Benchtop nuclear magnetic resonance‐based metabolomic approach for the diagnosis of bovine tuberculosis
Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the...
Saved in:
Published in | Transboundary and emerging diseases Vol. 69; no. 4; pp. e859 - e870 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
John Wiley & Sons, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non‐tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high‐field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low‐field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis.
Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB‐vaccinated healthy control (n = 10) and healthy PTB‐unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77–1).
In summary, plasma fingerprinting using HF and LF‐NMR differentiated TB subjects from uninfected animals, and PTB and PTB‐vaccinated subjects who may provide a TB‐false positive, highlighting the use of LF‐NMR‐based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods. |
---|---|
AbstractList | Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non‐tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high‐field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low‐field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis.Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB‐vaccinated healthy control (n = 10) and healthy PTB‐unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77–1).In summary, plasma fingerprinting using HF and LF‐NMR differentiated TB subjects from uninfected animals, and PTB and PTB‐vaccinated subjects who may provide a TB‐false positive, highlighting the use of LF‐NMR‐based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods. Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non‐tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high‐field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low‐field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB‐vaccinated healthy control (n = 10) and healthy PTB‐unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77–1). In summary, plasma fingerprinting using HF and LF‐NMR differentiated TB subjects from uninfected animals, and PTB and PTB‐vaccinated subjects who may provide a TB‐false positive, highlighting the use of LF‐NMR‐based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods. Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non-tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high-field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low-field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB-vaccinated healthy control (n = 10) and healthy PTB-unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77-1). In summary, plasma fingerprinting using HF and LF-NMR differentiated TB subjects from uninfected animals, and PTB and PTB-vaccinated subjects who may provide a TB-false positive, highlighting the use of LF-NMR-based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods.Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non-tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high-field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low-field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB-vaccinated healthy control (n = 10) and healthy PTB-unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77-1). In summary, plasma fingerprinting using HF and LF-NMR differentiated TB subjects from uninfected animals, and PTB and PTB-vaccinated subjects who may provide a TB-false positive, highlighting the use of LF-NMR-based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods. |
Author | Sevilla, Iker A. Ruiz‐Cabello, Jesús Garrido, Joseba M. Bezos, Javier Muñoz‐Mendoza, Marta Olaizola, Ekine Izquierdo‐García, Jose L. Miguel‐Coello, Ana B. Beraza, Marta |
Author_xml | – sequence: 1 givenname: Jesús surname: Ruiz‐Cabello fullname: Ruiz‐Cabello, Jesús organization: IKERBASQUE – sequence: 2 givenname: Iker A. orcidid: 0000-0003-3968-3390 surname: Sevilla fullname: Sevilla, Iker A. organization: NEIKER‐Basque Institute for Agricultural Research and Development – sequence: 3 givenname: Ekine surname: Olaizola fullname: Olaizola, Ekine organization: CIC biomaGUNE Center for Cooperative Research in Biomaterials – sequence: 4 givenname: Javier orcidid: 0000-0003-1913-0545 surname: Bezos fullname: Bezos, Javier organization: Universidad Complutense de Madrid. Facultad de Veterinaria – sequence: 5 givenname: Ana B. surname: Miguel‐Coello fullname: Miguel‐Coello, Ana B. organization: CIC biomaGUNE Center for Cooperative Research in Biomaterials – sequence: 6 givenname: Marta surname: Muñoz‐Mendoza fullname: Muñoz‐Mendoza, Marta organization: Consellería de Medio Rural – sequence: 7 givenname: Marta surname: Beraza fullname: Beraza, Marta organization: CIC biomaGUNE Center for Cooperative Research in Biomaterials – sequence: 8 givenname: Joseba M. surname: Garrido fullname: Garrido, Joseba M. organization: NEIKER‐Basque Institute for Agricultural Research and Development – sequence: 9 givenname: Jose L. orcidid: 0000-0002-7907-3776 surname: Izquierdo‐García fullname: Izquierdo‐García, Jose L. email: jlizquierdo@ucm.es organization: Universidad Complutense de Madrid |
BookMark | eNqFkctqHDEQRUWwIX5t_AWCbIxhnFKrpe5exo88wOCNvRaSujoj0y1NJLXN7PIJ-UZ_iTWekIUJtjYSpXMvVXX3yY4PHgk5ZnDGyvmcDfZnrOZSfCB7rJViwWRb7fx7N_VHsp_SPYCEToo94s7R22UOK-pnO6KOdNI_PWZnacQUvPYWn37_MTphTyfM2oQxTOVXr1YxaLukQ4g0L5H2rghDcomGgZrw4DzSPBuMdh435UOyO-gx4dHf-4Dcfb26vfi-uL759uPiy_XC1sDFYjCdaLXteW1MD0KIumksQGNKveLQ6UEiMOSa9WiYQMuEZUPLeWsE1FDxA3Ky9S39_ZoxZTW5ZHEctccwJ1U1rK1aEJV4HxUdQMtlxQv66RV6H-boyyCqkl3ZOGdyYwhbysaQUsRBWZd1dsHnqN2oGKhNTGoTk3qJqUhOX0lW0U06rv8Psy386EZcv0Gq2_Ory63mGeTEpoo |
CitedBy_id | crossref_primary_10_3390_metabo13050614 crossref_primary_10_1016_j_cbpa_2024_102466 crossref_primary_10_1002_mrc_5431 crossref_primary_10_1007_s00253_023_12595_0 |
Cites_doi | 10.1038/s41598-021-91545-0 10.1007/s00134-019-05634-w 10.1016/j.rvsc.2014.04.002 10.1002/cpbi.86 10.1016/j.tube.2015.02.038 10.1097/SHK.0000000000001099 10.2217/bmm-2016-0287 10.1054/tube.2000.0272 10.1038/s41598-020-78999-4 10.1016/j.rvsc.2017.05.012 10.1186/1471-2105-10-363 10.1016/S0079-6565(00)00036-4 10.1016/S1473-3099(16)30139-6 10.1371/journal.pone.0040221 10.3390/ht8010002 10.1007/s00216-006-0687-8 10.1183/13993003.01107-2018 10.1136/vr.103616 10.1021/acs.jproteome.6b00228 10.1002/cem.1180060604 10.1021/pr4007359 10.1021/acsinfecdis.9b00008 10.1038/s41598-019-56809-w 10.1016/j.rvsc.2005.11.005 10.1007/978-1-4612-0919-5_4 10.4103/0366-6999.149188 10.1136/vr.102961 10.1152/ajprenal.00315.2018 10.1371/journal.pone.0108854 10.1021/ac060209g 10.1371/journal.pone.0080985 10.1111/j.1865-1682.2010.01148.x 10.1371/journal.pone.0111872 10.4155/bio.12.218 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 7S9 L.6 |
DOI | 10.1111/tbed.14365 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1865-1682 |
EndPage | e870 |
ExternalDocumentID | 10_1111_tbed_14365 TBED14365 |
Genre | article |
GrantInformation_xml | – fundername: Gobierno Vasco, Dpto. Industria, Innovación, Comercio y Turismo, under the ELKARTEK program funderid: KK‐2019/bmG19 – fundername: Spanish Ministry of Science and Innovation funderid: PID2019‐10656RJ‐I00 – fundername: The Interreg Program V‐A Spain‐France‐Andorra (POCTEFA) funderid: EFA357/19 – fundername: Spanish Ministry of Economy, Industry, and Competitiveness (MEIC‐AEI) funderid: SAF2017‐84494‐C2‐1‐R – fundername: La Caixa Foundation funderid: HR20‐00075 – fundername: European Union's Horizon 2020 Research and Innovation Program, under the Marie Skłodowska‐Curie funderid: 823854 – fundername: Comunidad de Madrid, Madrid, Spain funderid: B2017/BMD3875 – fundername: Maria de Maeztu Units of Excellence Programme from the Spanish State Research Agency funderid: MDM‐2017‐0720 – fundername: The BBVA Foundation (Ayudas a Equipos de Investigación Científica de Biomedicina 2018) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X2 8-0 8-1 8-3 8-4 8-5 8G5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATCPS ATUGU AUFTA AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DWQXO EAD EAP EBC EBD EBS ECGQY EJD EMB EMK EMOBN ESX EYRJQ F00 F01 F04 F5P FEDTE G-S G.N GNUQQ GODZA GUQSH H.T H.X H13 HCIFZ HF~ HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0K M2O M7P MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PIMPY PQQKQ Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WOIKV WPGGZ WQJ WRC XG1 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AGQPQ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT RPM 1OB 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4035-fb958acd34bbd0555477c007bb952309af6e01e3a1deb15ec15c1f8338b504023 |
IEDL.DBID | DR2 |
ISSN | 1865-1674 1865-1682 |
IngestDate | Fri Jul 11 18:29:04 EDT 2025 Thu Aug 07 15:13:46 EDT 2025 Wed Aug 13 09:06:44 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Sun Jul 06 05:02:23 EDT 2025 Wed Jan 22 16:25:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4035-fb958acd34bbd0555477c007bb952309af6e01e3a1deb15ec15c1f8338b504023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3968-3390 0000-0002-7907-3776 0000-0003-1913-0545 |
OpenAccessLink | https://zenodo.org/record/6137371 |
PQID | 2691433165 |
PQPubID | 38285 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718280525 proquest_miscellaneous_2590083623 proquest_journals_2691433165 crossref_citationtrail_10_1111_tbed_14365 crossref_primary_10_1111_tbed_14365 wiley_primary_10_1111_tbed_14365_TBED14365 |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Transboundary and emerging diseases |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 8 2007; 387 2013; 1 2019; 5 2010; 57 2006; 78 2015; 95 2015; 128 1992 2020; 10 2017; 112 2008; 2 2013; 8 2016; 15 1992; 6 2006; 81 2001; 81 2009; 10 2021; 11 2017; 17 2013; 12 2019; 68 2015; 177 2017; 11 2019; 45 2016; 179 2000; 81 2018; 52 2018; 50 2001; 39 2019; 316 2014; 9 2012; 7 2012; 4 2014; 97 e_1_2_9_30_1 e_1_2_9_31_1 Commission I. O. O. E. B. S. (e_1_2_9_10_1) 2008 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 Cabin R. J. (e_1_2_9_4_1) 2000; 81 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Eriksson L. (e_1_2_9_14_1) 2013 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Cho Y. (e_1_2_9_7_1) 2020; 10 e_1_2_9_29_1 |
References_xml | – volume: 11 issue: 1 year: 2021 article-title: Urine NMR‐based TB metabolic fingerprinting for the diagnosis of TB in children publication-title: Scientific Reports – volume: 128 start-page: 159 issue: 2 year: 2015 article-title: Analysis of serum metabolic profile by ultra‐performance liquid chromatography‐mass spectrometry for biomarkers discovery: Application in a pilot study to discriminate patients with tuberculosis publication-title: Chinese Medical Journal – volume: 45 start-page: 1318 issue: 9 year: 2019 end-page: 1320 article-title: Metabolomic profile of acute respiratory distress syndrome of different etiologies publication-title: Intensive Care Medicine – volume: 4 start-page: 2265 issue: 18 year: 2012 end-page: 2290 article-title: Application of metabolomics approaches to the study of respiratory diseases publication-title: Bioanalysis – volume: 52 year: 2018 article-title: NMR‐based metabolomics in respiratory medicine publication-title: European Respiratory Journal – volume: 10 year: 2009 article-title: A novel R‐package graphic user interface for the analysis of metabonomic profiles publication-title: BMC Bioinformatics – volume: 81 start-page: 147 issue: 1‐2 year: 2001 end-page: 155 article-title: BOVIGAMTM: An in vitro cellular diagnostic test for bovine tuberculosis publication-title: Tuberculosis – volume: 112 start-page: 214 year: 2017 end-page: 221 article-title: Antibody detection tests improve the sensitivity of tuberculosis diagnosis in cattle publication-title: Research in Veterinary Science – volume: 78 start-page: 4430 issue: 13 year: 2006 end-page: 4442 article-title: Targeted profiling: Quantitative analysis of H NMR metabolomics data publication-title: Analytical Chemistry – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Diagnosis of bovine respiratory disease in feedlot cattle using blood H NMR metabolomics publication-title: Scientific Reports – volume: 1 year: 2013 – volume: 57 start-page: 205 issue: 4 year: 2010 end-page: 220 article-title: Bovine tuberculosis: A review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication publication-title: Transboundary and Emerging Diseases – volume: 81 start-page: 246 issue: 3 year: 2000 end-page: 248 article-title: To Bonferroni or not to Bonferroni: When and how are the questions publication-title: Bulletin of the Ecological Society of America – start-page: 54 year: 1992 end-page: 65 – volume: 8 issue: 1 year: 2019 article-title: Low‐field, benchtop NMR spectroscopy as a potential tool for point‐of‐care diagnostics of metabolic conditions: Validation, protocols and computational models publication-title: High‐Throughput – volume: 95 start-page: 294 issue: 3 year: 2015 end-page: 302 article-title: Metabolomics specificity of tuberculosis plasma revealed by 1H NMR spectroscopy publication-title: Tuberculosis – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 11 article-title: Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach publication-title: Scientific Reports – volume: 6 start-page: 335 issue: 6 year: 1992 end-page: 346 article-title: Predictive ability of regression models. Part I: Standard deviation of prediction errors (SDEP) publication-title: Journal of Chemometrics – volume: 17 start-page: e21 issue: 1 year: 2017 end-page: e25 article-title: Zoonotic tuberculosis in human beings caused by —A call for action publication-title: Lancet Infectious Diseases – volume: 12 start-page: 4642 issue: 10 year: 2013 end-page: 4649 article-title: Application of H NMR spectroscopy‐based metabolomics to sera of tuberculosis patients publication-title: Journal of Proteome Research – volume: 179 start-page: 70 issue: 3 year: 2016 end-page: 75 article-title: Control and eradication of tuberculosis in cattle: A systematic review of economic evidence publication-title: Veterinary Record – volume: 11 start-page: 179 issue: 2 year: 2017 end-page: 194 article-title: Metabolomics biomarkers for tuberculosis diagnostics: Current status and future objectives publication-title: Biomarkers in Medicine – volume: 7 issue: 7 year: 2012 article-title: Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients publication-title: Plos One – volume: 39 start-page: 1 year: 2001 end-page: 40 article-title: Pattern recognition methods and applications in biomedical magnetic resonance publication-title: Progress in Nuclear Magnetic Resonance Spectroscopy – volume: 50 start-page: 504 issue: 5 year: 2018 end-page: 510 article-title: Metabolomic profile of ARDS by nuclear magnetic resonance spectroscopy in patients with H1N1 influenza virus pneumonia publication-title: Shock (Augusta, Ga.) – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 13 article-title: Discovery and validation of an NMR‐based metabolomic profile in urine as TB biomarker publication-title: Scientific Reports – volume: 97 start-page: S44 year: 2014 end-page: S52 article-title: Current ante‐mortem techniques for diagnosis of bovine tuberculosis publication-title: Research in Veterinary Science – volume: 177 start-page: 258 issue: 10 year: 2015 article-title: Specificity of the comparative skin test for bovine tuberculosis in Great Britain publication-title: Veterinary Record – volume: 2 year: 2008 – volume: 387 start-page: 525 issue: 2 year: 2007 end-page: 527 article-title: Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics publication-title: Analytical and Bioanalytical Chemistry – volume: 316 start-page: F54 issue: 1 year: 2019 end-page: F62 article-title: Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury publication-title: American Journal of Physiology‐Renal Physiology – volume: 15 start-page: 3118 issue: 9 year: 2016 end-page: 3125 article-title: Utility of novel plasma metabolic markers in the diagnosis of pediatric tuberculosis: A classification and regression tree analysis approach publication-title: Journal of Proteome Research – volume: 8 issue: 11 year: 2013 article-title: Paratuberculosis vaccination causes only limited cross‐reactivity in the skin test for diagnosis of bovine tuberculosis publication-title: Plos One – volume: 9 issue: 11 year: 2014 article-title: Metabolomic profiling in cattle experimentally infected with subsp. paratuberculosis publication-title: Plos One – volume: 68 issue: 1 year: 2019 article-title: Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis publication-title: Current Protocols in Bioinformatics – volume: 81 start-page: 190 issue: 2 year: 2006 end-page: 210 article-title: Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ‐interferon assay and other ancillary diagnostic techniques publication-title: Research in Veterinary Science – volume: 5 start-page: 1317 issue: 8 year: 2019 end-page: 1326 article-title: Comparative metabolomics between and the MTBVAC vaccine candidate publication-title: ACS Infectious Diseases – volume: 9 issue: 10 year: 2014 article-title: Plasma metabolomics in human pulmonary tuberculosis disease: A pilot study publication-title: Plos One – ident: e_1_2_9_9_1 doi: 10.1038/s41598-021-91545-0 – ident: e_1_2_9_22_1 doi: 10.1007/s00134-019-05634-w – ident: e_1_2_9_2_1 doi: 10.1016/j.rvsc.2014.04.002 – ident: e_1_2_9_8_1 doi: 10.1002/cpbi.86 – volume-title: Multi‐and megavariate data analysis basic principles and applications year: 2013 ident: e_1_2_9_14_1 – ident: e_1_2_9_39_1 doi: 10.1016/j.tube.2015.02.038 – ident: e_1_2_9_23_1 doi: 10.1097/SHK.0000000000001099 – ident: e_1_2_9_31_1 doi: 10.2217/bmm-2016-0287 – ident: e_1_2_9_37_1 doi: 10.1054/tube.2000.0272 – ident: e_1_2_9_20_1 doi: 10.1038/s41598-020-78999-4 – ident: e_1_2_9_6_1 doi: 10.1016/j.rvsc.2017.05.012 – ident: e_1_2_9_24_1 doi: 10.1186/1471-2105-10-363 – ident: e_1_2_9_25_1 doi: 10.1016/S0079-6565(00)00036-4 – ident: e_1_2_9_26_1 doi: 10.1016/S1473-3099(16)30139-6 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: e_1_2_9_7_1 article-title: Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach publication-title: Scientific Reports – ident: e_1_2_9_35_1 doi: 10.1371/journal.pone.0040221 – ident: e_1_2_9_29_1 doi: 10.3390/ht8010002 – ident: e_1_2_9_27_1 doi: 10.1007/s00216-006-0687-8 – ident: e_1_2_9_28_1 doi: 10.1183/13993003.01107-2018 – ident: e_1_2_9_5_1 doi: 10.1136/vr.103616 – ident: e_1_2_9_34_1 doi: 10.1021/acs.jproteome.6b00228 – ident: e_1_2_9_11_1 doi: 10.1002/cem.1180060604 – ident: e_1_2_9_38_1 doi: 10.1021/pr4007359 – ident: e_1_2_9_30_1 doi: 10.1021/acsinfecdis.9b00008 – ident: e_1_2_9_3_1 doi: 10.1038/s41598-019-56809-w – ident: e_1_2_9_13_1 doi: 10.1016/j.rvsc.2005.11.005 – ident: e_1_2_9_19_1 doi: 10.1007/978-1-4612-0919-5_4 – ident: e_1_2_9_15_1 doi: 10.4103/0366-6999.149188 – volume: 81 start-page: 246 issue: 3 year: 2000 ident: e_1_2_9_4_1 article-title: To Bonferroni or not to Bonferroni: When and how are the questions publication-title: Bulletin of the Ecological Society of America – ident: e_1_2_9_18_1 doi: 10.1136/vr.102961 – ident: e_1_2_9_21_1 doi: 10.1152/ajprenal.00315.2018 – ident: e_1_2_9_16_1 doi: 10.1371/journal.pone.0108854 – ident: e_1_2_9_36_1 doi: 10.1021/ac060209g – ident: e_1_2_9_17_1 doi: 10.1371/journal.pone.0080985 – volume-title: Manual of diagnostic tests and vaccines for terrestrial animals: Mammals, birds and bees year: 2008 ident: e_1_2_9_10_1 – ident: e_1_2_9_32_1 doi: 10.1111/j.1865-1682.2010.01148.x – ident: e_1_2_9_12_1 doi: 10.1371/journal.pone.0111872 – ident: e_1_2_9_33_1 doi: 10.4155/bio.12.218 |
SSID | ssj0060965 |
Score | 2.3240192 |
Snippet | Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e859 |
SubjectTerms | Animals benchtop bovine bovine tuberculosis Cattle confidence interval Confidence intervals Diagnosis diagnostic techniques Fingerprinting In vivo methods and tests Magnetic resonance spectroscopy magnetism Metabolism Metabolites Metabolomics NMR NMR spectroscopy Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Paratuberculosis Prediction models principal component analysis Principal components analysis Skin tests Spectroscopy Spectrum analysis Tuberculin Tuberculosis Vaccination |
Title | Benchtop nuclear magnetic resonance‐based metabolomic approach for the diagnosis of bovine tuberculosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftbed.14365 https://www.proquest.com/docview/2691433165 https://www.proquest.com/docview/2590083623 https://www.proquest.com/docview/2718280525 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJy603VJ12wUZlUsrBW0e9tpSL7xWKyQ4VLuISxX5MWlRlwTtJpee-An9jfwSZvJYKKqQyi2yJ5Fjezzf2DOfGdvTIzsaKkgCJwyRakc6UHEmAx8bJYQV6JTQ1sDZuZzMktNLcbnGvna5MA0_xGrDjTSjXq9JwY1dPlLy0oJHPY8lZZhTsBYhom8r7ihJtCbkbSkpAgq1b7lJKYzn4dW_rdEDxHwMVGtLM37FvndtbAJMfu1Xpd13v5_QN770J16zzRaC8oNmzrxha5D3WO-C4mLq5Fx-1p63v2VXhziJf5bFDc-J99gs-LX5kVPeI0c3vSCyDri7_UOm0PNrKHFGzSnNmXdU5RwxMUeMyX0T0ne15EXGLW1jAC8rCwtXzal4i83GJ9OjSdBezhC4hGguM6uFMs7HibWeWMOS0cgh4LBYjm6NNpmEYQixCT2aAwEuFC7MFHrEVuDCEcXv2Hpe5PCecZCgdAiRV7FPrHZW6wwQCWZeKuFE1mefu0FKXctcThdozNPOg6FuTOtu7LNPK9mbhq_jn1KDbqzTVmeXaSR1SPljVL27qkZtoyMUk0NRoQxdsqrQ6MfPyKC5j-imCPzOl3rwn2lJOj08Oa6fPvyP8Ee2EVEeRh03PGDr5aKCbURHpd2pteAeE3oNzA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAXCgVES4FFwAEkV_XPbnYPHChpldKmB5Si3ox3dwwVqVMlthCceIS-SF-Fh-BJmPFPWhCqxKEHbpE9ihzvfLPfbGa-AXhmera3oTEJnMxYVDsygY5zFfg401JaSUkJHw0M99XgIHl7KA8X4KzrhWn0IeYHboyMOl4zwPlA-gLKS4uegB6rrqZyF79-oYxt9mqnT8v7PIq2t0ZvBkE7VCBwCcsz5tZInTkfJ9Z6VrtKej1HG6Wl60THTZYr3AgxzkJPYUyiC6ULc02ZnJXk8KxzQBH_Go8QZ6n-_ru5WpViIRXO77SSARf3t2qoXDh0_qy_73_npPYiNa73tu0l-NG9laak5fN6Vdp19-0Pwcj_5rXdgpstyxavG1jchgUslmH5PZf-1P3HYtiWFNyBo03C6adyciIKlnbOpuI4-1hwa6eYIucphIqf3095t_fiGEsCzZg7uUWnxi6I9gui0cI3VYtHMzHJheWTGhRlZXHqqjFfvgsHV_Kb78FiMSnwPghUqE2IkdexT6xx1pgciezmXmnpZL4CLzqvSF0rzs4zQsZpl6TxsqX1sq3A07ntSSNJ8lertc650jYszdJImZBb5Pj2k_ltCij8L1FW4KQiG54jq4nXxJfYEKOJeBgGfc_L2tsueZJ0tLnVrz-t_ovxY7g-GA330r2d_d0HcCPitpO6THoNFstphQ-JDJb2UQ1BAR-u2nl_AcXCaqk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEO4QTIwXf1AjCtJGPUAyZOene7sPHoBlAyLEGDDcxunuaiAus5vdmRA4-Qg8iK_iS_gkVs3PgsaQeODgbTNT2cxO11f9VW_VV4y90V3T7ShIAisyEtWOdKBiLwMXZ0oIIzApoaOB3T25dZC8PxSHM-x72wtT60NMD9wIGVW8JoCPnL8G8sKAQ5zHsi2p3IHzM0zYJu-2e7i6b6Oov7m_sRU0MwUCm5A6ozdaqMy6ODHGkdhV0u1a3CcNXkc2rjMvoRNCnIUOo5gAGwobeoWJnBHo7yRzgAH_TiI7mgZF9D5Nxaok6ahQeqekCKi2vxFDpbqhq2f9ffu74rTXmXG1tfUfsB_tS6krWr6uloVZtRd_6EX-L2_tIbvfcGy-VoPiEZuBfI7NfabCn6r7mO82BQWP2ck6ovS4GI54TsLO2ZifZkc5NXbyMVCWgpj4-e2S9nrHT6FAyAyoj5u3WuwcST9HEs1dXbN4MuFDzw2d0wAvSgNjWw7o8hN2cCu_-SmbzYc5PGMcJCgdQuRU7BKjrdHaA1Jd76QSVvh5ttw6RWobaXaaEDJI2xSNli2tlm2evZ7ajmpBkr9aLbS-lTZBaZJGUofUIEe3X01vYzih_4iyHIYl2tAUWYWsJr7BBvlMRKMw8HtWKme74UnS_fXNXvXp-b8YL7G7H3v99MP23s4Ldi-inpOqRnqBzRbjEhaRCRbmZQVAzr7ctu_-AguyaVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchtop+nuclear+magnetic+resonance%E2%80%90based+metabolomic+approach+for+the+diagnosis+of+bovine+tuberculosis&rft.jtitle=Transboundary+and+emerging+diseases&rft.au=Ruiz%E2%80%90Cabello%2C+Jes%C3%BAs&rft.au=Sevilla%2C+Iker+A.&rft.au=Olaizola%2C+Ekine&rft.au=Bezos%2C+Javier&rft.date=2022-07-01&rft.issn=1865-1674&rft.eissn=1865-1682&rft.volume=69&rft.issue=4&rft.spage=e859&rft.epage=e870&rft_id=info:doi/10.1111%2Ftbed.14365&rft.externalDBID=10.1111%252Ftbed.14365&rft.externalDocID=TBED14365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-1674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-1674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-1674&client=summon |