.08.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural networks have had profound significance in addressing visual object detection and classification tasks. However, though with the caveat of needing large amounts of annotated training data. Furthermore, the possibility of neural networks overfitting to the biases and faults included in their respective datasets. In this work, methods for achieving robust neural networks, able to tolerate untrusted and possibly erroneous training data, are explored. The proposed method is shown to improve performance and help neural networks learn from untrusted data, provided a thoroughly annotated subset.
AbstractList Deep neural networks have had profound significance in addressing visual object detection and classification tasks. However, though with the caveat of needing large amounts of annotated training data. Furthermore, the possibility of neural networks overfitting to the biases and faults included in their respective datasets. In this work, methods for achieving robust neural networks, able to tolerate untrusted and possibly erroneous training data, are explored. The proposed method is shown to improve performance and help neural networks learn from untrusted data, provided a thoroughly annotated subset.
Abstract Deep neural networks have had profound significance in addressing visual object detection and classification tasks. However, though with the caveat of needing large amounts of annotated training data. Furthermore, the possibility of neural networks overfitting to the biases and faults included in their respective datasets. In this work, methods for achieving robust neural networks, able to tolerate untrusted and possibly erroneous training data, are explored. The proposed method is shown to improve performance and help neural networks learn from untrusted data, provided a thoroughly annotated subset.
Author Nalpantidis, L.
Becktor, J.
Blanke, M.
Boukas, E.
Author_xml – sequence: 1
  givenname: J.
  surname: Becktor
  fullname: Becktor, J.
  email: Jbibe@elektro.dtu.dk
  organization: Technical University of Denmark
– sequence: 2
  givenname: E.
  surname: Boukas
  fullname: Boukas, E.
  organization: Technical University of Denmark
– sequence: 3
  givenname: M.
  surname: Blanke
  fullname: Blanke, M.
  organization: Technical University of Denmark
– sequence: 4
  givenname: L.
  surname: Nalpantidis
  fullname: Nalpantidis, L.
  organization: Technical University of Denmark
BookMark eNp9kFtLAzEQhYMoWC8v_oIF34TVTJJmk0cRL4WCIAq-hVxm69btpiZbqv_erSs--nSY4ZszM-eI7HexQ0LOgF4CFfoK25ZdAgMp98gE-JSWGuB1n0woBV5OQYtDcpTzciiZ1tWE3D3hFpvFW990i6LDTbLtIP02pvcCP-1q3WIu6piKFN0m90V0S_R9EbAfpIldYfsioz0hB7VtM57-6jF5ubt9vnko54_3s5vreekF5bJUwgWmQPmgqQKOXgVVucC5FIqC04pPpYI6sFpXGJxwQisnA0pVBfS84sdkNvqGaJdmnZqVTV8m2sb8NGJaGJv6xrdo-NRVXgbBNChRD98qVmmrUcvgOYIevM5Hr3WKHxvMvVnGTeqG8w2nmikqQLGBuhgpn2LOCeu_rUDNLnOzy9z8ZD7AMMLbpsWvf0hzO5-zceYbfHiD-A
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_10_410
crossref_primary_10_1049_ell2_12690
crossref_primary_10_1016_j_mlwa_2022_100411
crossref_primary_10_1109_TITS_2021_3122275
crossref_primary_10_1155_2023_2768126
Cites_doi 10.1117/12.898272
10.1016/j.ifacol.2020.12.1455
10.1088/1742-6596/1357/1/012036
10.1109/CVPR.2016.90
10.1088/1757-899X/929/1/012023
10.1613/jair.953
10.1109/ICCV.2011.6126229
10.1109/ICCV.2017.324
10.1006/jcss.1997.1504
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/ell2.12166
DatabaseName Wiley Open Access
Wiley Free Archive
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 610
ExternalDocumentID oai_doaj_org_article_35b7c6d429184f2998279a9e96dc3e19
10_1049_ell2_12166
ELL212166
Genre article
GrantInformation_xml – fundername: The Danish Maritime Fund, Orients Fund, and the Lauritzen Foundation
  funderid: 8090‐00063B
– fundername: Innovation Fund Denmark
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
ESX
F20
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
IFIPE
IPLJI
JAVBF
K1G
K7-
L6V
LAI
LXO
LXU
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P0-
P2P
P62
PTHSS
QWB
R4Z
RIE
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
WIN
ZL0
~ZZ
AAYXX
CITATION
ITC
AZQEC
DWQXO
GNUQQ
JQ2
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4036-84bd2818cd90813ec8d87bd3364801b9835681fd2f97edb4b498b6de687dec373
IEDL.DBID 24P
ISSN 0013-5194
IngestDate Tue Oct 22 15:14:24 EDT 2024
Thu Oct 10 22:17:27 EDT 2024
Thu Sep 26 19:33:31 EDT 2024
Sat Aug 24 01:03:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4036-84bd2818cd90813ec8d87bd3364801b9835681fd2f97edb4b498b6de687dec373
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12166
PQID 3092804182
PQPubID 1936364
PageCount 3
ParticipantIDs doaj_primary_oai_doaj_org_article_35b7c6d429184f2998279a9e96dc3e19
proquest_journals_3092804182
crossref_primary_10_1049_ell2_12166
wiley_primary_10_1049_ell2_12166_ELL212166
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle Electronics letters
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2002; 16
2019
2017
2019; 2019
2016
2014
1997; 55
2011
2020; 929
2020
2019; 1357
1953; 1
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Kahn H. (e_1_2_7_7_1) 1953; 1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – volume: 1
  start-page: 5
  year: 1953
  article-title: Methods of reducing sample size in monte carlo computations
  publication-title: J. Oper. Res. Soc.
– year: 2020
  article-title: Vision‐based object tracking in marine environments using features from neural network detections
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  article-title: A Decision‐theoretic generalization of on‐line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– year: 2016
  article-title: Deep residual learning for image recognition
– year: 2011
  article-title: Detection of small surface vessels in near, medium, and far infrared spectral bands
– volume: 929
  year: 2020
  article-title: Lipschitz constrained neural networks for robust object detection at sea
– start-page: 2999
  year: 2017
  end-page: 3007
  article-title: Focal loss for dense object detection
– year: 2014
  article-title: Intriguing properties of neural networks
– volume: 1357
  year: 2019
  article-title: Comparing spectral bands for object detection at sea using convolutional neural networks
  publication-title: J. Phys. Conf. Ser.
– volume: 2019
  start-page: 432
  year: 2019
  end-page: 452
  article-title: Sorting out Lipschitz function approximation
– year: 2019
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: Synthetic Minority Over‐sampling Technique
  publication-title: Journal of Artificial Intelligence Research
– start-page: 89
  year: 2011
  end-page: 96
  article-title: Ensemble of exemplar‐svms for object detection and beyond
– ident: e_1_2_7_5_1
  doi: 10.1117/12.898272
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ifacol.2020.12.1455
– ident: e_1_2_7_6_1
  doi: 10.1088/1742-6596/1357/1/012036
– ident: e_1_2_7_14_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_13_1
– ident: e_1_2_7_2_1
  doi: 10.1088/1757-899X/929/1/012023
– ident: e_1_2_7_11_1
  doi: 10.1613/jair.953
– ident: e_1_2_7_9_1
  doi: 10.1109/ICCV.2011.6126229
– ident: e_1_2_7_8_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_7_4_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_10_1
  doi: 10.1006/jcss.1997.1504
– volume: 1
  start-page: 5
  year: 1953
  ident: e_1_2_7_7_1
  article-title: Methods of reducing sample size in monte carlo computations
  publication-title: J. Oper. Res. Soc.
  contributor:
    fullname: Kahn H.
– ident: e_1_2_7_15_1
SSID ssj0012997
Score 2.4295733
Snippet Deep neural networks have had profound significance in addressing visual object detection and classification tasks. However, though with the caveat of needing...
Abstract Deep neural networks have had profound significance in addressing visual object detection and classification tasks. However, though with the caveat of...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 608
SubjectTerms Annotations
Artificial neural networks
Computer vision and image processing techniques
Datasets
Fault detection
Fault tolerance
Neural nets
Neural networks
Object recognition
Optical, image and video signal processing
Robustness
Visual tasks
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt1AkGxKcoFGQJJqSoqe36YwTUqkKFAVGpmxXHl6lKUZsKfj5nJ4GywMKWRB6su4vvtX1-TMiN5qkpwoY7S2WWCGFc4gyHRHqUA8qD0CKcRn56lpOZeJwP51tXfYWasBoPXBuuz4dO5dLjsIlzkQIHT82UyQwY6XMOg_roXmrayVSzf4DtVHt3AWoU0YJJhenDYsECUyFyEb9TUST2_5CZ22I1ZpvxAdlvZCK9q7t3SHagPCJ7W_DAYzJ-gfe4rolvNGApsX1ZF3VT-MgC9XdNUZLS1dJt1hVdurDkQj1UsfqqpFlFMc5PyGw8en2YJM2tCEkuIj1YOB8QTrk3mM455Npr5TznMpBgnEFJJfWg8KwwCrwTThjtpAep0fQ5V_yUdMplCWeEDjLjfFoI7o0QPku18YqBLjBrQ5gYdsl1ayD7VsMvbNy0FsYGM9poxi65D7b7ahGA1fEDutE2brR_ubFLeq3lbfMXrS3GEQt8JM265DZ645du2NF0yuLT-X906ILsslC-Emv9eqRTrTZwifqjclcx1D4BXKLS7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XOCAeIrxUiQ4IVVsSZbHCQHaQAg4ICbtFjV1ymVqx9oJfj5x1vK47NZWUVTZif3Fdj4TcqF51-SYcGddmSZCGJc4w30iIcABBV5ogbeRn1_kw0g8jvvjJuBWNWWVrU2MhhrKDGPkV2FOhlw5ml1PPxLsGoXZ1aaFxipZ7zGl8PClh_c_WYRgalXbwSAgFdHSkwpz5ScThswKkR3x1yFF3v5_YPMvZI0-Z7hNthqwSG8W2t0hK77YJZt_KAT3yPDVf8boZnijSE4ZxheL0m7qv1Lk_q1oAKZ0Vrp5VdPSYeCFgq9jDVZB05qG1b5PRsPB291D0vRGSDIROYSFAyRyysAEp859pkErB5xL5INxJgArqXs5sNwoD044YbST4KUOCsi44gdkrSgLf0hoLzUOurngYISAtKsNKOZ1Hny3x-Nhh5y3ArLTBQWGjalrYSyK0UYxdsgtyu5nBNJWxw_l7N02u8DyvlOZhOADw8EyD-rRTJnUeCMh475nOuSklbxt9lJlfzXfIZdRG0t-ww6enlh8Olo-1zHZYFieEmv5TshaPZv704AvancWF9E3hvPLKA
  priority: 102
  providerName: ProQuest
Title Reweighting neural network examples for robust object detection at sea
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12166
https://www.proquest.com/docview/3092804182
https://doaj.org/article/35b7c6d429184f2998279a9e96dc3e19
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHHxc9iE9cH0tAT0JxN4lpAl5UdhVREXFFvISmSb0sXdmt6Md3Jt2uehG89EUKZSbT-ef1C8ChFh1T0IA776gskdK4xBkREuVRDqQ-SC1pNfLtnboayOvnk-c5OG3WwtR8iFmHG0VG_F9TgGeu3oUERS05cTjkxEZQah4WCRlD5Hwu72djCPijTZv9C1CnyAZOKs3x97u_0lGk9v-Smj8Fa8w4_VVYmUpFdlb7dg3mQrkOyz8AghvQfwgfsW8T7xihKbF8WU_sZuEzI_LvhKEsZeORe59UbOSo24X5UMUZWCXLKoZ1fRMG_d7jxVUy3RkhyWUkCEvnCeOUe4MpXYRce506L4QiGowzKKuU7haeFyYN3kknjXbKB6XR_LlIxRYslKMybAPrZsb5TiGFN1L6rKONT3nQBWbuQI3DFhw0BrJvNQDDxoFraSyZ0UYztuCcbDcrQdDq-GA0frXTGLDixKW58pgBsVlZoHs0T01mglE-F6FrWrDXWN5OI2lisS5xYiRp3oKj6I0_PsP2bm54vNr5T-FdWOI0VSXO69uDhWr8HvZRa1SuHasUHnX_sg2LZ0-DlwGez3t39w_t2H7_AtBN0RM
link.rule.ids 315,783,787,867,2109,11574,12777,21400,27936,27937,33385,33756,43612,43817,46064,46488,50826,50935,74363,74630
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61cGg5oD7V5dFaak-VInZt49gnBGhXW1hWFQKJmxVnnF5QArtB8POZ8SZAL9ySyLKiGXvm88z4G4BfVg1dxQl3OTRFprULWXAqZgYJDuQYtdV8G_lsbqaX-uRq_6oLuC27ssreJiZDjU3JMfI9mlMyV46VBze3GXeN4uxq10LjLawzVRUdvtaPxvO_5095BDK2ed_DgLCK7glKtduL19eSuRUSP-KzS0rM_f_BzZegNXmdyQfY7OCiOFzp9yO8ifUn2HhBIvgZJufxPsU36U0wPSWNr1fF3SI-FMz-uxQETcWiCXfLVjSBQy8CY5uqsGpRtILW-xe4nIwvjqdZ1x0hK3ViEdYBmcqpREduXcXSos0DKmWYESY4glbGjiqUlcsjBh20s8FgNJZUUKpcfYW1uqnjNxCjwgUcVlqh0xqLoXWYy2gr8t6RD4gD-NkLyN-sSDB8Sl5r51mMPolxAEcsu6cRTFydPjSLf77bB17th7w0SF6QjpYVqcfK3BUuOoOliiM3gJ1e8r7bTUv_rPsB_E7aeOU3_Hg2k-lp6_W5fsC76cXZzM_-zE-34b3kYpVU2bcDa-3iLu4S2mjD925JPQK2u895
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3BVqrggKClYqGAJXqqFG3Wdv1xQhR2VWC7qioq9WbFGYdLlZTdVPDzGXudflx6SyLLimbGnhfPyxuAAyNK28SCOy9VVUhpfeGtCIVCggMagzQy_o18ulQnF_LH5dFl5j-tM61y2BPTRo1dHc_IJzQnj1o5hk-aTIs4-zb_fP2niB2kYqU1t9N4CltaKlGOYOt4tjw7v60p0Marh34GhFvkIFYq7SRcXfGos5C0Eu_SU1LxfwA97wPYlIHmL-FFho7sy8bXr-BJaHfg-T1BwV2Yn4e_6ayT7liUqqTx7YbozcK_KioBrxnBVLbq_M26Z52PxzAMQ58YWS2rekax_xou5rNfX0-K3CmhqGVSFJYeo6xTjZZSvAi1QaM9CqGiOoy3BLOUmTbIG6sDeumlNV5hUIbcUQst9mDUdm14A2xaWY9lIwVaKbEqjUXNg2kok4f4sTiGT4OB3PVGEMOlQra0LprRJTOO4Tja7nZEFLFOD7rVb5fXhBNHXtcKKSPSZ2ZD7jFc28oGq7AWYWrHsD9Y3uWVtXZ3cTCGw-SNR17DzRYLnq7ePj7XR9imaHKL78uf7-AZj7yVRPLbh1G_ugnvCXj0_kOOqP9r79On
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reweighting+neural+network+examples+for+robust+object+detection+at+sea&rft.jtitle=Electronics+letters&rft.au=Becktor%2C+J.&rft.au=Boukas%2C+E.&rft.au=Blanke%2C+M.&rft.au=Nalpantidis%2C+L.&rft.date=2021-08-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=57&rft.issue=16&rft.spage=608&rft.epage=610&rft_id=info:doi/10.1049%2Fell2.12166&rft.externalDBID=10.1049%252Fell2.12166&rft.externalDocID=ELL212166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon