Benchtop nuclear magnetic resonance‐based metabolomic approach for the diagnosis of bovine tuberculosis

Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the...

Full description

Saved in:
Bibliographic Details
Published inTransboundary and emerging diseases Vol. 69; no. 4; pp. e859 - e870
Main Authors Ruiz‐Cabello, Jesús, Sevilla, Iker A., Olaizola, Ekine, Bezos, Javier, Miguel‐Coello, Ana B., Muñoz‐Mendoza, Marta, Beraza, Marta, Garrido, Joseba M., Izquierdo‐García, Jose L.
Format Journal Article
LanguageEnglish
Published Berlin John Wiley & Sons, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non‐tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high‐field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low‐field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB‐vaccinated healthy control (n = 10) and healthy PTB‐unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77–1). In summary, plasma fingerprinting using HF and LF‐NMR differentiated TB subjects from uninfected animals, and PTB and PTB‐vaccinated subjects who may provide a TB‐false positive, highlighting the use of LF‐NMR‐based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods.
AbstractList Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non‐tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high‐field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low‐field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis.Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB‐vaccinated healthy control (n = 10) and healthy PTB‐unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77–1).In summary, plasma fingerprinting using HF and LF‐NMR differentiated TB subjects from uninfected animals, and PTB and PTB‐vaccinated subjects who may provide a TB‐false positive, highlighting the use of LF‐NMR‐based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods.
Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non‐tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high‐field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low‐field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB‐vaccinated healthy control (n = 10) and healthy PTB‐unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77–1). In summary, plasma fingerprinting using HF and LF‐NMR differentiated TB subjects from uninfected animals, and PTB and PTB‐vaccinated subjects who may provide a TB‐false positive, highlighting the use of LF‐NMR‐based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods.
Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non-tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high-field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low-field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB-vaccinated healthy control (n = 10) and healthy PTB-unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77-1). In summary, plasma fingerprinting using HF and LF-NMR differentiated TB subjects from uninfected animals, and PTB and PTB-vaccinated subjects who may provide a TB-false positive, highlighting the use of LF-NMR-based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods.Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic concern. The standard method used in TB eradication programs for in vivo detection is the tuberculin skin test. However, the specificity of the tuberculin skin test is affected by infection with non-tuberculous mycobacteria or by vaccination. Thus, some animals are not correctly diagnosed. This study aimed first to identify a plasma metabolic TB profile by high-field (HF) nuclear magnetic resonance (NMR) spectroscopy and second measure this characteristic TB metabolic profile using low-field benchtop (LF) NMR as an affordable molecular technology for TB diagnosis. Plasma samples from cattle diagnosed with TB (derivation set, n = 11), diagnosed with paratuberculosis (PTB, n = 10), PTB-vaccinated healthy control (n = 10) and healthy PTB-unvaccinated control (n = 10) were analyzed by NMR. Unsupervised Principal Component Analysis (PCA) was used to identify metabolic differences between groups. We identified 14 metabolites significantly different between TB and control animals. The second group of TB animals was used to validate the results (validation set, n = 14). Predictive models based on metabolic fingerprint acquired by both HF and LF NMR spectroscopy successfully identified TB versus control subjects (Area under the curve of Receiver Operating Characteristic over 0.92, in both models; Confidence Interval 0.77-1). In summary, plasma fingerprinting using HF and LF-NMR differentiated TB subjects from uninfected animals, and PTB and PTB-vaccinated subjects who may provide a TB-false positive, highlighting the use of LF-NMR-based metabolomics as a complementary or alternative diagnostic tool to the current diagnostic methods.
Author Sevilla, Iker A.
Ruiz‐Cabello, Jesús
Garrido, Joseba M.
Bezos, Javier
Muñoz‐Mendoza, Marta
Olaizola, Ekine
Izquierdo‐García, Jose L.
Miguel‐Coello, Ana B.
Beraza, Marta
Author_xml – sequence: 1
  givenname: Jesús
  surname: Ruiz‐Cabello
  fullname: Ruiz‐Cabello, Jesús
  organization: IKERBASQUE
– sequence: 2
  givenname: Iker A.
  orcidid: 0000-0003-3968-3390
  surname: Sevilla
  fullname: Sevilla, Iker A.
  organization: NEIKER‐Basque Institute for Agricultural Research and Development
– sequence: 3
  givenname: Ekine
  surname: Olaizola
  fullname: Olaizola, Ekine
  organization: CIC biomaGUNE Center for Cooperative Research in Biomaterials
– sequence: 4
  givenname: Javier
  orcidid: 0000-0003-1913-0545
  surname: Bezos
  fullname: Bezos, Javier
  organization: Universidad Complutense de Madrid. Facultad de Veterinaria
– sequence: 5
  givenname: Ana B.
  surname: Miguel‐Coello
  fullname: Miguel‐Coello, Ana B.
  organization: CIC biomaGUNE Center for Cooperative Research in Biomaterials
– sequence: 6
  givenname: Marta
  surname: Muñoz‐Mendoza
  fullname: Muñoz‐Mendoza, Marta
  organization: Consellería de Medio Rural
– sequence: 7
  givenname: Marta
  surname: Beraza
  fullname: Beraza, Marta
  organization: CIC biomaGUNE Center for Cooperative Research in Biomaterials
– sequence: 8
  givenname: Joseba M.
  surname: Garrido
  fullname: Garrido, Joseba M.
  organization: NEIKER‐Basque Institute for Agricultural Research and Development
– sequence: 9
  givenname: Jose L.
  orcidid: 0000-0002-7907-3776
  surname: Izquierdo‐García
  fullname: Izquierdo‐García, Jose L.
  email: jlizquierdo@ucm.es
  organization: Universidad Complutense de Madrid
BookMark eNqFkctqHDEQRUWwIX5t_AWCbIxhnFKrpe5exo88wOCNvRaSujoj0y1NJLXN7PIJ-UZ_iTWekIUJtjYSpXMvVXX3yY4PHgk5ZnDGyvmcDfZnrOZSfCB7rJViwWRb7fx7N_VHsp_SPYCEToo94s7R22UOK-pnO6KOdNI_PWZnacQUvPYWn37_MTphTyfM2oQxTOVXr1YxaLukQ4g0L5H2rghDcomGgZrw4DzSPBuMdh435UOyO-gx4dHf-4Dcfb26vfi-uL759uPiy_XC1sDFYjCdaLXteW1MD0KIumksQGNKveLQ6UEiMOSa9WiYQMuEZUPLeWsE1FDxA3Ky9S39_ZoxZTW5ZHEctccwJ1U1rK1aEJV4HxUdQMtlxQv66RV6H-boyyCqkl3ZOGdyYwhbysaQUsRBWZd1dsHnqN2oGKhNTGoTk3qJqUhOX0lW0U06rv8Psy386EZcv0Gq2_Ory63mGeTEpoo
CitedBy_id crossref_primary_10_3390_metabo13050614
crossref_primary_10_1016_j_cbpa_2024_102466
crossref_primary_10_1002_mrc_5431
crossref_primary_10_1007_s00253_023_12595_0
Cites_doi 10.1038/s41598-021-91545-0
10.1007/s00134-019-05634-w
10.1016/j.rvsc.2014.04.002
10.1002/cpbi.86
10.1016/j.tube.2015.02.038
10.1097/SHK.0000000000001099
10.2217/bmm-2016-0287
10.1054/tube.2000.0272
10.1038/s41598-020-78999-4
10.1016/j.rvsc.2017.05.012
10.1186/1471-2105-10-363
10.1016/S0079-6565(00)00036-4
10.1016/S1473-3099(16)30139-6
10.1371/journal.pone.0040221
10.3390/ht8010002
10.1007/s00216-006-0687-8
10.1183/13993003.01107-2018
10.1136/vr.103616
10.1021/acs.jproteome.6b00228
10.1002/cem.1180060604
10.1021/pr4007359
10.1021/acsinfecdis.9b00008
10.1038/s41598-019-56809-w
10.1016/j.rvsc.2005.11.005
10.1007/978-1-4612-0919-5_4
10.4103/0366-6999.149188
10.1136/vr.102961
10.1152/ajprenal.00315.2018
10.1371/journal.pone.0108854
10.1021/ac060209g
10.1371/journal.pone.0080985
10.1111/j.1865-1682.2010.01148.x
10.1371/journal.pone.0111872
10.4155/bio.12.218
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
7S9
L.6
DOI 10.1111/tbed.14365
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1865-1682
EndPage e870
ExternalDocumentID 10_1111_tbed_14365
TBED14365
Genre article
GrantInformation_xml – fundername: Gobierno Vasco, Dpto. Industria, Innovación, Comercio y Turismo, under the ELKARTEK program
  funderid: KK‐2019/bmG19
– fundername: Spanish Ministry of Science and Innovation
  funderid: PID2019‐10656RJ‐I00
– fundername: The Interreg Program V‐A Spain‐France‐Andorra (POCTEFA)
  funderid: EFA357/19
– fundername: Spanish Ministry of Economy, Industry, and Competitiveness (MEIC‐AEI)
  funderid: SAF2017‐84494‐C2‐1‐R
– fundername: La Caixa Foundation
  funderid: HR20‐00075
– fundername: European Union's Horizon 2020 Research and Innovation Program, under the Marie Skłodowska‐Curie
  funderid: 823854
– fundername: Comunidad de Madrid, Madrid, Spain
  funderid: B2017/BMD3875
– fundername: Maria de Maeztu Units of Excellence Programme from the Spanish State Research Agency
  funderid: MDM‐2017‐0720
– fundername: The BBVA Foundation (Ayudas a Equipos de Investigación Científica de Biomedicina 2018)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X2
8-0
8-1
8-3
8-4
8-5
8G5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATCPS
ATUGU
AUFTA
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EAD
EAP
EBC
EBD
EBS
ECGQY
EJD
EMB
EMK
EMOBN
ESX
EYRJQ
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNUQQ
GODZA
GUQSH
H.T
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M2O
M7P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PIMPY
PQQKQ
Q.N
Q11
QB0
R.K
RHX
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WOIKV
WPGGZ
WQJ
WRC
XG1
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
RPM
1OB
7QL
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c4035-fb958acd34bbd0555477c007bb952309af6e01e3a1deb15ec15c1f8338b504023
IEDL.DBID DR2
ISSN 1865-1674
1865-1682
IngestDate Fri Jul 11 18:29:04 EDT 2025
Thu Aug 07 15:13:46 EDT 2025
Wed Aug 13 09:06:44 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Sun Jul 06 05:02:23 EDT 2025
Wed Jan 22 16:25:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4035-fb958acd34bbd0555477c007bb952309af6e01e3a1deb15ec15c1f8338b504023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3968-3390
0000-0002-7907-3776
0000-0003-1913-0545
OpenAccessLink https://zenodo.org/record/6137371
PQID 2691433165
PQPubID 38285
PageCount 12
ParticipantIDs proquest_miscellaneous_2718280525
proquest_miscellaneous_2590083623
proquest_journals_2691433165
crossref_citationtrail_10_1111_tbed_14365
crossref_primary_10_1111_tbed_14365
wiley_primary_10_1111_tbed_14365_TBED14365
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Transboundary and emerging diseases
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 8
2007; 387
2013; 1
2019; 5
2010; 57
2006; 78
2015; 95
2015; 128
1992
2020; 10
2017; 112
2008; 2
2013; 8
2016; 15
1992; 6
2006; 81
2001; 81
2009; 10
2021; 11
2017; 17
2013; 12
2019; 68
2015; 177
2017; 11
2019; 45
2016; 179
2000; 81
2018; 52
2018; 50
2001; 39
2019; 316
2014; 9
2012; 7
2012; 4
2014; 97
e_1_2_9_30_1
e_1_2_9_31_1
Commission I. O. O. E. B. S. (e_1_2_9_10_1) 2008
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
Cabin R. J. (e_1_2_9_4_1) 2000; 81
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Eriksson L. (e_1_2_9_14_1) 2013
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Cho Y. (e_1_2_9_7_1) 2020; 10
e_1_2_9_29_1
References_xml – volume: 11
  issue: 1
  year: 2021
  article-title: Urine NMR‐based TB metabolic fingerprinting for the diagnosis of TB in children
  publication-title: Scientific Reports
– volume: 128
  start-page: 159
  issue: 2
  year: 2015
  article-title: Analysis of serum metabolic profile by ultra‐performance liquid chromatography‐mass spectrometry for biomarkers discovery: Application in a pilot study to discriminate patients with tuberculosis
  publication-title: Chinese Medical Journal
– volume: 45
  start-page: 1318
  issue: 9
  year: 2019
  end-page: 1320
  article-title: Metabolomic profile of acute respiratory distress syndrome of different etiologies
  publication-title: Intensive Care Medicine
– volume: 4
  start-page: 2265
  issue: 18
  year: 2012
  end-page: 2290
  article-title: Application of metabolomics approaches to the study of respiratory diseases
  publication-title: Bioanalysis
– volume: 52
  year: 2018
  article-title: NMR‐based metabolomics in respiratory medicine
  publication-title: European Respiratory Journal
– volume: 10
  year: 2009
  article-title: A novel R‐package graphic user interface for the analysis of metabonomic profiles
  publication-title: BMC Bioinformatics
– volume: 81
  start-page: 147
  issue: 1‐2
  year: 2001
  end-page: 155
  article-title: BOVIGAMTM: An in vitro cellular diagnostic test for bovine tuberculosis
  publication-title: Tuberculosis
– volume: 112
  start-page: 214
  year: 2017
  end-page: 221
  article-title: Antibody detection tests improve the sensitivity of tuberculosis diagnosis in cattle
  publication-title: Research in Veterinary Science
– volume: 78
  start-page: 4430
  issue: 13
  year: 2006
  end-page: 4442
  article-title: Targeted profiling: Quantitative analysis of H NMR metabolomics data
  publication-title: Analytical Chemistry
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Diagnosis of bovine respiratory disease in feedlot cattle using blood H NMR metabolomics
  publication-title: Scientific Reports
– volume: 1
  year: 2013
– volume: 57
  start-page: 205
  issue: 4
  year: 2010
  end-page: 220
  article-title: Bovine tuberculosis: A review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication
  publication-title: Transboundary and Emerging Diseases
– volume: 81
  start-page: 246
  issue: 3
  year: 2000
  end-page: 248
  article-title: To Bonferroni or not to Bonferroni: When and how are the questions
  publication-title: Bulletin of the Ecological Society of America
– start-page: 54
  year: 1992
  end-page: 65
– volume: 8
  issue: 1
  year: 2019
  article-title: Low‐field, benchtop NMR spectroscopy as a potential tool for point‐of‐care diagnostics of metabolic conditions: Validation, protocols and computational models
  publication-title: High‐Throughput
– volume: 95
  start-page: 294
  issue: 3
  year: 2015
  end-page: 302
  article-title: Metabolomics specificity of tuberculosis plasma revealed by 1H NMR spectroscopy
  publication-title: Tuberculosis
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  article-title: Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach
  publication-title: Scientific Reports
– volume: 6
  start-page: 335
  issue: 6
  year: 1992
  end-page: 346
  article-title: Predictive ability of regression models. Part I: Standard deviation of prediction errors (SDEP)
  publication-title: Journal of Chemometrics
– volume: 17
  start-page: e21
  issue: 1
  year: 2017
  end-page: e25
  article-title: Zoonotic tuberculosis in human beings caused by —A call for action
  publication-title: Lancet Infectious Diseases
– volume: 12
  start-page: 4642
  issue: 10
  year: 2013
  end-page: 4649
  article-title: Application of H NMR spectroscopy‐based metabolomics to sera of tuberculosis patients
  publication-title: Journal of Proteome Research
– volume: 179
  start-page: 70
  issue: 3
  year: 2016
  end-page: 75
  article-title: Control and eradication of tuberculosis in cattle: A systematic review of economic evidence
  publication-title: Veterinary Record
– volume: 11
  start-page: 179
  issue: 2
  year: 2017
  end-page: 194
  article-title: Metabolomics biomarkers for tuberculosis diagnostics: Current status and future objectives
  publication-title: Biomarkers in Medicine
– volume: 7
  issue: 7
  year: 2012
  article-title: Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients
  publication-title: Plos One
– volume: 39
  start-page: 1
  year: 2001
  end-page: 40
  article-title: Pattern recognition methods and applications in biomedical magnetic resonance
  publication-title: Progress in Nuclear Magnetic Resonance Spectroscopy
– volume: 50
  start-page: 504
  issue: 5
  year: 2018
  end-page: 510
  article-title: Metabolomic profile of ARDS by nuclear magnetic resonance spectroscopy in patients with H1N1 influenza virus pneumonia
  publication-title: Shock (Augusta, Ga.)
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  article-title: Discovery and validation of an NMR‐based metabolomic profile in urine as TB biomarker
  publication-title: Scientific Reports
– volume: 97
  start-page: S44
  year: 2014
  end-page: S52
  article-title: Current ante‐mortem techniques for diagnosis of bovine tuberculosis
  publication-title: Research in Veterinary Science
– volume: 177
  start-page: 258
  issue: 10
  year: 2015
  article-title: Specificity of the comparative skin test for bovine tuberculosis in Great Britain
  publication-title: Veterinary Record
– volume: 2
  year: 2008
– volume: 387
  start-page: 525
  issue: 2
  year: 2007
  end-page: 527
  article-title: Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 316
  start-page: F54
  issue: 1
  year: 2019
  end-page: F62
  article-title: Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury
  publication-title: American Journal of Physiology‐Renal Physiology
– volume: 15
  start-page: 3118
  issue: 9
  year: 2016
  end-page: 3125
  article-title: Utility of novel plasma metabolic markers in the diagnosis of pediatric tuberculosis: A classification and regression tree analysis approach
  publication-title: Journal of Proteome Research
– volume: 8
  issue: 11
  year: 2013
  article-title: Paratuberculosis vaccination causes only limited cross‐reactivity in the skin test for diagnosis of bovine tuberculosis
  publication-title: Plos One
– volume: 9
  issue: 11
  year: 2014
  article-title: Metabolomic profiling in cattle experimentally infected with subsp. paratuberculosis
  publication-title: Plos One
– volume: 68
  issue: 1
  year: 2019
  article-title: Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis
  publication-title: Current Protocols in Bioinformatics
– volume: 81
  start-page: 190
  issue: 2
  year: 2006
  end-page: 210
  article-title: Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ‐interferon assay and other ancillary diagnostic techniques
  publication-title: Research in Veterinary Science
– volume: 5
  start-page: 1317
  issue: 8
  year: 2019
  end-page: 1326
  article-title: Comparative metabolomics between and the MTBVAC vaccine candidate
  publication-title: ACS Infectious Diseases
– volume: 9
  issue: 10
  year: 2014
  article-title: Plasma metabolomics in human pulmonary tuberculosis disease: A pilot study
  publication-title: Plos One
– ident: e_1_2_9_9_1
  doi: 10.1038/s41598-021-91545-0
– ident: e_1_2_9_22_1
  doi: 10.1007/s00134-019-05634-w
– ident: e_1_2_9_2_1
  doi: 10.1016/j.rvsc.2014.04.002
– ident: e_1_2_9_8_1
  doi: 10.1002/cpbi.86
– volume-title: Multi‐and megavariate data analysis basic principles and applications
  year: 2013
  ident: e_1_2_9_14_1
– ident: e_1_2_9_39_1
  doi: 10.1016/j.tube.2015.02.038
– ident: e_1_2_9_23_1
  doi: 10.1097/SHK.0000000000001099
– ident: e_1_2_9_31_1
  doi: 10.2217/bmm-2016-0287
– ident: e_1_2_9_37_1
  doi: 10.1054/tube.2000.0272
– ident: e_1_2_9_20_1
  doi: 10.1038/s41598-020-78999-4
– ident: e_1_2_9_6_1
  doi: 10.1016/j.rvsc.2017.05.012
– ident: e_1_2_9_24_1
  doi: 10.1186/1471-2105-10-363
– ident: e_1_2_9_25_1
  doi: 10.1016/S0079-6565(00)00036-4
– ident: e_1_2_9_26_1
  doi: 10.1016/S1473-3099(16)30139-6
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_9_7_1
  article-title: Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach
  publication-title: Scientific Reports
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0040221
– ident: e_1_2_9_29_1
  doi: 10.3390/ht8010002
– ident: e_1_2_9_27_1
  doi: 10.1007/s00216-006-0687-8
– ident: e_1_2_9_28_1
  doi: 10.1183/13993003.01107-2018
– ident: e_1_2_9_5_1
  doi: 10.1136/vr.103616
– ident: e_1_2_9_34_1
  doi: 10.1021/acs.jproteome.6b00228
– ident: e_1_2_9_11_1
  doi: 10.1002/cem.1180060604
– ident: e_1_2_9_38_1
  doi: 10.1021/pr4007359
– ident: e_1_2_9_30_1
  doi: 10.1021/acsinfecdis.9b00008
– ident: e_1_2_9_3_1
  doi: 10.1038/s41598-019-56809-w
– ident: e_1_2_9_13_1
  doi: 10.1016/j.rvsc.2005.11.005
– ident: e_1_2_9_19_1
  doi: 10.1007/978-1-4612-0919-5_4
– ident: e_1_2_9_15_1
  doi: 10.4103/0366-6999.149188
– volume: 81
  start-page: 246
  issue: 3
  year: 2000
  ident: e_1_2_9_4_1
  article-title: To Bonferroni or not to Bonferroni: When and how are the questions
  publication-title: Bulletin of the Ecological Society of America
– ident: e_1_2_9_18_1
  doi: 10.1136/vr.102961
– ident: e_1_2_9_21_1
  doi: 10.1152/ajprenal.00315.2018
– ident: e_1_2_9_16_1
  doi: 10.1371/journal.pone.0108854
– ident: e_1_2_9_36_1
  doi: 10.1021/ac060209g
– ident: e_1_2_9_17_1
  doi: 10.1371/journal.pone.0080985
– volume-title: Manual of diagnostic tests and vaccines for terrestrial animals: Mammals, birds and bees
  year: 2008
  ident: e_1_2_9_10_1
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1865-1682.2010.01148.x
– ident: e_1_2_9_12_1
  doi: 10.1371/journal.pone.0111872
– ident: e_1_2_9_33_1
  doi: 10.4155/bio.12.218
SSID ssj0060965
Score 2.3240192
Snippet Even though enormous efforts and control strategies have been implemented, bovine tuberculosis (TB) remains a significant source of health and socioeconomic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e859
SubjectTerms Animals
benchtop
bovine
bovine tuberculosis
Cattle
confidence interval
Confidence intervals
Diagnosis
diagnostic techniques
Fingerprinting
In vivo methods and tests
Magnetic resonance spectroscopy
magnetism
Metabolism
Metabolites
Metabolomics
NMR
NMR spectroscopy
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Paratuberculosis
Prediction models
principal component analysis
Principal components analysis
Skin tests
Spectroscopy
Spectrum analysis
Tuberculin
Tuberculosis
Vaccination
Title Benchtop nuclear magnetic resonance‐based metabolomic approach for the diagnosis of bovine tuberculosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftbed.14365
https://www.proquest.com/docview/2691433165
https://www.proquest.com/docview/2590083623
https://www.proquest.com/docview/2718280525
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJy603VJ12wUZlUsrBW0e9tpSL7xWKyQ4VLuISxX5MWlRlwTtJpee-An9jfwSZvJYKKqQyi2yJ5Fjezzf2DOfGdvTIzsaKkgCJwyRakc6UHEmAx8bJYQV6JTQ1sDZuZzMktNLcbnGvna5MA0_xGrDjTSjXq9JwY1dPlLy0oJHPY8lZZhTsBYhom8r7ihJtCbkbSkpAgq1b7lJKYzn4dW_rdEDxHwMVGtLM37FvndtbAJMfu1Xpd13v5_QN770J16zzRaC8oNmzrxha5D3WO-C4mLq5Fx-1p63v2VXhziJf5bFDc-J99gs-LX5kVPeI0c3vSCyDri7_UOm0PNrKHFGzSnNmXdU5RwxMUeMyX0T0ne15EXGLW1jAC8rCwtXzal4i83GJ9OjSdBezhC4hGguM6uFMs7HibWeWMOS0cgh4LBYjm6NNpmEYQixCT2aAwEuFC7MFHrEVuDCEcXv2Hpe5PCecZCgdAiRV7FPrHZW6wwQCWZeKuFE1mefu0FKXctcThdozNPOg6FuTOtu7LNPK9mbhq_jn1KDbqzTVmeXaSR1SPljVL27qkZtoyMUk0NRoQxdsqrQ6MfPyKC5j-imCPzOl3rwn2lJOj08Oa6fPvyP8Ee2EVEeRh03PGDr5aKCbURHpd2pteAeE3oNzA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAXCgVES4FFwAEkV_XPbnYPHChpldKmB5Si3ox3dwwVqVMlthCceIS-SF-Fh-BJmPFPWhCqxKEHbpE9ihzvfLPfbGa-AXhmera3oTEJnMxYVDsygY5zFfg401JaSUkJHw0M99XgIHl7KA8X4KzrhWn0IeYHboyMOl4zwPlA-gLKS4uegB6rrqZyF79-oYxt9mqnT8v7PIq2t0ZvBkE7VCBwCcsz5tZInTkfJ9Z6VrtKej1HG6Wl60THTZYr3AgxzkJPYUyiC6ULc02ZnJXk8KxzQBH_Go8QZ6n-_ru5WpViIRXO77SSARf3t2qoXDh0_qy_73_npPYiNa73tu0l-NG9laak5fN6Vdp19-0Pwcj_5rXdgpstyxavG1jchgUslmH5PZf-1P3HYtiWFNyBo03C6adyciIKlnbOpuI4-1hwa6eYIucphIqf3095t_fiGEsCzZg7uUWnxi6I9gui0cI3VYtHMzHJheWTGhRlZXHqqjFfvgsHV_Kb78FiMSnwPghUqE2IkdexT6xx1pgciezmXmnpZL4CLzqvSF0rzs4zQsZpl6TxsqX1sq3A07ntSSNJ8lertc650jYszdJImZBb5Pj2k_ltCij8L1FW4KQiG54jq4nXxJfYEKOJeBgGfc_L2tsueZJ0tLnVrz-t_ovxY7g-GA330r2d_d0HcCPitpO6THoNFstphQ-JDJb2UQ1BAR-u2nl_AcXCaqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEO4QTIwXf1AjCtJGPUAyZOene7sPHoBlAyLEGDDcxunuaiAus5vdmRA4-Qg8iK_iS_gkVs3PgsaQeODgbTNT2cxO11f9VW_VV4y90V3T7ShIAisyEtWOdKBiLwMXZ0oIIzApoaOB3T25dZC8PxSHM-x72wtT60NMD9wIGVW8JoCPnL8G8sKAQ5zHsi2p3IHzM0zYJu-2e7i6b6Oov7m_sRU0MwUCm5A6ozdaqMy6ODHGkdhV0u1a3CcNXkc2rjMvoRNCnIUOo5gAGwobeoWJnBHo7yRzgAH_TiI7mgZF9D5Nxaok6ahQeqekCKi2vxFDpbqhq2f9ffu74rTXmXG1tfUfsB_tS6krWr6uloVZtRd_6EX-L2_tIbvfcGy-VoPiEZuBfI7NfabCn6r7mO82BQWP2ck6ovS4GI54TsLO2ZifZkc5NXbyMVCWgpj4-e2S9nrHT6FAyAyoj5u3WuwcST9HEs1dXbN4MuFDzw2d0wAvSgNjWw7o8hN2cCu_-SmbzYc5PGMcJCgdQuRU7BKjrdHaA1Jd76QSVvh5ttw6RWobaXaaEDJI2xSNli2tlm2evZ7ajmpBkr9aLbS-lTZBaZJGUofUIEe3X01vYzih_4iyHIYl2tAUWYWsJr7BBvlMRKMw8HtWKme74UnS_fXNXvXp-b8YL7G7H3v99MP23s4Ldi-inpOqRnqBzRbjEhaRCRbmZQVAzr7ctu_-AguyaVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchtop+nuclear+magnetic+resonance%E2%80%90based+metabolomic+approach+for+the+diagnosis+of+bovine+tuberculosis&rft.jtitle=Transboundary+and+emerging+diseases&rft.au=Ruiz%E2%80%90Cabello%2C+Jes%C3%BAs&rft.au=Sevilla%2C+Iker+A.&rft.au=Olaizola%2C+Ekine&rft.au=Bezos%2C+Javier&rft.date=2022-07-01&rft.issn=1865-1674&rft.eissn=1865-1682&rft.volume=69&rft.issue=4&rft.spage=e859&rft.epage=e870&rft_id=info:doi/10.1111%2Ftbed.14365&rft.externalDBID=10.1111%252Ftbed.14365&rft.externalDocID=TBED14365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-1674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-1674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-1674&client=summon