γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Dele...
Saved in:
Published in | Cell Vol. 166; no. 6; pp. 1485 - 1499.e15 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
[Display omitted]
•γδT cells are highly prevalent in human pancreatic carcinoma•Deletion or interruption of γδT cell recruitment is protective in pancreatic cancer•Pancreatic cancer infiltrating γδT cells express high levels of checkpoint ligands•γδT cells disable αβT cell activation via checkpoint receptor ligation
γδT cells are key regulators of effector T cell activation in pancreatic cancer and a new target for cancer immunotherapy. |
---|---|
AbstractList | Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk.Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4⁺ and CD8⁺ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. [Display omitted] •γδT cells are highly prevalent in human pancreatic carcinoma•Deletion or interruption of γδT cell recruitment is protective in pancreatic cancer•Pancreatic cancer infiltrating γδT cells express high levels of checkpoint ligands•γδT cells disable αβT cell activation via checkpoint receptor ligation γδT cells are key regulators of effector T cell activation in pancreatic cancer and a new target for cancer immunotherapy. Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely-activated γδT cell population which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1-polarization of αβT cells. Whereas αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor-protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4 + and CD8 + T cell infiltration and immunogenicity and induced tumor-protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. γδT cells are key regulators of effector T cell activation in pancreatic cancer and a new target for cancer immunotherapy Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. |
Author | Narayanan, Rajkishen Hundeyin, Mautin Newman, Elliot Miller, George Zambirinis, Constantinos Pantelis Torres-Hernandez, Alejandro Seifert, Lena Dustin, Michael Loran Daley, Donnele Mani, Vishnu Raj Kumar Hajdu, Cristina Akkad, Neha Jang, Jung-Eun Barilla, Rocky Mohan, Navyatha Avanzi, Antonina Pillarisetty, Venu Gopal Bar-Sagi, Dafna Werba, Gregor Tippens, Daniel |
AuthorAffiliation | 5 The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington Oxford, OX3 7FY, United Kingdom 1 S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 6 S. Arthur Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 2 S. Arthur Localio Laboratory, Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 3 S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 4 Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195 |
AuthorAffiliation_xml | – name: 5 The Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington Oxford, OX3 7FY, United Kingdom – name: 2 S. Arthur Localio Laboratory, Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 – name: 6 S. Arthur Localio Laboratory, Department of Cell Biology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 – name: 3 S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 – name: 4 Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195 – name: 1 S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016 |
Author_xml | – sequence: 1 givenname: Donnele surname: Daley fullname: Daley, Donnele organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 2 givenname: Constantinos Pantelis surname: Zambirinis fullname: Zambirinis, Constantinos Pantelis organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 3 givenname: Lena surname: Seifert fullname: Seifert, Lena organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 4 givenname: Neha surname: Akkad fullname: Akkad, Neha organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 5 givenname: Navyatha surname: Mohan fullname: Mohan, Navyatha organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 6 givenname: Gregor surname: Werba fullname: Werba, Gregor organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 7 givenname: Rocky surname: Barilla fullname: Barilla, Rocky organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 8 givenname: Alejandro surname: Torres-Hernandez fullname: Torres-Hernandez, Alejandro organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 9 givenname: Mautin surname: Hundeyin fullname: Hundeyin, Mautin organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 10 givenname: Vishnu Raj Kumar surname: Mani fullname: Mani, Vishnu Raj Kumar organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 11 givenname: Antonina surname: Avanzi fullname: Avanzi, Antonina organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 12 givenname: Daniel surname: Tippens fullname: Tippens, Daniel organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 13 givenname: Rajkishen surname: Narayanan fullname: Narayanan, Rajkishen organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 14 givenname: Jung-Eun surname: Jang fullname: Jang, Jung-Eun organization: Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 15 givenname: Elliot surname: Newman fullname: Newman, Elliot organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 16 givenname: Venu Gopal surname: Pillarisetty fullname: Pillarisetty, Venu Gopal organization: Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA – sequence: 17 givenname: Michael Loran surname: Dustin fullname: Dustin, Michael Loran organization: Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 18 givenname: Dafna surname: Bar-Sagi fullname: Bar-Sagi, Dafna organization: Department of Biochemistry, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 19 givenname: Cristina surname: Hajdu fullname: Hajdu, Cristina organization: Department of Pathology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA – sequence: 20 givenname: George surname: Miller fullname: Miller, George email: george.miller@nyumc.org organization: S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27569912$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUc1qGzEYFCGlcdK-QA5Fx152q5_dlRZCIJj-QSBtmp6FVvrsyKwlV1ob8lj9eQ4_U7W1U9IeEnSQkGbmG80co0MfPCB0SklJCW3eLEoDfV-yfC6JKEnVHKAJJa0oKirYIZoQ0rJCNqI6QscpLQghsq7r5-iIibppW8om6PP25_YXvsHTrJTwl_VqFeKAP2lvIujBGXzlTZiDh-QS7u7wNaQhauedn-Pt9-2PPRVfmMFtMiH4F-jZTPcJXu73E_T13dub6Yfi8ur9x-nFZWEqwpui0Qwq2_Kq08DzBeRVsZpZoJIbM2t5xzopQVJjqbWNbGoqjMxgy0VFO36Czne6q3W3BGvAZ2O9WkW31PFOBe3Uvy_e3ap52KiaUNEyngVe7wVi-LbO_1JLl8ZEtYewTorlvBjjktdPQqnMpnkrKMnQVw9t_fVzH3kGyB3AxJBShJkybviT3BhsryhRY7tqocYBamxXEaFyu5nK_qPeqz9KOtuRIJexcRBVMg68AesimEHZ4B6j_wZ098Co |
CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_3389_fimmu_2023_1285801 crossref_primary_10_1038_s41590_023_01448_7 crossref_primary_10_1016_j_isci_2024_109545 crossref_primary_10_15252_emmm_202013502 crossref_primary_10_3389_fcvm_2023_1052959 crossref_primary_10_1080_2162402X_2017_1284723 crossref_primary_10_1016_j_canlet_2017_01_041 crossref_primary_10_1080_2162402X_2017_1313369 crossref_primary_10_1016_S2468_1253_23_00207_8 crossref_primary_10_1038_s12276_021_00576_0 crossref_primary_10_1016_j_mcpro_2022_100258 crossref_primary_10_1080_2162402X_2018_1550618 crossref_primary_10_1136_gutjnl_2018_317479 crossref_primary_10_1080_2162402X_2017_1379642 crossref_primary_10_3390_cancers12102756 crossref_primary_10_1002_eji_201646875 crossref_primary_10_3390_cancers14071681 crossref_primary_10_3389_fimmu_2022_874640 crossref_primary_10_1007_s10555_021_09988_w crossref_primary_10_1080_14728222_2021_2010044 crossref_primary_10_1615_CritRevOncog_2023050067 crossref_primary_10_3389_fimmu_2021_592031 crossref_primary_10_12677_WJCR_2021_113011 crossref_primary_10_1016_j_cell_2018_12_040 crossref_primary_10_1038_s41423_020_0504_x crossref_primary_10_1152_physrev_00042_2019 crossref_primary_10_1158_2159_8290_CD_19_0958 crossref_primary_10_3389_fimmu_2021_758004 crossref_primary_10_3389_fimmu_2024_1466266 crossref_primary_10_1016_j_ccell_2018_10_006 crossref_primary_10_3390_cancers13195028 crossref_primary_10_3389_fmed_2021_763773 crossref_primary_10_1016_j_cell_2016_08_058 crossref_primary_10_3389_fimmu_2023_1140623 crossref_primary_10_3390_biom11060901 crossref_primary_10_3389_fimmu_2022_914839 crossref_primary_10_1101_cshperspect_a031849 crossref_primary_10_1002_jso_24641 crossref_primary_10_1016_j_cell_2023_02_014 crossref_primary_10_1186_s40425_019_0507_2 crossref_primary_10_3390_jcm11071948 crossref_primary_10_4110_in_2020_20_e6 crossref_primary_10_3390_cells9051140 crossref_primary_10_1016_j_humimm_2024_110831 crossref_primary_10_1038_s41571_022_00722_1 crossref_primary_10_3389_fimmu_2023_1151632 crossref_primary_10_1016_j_metop_2025_100347 crossref_primary_10_1186_s13014_019_1345_6 crossref_primary_10_3389_fimmu_2020_01266 crossref_primary_10_3389_fimmu_2018_01878 crossref_primary_10_1002_eji_202451070 crossref_primary_10_1038_s41568_019_0153_5 crossref_primary_10_3389_fimmu_2020_02115 crossref_primary_10_1016_j_intimp_2023_111065 crossref_primary_10_1016_j_isci_2022_103785 crossref_primary_10_1038_s41598_021_84270_1 crossref_primary_10_3389_fimmu_2019_02828 crossref_primary_10_1038_s41467_024_45449_y crossref_primary_10_1097_JS9_0000000000000633 crossref_primary_10_3389_fimmu_2022_1009709 crossref_primary_10_1158_1078_0432_CCR_18_3877 crossref_primary_10_3389_fimmu_2023_1133308 crossref_primary_10_1080_2162402X_2017_1353858 crossref_primary_10_1016_j_apsb_2020_05_008 crossref_primary_10_3389_fimmu_2024_1341209 crossref_primary_10_1371_journal_pone_0191109 crossref_primary_10_1111_cei_13436 crossref_primary_10_1177_10732748241274228 crossref_primary_10_1038_s41571_020_00459_9 crossref_primary_10_1002_path_5403 crossref_primary_10_1146_annurev_pathmechdis_032221_115501 crossref_primary_10_3390_cancers15112923 crossref_primary_10_1002_cam4_4243 crossref_primary_10_1084_jem_20170686 crossref_primary_10_1080_2162402X_2018_1522471 crossref_primary_10_1016_j_yjmcc_2023_11_008 crossref_primary_10_1080_17474124_2017_1312344 crossref_primary_10_1016_j_pharmthera_2019_05_012 crossref_primary_10_1038_s41392_023_01376_w crossref_primary_10_37349_ei_2022_00053 crossref_primary_10_3748_wjg_v27_i46_7956 crossref_primary_10_1097_JP9_0000000000000109 crossref_primary_10_1097_MPA_0000000000000943 crossref_primary_10_1016_j_iotech_2024_100724 crossref_primary_10_1084_jem_20220503 crossref_primary_10_3390_cells11192952 crossref_primary_10_1186_s13046_019_1126_y crossref_primary_10_1177_0271678X231167946 crossref_primary_10_1007_s00262_019_02469_8 crossref_primary_10_1016_j_trecan_2017_06_003 crossref_primary_10_1038_s41388_020_1186_7 crossref_primary_10_3389_fimmu_2022_894315 crossref_primary_10_1016_j_celrep_2017_06_062 crossref_primary_10_1111_imr_12528 crossref_primary_10_1155_2018_5647120 crossref_primary_10_1016_j_semcancer_2018_01_003 crossref_primary_10_1016_j_lfs_2021_119813 crossref_primary_10_1038_s41556_020_0560_6 crossref_primary_10_3389_fimmu_2020_02186 crossref_primary_10_1146_annurev_physiol_020518_114515 crossref_primary_10_3748_wjg_v24_i20_2137 crossref_primary_10_37349_ei_2022_00066 crossref_primary_10_1016_j_molmed_2017_03_003 crossref_primary_10_1038_s41590_020_0620_x crossref_primary_10_3389_fimmu_2018_01492 crossref_primary_10_1080_2162402X_2018_1484979 crossref_primary_10_1089_hum_2022_210 crossref_primary_10_3389_fimmu_2018_00512 crossref_primary_10_1038_s43018_024_00798_x crossref_primary_10_1007_s13193_020_01192_6 crossref_primary_10_3389_fimmu_2019_01940 crossref_primary_10_1080_14712598_2019_1634050 crossref_primary_10_3389_fimmu_2018_01044 crossref_primary_10_3390_cells9061537 crossref_primary_10_3389_fonc_2020_00382 crossref_primary_10_1038_s41418_025_01464_0 crossref_primary_10_1002_hep_30952 crossref_primary_10_3389_fimmu_2023_1282758 crossref_primary_10_1111_sji_13201 crossref_primary_10_1038_s41467_021_27936_8 crossref_primary_10_3389_fonc_2022_931774 crossref_primary_10_3390_ijms241612633 crossref_primary_10_1038_nrgastro_2016_156 crossref_primary_10_3390_cancers13122995 crossref_primary_10_1016_j_clim_2020_108343 crossref_primary_10_3389_fimmu_2020_619954 crossref_primary_10_1038_s41573_019_0038_z crossref_primary_10_3389_fgene_2022_1077419 crossref_primary_10_1038_s41467_017_01963_w crossref_primary_10_1111_xen_12838 crossref_primary_10_1158_2326_6066_CIR_20_0817 crossref_primary_10_1053_j_gastro_2018_12_045 crossref_primary_10_5306_wjco_v8_i3_230 crossref_primary_10_2147_IJGM_S313584 crossref_primary_10_1158_2326_6066_CIR_22_0121 crossref_primary_10_3390_cancers14123005 crossref_primary_10_1128_MCB_00586_18 crossref_primary_10_1016_j_devcel_2023_07_025 crossref_primary_10_1016_j_cellsig_2023_110909 crossref_primary_10_1038_s41388_018_0627_z crossref_primary_10_3389_fonc_2018_00384 crossref_primary_10_1186_s12967_023_04204_5 crossref_primary_10_1007_s00432_020_03367_8 crossref_primary_10_1158_2326_6066_CIR_16_0188 crossref_primary_10_1053_j_gastro_2018_12_038 crossref_primary_10_1007_s00018_018_2788_x crossref_primary_10_3389_fimmu_2022_1073227 crossref_primary_10_4049_jimmunol_1701053 crossref_primary_10_1097_MPA_0000000000001202 crossref_primary_10_3389_fimmu_2020_01328 crossref_primary_10_1038_nm_4314 crossref_primary_10_1084_jem_20161707 crossref_primary_10_3389_fimmu_2018_00800 crossref_primary_10_3390_ijms231911789 crossref_primary_10_1126_science_abq7248 crossref_primary_10_3390_cancers13143578 crossref_primary_10_1158_0008_5472_CAN_17_3821 crossref_primary_10_1007_s00432_020_03332_5 crossref_primary_10_3389_fgene_2022_871899 crossref_primary_10_1016_j_it_2017_06_004 crossref_primary_10_3390_cancers12010003 crossref_primary_10_1016_j_intimp_2018_12_067 crossref_primary_10_1016_j_intimp_2022_108895 crossref_primary_10_2217_imt_2016_0139 crossref_primary_10_3390_ijms232314797 crossref_primary_10_1016_j_ccell_2017_02_008 crossref_primary_10_1016_j_intimp_2023_111332 crossref_primary_10_3389_fgene_2022_830793 crossref_primary_10_3389_fimmu_2020_609948 crossref_primary_10_1002_JLB_5MA0622_741R crossref_primary_10_1038_s41540_022_00259_0 crossref_primary_10_1136_gutjnl_2018_318059 crossref_primary_10_1080_2162402X_2017_1372080 crossref_primary_10_1186_s12943_023_01722_0 crossref_primary_10_1136_jitc_2021_003217 crossref_primary_10_1038_s41416_023_02303_0 crossref_primary_10_1016_j_canlet_2023_216391 crossref_primary_10_1158_2326_6066_CIR_19_0349 crossref_primary_10_1165_rcmb_2018_0201OC crossref_primary_10_3389_fendo_2023_1168186 crossref_primary_10_37349_ei_2022_00036 crossref_primary_10_1016_j_ccell_2020_02_010 crossref_primary_10_37349_ei_2022_00039 crossref_primary_10_1097_CJI_0000000000000211 crossref_primary_10_1158_2326_6066_CIR_23_0061 crossref_primary_10_3390_cancers16101847 crossref_primary_10_1158_2326_6066_CIR_21_1088 crossref_primary_10_1038_s41467_019_09416_2 crossref_primary_10_1080_14728222_2020_1751820 crossref_primary_10_3389_fonc_2022_1005566 crossref_primary_10_1038_s41598_024_78705_8 crossref_primary_10_1002_cti2_1080 crossref_primary_10_3389_fimmu_2023_1110325 crossref_primary_10_2217_imt_2016_0115 crossref_primary_10_1007_s10637_020_01000_6 crossref_primary_10_3390_cancers16234094 crossref_primary_10_1158_2326_6066_CIR_21_0952 crossref_primary_10_1136_gutjnl_2018_316451 crossref_primary_10_3390_ijms22105070 crossref_primary_10_1084_jem_20190456 crossref_primary_10_3389_fimmu_2021_642958 crossref_primary_10_1002_JLB_3MA0420_278RR crossref_primary_10_1097_SLA_0000000000002162 crossref_primary_10_1002_JLB_3MR0822_761RR crossref_primary_10_1155_2021_7056506 crossref_primary_10_1016_j_immuni_2019_06_025 crossref_primary_10_3390_cancers13061297 crossref_primary_10_1038_s41568_023_00562_w crossref_primary_10_12688_f1000research_22161_1 crossref_primary_10_1016_j_canlet_2020_12_003 crossref_primary_10_1111_imr_12925 crossref_primary_10_1158_2159_8290_CD_19_0161 crossref_primary_10_1038_s41419_023_05567_9 crossref_primary_10_2174_1568009620666200504111914 crossref_primary_10_1016_j_semcdb_2018_02_007 crossref_primary_10_1038_s41388_022_02425_4 crossref_primary_10_1126_sciadv_abm9120 crossref_primary_10_1186_s13040_024_00405_w crossref_primary_10_1186_s12967_024_05327_z crossref_primary_10_1016_j_apsb_2020_12_011 crossref_primary_10_1097_JP9_0000000000000057 crossref_primary_10_1080_21645515_2023_2269794 crossref_primary_10_3389_fimmu_2024_1341079 crossref_primary_10_1111_imr_12916 crossref_primary_10_3390_biomedicines8100401 crossref_primary_10_1038_s41590_020_0761_y crossref_primary_10_1146_annurev_cancerbio_061521_101910 crossref_primary_10_1038_s43018_022_00376_z crossref_primary_10_1080_2162402X_2016_1237328 crossref_primary_10_3389_fonc_2019_01148 crossref_primary_10_1158_2326_6066_CIR_16_0322 crossref_primary_10_1186_s12974_021_02115_0 crossref_primary_10_1002_cncr_30491 crossref_primary_10_3390_cancers13194932 crossref_primary_10_4251_wjgo_v15_i5_757 crossref_primary_10_3389_fimmu_2025_1526285 crossref_primary_10_1038_s41598_022_16155_w crossref_primary_10_3390_biom12101406 crossref_primary_10_1007_s12026_022_09260_5 crossref_primary_10_1136_gutjnl_2018_317570 crossref_primary_10_1186_s40001_023_01452_5 crossref_primary_10_1038_s41467_018_03773_0 crossref_primary_10_1186_s12967_017_1378_2 crossref_primary_10_3389_fimmu_2022_910704 crossref_primary_10_1177_1758835918816281 crossref_primary_10_12688_f1000research_11057_1 crossref_primary_10_1186_s13045_018_0578_4 crossref_primary_10_1111_imr_12904 crossref_primary_10_1155_2021_6682697 crossref_primary_10_1080_08923973_2020_1765375 crossref_primary_10_3390_jcm10081609 crossref_primary_10_1016_j_cytogfr_2018_05_002 crossref_primary_10_1158_1078_0432_CCR_16_2318 crossref_primary_10_1016_j_biocel_2022_106213 crossref_primary_10_1093_jleuko_qiad056 crossref_primary_10_1097_MPA_0000000000001621 crossref_primary_10_1186_s12964_024_01834_0 crossref_primary_10_1093_discim_kyae004 crossref_primary_10_1038_s41575_021_00486_6 |
Cites_doi | 10.1146/annurev.immunol.22.012703.104702 10.1158/0008-5472.CAN-07-0175 10.1084/jem.20101876 10.1126/science.aaa8172 10.1371/journal.pone.0132786 10.4049/jimmunol.1101389 10.1073/pnas.1320318110 10.1016/j.imlet.2009.06.005 10.4049/jimmunol.0804288 10.1097/CJI.0b013e318245bb1e 10.1158/0008-5472.CAN-13-2534 10.1038/nature14282 10.1084/jem.20111706 10.1084/jem.20030584 10.1158/0008-5472.CAN-13-0675 10.1016/j.ccr.2014.03.014 10.1371/journal.pone.0049878 10.1016/j.ccr.2012.04.025 10.1053/j.gastro.2011.07.033 10.1172/JCI63606 10.1126/science.1063916 10.1016/j.immuni.2007.05.020 10.4049/jimmunol.1202312 10.1189/jlb.0909607 10.1158/0008-5472.CAN-13-3723 10.1084/jem.20142162 10.1097/00000478-200105000-00003 10.1016/j.ccr.2007.01.012 10.1016/j.jcyt.2012.12.004 10.1158/2159-8290.CD-14-0474 10.1016/j.ccr.2012.04.024 10.3109/00365529709000177 10.1097/00006676-200401000-00023 10.4161/onci.20068 10.1073/pnas.0911587107 10.1158/1078-0432.CCR-06-2746 10.1053/j.gastro.2012.12.042 10.1084/jem.20141702 10.1053/j.gastro.2013.01.068 10.1016/S1535-6108(03)00309-X 10.1038/nature17403 10.1126/science.aaa6204 10.1016/j.immuni.2014.03.013 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2016.07.046 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1499.e15 |
ExternalDocumentID | PMC5017923 27569912 10_1016_j_cell_2016_07_046 S0092867416309965 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: T32 CA193111 – fundername: NCI NIH HHS grantid: R21 CA155649 – fundername: Pancreatic Cancer Action Network – fundername: NCI NIH HHS grantid: R01 CA168611 – fundername: NCATS NIH HHS grantid: UL1 TR000038 – fundername: NCATS NIH HHS grantid: UL1 TR001445 – fundername: NCI NIH HHS grantid: P30 CA016087 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4036-6a2e4d934bae3036e6e64252de183ccf93b2b88e81cd1dd686517c8ae3d3741b3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:14:32 EDT 2025 Fri Jul 11 03:40:27 EDT 2025 Thu Jul 10 17:52:22 EDT 2025 Mon Jul 21 05:51:55 EDT 2025 Tue Jul 01 02:16:56 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Fri Feb 23 02:30:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | checkpoint ligands cancer Kras |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4036-6a2e4d934bae3036e6e64252de183ccf93b2b88e81cd1dd686517c8ae3d3741b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 DD, CZ, and LS contributed equally toward this work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867416309965 |
PMID | 27569912 |
PQID | 1818339710 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5017923 proquest_miscellaneous_2000223835 proquest_miscellaneous_1818339710 pubmed_primary_27569912 crossref_citationtrail_10_1016_j_cell_2016_07_046 crossref_primary_10_1016_j_cell_2016_07_046 elsevier_sciencedirect_doi_10_1016_j_cell_2016_07_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-08 |
PublicationDateYYYYMMDD | 2016-09-08 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Guerra, Schuhmacher, Cañamero, Grippo, Verdaguer, Pérez-Gallego, Dubus, Sandgren, Barbacid (bib15) 2007; 11 Izumi, Kondo, Takahashi, Fujieda, Kondo, Tamura, Murakawa, Nakajima, Matsushita, Kakimi (bib19) 2013; 15 Hruban, Adsay, Albores-Saavedra, Compton, Garrett, Goodman, Kern, Klimstra, Klöppel, Longnecker (bib18) 2001; 25 Andrén-Sandberg, Dervenis, Lowenfels (bib1) 1997; 32 Clark, Hingorani, Mick, Combs, Tuveson, Vonderheide (bib4) 2007; 67 Rehman, Hemmert, Ochi, Jamal, Henning, Barilla, Quesada, Zambirinis, Tang, Ego-Osuala (bib33) 2013; 190 Wu, Wu, Ni, Ye, Chen, Hu, Wang, Wang, Zhang, Xia (bib38) 2014; 40 Joyce, Fearon (bib20) 2015; 348 Yang, Sanderson, Wawrowsky, Puntel, Castro, Lowenstein (bib41) 2010; 107 Feig, Jones, Kraman, Wells, Deonarine, Chan, Connell, Roberts, Zhao, Caballero (bib9) 2013; 110 Cordova, Toia, La Mendola, Orlando, Meraviglia, Rinaldi, Todaro, Cicero, Zichichi, Donni (bib7) 2012; 7 Girardi, Oppenheim, Steele, Lewis, Glusac, Filler, Hobby, Sutton, Tigelaar, Hayday (bib12) 2001; 294 Sallusto, Geginat, Lanzavecchia (bib34) 2004; 22 Zheng, Xue, Jaffee, Habtezion (bib43) 2013; 144 Greco, Tomkötter, Vahle, Rokosh, Avanzi, Mahmood, Deutsch, Alothman, Alqunaibit, Ochi (bib14) 2015; 10 Pylayeva-Gupta, Lee, Hajdu, Miller, Bar-Sagi (bib32) 2012; 21 Kunzmann, Smetak, Kimmel, Weigang-Koehler, Goebeler, Birkmann, Becker, Schmidt-Wolf, Einsele, Wilhelm (bib22) 2012; 35 Bedrosian, Nguyen, Hackman, Connolly, Malhotra, Ibrahim, Cieza-Rubio, Henning, Barilla, Rehman (bib3) 2011; 141 De Monte, Reni, Tassi, Clavenna, Papa, Recalde, Braga, Di Carlo, Doglioni, Protti (bib8) 2011; 208 McAllister, Bailey, Alsina, Nirschl, Sharma, Fan, Rattigan, Roeser, Lankapalli, Zhang (bib26) 2014; 25 Ochi, Nguyen, Bedrosian, Mushlin, Zarbakhsh, Barilla, Zambirinis, Fallon, Rehman, Pylayeva-Gupta (bib30) 2012; 209 Coffelt, Kersten, Doornebal, Weiden, Vrijland, Hau, Verstegen, Ciampricotti, Hawinkels, Jonkers (bib5) 2015; 522 Todaro, D’Asaro, Caccamo, Iovino, Francipane, Meraviglia, Orlando, La Mendola, Gulotta, Salerno (bib37) 2009; 182 Yadav, Lowenfels (bib40) 2013; 144 Bayne, Beatty, Jhala, Clark, Rhim, Stanger, Vonderheide (bib2) 2012; 21 Goggins, Shekher, Turnacioglu, Yeo, Hruban, Kern (bib13) 1998; 58 Peng, Wang, Peng, Kiniwa, Seo, Wang (bib31) 2007; 27 Kang, Tang, Li, Wu, Li, Chen, Cui, Ba, He (bib21) 2009; 125 Ochi, Graffeo, Zambirinis, Rehman, Hackman, Fallon, Barilla, Henning, Jamal, Rao (bib29) 2012; 122 Oberg, Peipp, Kellner, Sebens, Krause, Petrick, Adam-Klages, Röcken, Becker, Vogel (bib28) 2014; 74 Zhu, Knolhoff, Meyer, Nywening, West, Luo, Wang-Gillam, Goedegebuure, Linehan, DeNardo (bib44) 2014; 74 Gao, Yang, Pan, Scully, Girardi, Augenlicht, Craft, Yin (bib11) 2003; 198 Lança, Silva-Santos (bib23) 2012; 1 Sharma, Allison (bib36) 2015; 348 Connolly, Mallen-St Clair, Bedrosian, Malhotra, Vera, Ibrahim, Henning, Pachter, Bar-Sagi, Frey, Miller (bib6) 2010; 87 Fukunaga, Miyamoto, Cho, Murakami, Kawarada, Oshikiri, Kato, Kurokawa, Suzuoki, Nakakubo (bib10) 2004; 28 Liou, Döppler, Necela, Edenfield, Zhang, Dawson, Storz (bib24) 2015; 5 Zambirinis, Levie, Nguy, Avanzi, Barilla, Xu, Seifert, Daley, Greco, Deutsch (bib42) 2015; 212 Hao, Dong, Xia, He, Jia, Zhang, Wei, O’Brien, Born, Wu (bib16) 2011; 187 Seifert, Werba, Tiwari, Giao Ly, Alothman, Alqunaibit, Avanzi, Barilla, Daley, Greco (bib35) 2016; 532 Wu, Hwang-Verslues, Lee, Huang, Wei, Chen, Shew, Lee, Jeng, Tien (bib39) 2015; 212 Nomi, Sho, Akahori, Hamada, Kubo, Kanehiro, Nakamura, Enomoto, Yagita, Azuma (bib27) 2007; 13 Hingorani, Petricoin, Maitra, Rajapakse, King, Jacobetz, Ross, Conrads, Veenstra, Hitt (bib17) 2003; 4 Ma, Cheng, Cai, Gong, Wu, Yu, Shi, Wu, Dong, Liu (bib25) 2014; 74 De Monte (10.1016/j.cell.2016.07.046_bib8) 2011; 208 Seifert (10.1016/j.cell.2016.07.046_bib35) 2016; 532 Fukunaga (10.1016/j.cell.2016.07.046_bib10) 2004; 28 Hruban (10.1016/j.cell.2016.07.046_bib18) 2001; 25 Hingorani (10.1016/j.cell.2016.07.046_bib17) 2003; 4 Kunzmann (10.1016/j.cell.2016.07.046_bib22) 2012; 35 Yadav (10.1016/j.cell.2016.07.046_bib40) 2013; 144 Sallusto (10.1016/j.cell.2016.07.046_bib34) 2004; 22 Yang (10.1016/j.cell.2016.07.046_bib41) 2010; 107 Bayne (10.1016/j.cell.2016.07.046_bib2) 2012; 21 Goggins (10.1016/j.cell.2016.07.046_bib13) 1998; 58 Zambirinis (10.1016/j.cell.2016.07.046_bib42) 2015; 212 Izumi (10.1016/j.cell.2016.07.046_bib19) 2013; 15 Guerra (10.1016/j.cell.2016.07.046_bib15) 2007; 11 Kang (10.1016/j.cell.2016.07.046_bib21) 2009; 125 Sharma (10.1016/j.cell.2016.07.046_bib36) 2015; 348 Gao (10.1016/j.cell.2016.07.046_bib11) 2003; 198 Girardi (10.1016/j.cell.2016.07.046_bib12) 2001; 294 McAllister (10.1016/j.cell.2016.07.046_bib26) 2014; 25 Oberg (10.1016/j.cell.2016.07.046_bib28) 2014; 74 Todaro (10.1016/j.cell.2016.07.046_bib37) 2009; 182 Zhu (10.1016/j.cell.2016.07.046_bib44) 2014; 74 Wu (10.1016/j.cell.2016.07.046_bib39) 2015; 212 Connolly (10.1016/j.cell.2016.07.046_bib6) 2010; 87 Peng (10.1016/j.cell.2016.07.046_bib31) 2007; 27 Cordova (10.1016/j.cell.2016.07.046_bib7) 2012; 7 Zheng (10.1016/j.cell.2016.07.046_bib43) 2013; 144 Ma (10.1016/j.cell.2016.07.046_bib25) 2014; 74 Feig (10.1016/j.cell.2016.07.046_bib9) 2013; 110 Hao (10.1016/j.cell.2016.07.046_bib16) 2011; 187 Greco (10.1016/j.cell.2016.07.046_bib14) 2015; 10 Coffelt (10.1016/j.cell.2016.07.046_bib5) 2015; 522 Rehman (10.1016/j.cell.2016.07.046_bib33) 2013; 190 Andrén-Sandberg (10.1016/j.cell.2016.07.046_bib1) 1997; 32 Joyce (10.1016/j.cell.2016.07.046_bib20) 2015; 348 Nomi (10.1016/j.cell.2016.07.046_bib27) 2007; 13 Liou (10.1016/j.cell.2016.07.046_bib24) 2015; 5 Clark (10.1016/j.cell.2016.07.046_bib4) 2007; 67 Ochi (10.1016/j.cell.2016.07.046_bib30) 2012; 209 Wu (10.1016/j.cell.2016.07.046_bib38) 2014; 40 Bedrosian (10.1016/j.cell.2016.07.046_bib3) 2011; 141 Pylayeva-Gupta (10.1016/j.cell.2016.07.046_bib32) 2012; 21 Ochi (10.1016/j.cell.2016.07.046_bib29) 2012; 122 Lança (10.1016/j.cell.2016.07.046_bib23) 2012; 1 27625194 - Nat Rev Gastroenterol Hepatol. 2016 Oct;13(10):560. doi: 10.1038/nrgastro.2016.156 33186522 - Cell. 2020 Nov 12;183(4):1134-1136. doi: 10.1016/j.cell.2020.10.041 |
References_xml | – volume: 21 start-page: 822 year: 2012 end-page: 835 ident: bib2 article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer publication-title: Cancer Cell – volume: 15 start-page: 481 year: 2013 end-page: 491 ident: bib19 article-title: Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor β-chain and the common γ-chain publication-title: Cytotherapy – volume: 122 start-page: 4118 year: 2012 end-page: 4129 ident: bib29 article-title: Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans publication-title: J. Clin. Invest. – volume: 28 start-page: e26 year: 2004 end-page: e31 ident: bib10 article-title: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma publication-title: Pancreas – volume: 11 start-page: 291 year: 2007 end-page: 302 ident: bib15 article-title: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice publication-title: Cancer Cell – volume: 190 start-page: 4640 year: 2013 end-page: 4649 ident: bib33 article-title: Role of fatty-acid synthesis in dendritic cell generation and function publication-title: J. Immunol. – volume: 107 start-page: 4716 year: 2010 end-page: 4721 ident: bib41 article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: e49878 year: 2012 ident: bib7 article-title: Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas publication-title: PLoS ONE – volume: 110 start-page: 20212 year: 2013 end-page: 20217 ident: bib9 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 97 year: 1997 end-page: 103 ident: bib1 article-title: Etiologic links between chronic pancreatitis and pancreatic cancer publication-title: Scand. J. Gastroenterol. – volume: 27 start-page: 334 year: 2007 end-page: 348 ident: bib31 article-title: Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway publication-title: Immunity – volume: 532 start-page: 245 year: 2016 end-page: 249 ident: bib35 article-title: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression publication-title: Nature – volume: 87 start-page: 713 year: 2010 end-page: 725 ident: bib6 article-title: Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor publication-title: J. Leukoc. Biol. – volume: 141 start-page: 1915 year: 2011 end-page: 1926 ident: bib3 article-title: Dendritic cells promote pancreatic viability in mice with acute pancreatitis publication-title: Gastroenterology – volume: 74 start-page: 1349 year: 2014 end-page: 1360 ident: bib28 article-title: Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells publication-title: Cancer Res. – volume: 22 start-page: 745 year: 2004 end-page: 763 ident: bib34 article-title: Central memory and effector memory T cell subsets: Function, generation, and maintenance publication-title: Annu. Rev. Immunol. – volume: 212 start-page: 2077 year: 2015 end-page: 2094 ident: bib42 article-title: TLR9 ligation in pancreatic stellate cells promotes tumorigenesis publication-title: J. Exp. Med. – volume: 74 start-page: 5057 year: 2014 end-page: 5069 ident: bib44 article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models publication-title: Cancer Res. – volume: 58 start-page: 5329 year: 1998 end-page: 5332 ident: bib13 article-title: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas publication-title: Cancer Res. – volume: 21 start-page: 836 year: 2012 end-page: 847 ident: bib32 article-title: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia publication-title: Cancer Cell – volume: 208 start-page: 469 year: 2011 end-page: 478 ident: bib8 article-title: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer publication-title: J. Exp. Med. – volume: 348 start-page: 74 year: 2015 end-page: 80 ident: bib20 article-title: T cell exclusion, immune privilege, and the tumor microenvironment publication-title: Science – volume: 182 start-page: 7287 year: 2009 end-page: 7296 ident: bib37 article-title: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes publication-title: J. Immunol. – volume: 144 start-page: 1230 year: 2013 end-page: 1240 ident: bib43 article-title: Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma publication-title: Gastroenterology – volume: 198 start-page: 433 year: 2003 end-page: 442 ident: bib11 article-title: Gamma delta T cells provide an early source of interferon gamma in tumor immunity publication-title: J. Exp. Med. – volume: 187 start-page: 4979 year: 2011 end-page: 4986 ident: bib16 article-title: Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production publication-title: J. Immunol. – volume: 74 start-page: 1969 year: 2014 end-page: 1982 ident: bib25 article-title: IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma publication-title: Cancer Res. – volume: 4 start-page: 437 year: 2003 end-page: 450 ident: bib17 article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse publication-title: Cancer Cell – volume: 10 start-page: e0132786 year: 2015 ident: bib14 article-title: TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia publication-title: PLoS ONE – volume: 40 start-page: 785 year: 2014 end-page: 800 ident: bib38 article-title: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer publication-title: Immunity – volume: 212 start-page: 333 year: 2015 end-page: 349 ident: bib39 article-title: Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines publication-title: J. Exp. Med. – volume: 67 start-page: 9518 year: 2007 end-page: 9527 ident: bib4 article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion publication-title: Cancer Res. – volume: 5 start-page: 52 year: 2015 end-page: 63 ident: bib24 article-title: Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions publication-title: Cancer Discov. – volume: 522 start-page: 345 year: 2015 end-page: 348 ident: bib5 article-title: 17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis publication-title: Nature – volume: 25 start-page: 579 year: 2001 end-page: 586 ident: bib18 article-title: Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions publication-title: Am. J. Surg. Pathol. – volume: 25 start-page: 621 year: 2014 end-page: 637 ident: bib26 article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia publication-title: Cancer Cell – volume: 13 start-page: 2151 year: 2007 end-page: 2157 ident: bib27 article-title: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer publication-title: Clin. Cancer Res. – volume: 209 start-page: 1671 year: 2012 end-page: 1687 ident: bib30 article-title: MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells publication-title: J. Exp. Med. – volume: 348 start-page: 56 year: 2015 end-page: 61 ident: bib36 article-title: The future of immune checkpoint therapy publication-title: Science – volume: 35 start-page: 205 year: 2012 end-page: 213 ident: bib22 article-title: Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: Results from a prospective phase I/II trial publication-title: J. Immunother. – volume: 294 start-page: 605 year: 2001 end-page: 609 ident: bib12 article-title: Regulation of cutaneous malignancy by gammadelta T cells publication-title: Science – volume: 144 start-page: 1252 year: 2013 end-page: 1261 ident: bib40 article-title: The epidemiology of pancreatitis and pancreatic cancer publication-title: Gastroenterology – volume: 125 start-page: 105 year: 2009 end-page: 113 ident: bib21 article-title: Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human publication-title: Immunol. Lett. – volume: 1 start-page: 717 year: 2012 end-page: 725 ident: bib23 article-title: The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy publication-title: OncoImmunology – volume: 22 start-page: 745 year: 2004 ident: 10.1016/j.cell.2016.07.046_bib34 article-title: Central memory and effector memory T cell subsets: Function, generation, and maintenance publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.22.012703.104702 – volume: 67 start-page: 9518 year: 2007 ident: 10.1016/j.cell.2016.07.046_bib4 article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0175 – volume: 208 start-page: 469 year: 2011 ident: 10.1016/j.cell.2016.07.046_bib8 article-title: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer publication-title: J. Exp. Med. doi: 10.1084/jem.20101876 – volume: 348 start-page: 56 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib36 article-title: The future of immune checkpoint therapy publication-title: Science doi: 10.1126/science.aaa8172 – volume: 10 start-page: e0132786 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib14 article-title: TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia publication-title: PLoS ONE doi: 10.1371/journal.pone.0132786 – volume: 187 start-page: 4979 year: 2011 ident: 10.1016/j.cell.2016.07.046_bib16 article-title: Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production publication-title: J. Immunol. doi: 10.4049/jimmunol.1101389 – volume: 110 start-page: 20212 year: 2013 ident: 10.1016/j.cell.2016.07.046_bib9 article-title: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320318110 – volume: 125 start-page: 105 year: 2009 ident: 10.1016/j.cell.2016.07.046_bib21 article-title: Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2009.06.005 – volume: 182 start-page: 7287 year: 2009 ident: 10.1016/j.cell.2016.07.046_bib37 article-title: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.0804288 – volume: 35 start-page: 205 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib22 article-title: Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: Results from a prospective phase I/II trial publication-title: J. Immunother. doi: 10.1097/CJI.0b013e318245bb1e – volume: 74 start-page: 1969 year: 2014 ident: 10.1016/j.cell.2016.07.046_bib25 article-title: IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2534 – volume: 522 start-page: 345 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib5 article-title: 17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis publication-title: Nature doi: 10.1038/nature14282 – volume: 209 start-page: 1671 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib30 article-title: MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells publication-title: J. Exp. Med. doi: 10.1084/jem.20111706 – volume: 198 start-page: 433 year: 2003 ident: 10.1016/j.cell.2016.07.046_bib11 article-title: Gamma delta T cells provide an early source of interferon gamma in tumor immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20030584 – volume: 74 start-page: 1349 year: 2014 ident: 10.1016/j.cell.2016.07.046_bib28 article-title: Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-0675 – volume: 25 start-page: 621 year: 2014 ident: 10.1016/j.cell.2016.07.046_bib26 article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.014 – volume: 7 start-page: e49878 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib7 article-title: Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas publication-title: PLoS ONE doi: 10.1371/journal.pone.0049878 – volume: 21 start-page: 822 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib2 article-title: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.04.025 – volume: 141 start-page: 1915 year: 2011 ident: 10.1016/j.cell.2016.07.046_bib3 article-title: Dendritic cells promote pancreatic viability in mice with acute pancreatitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.033 – volume: 58 start-page: 5329 year: 1998 ident: 10.1016/j.cell.2016.07.046_bib13 article-title: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas publication-title: Cancer Res. – volume: 122 start-page: 4118 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib29 article-title: Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans publication-title: J. Clin. Invest. doi: 10.1172/JCI63606 – volume: 294 start-page: 605 year: 2001 ident: 10.1016/j.cell.2016.07.046_bib12 article-title: Regulation of cutaneous malignancy by gammadelta T cells publication-title: Science doi: 10.1126/science.1063916 – volume: 27 start-page: 334 year: 2007 ident: 10.1016/j.cell.2016.07.046_bib31 article-title: Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway publication-title: Immunity doi: 10.1016/j.immuni.2007.05.020 – volume: 190 start-page: 4640 year: 2013 ident: 10.1016/j.cell.2016.07.046_bib33 article-title: Role of fatty-acid synthesis in dendritic cell generation and function publication-title: J. Immunol. doi: 10.4049/jimmunol.1202312 – volume: 87 start-page: 713 year: 2010 ident: 10.1016/j.cell.2016.07.046_bib6 article-title: Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0909607 – volume: 74 start-page: 5057 year: 2014 ident: 10.1016/j.cell.2016.07.046_bib44 article-title: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3723 – volume: 212 start-page: 2077 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib42 article-title: TLR9 ligation in pancreatic stellate cells promotes tumorigenesis publication-title: J. Exp. Med. doi: 10.1084/jem.20142162 – volume: 25 start-page: 579 year: 2001 ident: 10.1016/j.cell.2016.07.046_bib18 article-title: Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions publication-title: Am. J. Surg. Pathol. doi: 10.1097/00000478-200105000-00003 – volume: 11 start-page: 291 year: 2007 ident: 10.1016/j.cell.2016.07.046_bib15 article-title: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.01.012 – volume: 15 start-page: 481 year: 2013 ident: 10.1016/j.cell.2016.07.046_bib19 article-title: Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor β-chain and the common γ-chain publication-title: Cytotherapy doi: 10.1016/j.jcyt.2012.12.004 – volume: 5 start-page: 52 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib24 article-title: Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-14-0474 – volume: 21 start-page: 836 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib32 article-title: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.04.024 – volume: 32 start-page: 97 year: 1997 ident: 10.1016/j.cell.2016.07.046_bib1 article-title: Etiologic links between chronic pancreatitis and pancreatic cancer publication-title: Scand. J. Gastroenterol. doi: 10.3109/00365529709000177 – volume: 28 start-page: e26 year: 2004 ident: 10.1016/j.cell.2016.07.046_bib10 article-title: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma publication-title: Pancreas doi: 10.1097/00006676-200401000-00023 – volume: 1 start-page: 717 year: 2012 ident: 10.1016/j.cell.2016.07.046_bib23 article-title: The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy publication-title: OncoImmunology doi: 10.4161/onci.20068 – volume: 107 start-page: 4716 year: 2010 ident: 10.1016/j.cell.2016.07.046_bib41 article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911587107 – volume: 13 start-page: 2151 year: 2007 ident: 10.1016/j.cell.2016.07.046_bib27 article-title: Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-2746 – volume: 144 start-page: 1230 year: 2013 ident: 10.1016/j.cell.2016.07.046_bib43 article-title: Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.12.042 – volume: 212 start-page: 333 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib39 article-title: Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines publication-title: J. Exp. Med. doi: 10.1084/jem.20141702 – volume: 144 start-page: 1252 year: 2013 ident: 10.1016/j.cell.2016.07.046_bib40 article-title: The epidemiology of pancreatitis and pancreatic cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.01.068 – volume: 4 start-page: 437 year: 2003 ident: 10.1016/j.cell.2016.07.046_bib17 article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00309-X – volume: 532 start-page: 245 year: 2016 ident: 10.1016/j.cell.2016.07.046_bib35 article-title: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression publication-title: Nature doi: 10.1038/nature17403 – volume: 348 start-page: 74 year: 2015 ident: 10.1016/j.cell.2016.07.046_bib20 article-title: T cell exclusion, immune privilege, and the tumor microenvironment publication-title: Science doi: 10.1126/science.aaa6204 – volume: 40 start-page: 785 year: 2014 ident: 10.1016/j.cell.2016.07.046_bib38 article-title: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer publication-title: Immunity doi: 10.1016/j.immuni.2014.03.013 – reference: 27625194 - Nat Rev Gastroenterol Hepatol. 2016 Oct;13(10):560. doi: 10.1038/nrgastro.2016.156 – reference: 33186522 - Cell. 2020 Nov 12;183(4):1134-1136. doi: 10.1016/j.cell.2020.10.041 |
SSID | ssj0008555 |
Score | 2.6225302 |
Snippet | Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating... Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T... Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely-activated γδT cell population which constituted ∼40% of tumor-infiltrating T... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1485 |
SubjectTerms | Adaptive Immunity adenocarcinoma Animals cancer carcinogenesis Carcinogenesis - immunology Carcinogenesis - pathology Carcinoma, Pancreatic Ductal - immunology Carcinoma, Pancreatic Ductal - physiopathology CD8-positive T-lymphocytes Cells, Cultured checkpoint ligands chemokines Chemokines - immunology Epithelial Cells - physiology Female Humans immune response inflammation Kras Ligands Lymphocyte Activation - immunology Male Mice Mice, Inbred C57BL Signal Transduction - immunology T-Lymphocytes - immunology Tumor Microenvironment - immunology |
Title | γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation |
URI | https://dx.doi.org/10.1016/j.cell.2016.07.046 https://www.ncbi.nlm.nih.gov/pubmed/27569912 https://www.proquest.com/docview/1818339710 https://www.proquest.com/docview/2000223835 https://pubmed.ncbi.nlm.nih.gov/PMC5017923 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG2CIHgRd-NGC95kSGZ6lp5jDIYguJJAbs30okZkEkxyyGe5fEe-yaqeBeOSg-Q0mWqmUzVV9TpUvSLkhGkeR7EHpxOppeNLnTgJJHrHByDnasVdZekYLq_Cdte_6AW9CmkWvTBYVpnH_iym22idf1PLtVkb9vvY4wvPCC2iAJgTYqM587lt4uudldGYB0E2xSAGzwfpvHEmq_HCP8exvCsj8EQQ_Hty-gk-v9dQfklKrTWymqNJ2sg2vE4qJt0gy9l8yekmuZ29zz5ohzZhAyOKAzwBbNMbMLSFiopep2rwgNGuP6JySu_MqBgZQWevs7d8KW2oYgjaFum2zjvNtpPPUHCUj1zDYeIZX8fMl4nBbGXgA27qaQO-rNR9zKQnOTdgFO1qHfIwcCPFQVgzUK1k22QpHaRml1CjE5APELAxn7EwYZDbTaiMskdbViVuoTyhcoJx3PSzKCrJngQqXKDCRT0SoPAqOS3XDDN6jYXSQWETMfeSCIj_C9cdFwYU4D14O0nNYDISgG84A0jm1v-W8SxJEJzkgyrZyYxe7hXJ8wFhe1USzb0OpQCyd8_fSfuPlsU7wFjosb1__qZ9soJXttyNH5Cl8cvEHAI-Gssj6wCfoRsQQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VVhVcEKVQArRspd4qK7HXa6-PJWqVlDaFKpVyW3l_oEbIiUh66GPR8hx5JmbWdkTozwH55p2V1zOemW-t2W8A9riVWZpFuDvRVgextnmQY6IPYgRyoTUyNJ6O4XSQ9C7i45EYrUC3OQtDZZV17K9iuo_W9Z12rc32pCjojC8-I_GIAmFOIp7AGqKBlPo39EcfF-FYClG1McjQ9VG8PjlTFXnR33Gq76oYPAkF35-d7qLPf4so_8pKRy_geQ0n2UG14g1YceVLWK8aTF5vwpf57fw3G7IuLmDKqIMnom32GS3tsaJhZ6UZf6NwV0yZvmbnbtr0jGDzX_Obeio7ME0XtFdwcXQ47PaCuolCYGIiG07yyMU247HOHaUrhxf6aWQdOrMxXzOuIy2lQ6vY0NpEJiJMjURhy1G3mr-G1XJcujfAnM1RXhBi4zHnSc4xubvEOOP3trwFYaM8ZWqGcVr0D9WUkn1XpHBFCledVKHCW7C_mDOp-DUelRaNTdTSV6IwATw6b7cxoEL3oeG8dOOrqUKAIzlisrDzsEzkWYJwKy9asFUZfbFWYs9HiB21IF36HBYCRN-9PFIWl57GW1AwjPjb_3ynD_C0Nzw9USf9wad38IxGfO2bfA-rs59XbhvB0kzveGf4A0taE18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B3%CE%B4+T+Cells+Support+Pancreatic+Oncogenesis+by+Restraining+%CE%B1%CE%B2+T+Cell+Activation&rft.jtitle=Cell&rft.au=Daley%2C+Donnele&rft.au=Zambirinis%2C+Constantinos+Pantelis&rft.au=Seifert%2C+Lena&rft.au=Akkad%2C+Neha&rft.date=2016-09-08&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=166&rft.issue=6&rft.spage=1485&rft_id=info:doi/10.1016%2Fj.cell.2016.07.046&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |