γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation

Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Dele...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 166; no. 6; pp. 1485 - 1499.e15
Main Authors Daley, Donnele, Zambirinis, Constantinos Pantelis, Seifert, Lena, Akkad, Neha, Mohan, Navyatha, Werba, Gregor, Barilla, Rocky, Torres-Hernandez, Alejandro, Hundeyin, Mautin, Mani, Vishnu Raj Kumar, Avanzi, Antonina, Tippens, Daniel, Narayanan, Rajkishen, Jang, Jung-Eun, Newman, Elliot, Pillarisetty, Venu Gopal, Dustin, Michael Loran, Bar-Sagi, Dafna, Hajdu, Cristina, Miller, George
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. [Display omitted] •γδT cells are highly prevalent in human pancreatic carcinoma•Deletion or interruption of γδT cell recruitment is protective in pancreatic cancer•Pancreatic cancer infiltrating γδT cells express high levels of checkpoint ligands•γδT cells disable αβT cell activation via checkpoint receptor ligation γδT cells are key regulators of effector T cell activation in pancreatic cancer and a new target for cancer immunotherapy.
AbstractList Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4⁺ and CD8⁺ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. [Display omitted] •γδT cells are highly prevalent in human pancreatic carcinoma•Deletion or interruption of γδT cell recruitment is protective in pancreatic cancer•Pancreatic cancer infiltrating γδT cells express high levels of checkpoint ligands•γδT cells disable αβT cell activation via checkpoint receptor ligation γδT cells are key regulators of effector T cell activation in pancreatic cancer and a new target for cancer immunotherapy.
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely-activated γδT cell population which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1-polarization of αβT cells. Whereas αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor-protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4 + and CD8 + T cell infiltration and immunogenicity and induced tumor-protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. γδT cells are key regulators of effector T cell activation in pancreatic cancer and a new target for cancer immunotherapy
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
Author Narayanan, Rajkishen
Hundeyin, Mautin
Newman, Elliot
Miller, George
Zambirinis, Constantinos Pantelis
Torres-Hernandez, Alejandro
Seifert, Lena
Dustin, Michael Loran
Daley, Donnele
Mani, Vishnu Raj Kumar
Hajdu, Cristina
Akkad, Neha
Jang, Jung-Eun
Barilla, Rocky
Mohan, Navyatha
Avanzi, Antonina
Pillarisetty, Venu Gopal
Bar-Sagi, Dafna
Werba, Gregor
Tippens, Daniel
AuthorAffiliation 5 The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington Oxford, OX3 7FY, United Kingdom
1 S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
6 S. Arthur Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
2 S. Arthur Localio Laboratory, Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
3 S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
4 Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195
AuthorAffiliation_xml – name: 5 The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington Oxford, OX3 7FY, United Kingdom
– name: 2 S. Arthur Localio Laboratory, Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
– name: 6 S. Arthur Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
– name: 3 S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
– name: 4 Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195
– name: 1 S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016
Author_xml – sequence: 1
  givenname: Donnele
  surname: Daley
  fullname: Daley, Donnele
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 2
  givenname: Constantinos Pantelis
  surname: Zambirinis
  fullname: Zambirinis, Constantinos Pantelis
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 3
  givenname: Lena
  surname: Seifert
  fullname: Seifert, Lena
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 4
  givenname: Neha
  surname: Akkad
  fullname: Akkad, Neha
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 5
  givenname: Navyatha
  surname: Mohan
  fullname: Mohan, Navyatha
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 6
  givenname: Gregor
  surname: Werba
  fullname: Werba, Gregor
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 7
  givenname: Rocky
  surname: Barilla
  fullname: Barilla, Rocky
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 8
  givenname: Alejandro
  surname: Torres-Hernandez
  fullname: Torres-Hernandez, Alejandro
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 9
  givenname: Mautin
  surname: Hundeyin
  fullname: Hundeyin, Mautin
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 10
  givenname: Vishnu Raj Kumar
  surname: Mani
  fullname: Mani, Vishnu Raj Kumar
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 11
  givenname: Antonina
  surname: Avanzi
  fullname: Avanzi, Antonina
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 12
  givenname: Daniel
  surname: Tippens
  fullname: Tippens, Daniel
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 13
  givenname: Rajkishen
  surname: Narayanan
  fullname: Narayanan, Rajkishen
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 14
  givenname: Jung-Eun
  surname: Jang
  fullname: Jang, Jung-Eun
  organization: Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 15
  givenname: Elliot
  surname: Newman
  fullname: Newman, Elliot
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 16
  givenname: Venu Gopal
  surname: Pillarisetty
  fullname: Pillarisetty, Venu Gopal
  organization: Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA
– sequence: 17
  givenname: Michael Loran
  surname: Dustin
  fullname: Dustin, Michael Loran
  organization: Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 18
  givenname: Dafna
  surname: Bar-Sagi
  fullname: Bar-Sagi, Dafna
  organization: Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 19
  givenname: Cristina
  surname: Hajdu
  fullname: Hajdu, Cristina
  organization: Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
– sequence: 20
  givenname: George
  surname: Miller
  fullname: Miller, George
  email: george.miller@nyumc.org
  organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27569912$$D View this record in MEDLINE/PubMed
BookMark eNqFUc1qGzEYFCGlcdK-QA5Fx152q5_dlRZCIJj-QSBtmp6FVvrsyKwlV1ob8lj9eQ4_U7W1U9IeEnSQkGbmG80co0MfPCB0SklJCW3eLEoDfV-yfC6JKEnVHKAJJa0oKirYIZoQ0rJCNqI6QscpLQghsq7r5-iIibppW8om6PP25_YXvsHTrJTwl_VqFeKAP2lvIujBGXzlTZiDh-QS7u7wNaQhauedn-Pt9-2PPRVfmMFtMiH4F-jZTPcJXu73E_T13dub6Yfi8ur9x-nFZWEqwpui0Qwq2_Kq08DzBeRVsZpZoJIbM2t5xzopQVJjqbWNbGoqjMxgy0VFO36Czne6q3W3BGvAZ2O9WkW31PFOBe3Uvy_e3ap52KiaUNEyngVe7wVi-LbO_1JLl8ZEtYewTorlvBjjktdPQqnMpnkrKMnQVw9t_fVzH3kGyB3AxJBShJkybviT3BhsryhRY7tqocYBamxXEaFyu5nK_qPeqz9KOtuRIJexcRBVMg68AesimEHZ4B6j_wZ098Co
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_3389_fimmu_2023_1285801
crossref_primary_10_1038_s41590_023_01448_7
crossref_primary_10_1016_j_isci_2024_109545
crossref_primary_10_15252_emmm_202013502
crossref_primary_10_3389_fcvm_2023_1052959
crossref_primary_10_1080_2162402X_2017_1284723
crossref_primary_10_1016_j_canlet_2017_01_041
crossref_primary_10_1080_2162402X_2017_1313369
crossref_primary_10_1016_S2468_1253_23_00207_8
crossref_primary_10_1038_s12276_021_00576_0
crossref_primary_10_1016_j_mcpro_2022_100258
crossref_primary_10_1080_2162402X_2018_1550618
crossref_primary_10_1136_gutjnl_2018_317479
crossref_primary_10_1080_2162402X_2017_1379642
crossref_primary_10_3390_cancers12102756
crossref_primary_10_1002_eji_201646875
crossref_primary_10_3390_cancers14071681
crossref_primary_10_3389_fimmu_2022_874640
crossref_primary_10_1007_s10555_021_09988_w
crossref_primary_10_1080_14728222_2021_2010044
crossref_primary_10_1615_CritRevOncog_2023050067
crossref_primary_10_3389_fimmu_2021_592031
crossref_primary_10_12677_WJCR_2021_113011
crossref_primary_10_1016_j_cell_2018_12_040
crossref_primary_10_1038_s41423_020_0504_x
crossref_primary_10_1152_physrev_00042_2019
crossref_primary_10_1158_2159_8290_CD_19_0958
crossref_primary_10_3389_fimmu_2021_758004
crossref_primary_10_3389_fimmu_2024_1466266
crossref_primary_10_1016_j_ccell_2018_10_006
crossref_primary_10_3390_cancers13195028
crossref_primary_10_3389_fmed_2021_763773
crossref_primary_10_1016_j_cell_2016_08_058
crossref_primary_10_3389_fimmu_2023_1140623
crossref_primary_10_3390_biom11060901
crossref_primary_10_3389_fimmu_2022_914839
crossref_primary_10_1101_cshperspect_a031849
crossref_primary_10_1002_jso_24641
crossref_primary_10_1016_j_cell_2023_02_014
crossref_primary_10_1186_s40425_019_0507_2
crossref_primary_10_3390_jcm11071948
crossref_primary_10_4110_in_2020_20_e6
crossref_primary_10_3390_cells9051140
crossref_primary_10_1016_j_humimm_2024_110831
crossref_primary_10_1038_s41571_022_00722_1
crossref_primary_10_3389_fimmu_2023_1151632
crossref_primary_10_1016_j_metop_2025_100347
crossref_primary_10_1186_s13014_019_1345_6
crossref_primary_10_3389_fimmu_2020_01266
crossref_primary_10_3389_fimmu_2018_01878
crossref_primary_10_1002_eji_202451070
crossref_primary_10_1038_s41568_019_0153_5
crossref_primary_10_3389_fimmu_2020_02115
crossref_primary_10_1016_j_intimp_2023_111065
crossref_primary_10_1016_j_isci_2022_103785
crossref_primary_10_1038_s41598_021_84270_1
crossref_primary_10_3389_fimmu_2019_02828
crossref_primary_10_1038_s41467_024_45449_y
crossref_primary_10_1097_JS9_0000000000000633
crossref_primary_10_3389_fimmu_2022_1009709
crossref_primary_10_1158_1078_0432_CCR_18_3877
crossref_primary_10_3389_fimmu_2023_1133308
crossref_primary_10_1080_2162402X_2017_1353858
crossref_primary_10_1016_j_apsb_2020_05_008
crossref_primary_10_3389_fimmu_2024_1341209
crossref_primary_10_1371_journal_pone_0191109
crossref_primary_10_1111_cei_13436
crossref_primary_10_1177_10732748241274228
crossref_primary_10_1038_s41571_020_00459_9
crossref_primary_10_1002_path_5403
crossref_primary_10_1146_annurev_pathmechdis_032221_115501
crossref_primary_10_3390_cancers15112923
crossref_primary_10_1002_cam4_4243
crossref_primary_10_1084_jem_20170686
crossref_primary_10_1080_2162402X_2018_1522471
crossref_primary_10_1016_j_yjmcc_2023_11_008
crossref_primary_10_1080_17474124_2017_1312344
crossref_primary_10_1016_j_pharmthera_2019_05_012
crossref_primary_10_1038_s41392_023_01376_w
crossref_primary_10_37349_ei_2022_00053
crossref_primary_10_3748_wjg_v27_i46_7956
crossref_primary_10_1097_JP9_0000000000000109
crossref_primary_10_1097_MPA_0000000000000943
crossref_primary_10_1016_j_iotech_2024_100724
crossref_primary_10_1084_jem_20220503
crossref_primary_10_3390_cells11192952
crossref_primary_10_1186_s13046_019_1126_y
crossref_primary_10_1177_0271678X231167946
crossref_primary_10_1007_s00262_019_02469_8
crossref_primary_10_1016_j_trecan_2017_06_003
crossref_primary_10_1038_s41388_020_1186_7
crossref_primary_10_3389_fimmu_2022_894315
crossref_primary_10_1016_j_celrep_2017_06_062
crossref_primary_10_1111_imr_12528
crossref_primary_10_1155_2018_5647120
crossref_primary_10_1016_j_semcancer_2018_01_003
crossref_primary_10_1016_j_lfs_2021_119813
crossref_primary_10_1038_s41556_020_0560_6
crossref_primary_10_3389_fimmu_2020_02186
crossref_primary_10_1146_annurev_physiol_020518_114515
crossref_primary_10_3748_wjg_v24_i20_2137
crossref_primary_10_37349_ei_2022_00066
crossref_primary_10_1016_j_molmed_2017_03_003
crossref_primary_10_1038_s41590_020_0620_x
crossref_primary_10_3389_fimmu_2018_01492
crossref_primary_10_1080_2162402X_2018_1484979
crossref_primary_10_1089_hum_2022_210
crossref_primary_10_3389_fimmu_2018_00512
crossref_primary_10_1038_s43018_024_00798_x
crossref_primary_10_1007_s13193_020_01192_6
crossref_primary_10_3389_fimmu_2019_01940
crossref_primary_10_1080_14712598_2019_1634050
crossref_primary_10_3389_fimmu_2018_01044
crossref_primary_10_3390_cells9061537
crossref_primary_10_3389_fonc_2020_00382
crossref_primary_10_1038_s41418_025_01464_0
crossref_primary_10_1002_hep_30952
crossref_primary_10_3389_fimmu_2023_1282758
crossref_primary_10_1111_sji_13201
crossref_primary_10_1038_s41467_021_27936_8
crossref_primary_10_3389_fonc_2022_931774
crossref_primary_10_3390_ijms241612633
crossref_primary_10_1038_nrgastro_2016_156
crossref_primary_10_3390_cancers13122995
crossref_primary_10_1016_j_clim_2020_108343
crossref_primary_10_3389_fimmu_2020_619954
crossref_primary_10_1038_s41573_019_0038_z
crossref_primary_10_3389_fgene_2022_1077419
crossref_primary_10_1038_s41467_017_01963_w
crossref_primary_10_1111_xen_12838
crossref_primary_10_1158_2326_6066_CIR_20_0817
crossref_primary_10_1053_j_gastro_2018_12_045
crossref_primary_10_5306_wjco_v8_i3_230
crossref_primary_10_2147_IJGM_S313584
crossref_primary_10_1158_2326_6066_CIR_22_0121
crossref_primary_10_3390_cancers14123005
crossref_primary_10_1128_MCB_00586_18
crossref_primary_10_1016_j_devcel_2023_07_025
crossref_primary_10_1016_j_cellsig_2023_110909
crossref_primary_10_1038_s41388_018_0627_z
crossref_primary_10_3389_fonc_2018_00384
crossref_primary_10_1186_s12967_023_04204_5
crossref_primary_10_1007_s00432_020_03367_8
crossref_primary_10_1158_2326_6066_CIR_16_0188
crossref_primary_10_1053_j_gastro_2018_12_038
crossref_primary_10_1007_s00018_018_2788_x
crossref_primary_10_3389_fimmu_2022_1073227
crossref_primary_10_4049_jimmunol_1701053
crossref_primary_10_1097_MPA_0000000000001202
crossref_primary_10_3389_fimmu_2020_01328
crossref_primary_10_1038_nm_4314
crossref_primary_10_1084_jem_20161707
crossref_primary_10_3389_fimmu_2018_00800
crossref_primary_10_3390_ijms231911789
crossref_primary_10_1126_science_abq7248
crossref_primary_10_3390_cancers13143578
crossref_primary_10_1158_0008_5472_CAN_17_3821
crossref_primary_10_1007_s00432_020_03332_5
crossref_primary_10_3389_fgene_2022_871899
crossref_primary_10_1016_j_it_2017_06_004
crossref_primary_10_3390_cancers12010003
crossref_primary_10_1016_j_intimp_2018_12_067
crossref_primary_10_1016_j_intimp_2022_108895
crossref_primary_10_2217_imt_2016_0139
crossref_primary_10_3390_ijms232314797
crossref_primary_10_1016_j_ccell_2017_02_008
crossref_primary_10_1016_j_intimp_2023_111332
crossref_primary_10_3389_fgene_2022_830793
crossref_primary_10_3389_fimmu_2020_609948
crossref_primary_10_1002_JLB_5MA0622_741R
crossref_primary_10_1038_s41540_022_00259_0
crossref_primary_10_1136_gutjnl_2018_318059
crossref_primary_10_1080_2162402X_2017_1372080
crossref_primary_10_1186_s12943_023_01722_0
crossref_primary_10_1136_jitc_2021_003217
crossref_primary_10_1038_s41416_023_02303_0
crossref_primary_10_1016_j_canlet_2023_216391
crossref_primary_10_1158_2326_6066_CIR_19_0349
crossref_primary_10_1165_rcmb_2018_0201OC
crossref_primary_10_3389_fendo_2023_1168186
crossref_primary_10_37349_ei_2022_00036
crossref_primary_10_1016_j_ccell_2020_02_010
crossref_primary_10_37349_ei_2022_00039
crossref_primary_10_1097_CJI_0000000000000211
crossref_primary_10_1158_2326_6066_CIR_23_0061
crossref_primary_10_3390_cancers16101847
crossref_primary_10_1158_2326_6066_CIR_21_1088
crossref_primary_10_1038_s41467_019_09416_2
crossref_primary_10_1080_14728222_2020_1751820
crossref_primary_10_3389_fonc_2022_1005566
crossref_primary_10_1038_s41598_024_78705_8
crossref_primary_10_1002_cti2_1080
crossref_primary_10_3389_fimmu_2023_1110325
crossref_primary_10_2217_imt_2016_0115
crossref_primary_10_1007_s10637_020_01000_6
crossref_primary_10_3390_cancers16234094
crossref_primary_10_1158_2326_6066_CIR_21_0952
crossref_primary_10_1136_gutjnl_2018_316451
crossref_primary_10_3390_ijms22105070
crossref_primary_10_1084_jem_20190456
crossref_primary_10_3389_fimmu_2021_642958
crossref_primary_10_1002_JLB_3MA0420_278RR
crossref_primary_10_1097_SLA_0000000000002162
crossref_primary_10_1002_JLB_3MR0822_761RR
crossref_primary_10_1155_2021_7056506
crossref_primary_10_1016_j_immuni_2019_06_025
crossref_primary_10_3390_cancers13061297
crossref_primary_10_1038_s41568_023_00562_w
crossref_primary_10_12688_f1000research_22161_1
crossref_primary_10_1016_j_canlet_2020_12_003
crossref_primary_10_1111_imr_12925
crossref_primary_10_1158_2159_8290_CD_19_0161
crossref_primary_10_1038_s41419_023_05567_9
crossref_primary_10_2174_1568009620666200504111914
crossref_primary_10_1016_j_semcdb_2018_02_007
crossref_primary_10_1038_s41388_022_02425_4
crossref_primary_10_1126_sciadv_abm9120
crossref_primary_10_1186_s13040_024_00405_w
crossref_primary_10_1186_s12967_024_05327_z
crossref_primary_10_1016_j_apsb_2020_12_011
crossref_primary_10_1097_JP9_0000000000000057
crossref_primary_10_1080_21645515_2023_2269794
crossref_primary_10_3389_fimmu_2024_1341079
crossref_primary_10_1111_imr_12916
crossref_primary_10_3390_biomedicines8100401
crossref_primary_10_1038_s41590_020_0761_y
crossref_primary_10_1146_annurev_cancerbio_061521_101910
crossref_primary_10_1038_s43018_022_00376_z
crossref_primary_10_1080_2162402X_2016_1237328
crossref_primary_10_3389_fonc_2019_01148
crossref_primary_10_1158_2326_6066_CIR_16_0322
crossref_primary_10_1186_s12974_021_02115_0
crossref_primary_10_1002_cncr_30491
crossref_primary_10_3390_cancers13194932
crossref_primary_10_4251_wjgo_v15_i5_757
crossref_primary_10_3389_fimmu_2025_1526285
crossref_primary_10_1038_s41598_022_16155_w
crossref_primary_10_3390_biom12101406
crossref_primary_10_1007_s12026_022_09260_5
crossref_primary_10_1136_gutjnl_2018_317570
crossref_primary_10_1186_s40001_023_01452_5
crossref_primary_10_1038_s41467_018_03773_0
crossref_primary_10_1186_s12967_017_1378_2
crossref_primary_10_3389_fimmu_2022_910704
crossref_primary_10_1177_1758835918816281
crossref_primary_10_12688_f1000research_11057_1
crossref_primary_10_1186_s13045_018_0578_4
crossref_primary_10_1111_imr_12904
crossref_primary_10_1155_2021_6682697
crossref_primary_10_1080_08923973_2020_1765375
crossref_primary_10_3390_jcm10081609
crossref_primary_10_1016_j_cytogfr_2018_05_002
crossref_primary_10_1158_1078_0432_CCR_16_2318
crossref_primary_10_1016_j_biocel_2022_106213
crossref_primary_10_1093_jleuko_qiad056
crossref_primary_10_1097_MPA_0000000000001621
crossref_primary_10_1186_s12964_024_01834_0
crossref_primary_10_1093_discim_kyae004
crossref_primary_10_1038_s41575_021_00486_6
Cites_doi 10.1146/annurev.immunol.22.012703.104702
10.1158/0008-5472.CAN-07-0175
10.1084/jem.20101876
10.1126/science.aaa8172
10.1371/journal.pone.0132786
10.4049/jimmunol.1101389
10.1073/pnas.1320318110
10.1016/j.imlet.2009.06.005
10.4049/jimmunol.0804288
10.1097/CJI.0b013e318245bb1e
10.1158/0008-5472.CAN-13-2534
10.1038/nature14282
10.1084/jem.20111706
10.1084/jem.20030584
10.1158/0008-5472.CAN-13-0675
10.1016/j.ccr.2014.03.014
10.1371/journal.pone.0049878
10.1016/j.ccr.2012.04.025
10.1053/j.gastro.2011.07.033
10.1172/JCI63606
10.1126/science.1063916
10.1016/j.immuni.2007.05.020
10.4049/jimmunol.1202312
10.1189/jlb.0909607
10.1158/0008-5472.CAN-13-3723
10.1084/jem.20142162
10.1097/00000478-200105000-00003
10.1016/j.ccr.2007.01.012
10.1016/j.jcyt.2012.12.004
10.1158/2159-8290.CD-14-0474
10.1016/j.ccr.2012.04.024
10.3109/00365529709000177
10.1097/00006676-200401000-00023
10.4161/onci.20068
10.1073/pnas.0911587107
10.1158/1078-0432.CCR-06-2746
10.1053/j.gastro.2012.12.042
10.1084/jem.20141702
10.1053/j.gastro.2013.01.068
10.1016/S1535-6108(03)00309-X
10.1038/nature17403
10.1126/science.aaa6204
10.1016/j.immuni.2014.03.013
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2016.07.046
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1499.e15
ExternalDocumentID PMC5017923
27569912
10_1016_j_cell_2016_07_046
S0092867416309965
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: T32 CA193111
– fundername: NCI NIH HHS
  grantid: R21 CA155649
– fundername: Pancreatic Cancer Action Network
– fundername: NCI NIH HHS
  grantid: R01 CA168611
– fundername: NCATS NIH HHS
  grantid: UL1 TR000038
– fundername: NCATS NIH HHS
  grantid: UL1 TR001445
– fundername: NCI NIH HHS
  grantid: P30 CA016087
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4036-6a2e4d934bae3036e6e64252de183ccf93b2b88e81cd1dd686517c8ae3d3741b3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:14:32 EDT 2025
Fri Jul 11 03:40:27 EDT 2025
Thu Jul 10 17:52:22 EDT 2025
Mon Jul 21 05:51:55 EDT 2025
Tue Jul 01 02:16:56 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Fri Feb 23 02:30:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords checkpoint ligands
cancer
Kras
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4036-6a2e4d934bae3036e6e64252de183ccf93b2b88e81cd1dd686517c8ae3d3741b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DD, CZ, and LS contributed equally toward this work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416309965
PMID 27569912
PQID 1818339710
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5017923
proquest_miscellaneous_2000223835
proquest_miscellaneous_1818339710
pubmed_primary_27569912
crossref_citationtrail_10_1016_j_cell_2016_07_046
crossref_primary_10_1016_j_cell_2016_07_046
elsevier_sciencedirect_doi_10_1016_j_cell_2016_07_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-08
PublicationDateYYYYMMDD 2016-09-08
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Guerra, Schuhmacher, Cañamero, Grippo, Verdaguer, Pérez-Gallego, Dubus, Sandgren, Barbacid (bib15) 2007; 11
Izumi, Kondo, Takahashi, Fujieda, Kondo, Tamura, Murakawa, Nakajima, Matsushita, Kakimi (bib19) 2013; 15
Hruban, Adsay, Albores-Saavedra, Compton, Garrett, Goodman, Kern, Klimstra, Klöppel, Longnecker (bib18) 2001; 25
Andrén-Sandberg, Dervenis, Lowenfels (bib1) 1997; 32
Clark, Hingorani, Mick, Combs, Tuveson, Vonderheide (bib4) 2007; 67
Rehman, Hemmert, Ochi, Jamal, Henning, Barilla, Quesada, Zambirinis, Tang, Ego-Osuala (bib33) 2013; 190
Wu, Wu, Ni, Ye, Chen, Hu, Wang, Wang, Zhang, Xia (bib38) 2014; 40
Joyce, Fearon (bib20) 2015; 348
Yang, Sanderson, Wawrowsky, Puntel, Castro, Lowenstein (bib41) 2010; 107
Feig, Jones, Kraman, Wells, Deonarine, Chan, Connell, Roberts, Zhao, Caballero (bib9) 2013; 110
Cordova, Toia, La Mendola, Orlando, Meraviglia, Rinaldi, Todaro, Cicero, Zichichi, Donni (bib7) 2012; 7
Girardi, Oppenheim, Steele, Lewis, Glusac, Filler, Hobby, Sutton, Tigelaar, Hayday (bib12) 2001; 294
Sallusto, Geginat, Lanzavecchia (bib34) 2004; 22
Zheng, Xue, Jaffee, Habtezion (bib43) 2013; 144
Greco, Tomkötter, Vahle, Rokosh, Avanzi, Mahmood, Deutsch, Alothman, Alqunaibit, Ochi (bib14) 2015; 10
Pylayeva-Gupta, Lee, Hajdu, Miller, Bar-Sagi (bib32) 2012; 21
Kunzmann, Smetak, Kimmel, Weigang-Koehler, Goebeler, Birkmann, Becker, Schmidt-Wolf, Einsele, Wilhelm (bib22) 2012; 35
Bedrosian, Nguyen, Hackman, Connolly, Malhotra, Ibrahim, Cieza-Rubio, Henning, Barilla, Rehman (bib3) 2011; 141
De Monte, Reni, Tassi, Clavenna, Papa, Recalde, Braga, Di Carlo, Doglioni, Protti (bib8) 2011; 208
McAllister, Bailey, Alsina, Nirschl, Sharma, Fan, Rattigan, Roeser, Lankapalli, Zhang (bib26) 2014; 25
Ochi, Nguyen, Bedrosian, Mushlin, Zarbakhsh, Barilla, Zambirinis, Fallon, Rehman, Pylayeva-Gupta (bib30) 2012; 209
Coffelt, Kersten, Doornebal, Weiden, Vrijland, Hau, Verstegen, Ciampricotti, Hawinkels, Jonkers (bib5) 2015; 522
Todaro, D’Asaro, Caccamo, Iovino, Francipane, Meraviglia, Orlando, La Mendola, Gulotta, Salerno (bib37) 2009; 182
Yadav, Lowenfels (bib40) 2013; 144
Bayne, Beatty, Jhala, Clark, Rhim, Stanger, Vonderheide (bib2) 2012; 21
Goggins, Shekher, Turnacioglu, Yeo, Hruban, Kern (bib13) 1998; 58
Peng, Wang, Peng, Kiniwa, Seo, Wang (bib31) 2007; 27
Kang, Tang, Li, Wu, Li, Chen, Cui, Ba, He (bib21) 2009; 125
Ochi, Graffeo, Zambirinis, Rehman, Hackman, Fallon, Barilla, Henning, Jamal, Rao (bib29) 2012; 122
Oberg, Peipp, Kellner, Sebens, Krause, Petrick, Adam-Klages, Röcken, Becker, Vogel (bib28) 2014; 74
Zhu, Knolhoff, Meyer, Nywening, West, Luo, Wang-Gillam, Goedegebuure, Linehan, DeNardo (bib44) 2014; 74
Gao, Yang, Pan, Scully, Girardi, Augenlicht, Craft, Yin (bib11) 2003; 198
Lança, Silva-Santos (bib23) 2012; 1
Sharma, Allison (bib36) 2015; 348
Connolly, Mallen-St Clair, Bedrosian, Malhotra, Vera, Ibrahim, Henning, Pachter, Bar-Sagi, Frey, Miller (bib6) 2010; 87
Fukunaga, Miyamoto, Cho, Murakami, Kawarada, Oshikiri, Kato, Kurokawa, Suzuoki, Nakakubo (bib10) 2004; 28
Liou, Döppler, Necela, Edenfield, Zhang, Dawson, Storz (bib24) 2015; 5
Zambirinis, Levie, Nguy, Avanzi, Barilla, Xu, Seifert, Daley, Greco, Deutsch (bib42) 2015; 212
Hao, Dong, Xia, He, Jia, Zhang, Wei, O’Brien, Born, Wu (bib16) 2011; 187
Seifert, Werba, Tiwari, Giao Ly, Alothman, Alqunaibit, Avanzi, Barilla, Daley, Greco (bib35) 2016; 532
Wu, Hwang-Verslues, Lee, Huang, Wei, Chen, Shew, Lee, Jeng, Tien (bib39) 2015; 212
Nomi, Sho, Akahori, Hamada, Kubo, Kanehiro, Nakamura, Enomoto, Yagita, Azuma (bib27) 2007; 13
Hingorani, Petricoin, Maitra, Rajapakse, King, Jacobetz, Ross, Conrads, Veenstra, Hitt (bib17) 2003; 4
Ma, Cheng, Cai, Gong, Wu, Yu, Shi, Wu, Dong, Liu (bib25) 2014; 74
De Monte (10.1016/j.cell.2016.07.046_bib8) 2011; 208
Seifert (10.1016/j.cell.2016.07.046_bib35) 2016; 532
Fukunaga (10.1016/j.cell.2016.07.046_bib10) 2004; 28
Hruban (10.1016/j.cell.2016.07.046_bib18) 2001; 25
Hingorani (10.1016/j.cell.2016.07.046_bib17) 2003; 4
Kunzmann (10.1016/j.cell.2016.07.046_bib22) 2012; 35
Yadav (10.1016/j.cell.2016.07.046_bib40) 2013; 144
Sallusto (10.1016/j.cell.2016.07.046_bib34) 2004; 22
Yang (10.1016/j.cell.2016.07.046_bib41) 2010; 107
Bayne (10.1016/j.cell.2016.07.046_bib2) 2012; 21
Goggins (10.1016/j.cell.2016.07.046_bib13) 1998; 58
Zambirinis (10.1016/j.cell.2016.07.046_bib42) 2015; 212
Izumi (10.1016/j.cell.2016.07.046_bib19) 2013; 15
Guerra (10.1016/j.cell.2016.07.046_bib15) 2007; 11
Kang (10.1016/j.cell.2016.07.046_bib21) 2009; 125
Sharma (10.1016/j.cell.2016.07.046_bib36) 2015; 348
Gao (10.1016/j.cell.2016.07.046_bib11) 2003; 198
Girardi (10.1016/j.cell.2016.07.046_bib12) 2001; 294
McAllister (10.1016/j.cell.2016.07.046_bib26) 2014; 25
Oberg (10.1016/j.cell.2016.07.046_bib28) 2014; 74
Todaro (10.1016/j.cell.2016.07.046_bib37) 2009; 182
Zhu (10.1016/j.cell.2016.07.046_bib44) 2014; 74
Wu (10.1016/j.cell.2016.07.046_bib39) 2015; 212
Connolly (10.1016/j.cell.2016.07.046_bib6) 2010; 87
Peng (10.1016/j.cell.2016.07.046_bib31) 2007; 27
Cordova (10.1016/j.cell.2016.07.046_bib7) 2012; 7
Zheng (10.1016/j.cell.2016.07.046_bib43) 2013; 144
Ma (10.1016/j.cell.2016.07.046_bib25) 2014; 74
Feig (10.1016/j.cell.2016.07.046_bib9) 2013; 110
Hao (10.1016/j.cell.2016.07.046_bib16) 2011; 187
Greco (10.1016/j.cell.2016.07.046_bib14) 2015; 10
Coffelt (10.1016/j.cell.2016.07.046_bib5) 2015; 522
Rehman (10.1016/j.cell.2016.07.046_bib33) 2013; 190
Andrén-Sandberg (10.1016/j.cell.2016.07.046_bib1) 1997; 32
Joyce (10.1016/j.cell.2016.07.046_bib20) 2015; 348
Nomi (10.1016/j.cell.2016.07.046_bib27) 2007; 13
Liou (10.1016/j.cell.2016.07.046_bib24) 2015; 5
Clark (10.1016/j.cell.2016.07.046_bib4) 2007; 67
Ochi (10.1016/j.cell.2016.07.046_bib30) 2012; 209
Wu (10.1016/j.cell.2016.07.046_bib38) 2014; 40
Bedrosian (10.1016/j.cell.2016.07.046_bib3) 2011; 141
Pylayeva-Gupta (10.1016/j.cell.2016.07.046_bib32) 2012; 21
Ochi (10.1016/j.cell.2016.07.046_bib29) 2012; 122
Lança (10.1016/j.cell.2016.07.046_bib23) 2012; 1
27625194 - Nat Rev Gastroenterol Hepatol. 2016 Oct;13(10):560. doi: 10.1038/nrgastro.2016.156
33186522 - Cell. 2020 Nov 12;183(4):1134-1136. doi: 10.1016/j.cell.2020.10.041
References_xml – volume: 21
  start-page: 822
  year: 2012
  end-page: 835
  ident: bib2
  article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
  publication-title: Cancer Cell
– volume: 15
  start-page: 481
  year: 2013
  end-page: 491
  ident: bib19
  article-title: Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor β-chain and the common γ-chain
  publication-title: Cytotherapy
– volume: 122
  start-page: 4118
  year: 2012
  end-page: 4129
  ident: bib29
  article-title: Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans
  publication-title: J. Clin. Invest.
– volume: 28
  start-page: e26
  year: 2004
  end-page: e31
  ident: bib10
  article-title: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma
  publication-title: Pancreas
– volume: 11
  start-page: 291
  year: 2007
  end-page: 302
  ident: bib15
  article-title: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice
  publication-title: Cancer Cell
– volume: 190
  start-page: 4640
  year: 2013
  end-page: 4649
  ident: bib33
  article-title: Role of fatty-acid synthesis in dendritic cell generation and function
  publication-title: J. Immunol.
– volume: 107
  start-page: 4716
  year: 2010
  end-page: 4721
  ident: bib41
  article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: e49878
  year: 2012
  ident: bib7
  article-title: Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas
  publication-title: PLoS ONE
– volume: 110
  start-page: 20212
  year: 2013
  end-page: 20217
  ident: bib9
  article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 97
  year: 1997
  end-page: 103
  ident: bib1
  article-title: Etiologic links between chronic pancreatitis and pancreatic cancer
  publication-title: Scand. J. Gastroenterol.
– volume: 27
  start-page: 334
  year: 2007
  end-page: 348
  ident: bib31
  article-title: Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway
  publication-title: Immunity
– volume: 532
  start-page: 245
  year: 2016
  end-page: 249
  ident: bib35
  article-title: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression
  publication-title: Nature
– volume: 87
  start-page: 713
  year: 2010
  end-page: 725
  ident: bib6
  article-title: Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor
  publication-title: J. Leukoc. Biol.
– volume: 141
  start-page: 1915
  year: 2011
  end-page: 1926
  ident: bib3
  article-title: Dendritic cells promote pancreatic viability in mice with acute pancreatitis
  publication-title: Gastroenterology
– volume: 74
  start-page: 1349
  year: 2014
  end-page: 1360
  ident: bib28
  article-title: Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells
  publication-title: Cancer Res.
– volume: 22
  start-page: 745
  year: 2004
  end-page: 763
  ident: bib34
  article-title: Central memory and effector memory T cell subsets: Function, generation, and maintenance
  publication-title: Annu. Rev. Immunol.
– volume: 212
  start-page: 2077
  year: 2015
  end-page: 2094
  ident: bib42
  article-title: TLR9 ligation in pancreatic stellate cells promotes tumorigenesis
  publication-title: J. Exp. Med.
– volume: 74
  start-page: 5057
  year: 2014
  end-page: 5069
  ident: bib44
  article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models
  publication-title: Cancer Res.
– volume: 58
  start-page: 5329
  year: 1998
  end-page: 5332
  ident: bib13
  article-title: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas
  publication-title: Cancer Res.
– volume: 21
  start-page: 836
  year: 2012
  end-page: 847
  ident: bib32
  article-title: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia
  publication-title: Cancer Cell
– volume: 208
  start-page: 469
  year: 2011
  end-page: 478
  ident: bib8
  article-title: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer
  publication-title: J. Exp. Med.
– volume: 348
  start-page: 74
  year: 2015
  end-page: 80
  ident: bib20
  article-title: T cell exclusion, immune privilege, and the tumor microenvironment
  publication-title: Science
– volume: 182
  start-page: 7287
  year: 2009
  end-page: 7296
  ident: bib37
  article-title: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes
  publication-title: J. Immunol.
– volume: 144
  start-page: 1230
  year: 2013
  end-page: 1240
  ident: bib43
  article-title: Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma
  publication-title: Gastroenterology
– volume: 198
  start-page: 433
  year: 2003
  end-page: 442
  ident: bib11
  article-title: Gamma delta T cells provide an early source of interferon gamma in tumor immunity
  publication-title: J. Exp. Med.
– volume: 187
  start-page: 4979
  year: 2011
  end-page: 4986
  ident: bib16
  article-title: Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production
  publication-title: J. Immunol.
– volume: 74
  start-page: 1969
  year: 2014
  end-page: 1982
  ident: bib25
  article-title: IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma
  publication-title: Cancer Res.
– volume: 4
  start-page: 437
  year: 2003
  end-page: 450
  ident: bib17
  article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
  publication-title: Cancer Cell
– volume: 10
  start-page: e0132786
  year: 2015
  ident: bib14
  article-title: TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia
  publication-title: PLoS ONE
– volume: 40
  start-page: 785
  year: 2014
  end-page: 800
  ident: bib38
  article-title: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer
  publication-title: Immunity
– volume: 212
  start-page: 333
  year: 2015
  end-page: 349
  ident: bib39
  article-title: Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines
  publication-title: J. Exp. Med.
– volume: 67
  start-page: 9518
  year: 2007
  end-page: 9527
  ident: bib4
  article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion
  publication-title: Cancer Res.
– volume: 5
  start-page: 52
  year: 2015
  end-page: 63
  ident: bib24
  article-title: Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions
  publication-title: Cancer Discov.
– volume: 522
  start-page: 345
  year: 2015
  end-page: 348
  ident: bib5
  article-title: 17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis
  publication-title: Nature
– volume: 25
  start-page: 579
  year: 2001
  end-page: 586
  ident: bib18
  article-title: Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions
  publication-title: Am. J. Surg. Pathol.
– volume: 25
  start-page: 621
  year: 2014
  end-page: 637
  ident: bib26
  article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia
  publication-title: Cancer Cell
– volume: 13
  start-page: 2151
  year: 2007
  end-page: 2157
  ident: bib27
  article-title: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer
  publication-title: Clin. Cancer Res.
– volume: 209
  start-page: 1671
  year: 2012
  end-page: 1687
  ident: bib30
  article-title: MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells
  publication-title: J. Exp. Med.
– volume: 348
  start-page: 56
  year: 2015
  end-page: 61
  ident: bib36
  article-title: The future of immune checkpoint therapy
  publication-title: Science
– volume: 35
  start-page: 205
  year: 2012
  end-page: 213
  ident: bib22
  article-title: Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: Results from a prospective phase I/II trial
  publication-title: J. Immunother.
– volume: 294
  start-page: 605
  year: 2001
  end-page: 609
  ident: bib12
  article-title: Regulation of cutaneous malignancy by gammadelta T cells
  publication-title: Science
– volume: 144
  start-page: 1252
  year: 2013
  end-page: 1261
  ident: bib40
  article-title: The epidemiology of pancreatitis and pancreatic cancer
  publication-title: Gastroenterology
– volume: 125
  start-page: 105
  year: 2009
  end-page: 113
  ident: bib21
  article-title: Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human
  publication-title: Immunol. Lett.
– volume: 1
  start-page: 717
  year: 2012
  end-page: 725
  ident: bib23
  article-title: The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy
  publication-title: OncoImmunology
– volume: 22
  start-page: 745
  year: 2004
  ident: 10.1016/j.cell.2016.07.046_bib34
  article-title: Central memory and effector memory T cell subsets: Function, generation, and maintenance
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.22.012703.104702
– volume: 67
  start-page: 9518
  year: 2007
  ident: 10.1016/j.cell.2016.07.046_bib4
  article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0175
– volume: 208
  start-page: 469
  year: 2011
  ident: 10.1016/j.cell.2016.07.046_bib8
  article-title: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101876
– volume: 348
  start-page: 56
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib36
  article-title: The future of immune checkpoint therapy
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 10
  start-page: e0132786
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib14
  article-title: TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0132786
– volume: 187
  start-page: 4979
  year: 2011
  ident: 10.1016/j.cell.2016.07.046_bib16
  article-title: Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101389
– volume: 110
  start-page: 20212
  year: 2013
  ident: 10.1016/j.cell.2016.07.046_bib9
  article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1320318110
– volume: 125
  start-page: 105
  year: 2009
  ident: 10.1016/j.cell.2016.07.046_bib21
  article-title: Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2009.06.005
– volume: 182
  start-page: 7287
  year: 2009
  ident: 10.1016/j.cell.2016.07.046_bib37
  article-title: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0804288
– volume: 35
  start-page: 205
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib22
  article-title: Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: Results from a prospective phase I/II trial
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0b013e318245bb1e
– volume: 74
  start-page: 1969
  year: 2014
  ident: 10.1016/j.cell.2016.07.046_bib25
  article-title: IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2534
– volume: 522
  start-page: 345
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib5
  article-title: 17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis
  publication-title: Nature
  doi: 10.1038/nature14282
– volume: 209
  start-page: 1671
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib30
  article-title: MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20111706
– volume: 198
  start-page: 433
  year: 2003
  ident: 10.1016/j.cell.2016.07.046_bib11
  article-title: Gamma delta T cells provide an early source of interferon gamma in tumor immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20030584
– volume: 74
  start-page: 1349
  year: 2014
  ident: 10.1016/j.cell.2016.07.046_bib28
  article-title: Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-0675
– volume: 25
  start-page: 621
  year: 2014
  ident: 10.1016/j.cell.2016.07.046_bib26
  article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.03.014
– volume: 7
  start-page: e49878
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib7
  article-title: Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049878
– volume: 21
  start-page: 822
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib2
  article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.04.025
– volume: 141
  start-page: 1915
  year: 2011
  ident: 10.1016/j.cell.2016.07.046_bib3
  article-title: Dendritic cells promote pancreatic viability in mice with acute pancreatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.07.033
– volume: 58
  start-page: 5329
  year: 1998
  ident: 10.1016/j.cell.2016.07.046_bib13
  article-title: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas
  publication-title: Cancer Res.
– volume: 122
  start-page: 4118
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib29
  article-title: Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI63606
– volume: 294
  start-page: 605
  year: 2001
  ident: 10.1016/j.cell.2016.07.046_bib12
  article-title: Regulation of cutaneous malignancy by gammadelta T cells
  publication-title: Science
  doi: 10.1126/science.1063916
– volume: 27
  start-page: 334
  year: 2007
  ident: 10.1016/j.cell.2016.07.046_bib31
  article-title: Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.020
– volume: 190
  start-page: 4640
  year: 2013
  ident: 10.1016/j.cell.2016.07.046_bib33
  article-title: Role of fatty-acid synthesis in dendritic cell generation and function
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202312
– volume: 87
  start-page: 713
  year: 2010
  ident: 10.1016/j.cell.2016.07.046_bib6
  article-title: Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0909607
– volume: 74
  start-page: 5057
  year: 2014
  ident: 10.1016/j.cell.2016.07.046_bib44
  article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3723
– volume: 212
  start-page: 2077
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib42
  article-title: TLR9 ligation in pancreatic stellate cells promotes tumorigenesis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20142162
– volume: 25
  start-page: 579
  year: 2001
  ident: 10.1016/j.cell.2016.07.046_bib18
  article-title: Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/00000478-200105000-00003
– volume: 11
  start-page: 291
  year: 2007
  ident: 10.1016/j.cell.2016.07.046_bib15
  article-title: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.01.012
– volume: 15
  start-page: 481
  year: 2013
  ident: 10.1016/j.cell.2016.07.046_bib19
  article-title: Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor β-chain and the common γ-chain
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2012.12.004
– volume: 5
  start-page: 52
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib24
  article-title: Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-14-0474
– volume: 21
  start-page: 836
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib32
  article-title: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.04.024
– volume: 32
  start-page: 97
  year: 1997
  ident: 10.1016/j.cell.2016.07.046_bib1
  article-title: Etiologic links between chronic pancreatitis and pancreatic cancer
  publication-title: Scand. J. Gastroenterol.
  doi: 10.3109/00365529709000177
– volume: 28
  start-page: e26
  year: 2004
  ident: 10.1016/j.cell.2016.07.046_bib10
  article-title: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma
  publication-title: Pancreas
  doi: 10.1097/00006676-200401000-00023
– volume: 1
  start-page: 717
  year: 2012
  ident: 10.1016/j.cell.2016.07.046_bib23
  article-title: The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy
  publication-title: OncoImmunology
  doi: 10.4161/onci.20068
– volume: 107
  start-page: 4716
  year: 2010
  ident: 10.1016/j.cell.2016.07.046_bib41
  article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911587107
– volume: 13
  start-page: 2151
  year: 2007
  ident: 10.1016/j.cell.2016.07.046_bib27
  article-title: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2746
– volume: 144
  start-page: 1230
  year: 2013
  ident: 10.1016/j.cell.2016.07.046_bib43
  article-title: Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.12.042
– volume: 212
  start-page: 333
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib39
  article-title: Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141702
– volume: 144
  start-page: 1252
  year: 2013
  ident: 10.1016/j.cell.2016.07.046_bib40
  article-title: The epidemiology of pancreatitis and pancreatic cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.01.068
– volume: 4
  start-page: 437
  year: 2003
  ident: 10.1016/j.cell.2016.07.046_bib17
  article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00309-X
– volume: 532
  start-page: 245
  year: 2016
  ident: 10.1016/j.cell.2016.07.046_bib35
  article-title: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression
  publication-title: Nature
  doi: 10.1038/nature17403
– volume: 348
  start-page: 74
  year: 2015
  ident: 10.1016/j.cell.2016.07.046_bib20
  article-title: T cell exclusion, immune privilege, and the tumor microenvironment
  publication-title: Science
  doi: 10.1126/science.aaa6204
– volume: 40
  start-page: 785
  year: 2014
  ident: 10.1016/j.cell.2016.07.046_bib38
  article-title: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.03.013
– reference: 27625194 - Nat Rev Gastroenterol Hepatol. 2016 Oct;13(10):560. doi: 10.1038/nrgastro.2016.156
– reference: 33186522 - Cell. 2020 Nov 12;183(4):1134-1136. doi: 10.1016/j.cell.2020.10.041
SSID ssj0008555
Score 2.6225302
Snippet Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating...
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T...
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely-activated γδT cell population which constituted ∼40% of tumor-infiltrating T...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1485
SubjectTerms Adaptive Immunity
adenocarcinoma
Animals
cancer
carcinogenesis
Carcinogenesis - immunology
Carcinogenesis - pathology
Carcinoma, Pancreatic Ductal - immunology
Carcinoma, Pancreatic Ductal - physiopathology
CD8-positive T-lymphocytes
Cells, Cultured
checkpoint ligands
chemokines
Chemokines - immunology
Epithelial Cells - physiology
Female
Humans
immune response
inflammation
Kras
Ligands
Lymphocyte Activation - immunology
Male
Mice
Mice, Inbred C57BL
Signal Transduction - immunology
T-Lymphocytes - immunology
Tumor Microenvironment - immunology
Title γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation
URI https://dx.doi.org/10.1016/j.cell.2016.07.046
https://www.ncbi.nlm.nih.gov/pubmed/27569912
https://www.proquest.com/docview/1818339710
https://www.proquest.com/docview/2000223835
https://pubmed.ncbi.nlm.nih.gov/PMC5017923
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG2CIHgRd-NGC95kSGZ6lp5jDIYguJJAbs30okZkEkxyyGe5fEe-yaqeBeOSg-Q0mWqmUzVV9TpUvSLkhGkeR7EHpxOppeNLnTgJJHrHByDnasVdZekYLq_Cdte_6AW9CmkWvTBYVpnH_iym22idf1PLtVkb9vvY4wvPCC2iAJgTYqM587lt4uudldGYB0E2xSAGzwfpvHEmq_HCP8exvCsj8EQQ_Hty-gk-v9dQfklKrTWymqNJ2sg2vE4qJt0gy9l8yekmuZ29zz5ohzZhAyOKAzwBbNMbMLSFiopep2rwgNGuP6JySu_MqBgZQWevs7d8KW2oYgjaFum2zjvNtpPPUHCUj1zDYeIZX8fMl4nBbGXgA27qaQO-rNR9zKQnOTdgFO1qHfIwcCPFQVgzUK1k22QpHaRml1CjE5APELAxn7EwYZDbTaiMskdbViVuoTyhcoJx3PSzKCrJngQqXKDCRT0SoPAqOS3XDDN6jYXSQWETMfeSCIj_C9cdFwYU4D14O0nNYDISgG84A0jm1v-W8SxJEJzkgyrZyYxe7hXJ8wFhe1USzb0OpQCyd8_fSfuPlsU7wFjosb1__qZ9soJXttyNH5Cl8cvEHAI-Gssj6wCfoRsQQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VVhVcEKVQArRspd4qK7HXa6-PJWqVlDaFKpVyW3l_oEbIiUh66GPR8hx5JmbWdkTozwH55p2V1zOemW-t2W8A9riVWZpFuDvRVgextnmQY6IPYgRyoTUyNJ6O4XSQ9C7i45EYrUC3OQtDZZV17K9iuo_W9Z12rc32pCjojC8-I_GIAmFOIp7AGqKBlPo39EcfF-FYClG1McjQ9VG8PjlTFXnR33Gq76oYPAkF35-d7qLPf4so_8pKRy_geQ0n2UG14g1YceVLWK8aTF5vwpf57fw3G7IuLmDKqIMnom32GS3tsaJhZ6UZf6NwV0yZvmbnbtr0jGDzX_Obeio7ME0XtFdwcXQ47PaCuolCYGIiG07yyMU247HOHaUrhxf6aWQdOrMxXzOuIy2lQ6vY0NpEJiJMjURhy1G3mr-G1XJcujfAnM1RXhBi4zHnSc4xubvEOOP3trwFYaM8ZWqGcVr0D9WUkn1XpHBFCledVKHCW7C_mDOp-DUelRaNTdTSV6IwATw6b7cxoEL3oeG8dOOrqUKAIzlisrDzsEzkWYJwKy9asFUZfbFWYs9HiB21IF36HBYCRN-9PFIWl57GW1AwjPjb_3ynD_C0Nzw9USf9wad38IxGfO2bfA-rs59XbhvB0kzveGf4A0taE18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B3%CE%B4+T+Cells+Support+Pancreatic+Oncogenesis+by+Restraining+%CE%B1%CE%B2+T+Cell+Activation&rft.jtitle=Cell&rft.au=Daley%2C+Donnele&rft.au=Zambirinis%2C+Constantinos+Pantelis&rft.au=Seifert%2C+Lena&rft.au=Akkad%2C+Neha&rft.date=2016-09-08&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=166&rft.issue=6&rft.spage=1485&rft_id=info:doi/10.1016%2Fj.cell.2016.07.046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon