Tackling COVID-19 with neutralizing monoclonal antibodies

Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 184; no. 12; pp. 3086 - 3108
Main Authors Corti, Davide, Purcell, Lisa A., Snell, Gyorgy, Veesler, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Intense efforts have been made to develop or identify drugs to treat people with COVID-19. Monoclonal antibodies are one of the few types of drugs that have shown efficacy in the clinic.
AbstractList Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Intense efforts have been made to develop or identify drugs to treat people with COVID-19. Monoclonal antibodies are one of the few types of drugs that have shown efficacy in the clinic.
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Intense efforts have been made to develop or identify drugs to treat people with COVID-19. Monoclonal antibodies are one of the few types of drugs that have shown efficacy in the clinic.
Author Snell, Gyorgy
Corti, Davide
Veesler, David
Purcell, Lisa A.
Author_xml – sequence: 1
  givenname: Davide
  surname: Corti
  fullname: Corti, Davide
  email: dcorti@vir.bio
  organization: Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 2
  givenname: Lisa A.
  surname: Purcell
  fullname: Purcell, Lisa A.
  organization: Vir Biotechnology, St. Louis, MO 63110, USA
– sequence: 3
  givenname: Gyorgy
  surname: Snell
  fullname: Snell, Gyorgy
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 4
  givenname: David
  surname: Veesler
  fullname: Veesler, David
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34087172$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQha0KVJaFP8Ch2iOXpGPHjm2pqoQW2iIhcaG9Wo4zAS9Zm8ZZUPvrcbQUAQfU0xzme09v5u2TnRADEnJEoaRA68-r0mHflwwYLUGUAOIDmVHQsuBUsh0yA9CsULXke2Q_pRUAKCHER7JXcVAyMzOir6y77X24Xiwvf52fFlQvHvx4swi4GQfb-7_Tah1DdH0Mtl_YMPomth7TAdntbJ_w8GnOyc9vZ1fLH8XF5ffz5clF4ThUonCaObTcOiHaloKohdSoJGLbMORad0rxWmeokYpXXT6Mq6ZulXBcS9VhNSdft753m2aNrcMwBTN3g1_b4Y-J1pvXm-BvzHW8N4oKpjTNBsdPBkP8vcE0mrVP0-dswLhJhglBtaoqYP-BVrKuGM-Xzcmnl7Ge8_x7bQbYFnBDTGnA7hmhYKb-zMpM1mbqz4Awub8sUm9Ezo929HE6zffvS79spZjLuPc4mOQ8BoetH9CNpo3-Pfkjplq00g
CitedBy_id crossref_primary_10_1667_RADE_22_00058_1
crossref_primary_10_1002_bit_28302
crossref_primary_10_1093_pnasnexus_pgae173
crossref_primary_10_1002_wnan_1785
crossref_primary_10_30895_2221_996X_2022_22_4_361_381
crossref_primary_10_1016_j_copbio_2022_102798
crossref_primary_10_1080_21645515_2021_1985891
crossref_primary_10_1126_scitranslmed_abm0899
crossref_primary_10_3390_life13030712
crossref_primary_10_1080_19420862_2023_2222874
crossref_primary_10_1093_ofid_ofad314
crossref_primary_10_1093_infdis_jiab540
crossref_primary_10_1038_s42003_022_03630_3
crossref_primary_10_1002_jmv_29035
crossref_primary_10_1016_j_bcp_2024_116303
crossref_primary_10_1002_jmv_28742
crossref_primary_10_1016_j_procbio_2022_09_009
crossref_primary_10_1002_bcp_70025
crossref_primary_10_1093_cid_ciac448
crossref_primary_10_1126_science_abn8652
crossref_primary_10_1016_j_ijid_2022_09_016
crossref_primary_10_1097_COH_0000000000000797
crossref_primary_10_1111_imr_13393
crossref_primary_10_3390_vaccines11030711
crossref_primary_10_3390_biom13111565
crossref_primary_10_1016_j_vacune_2022_11_007
crossref_primary_10_1111_joim_13478
crossref_primary_10_1126_science_abi7994
crossref_primary_10_1002_cbic_202200327
crossref_primary_10_1038_s41598_021_01081_0
crossref_primary_10_5227_skincancer_39_69
crossref_primary_10_1093_jac_dkad309
crossref_primary_10_1038_s41423_022_00884_z
crossref_primary_10_1093_infdis_jiab554
crossref_primary_10_3389_fmicb_2021_761887
crossref_primary_10_1002_chem_202403039
crossref_primary_10_1038_s41586_021_04386_2
crossref_primary_10_1080_19420862_2021_2021601
crossref_primary_10_1056_NEJMc2119407
crossref_primary_10_1371_journal_pone_0291131
crossref_primary_10_1016_j_slast_2021_12_003
crossref_primary_10_1099_mgen_0_000912
crossref_primary_10_1126_science_abq0203
crossref_primary_10_33084_bjop_v7i4_6365
crossref_primary_10_1093_infdis_jiad267
crossref_primary_10_3389_fimmu_2023_1111385
crossref_primary_10_1126_sciimmunol_abp9962
crossref_primary_10_1126_sciimmunol_ade0958
crossref_primary_10_1016_j_cell_2022_05_029
crossref_primary_10_1111_vox_13647
crossref_primary_10_3390_biomedicines10112815
crossref_primary_10_3390_ph14121272
crossref_primary_10_7554_eLife_75433
crossref_primary_10_1016_j_biopha_2021_112527
crossref_primary_10_1016_j_cell_2022_05_019
crossref_primary_10_3389_fimmu_2024_1397040
crossref_primary_10_3390_ijms25105509
crossref_primary_10_1038_s41467_022_33030_4
crossref_primary_10_1186_s12979_021_00248_7
crossref_primary_10_1007_s43188_024_00256_x
crossref_primary_10_1016_j_celrep_2023_112621
crossref_primary_10_3390_v14081822
crossref_primary_10_3389_fnano_2022_1028186
crossref_primary_10_3389_fimmu_2021_752003
crossref_primary_10_3390_v14071461
crossref_primary_10_3390_jcm12186079
crossref_primary_10_1208_s12248_024_00904_y
crossref_primary_10_1016_j_antiviral_2024_106006
crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_1016_j_cej_2025_159755
crossref_primary_10_1080_22221751_2022_2032374
crossref_primary_10_3390_vaccines12050459
crossref_primary_10_3390_v16020217
crossref_primary_10_7554_eLife_73027
crossref_primary_10_1128_jvi_00034_22
crossref_primary_10_3389_fimmu_2022_863831
crossref_primary_10_1038_s41375_021_01466_0
crossref_primary_10_1080_22221751_2021_2024455
crossref_primary_10_1021_acs_analchem_4c03574
crossref_primary_10_3390_ijms23179763
crossref_primary_10_1182_blood_2021012248
crossref_primary_10_1002_jia2_25829
crossref_primary_10_1016_j_ijbiomac_2024_130132
crossref_primary_10_1038_s41467_024_45171_9
crossref_primary_10_1111_jcmm_17103
crossref_primary_10_1016_j_antiviral_2023_105785
crossref_primary_10_1080_19420862_2022_2076775
crossref_primary_10_1007_s40121_023_00859_1
crossref_primary_10_1038_s43018_022_00503_w
crossref_primary_10_3390_ijms25020739
crossref_primary_10_1016_j_vacun_2022_06_003
crossref_primary_10_1590_1806_9282_2022d686
crossref_primary_10_3390_ijms23095018
crossref_primary_10_1038_s41467_023_41312_8
crossref_primary_10_1038_s41541_021_00427_z
crossref_primary_10_1097_IMNA_D_22_00022
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1002_eji_202249841
crossref_primary_10_1126_sciadv_abq6207
crossref_primary_10_3389_fmicb_2023_1256759
crossref_primary_10_12688_wellcomeopenres_16741_2
crossref_primary_10_1016_j_isci_2024_110354
crossref_primary_10_3390_ijms232415511
crossref_primary_10_2144_fsoa_2022_0048
crossref_primary_10_3389_fmedt_2022_867982
crossref_primary_10_1007_s12247_023_09713_w
crossref_primary_10_1111_imcb_12646
crossref_primary_10_1016_j_ijpharm_2022_122463
crossref_primary_10_3389_fmicb_2023_1182914
crossref_primary_10_1080_1744666X_2022_2044797
crossref_primary_10_1093_glycob_cwab102
crossref_primary_10_2174_1872208317666230818092522
crossref_primary_10_1371_journal_ppat_1009885
crossref_primary_10_1038_s42003_022_04160_8
crossref_primary_10_1038_s41467_024_54458_w
crossref_primary_10_1016_j_virs_2022_12_007
crossref_primary_10_1093_protein_gzad013
crossref_primary_10_1016_j_tips_2022_06_001
crossref_primary_10_1126_science_ado6481
crossref_primary_10_1016_j_heliyon_2022_e12667
crossref_primary_10_1080_22221751_2022_2125348
crossref_primary_10_3390_v13081487
crossref_primary_10_2147_IDR_S438915
crossref_primary_10_1016_j_biopha_2025_117936
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1172_JCI158190
crossref_primary_10_1186_s40164_023_00426_x
crossref_primary_10_1073_pnas_2213361119
crossref_primary_10_3390_idr14060099
crossref_primary_10_1021_acscentsci_2c01513
crossref_primary_10_1080_20016689_2022_2160328
crossref_primary_10_2217_fvl_2023_0146
crossref_primary_10_3390_v14102242
crossref_primary_10_1016_j_chom_2022_07_002
crossref_primary_10_3389_fimmu_2022_1072702
crossref_primary_10_3389_fimmu_2021_751584
crossref_primary_10_3389_fviro_2024_1399993
crossref_primary_10_2147_DDDT_S359009
crossref_primary_10_1126_science_abm8108
crossref_primary_10_7759_cureus_27766
crossref_primary_10_3389_fimmu_2022_773652
crossref_primary_10_1016_j_antiviral_2023_105589
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_1089_mab_2022_0030
crossref_primary_10_1128_spectrum_00333_23
crossref_primary_10_1016_j_immuni_2024_06_013
crossref_primary_10_1016_j_compbiomed_2023_107576
crossref_primary_10_1016_S2213_2600_22_00053_4
crossref_primary_10_7555_JBR_36_20220221
crossref_primary_10_1007_s11427_022_2166_y
crossref_primary_10_1186_s12859_023_05562_z
crossref_primary_10_1186_s44149_023_00100_z
crossref_primary_10_1016_j_clim_2024_110164
crossref_primary_10_1038_s41586_023_06753_7
crossref_primary_10_1128_jvi_01070_23
crossref_primary_10_1186_s12929_021_00784_w
crossref_primary_10_1016_j_jim_2021_113195
crossref_primary_10_3389_fimmu_2021_766821
crossref_primary_10_3389_fimmu_2022_947174
crossref_primary_10_1093_infdis_jiae192
crossref_primary_10_3390_v13122544
crossref_primary_10_1080_07391102_2023_2265485
crossref_primary_10_3390_ijerph19031023
crossref_primary_10_1038_s41586_022_04980_y
crossref_primary_10_1021_acs_jpclett_3c01443
crossref_primary_10_3389_fmicb_2023_1122868
crossref_primary_10_1360_nso_20220005
crossref_primary_10_1038_s41422_022_00672_4
crossref_primary_10_3389_fcimb_2022_869832
crossref_primary_10_1016_j_isci_2023_106940
crossref_primary_10_3389_fimmu_2022_868020
crossref_primary_10_1080_1744666X_2022_2074403
crossref_primary_10_1038_s41467_023_42440_x
crossref_primary_10_3389_fcimb_2023_1213806
crossref_primary_10_3390_antib11030050
crossref_primary_10_1016_j_chom_2022_03_035
crossref_primary_10_1016_j_celrep_2022_111528
crossref_primary_10_1038_s41587_022_01382_3
crossref_primary_10_1038_s41586_021_03807_6
crossref_primary_10_1371_journal_ppat_1011119
crossref_primary_10_1038_s41564_022_01170_4
crossref_primary_10_1093_cei_uxab015
crossref_primary_10_1111_imr_13084
crossref_primary_10_1128_jvi_00192_23
crossref_primary_10_1016_j_jfma_2023_08_029
crossref_primary_10_1038_s41564_023_01389_9
crossref_primary_10_3390_v13112201
crossref_primary_10_1016_j_bbadis_2025_167772
crossref_primary_10_1371_journal_ppat_1010260
crossref_primary_10_3389_fimmu_2022_889372
crossref_primary_10_2174_1871526523666230406100146
crossref_primary_10_1073_pnas_2205784119
crossref_primary_10_1016_j_annonc_2021_07_015
crossref_primary_10_3390_v14061255
crossref_primary_10_1016_j_isci_2022_104043
crossref_primary_10_3390_v14122696
crossref_primary_10_3389_fimmu_2022_863554
crossref_primary_10_1111_irv_70065
crossref_primary_10_1038_s41392_022_00910_6
crossref_primary_10_1080_22221751_2022_2076613
crossref_primary_10_1126_science_abm8143
crossref_primary_10_3724_abbs_2023075
crossref_primary_10_1556_650_2021_32414
crossref_primary_10_3390_ijms24054401
crossref_primary_10_3389_fcimb_2022_928279
crossref_primary_10_3390_v15112175
crossref_primary_10_1021_acsinfecdis_4c00015
crossref_primary_10_26508_lsa_202201796
crossref_primary_10_3390_v14020384
crossref_primary_10_1016_j_jaip_2022_06_011
crossref_primary_10_2139_ssrn_4141628
crossref_primary_10_1128_spectrum_00681_23
crossref_primary_10_3390_v14102278
crossref_primary_10_1016_j_jim_2024_113768
crossref_primary_10_1002_jmv_27623
crossref_primary_10_1016_j_chom_2021_12_010
crossref_primary_10_1093_abt_tbad003
crossref_primary_10_1007_s15010_021_01677_8
crossref_primary_10_1097_MRM_0000000000000386
crossref_primary_10_1126_sciadv_abj9815
crossref_primary_10_1021_acsnano_3c02050
crossref_primary_10_1089_dna_2021_0457
crossref_primary_10_3389_fimmu_2022_992787
crossref_primary_10_11150_kansenshogakuzasshi_96_39
crossref_primary_10_1016_j_curtheres_2022_100675
crossref_primary_10_4103_jfmpc_jfmpc_334_23
crossref_primary_10_1007_s11912_022_01330_z
crossref_primary_10_3389_fimmu_2023_1278534
crossref_primary_10_1016_j_isci_2022_104705
crossref_primary_10_1186_s40814_023_01325_y
crossref_primary_10_1016_j_tim_2024_01_005
crossref_primary_10_1073_pnas_2303292120
crossref_primary_10_3389_fimmu_2023_1186063
crossref_primary_10_3390_v14122677
crossref_primary_10_1128_jvi_00610_23
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_1080_19420862_2022_2031483
crossref_primary_10_1038_s41421_022_00401_6
crossref_primary_10_1126_sciadv_ade3470
crossref_primary_10_1016_j_compbiomed_2022_106449
crossref_primary_10_1016_j_ijid_2022_12_035
crossref_primary_10_1038_s41467_024_49693_0
crossref_primary_10_1038_s41586_021_04266_9
crossref_primary_10_1016_j_celrep_2022_110757
crossref_primary_10_7759_cureus_36809
crossref_primary_10_1038_s42003_022_04138_6
crossref_primary_10_3389_fimmu_2021_690322
Cites_doi 10.4049/jimmunol.2000583
10.1107/S0907444908007877
10.1038/s41586-020-2665-2
10.1016/j.xcrm.2021.100264
10.1016/j.chom.2020.11.007
10.1126/science.abb2507
10.1126/science.abd2985
10.1126/science.abc4730
10.1016/j.chom.2021.03.005
10.1038/s41591-021-01285-x
10.1038/s41586-020-2852-1
10.1056/NEJMoa2033130
10.1172/JCI84428
10.1038/nbt.1601
10.1038/s41586-021-03426-1
10.1128/AAC.00352-20
10.1038/s41586-018-0531-2
10.1056/NEJMoa2035002
10.1126/scitranslmed.aaf9418
10.1056/NEJMoa2031738
10.1517/14712590802610692
10.1016/j.cell.2020.02.058
10.1038/s41564-020-0688-y
10.1038/s41586-020-2538-8
10.1038/s41591-021-01294-w
10.1056/NEJMoa2029849
10.1126/science.abg3055
10.1016/j.ebiom.2018.12.051
10.1002/btpr.3139
10.1126/scitranslmed.abf1906
10.4049/jimmunol.169.9.5171
10.1038/s41586-020-2380-z
10.1056/NEJMoa1913556
10.1038/s41586-021-03530-2
10.1016/j.cell.2020.08.012
10.1093/infdis/jiu396
10.1001/jama.2021.0202
10.1542/peds.102.3.531
10.1038/s41586-020-03041-6
10.1038/s41586-020-2838-z
10.1016/bs.aivir.2019.08.002
10.4161/rna.8.2.15013
10.1038/s41467-019-12137-1
10.1016/j.cell.2021.03.055
10.1016/j.smim.2021.101475
10.1056/NEJMc2031364
10.1056/NEJMoa2022483
10.1038/s41591-019-0412-8
10.1126/science.aaf0972
10.1542/peds.2008-1036
10.1038/s41586-021-03412-7
10.1038/s41598-018-28706-1
10.1016/S2468-2667(21)00055-4
10.1016/j.cell.2020.09.037
10.1056/NEJMoa2034577
10.1038/s41587-020-0512-5
10.1056/NEJM191912111812406
10.1016/j.cell.2020.02.052
10.1016/j.chom.2021.01.014
10.1038/nature06106
10.1093/oxfordjournals.aje.a120955
10.1016/S1473-3099(21)00170-5
10.1126/science.abf4830
10.1016/j.cell.2020.11.020
10.1038/s41564-020-00789-5
10.1016/j.ijid.2021.02.054
10.1016/j.cell.2020.09.035
10.1016/j.virol.2003.10.018
10.1038/s41586-020-2381-y
10.1126/science.abd0827
10.1128/AAC.00694-18
10.1038/s41591-019-0463-x
10.1056/NEJMoa2028700
10.1038/s41591-021-01255-3
10.1016/j.xcrm.2021.100255
10.1016/j.cell.2020.07.012
10.1126/science.abe9728
10.1126/science.abd3072
10.1007/s00705-020-04911-0
10.1038/s41577-020-00410-0
10.1038/nature12744
10.1038/s41467-020-16256-y
10.1006/cimm.2000.1617
10.1126/science.abe2402
10.1016/j.cell.2021.04.025
10.1038/nature16988
10.1016/j.cell.2021.03.028
10.1126/science.abc7424
10.7554/eLife.61312
10.1056/NEJMoa1910993
10.1016/j.cell.2021.02.026
10.1016/j.chom.2021.02.003
10.1016/j.cell.2021.03.029
10.1038/s41586-020-2349-y
10.1093/infdis/jiq100
10.1126/science.abd0831
10.1038/s41467-020-20602-5
10.1016/j.coviro.2017.03.002
10.1016/S0140-6736(21)00183-5
10.1016/j.cell.2021.01.037
10.1126/science.abf6840
10.1056/NEJMoa2100433
10.1016/j.cell.2020.05.025
10.1038/s41467-018-03665-3
10.1126/science.abc7520
10.1056/NEJMc2102179
10.1016/j.cell.2018.12.028
10.1038/nm.3443
10.1056/NEJMc2102017
10.1038/s41586-020-2456-9
10.1128/JVI.75.24.12161-12168.2001
10.1038/nature13612
10.1038/s41564-020-0770-5
10.1038/s41586-021-03291-y
10.1126/science.abe5901
10.1038/s41586-021-03471-w
10.1126/scitranslmed.aaj1928
10.1016/j.cell.2016.05.073
10.1038/s41586-021-03398-2
10.1126/science.abf6950
10.1038/s41586-021-03324-6
10.1084/jem.20201993
10.1038/s41586-020-2012-7
10.1038/s41586-020-2548-6
10.1016/j.ygeno.2020.11.003
10.1126/science.abf9302
10.1172/JCI128437
10.1016/j.cell.2020.10.049
10.1126/science.abg6105
10.1016/j.cell.2020.10.043
10.1126/science.abc6952
10.1126/science.abe3354
10.1126/science.abb7269
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
2021 Elsevier Inc. 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: 2021 Elsevier Inc. 2021 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2021.05.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 3108
ExternalDocumentID PMC8152891
34087172
10_1016_j_cell_2021_05_005
S0092867421006024
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120553
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c4035-c92cea4ac55dd1056579e87eedb2e499f8846992cb7843f10148b6d85c4978fe3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:32:32 EDT 2025
Thu Aug 07 15:03:11 EDT 2025
Thu Jul 10 23:13:42 EDT 2025
Thu Apr 03 07:08:37 EDT 2025
Tue Jul 01 02:17:09 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Fri Feb 23 02:42:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords COVID-19
SARS-CoV-2
therapeutics
monoclonal antibody
neutralization
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4035-c92cea4ac55dd1056579e87eedb2e499f8846992cb7843f10148b6d85c4978fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8152891
PMID 34087172
PQID 2537632440
PQPubID 23479
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8152891
proquest_miscellaneous_2551983302
proquest_miscellaneous_2537632440
pubmed_primary_34087172
crossref_primary_10_1016_j_cell_2021_05_005
crossref_citationtrail_10_1016_j_cell_2021_05_005
elsevier_sciencedirect_doi_10_1016_j_cell_2021_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-10
PublicationDateYYYYMMDD 2021-06-10
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mair-Jenkins, Saavedra-Campos, Baillie, Cleary, Khaw, Lim, Makki, Rooney, Nguyen-Van-Tam, Beck (bib88) 2015; 211
Chen, Winkler, Case, Aziati, Bricker, Joshi, Darling, Ying, Errico, Shrihari (bib24) 2021
Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib136) 2019; 176
Doud, Lee, Bloom (bib43) 2018; 9
Ali, Takas, Nyborg, Shoemaker, Kallewaard, Chiong, Dubovsky, Mallory (bib2) 2018; 62
Hoffmann, Hofmann-Winkler, Krüger, Kempf, Nehlmeier, Graichen, Sidarovich, Moldenhauer, Winkler, Schulz (bib160) 2021
Rappazzo, Tse, Kaku, Wrapp, Sakharkar, Huang, Deveau, Yockachonis, Herbert, Battles (bib106) 2021; 371
Soh, Liu, Nakayama, Ono, Torii, Nakagami, Matsuura, Shioda, Arase (bib120) 2020
Daly, Simonetti, Antón-Plágaro, Kavanagh Williamson, Shoemark, Simón-Gracia, Klein, Bauer, Hollandi, Greber (bib34) 2020; 370
Hezareh, Hessell, Jensen, van de Winkel, Parren (bib60) 2001; 75
(bib47) 2021
Kelley, Renshaw, Kamarck (bib72) 2021
Denison, Graham, Donaldson, Eckerle, Baric (bib39) 2011; 8
Starr, Czudnochowski, Zatta, Park, Liu, Addetia, Pinto, Beltramello, Hernandez, Greaney (bib122) 2021
Ryu, Song, Kim, Kim, Kim, Kim, Kwon, Tijsma, Nuijten, van Baalen (bib113) 2021
Kim, Canchola, Brandt, Pyles, Chanock, Jensen, Parrott (bib74) 1969; 89
Sarkar, Mitra, Chandra, Saha, Banerjee, Dutta, Chawla-Sarkar (bib115) 2021; 166
Schäfer, Muecksch, Lorenzi, Leist, Cipolla, Bournazos, Schmidt, Maison, Gazumyan, Martinez (bib116) 2021; 218
Deng, Garcia-Knight, Khalid, Servellita, Wang, Morris, Sotomayor-González, Glasner, Reyes, Gliwa (bib38) 2021
Xu, Alegre, Varga, Rothermel, Collins, Pulito, Hanna, Dolan, Parren, Bluestone (bib151) 2000; 200
Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib8) 2020; 588
Shi, Shan, Duan, Chen, Liu, Song, Song, Bi, Han, Wu (bib118) 2020; 584
Weitzenfeld, Bournazos, Ravetch (bib146) 2019; 129
Wec, Wrapp, Herbert, Maurer, Haslwanter, Sakharkar, Jangra, Dieterle, Lilov, Huang (bib143) 2020; 369
Carbonell-Estrany, Simões, Dagan, Hall, Harris, Hultquist, Connor, Losonsky (bib18) 2010; 125
Davies, Jarvis, Edmunds, Jewell, Diaz-Ordaz, Keogh (bib35) 2021; 593
Gupta, Gonzales-Rojas, Juarez, Casal, Moya, Falci, Sarkis, Solis, Zheng, Scott (bib161) 2021
Walls, Fiala, Schäfer, Wrenn, Pham, Murphy, Tse, Shehata, O’Connor, Chen (bib137) 2020; 183
Letko, Marzi, Munster (bib82) 2020; 5
Gordon, Mouncey, Al-Beidh, Rowan, Nichol, Arabi, Annane, Beane, van Bentum-Puijk (bib108) 2021; 384
Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib110) 2020; 369
Avanzato, Matson, Seifert, Pryce, Williamson, Anzick, Barbian, Judson, Fischer, Martens (bib7) 2020; 183
Bournazos, Corti, Virgin, Ravetch (bib13) 2020; 588
Rambaut, Holmes, O’Toole, Hill, McCrone, Ruis, du Plessis, Pybus (bib105) 2020; 5
Tortorici, Czudnochowski, Starr, Marzi, Walls, Zatta, Bowen, Jaconi, Iulio, Wang (bib131) 2021
Dejnirattisai, Zhou, Supasa, Liu, Mentzer, Ginn, Zhao, Duyvesteyn, Tuekprakhon, Nutalai (bib37) 2021
Chen, Nirula, Heller, Gottlieb, Boscia, Morris, Huhn, Cardona, Mocherla, Stosor (bib23) 2021; 384
Simões, Forleo-Neto, Geba, Kamal, Yang, Cicirello, Houghton, Rideman, Zhao, Benvin (bib119) 2020; 390
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib156) 2020; 579
Kirkpatrick, Qiu, Wilson, Bahl, Krammer (bib76) 2018; 8
Cohen, Gnanapragasam, Lee, Hoffman, Ou, Kakutani, Keeffe, Wu, Howarth, West (bib28) 2021; 371
Davies, Abbott, Barnard, Jarvis, Kucharski, Munday, Pearson, Russell, Tully, Washburne (bib36) 2021; 372
Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib135) 2016; 531
Dong, Zost, Greaney, Starr, Dingens, Chen, Chen, Case, Sutton, Gilchuk (bib42) 2021
Du, Cao, Zhu, Yu, Qi, Wang, Du, Bao, Deng, Zhu (bib44) 2020; 183
Kim, Ryu, Lee, Kim, Seo, Kim, Jeong, Kim, Kim, Kim (bib75) 2021; 12
Gu, Chen, Yang, He, Fan, Deng, Wang, Teng, Zhao, Cui (bib56) 2020; 369
Starr, Greaney, Dingens, Bloom (bib124) 2021; 2
Copin, Baum, Wloga, Pascal, Giordano, Fulton, Zhou, Negron, Lanza, Chan (bib30) 2021
Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib141) 2021; 593
Thomson, Rosen, Shepherd, Spreafico, da Silva Filipe, Wojcechowskyj, Davis, Piccoli, Pascall, Dillen (bib128) 2021; 184
Zhu, McLellan, Kallewaard, Ulbrandt, Palaszynski, Zhang, Moldt, Khan, Svabek, McAuliffe (bib158) 2017; 9
Greaney, Loes, Crawford, Starr, Malone, Chu, Bloom (bib53) 2021; 29
Redden (bib107) 1919; 181
Wu, Werner, Koch, Choi, Narayanan, Stewart-Jones, Colpitts, Bennett, Boyoglu-Barnum, Shi (bib150) 2021; 384
Arunachalam, Walls, Golden, Atyeo, Fischinger, Li, Aye, Navarro, Lai, Edara (bib5) 2021
Graham, Sudre, May, Antonelli, Murray, Varsavsky, Kläser, Canas, Molteni, Modat (bib52) 2021; 6
Oganesyan, Gao, Shirinian, Wu, Dall’Acqua (bib99) 2008; 64
Hessell, Hangartner, Hunter, Havenith, Beurskens, Bakker, Lanigan, Landucci, Forthal, Parren (bib59) 2007; 449
Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz, Kuivanen, van der Meer, Kallio, Kaya, Anastasina (bib16) 2020; 370
Kustin, Harel, Finkel, Perchik, Harari, Tahor, Caspi, Levy, Leschinsky, Dror (bib79) 2021
Greaney, Starr, Gilchuk, Zost, Binshtein, Loes, Hilton, Huddleston, Eguia, Crawford (bib54) 2021; 29
Ortiz, Lansing, Rutitzky, Kurtagic, Prod’homme, Choudhury, Washburn, Bhatnagar, Beneduce, Holte (bib100) 2016; 8
Tortorici, Veesler (bib129) 2019; 105
Winkler, Gilchuk, Yu, Bailey, Chen, Chong, Zost, Jang, Huang, Allen (bib148) 2021; 184
Zhu, McAuliffe, Patel, Palmer-Hill, Yang, Liang, Su, Zhu, Wachter, Wilson (bib157) 2011; 203
Baum, Fulton, Wloga, Copin, Pascal, Russo, Giordano, Lanza, Negron, Ni (bib11) 2020; 369
Horby, Pessoa-Amorim, Peto, Brightling, Sarkar, Thomas, Jeebun, Ashish, Tully, Chadwick (bib63) 2021
Barouch, Whitney, Moldt, Klein, Oliveira, Liu, Stephenson, Chang, Shekhar, Gupta (bib9) 2013; 503
Georgescu, Chemaly (bib50) 2009; 9
Gottlieb, Nirula, Chen, Boscia, Heller, Morris, Huhn, Cardona, Mocherla, Stosor (bib51) 2021; 325
Tegally, Wilkinson, Lessells, Giandhari, Pillay, Msomi, Mlisana, Bhiman, von Gottberg, Walaza (bib127) 2021; 27
Liu, Liu, Xia, Zhang, Fontes-Garfias, Swanson, Cai, Sarkar, Chen, Cutler (bib85) 2021; 384
Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib67) 2020; 584
Chen, Zhang, Case, Winkler, Liu, VanBlargan, Liu, Errico, Xie, Suryadevara (bib25) 2021; 27
Baum, Ajithdoss, Copin, Zhou, Lanza, Negron, Ni, Wei, Mohammadi, Musser (bib10) 2020; 370
Corey, Gilbert, Juraska, Montefiori, Morris, Karuna, Edupuganti, Mgodi, deCamp, Rudnicki (bib31) 2021; 384
Tortorici, Beltramello, Lempp, Pinto, Dang, Rosen, McCallum, Bowen, Minola, Jaconi (bib130) 2020; 370
Klein, Cortese, Winter, Wachsmuth-Melm, Neufeldt, Cerikan, Stanifer, Boulant, Bartenschlager, Chlanda (bib77) 2020; 3
Rosas, Bräu, Waters, Go, Hunter, Bhagani, Skiest, Aziz, Cooper, Douglas (bib111) 2021; 384
Muik, Wallisch, Sänger, Swanson, Mühl, Chen, Cai, Maurus, Sarkar, Türeci (bib94) 2021; 371
Hershberger, Sloan, Narayan, Hay, Smith, Engler, Jeeninga, Smits, Trevejo, Shriver, Oldach (bib58) 2019; 40
Starr, Greaney, Hilton, Ellis, Crawford, Dingens, Navarro, Bowen, Tortorici, Walls (bib121) 2020; 182
Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib57) 2020; 369
Sabino, Buss, Carvalho, Prete, Crispim, Fraiji, Pereira, Parag, da Silva Peixoto, Kraemer (bib114) 2021; 397
Frampton, Rampling, Cross, Bailey, Heaney, Byott, Scott, Sconza, Price, Margaritis (bib49) 2021
Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib83) 2020; 182
Choi, Choudhary, Regan, Sparks, Padera, Qiu, Solomon, Kuo, Boucau, Bowman (bib27) 2020; 383
Munitz, Yechezkel, Dickstein, Yamin, Gerlic (bib96) 2021; 2
Alsoussi, Turner, Case, Zhao, Schmitz, Zhou, Chen, Lei, Rizk, McIntire (bib3) 2020; 205
Suryadevara, Shrihari, Gilchuk, VanBlargan, Binshtein, Zost, Nargi, Sutton, Winkler, Chen (bib125) 2021; 184
Tworek, Jaroń, Uszyńska-Kałuża, Rydzewski, Gil, Deptała, Franek, Wójtowicz, Życińska, Walecka (bib132) 2021; 105
Kallewaard, Corti, Collins, Neu, McAuliffe, Benjamin, Wachter-Rosati, Palmer-Hill, Yuan, Walker (bib69) 2016; 166
Oude Munnink, Sikkema, Nieuwenhuijse, Molenaar, Munger, Molenkamp, van der Spek, Tolsma, Rietveld, Brouwer (bib101) 2021; 371
Ma, Wiggins, Kornatowski, Hailat, Clayburn, Guo, Johnson, Senefeld, Klassen, Baker (bib87) 2021
Cele, Gazy, Jackson, Hwa, Tegally, Lustig, Giandhari, Pillay, Wilkinson, Naidoo (bib21) 2021; 593
Tang, Chen, Cox, Su, Callahan, Fridman, Zhang, Patel, Cejas, Swoyer (bib126) 2019; 10
Zost, Gilchuk, Case, Binshtein, Chen, Nkolola, Schäfer, Reidy, Trivette, Nargi (bib159) 2020; 584
Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib139) 2020; 11
Griffin, Yuan, Takas, Domachowske, Madhi, Manzoni, Simões, Esser, Khan, Dubovsky (bib55) 2020; 383
Wibmer, Ayres, Hermanus, Madzivhandila, Kgagudi, Oosthuysen, Lambson, de Oliveira, Vermeulen, van der Berg (bib147) 2021; 27
Voss, Hou, Johnson, Kim, Delidakis, Horton, Bartzoka, Paresi, Tanno, Abbasi (bib134) 2020
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib61) 2020; 181
McMahan, Yu, Mercado, Loos, Tostanoski, Chandrashekar, Liu, Peter, Atyeo, Zhu (bib92) 2021; 590
Julg, Barouch (bib68) 2021
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib138) 2020; 181
McCarthy, Rennick, Nambulli, Robinson-McCarthy, Bain, Haidar, Duprex (bib91) 2021; 371
(bib98) 2021
Weinreich, Sivapalasingam, Norton, Ali, Gao, Bhore, Musser, Soo, Rofail, Im (bib144) 2021; 384
Cerutti, Guo, Zhou, Gorman, Lee, Rapp, Reddem, Yu, Bahna, Bimela (bib22) 2021; 29
Bournazos, Gupta, Ravetch (bib14) 2020; 20
Kelley (bib71) 2020; 38
McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib90) 2021; 184
Volz, Hill, McCrone, Price, Jorgensen, O’Toole, Southgate, Johnson, Jackson, Nascimento (bib133) 2021; 184
McCallum, Bassi, Marco, Chen, Walls, Iulio, Tortorici, Navarro, Silacci-Fregni, Saliba (bib89) 2021
Piccoli, Park, Tortorici, Czudnochowski, Walls, Beltramello, Silacci-Fregni, Pinto, Rosen, Bowen (bib102) 2020; 183
Ke, Oton, Qu, Cortese, Zila, McKeane, Nakane, Z
McCallum (10.1016/j.cell.2021.05.005_bib89) 2021
Redden (10.1016/j.cell.2021.05.005_bib107) 1919; 181
Denison (10.1016/j.cell.2021.05.005_bib39) 2011; 8
Cantuti-Castelvetri (10.1016/j.cell.2021.05.005_bib16) 2020; 370
Dall’Acqua (10.1016/j.cell.2021.05.005_bib33) 2002; 169
Shi (10.1016/j.cell.2021.05.005_bib118) 2020; 584
Barnes (10.1016/j.cell.2021.05.005_bib8) 2020; 588
Behring (10.1016/j.cell.2021.05.005_bib12) 2013
Chen (10.1016/j.cell.2021.05.005_bib23) 2021; 384
(10.1016/j.cell.2021.05.005_bib98) 2021
Ortiz (10.1016/j.cell.2021.05.005_bib100) 2016; 8
Weinreich (10.1016/j.cell.2021.05.005_bib144) 2021; 384
Kallewaard (10.1016/j.cell.2021.05.005_bib69) 2016; 166
Ko (10.1016/j.cell.2021.05.005_bib78) 2014; 514
Tortorici (10.1016/j.cell.2021.05.005_bib129) 2019; 105
McCallum (10.1016/j.cell.2021.05.005_bib90) 2021; 184
Graham (10.1016/j.cell.2021.05.005_bib52) 2021; 6
Zhu (10.1016/j.cell.2021.05.005_bib157) 2011; 203
Tortorici (10.1016/j.cell.2021.05.005_bib131) 2021
Arvin (10.1016/j.cell.2021.05.005_bib6) 2020; 584
Ju (10.1016/j.cell.2021.05.005_bib67) 2020; 584
Lim (10.1016/j.cell.2021.05.005_bib84) 2020; 64
Bournazos (10.1016/j.cell.2021.05.005_bib13) 2020; 588
Muik (10.1016/j.cell.2021.05.005_bib94) 2021; 371
Bournazos (10.1016/j.cell.2021.05.005_bib14) 2020; 20
Thomson (10.1016/j.cell.2021.05.005_bib128) 2021; 184
Kim (10.1016/j.cell.2021.05.005_bib74) 1969; 89
Zhu (10.1016/j.cell.2021.05.005_bib158) 2017; 9
Sabino (10.1016/j.cell.2021.05.005_bib114) 2021; 397
Liu (10.1016/j.cell.2021.05.005_bib86) 2021; 29
Gu (10.1016/j.cell.2021.05.005_bib56) 2020; 369
Hessell (10.1016/j.cell.2021.05.005_bib59) 2007; 449
Zalevsky (10.1016/j.cell.2021.05.005_bib154) 2010; 28
Mulangu (10.1016/j.cell.2021.05.005_bib95) 2019; 381
Weitzenfeld (10.1016/j.cell.2021.05.005_bib146) 2019; 129
Georgescu (10.1016/j.cell.2021.05.005_bib50) 2009; 9
Wrapp (10.1016/j.cell.2021.05.005_bib149) 2020; 367
Copin (10.1016/j.cell.2021.05.005_bib30) 2021
Horby (10.1016/j.cell.2021.05.005_bib63) 2021
Pinto (10.1016/j.cell.2021.05.005_bib103) 2020; 583
Weisblum (10.1016/j.cell.2021.05.005_bib145) 2020; 9
Baum (10.1016/j.cell.2021.05.005_bib10) 2020; 370
(10.1016/j.cell.2021.05.005_bib46) 2020
Starr (10.1016/j.cell.2021.05.005_bib123) 2021; 371
Rambaut (10.1016/j.cell.2021.05.005_bib105) 2020; 5
Wec (10.1016/j.cell.2021.05.005_bib143) 2020; 369
Avanzato (10.1016/j.cell.2021.05.005_bib7) 2020; 183
Lempp (10.1016/j.cell.2021.05.005_bib81) 2021
Baum (10.1016/j.cell.2021.05.005_bib11) 2020; 369
Cao (10.1016/j.cell.2021.05.005_bib17) 2020; 182
Schäfer (10.1016/j.cell.2021.05.005_bib116) 2021; 218
Arunachalam (10.1016/j.cell.2021.05.005_bib5) 2021
Mair-Jenkins (10.1016/j.cell.2021.05.005_bib88) 2015; 211
Oude Munnink (10.1016/j.cell.2021.05.005_bib101) 2021; 371
Polack (10.1016/j.cell.2021.05.005_bib104) 2020; 383
Hansen (10.1016/j.cell.2021.05.005_bib57) 2020; 369
Walls (10.1016/j.cell.2021.05.005_bib136) 2019; 176
Kim (10.1016/j.cell.2021.05.005_bib75) 2021; 12
Choi (10.1016/j.cell.2021.05.005_bib27) 2020; 383
Davies (10.1016/j.cell.2021.05.005_bib36) 2021; 372
Rogers (10.1016/j.cell.2021.05.005_bib110) 2020; 369
Starr (10.1016/j.cell.2021.05.005_bib121) 2020; 182
Rosas (10.1016/j.cell.2021.05.005_bib111) 2021; 384
Cele (10.1016/j.cell.2021.05.005_bib21) 2021; 593
Griffin (10.1016/j.cell.2021.05.005_bib55) 2020; 383
Chen (10.1016/j.cell.2021.05.005_bib24) 2021
Deng (10.1016/j.cell.2021.05.005_bib38) 2021
Julg (10.1016/j.cell.2021.05.005_bib68) 2021
Wu (10.1016/j.cell.2021.05.005_bib150) 2021; 384
DiLillo (10.1016/j.cell.2021.05.005_bib40) 2014; 20
(10.1016/j.cell.2021.05.005_bib45) 2020
Alsoussi (10.1016/j.cell.2021.05.005_bib3) 2020; 205
Letko (10.1016/j.cell.2021.05.005_bib82) 2020; 5
Piccoli (10.1016/j.cell.2021.05.005_bib102) 2020; 183
Oganesyan (10.1016/j.cell.2021.05.005_bib99) 2008; 64
Soh (10.1016/j.cell.2021.05.005_bib120) 2020
Liu (10.1016/j.cell.2021.05.005_bib85) 2021; 384
Hoffmann (10.1016/j.cell.2021.05.005_bib61) 2020; 181
Tworek (10.1016/j.cell.2021.05.005_bib132) 2021; 105
Klein (10.1016/j.cell.2021.05.005_bib77) 2020; 3
Ali (10.1016/j.cell.2021.05.005_bib2) 2018; 62
Hoffmann (10.1016/j.cell.2021.05.005_bib62) 2021
Fedry (10.1016/j.cell.2021.05.005_bib48) 2020
Dong (10.1016/j.cell.2021.05.005_bib42) 2021
Buss (10.1016/j.cell.2021.05.005_bib15) 2021; 371
Greaney (10.1016/j.cell.2021.05.005_bib53) 2021; 29
Lee (10.1016/j.cell.2021.05.005_bib80) 2020; 5
Dejnirattisai (10.1016/j.cell.2021.05.005_bib37) 2021
Roy (10.1016/j.cell.2021.05.005_bib112) 2020; 112
Xu (10.1016/j.cell.2021.05.005_bib151) 2000; 200
Ke (10.1016/j.cell.2021.05.005_bib70) 2020; 588
Sarkar (10.1016/j.cell.2021.05.005_bib115) 2021; 166
Lundgren (10.1016/j.cell.2021.05.005_bib1) 2021; 384
Davies (10.1016/j.cell.2021.05.005_bib35) 2021; 593
Kustin (10.1016/j.cell.2021.05.005_bib79) 2021
Ng (10.1016/j.cell.2021.05.005_bib97) 2019; 25
Robbiani (10.1016/j.cell.2021.05.005_bib109) 2020; 584
Corey (10.1016/j.cell.2021.05.005_bib31) 2021; 384
Hoffmann (10.1016/j.cell.2021.05.005_bib160) 2021
Corti (10.1016/j.cell.2021.05.005_bib32) 2017; 24
Cohen (10.1016/j.cell.2021.05.005_bib28) 2021; 371
Greaney (10.1016/j.cell.2021.05.005_bib54) 2021; 29
Starr (10.1016/j.cell.2021.05.005_bib124) 2021; 2
Suryadevara (10.1016/j.cell.2021.05.005_bib125) 2021; 184
Zhou (10.1016/j.cell.2021.05.005_bib156) 2020; 579
Zhao (10.1016/j.cell.2021.05.005_bib155) 2004; 318
Gordon (10.1016/j.cell.2021.05.005_bib108) 2021; 384
Kemp (10.1016/j.cell.2021.05.005_bib73) 2021; 592
Jackson (10.1016/j.cell.2021.05.005_bib65) 2020; 383
Ryu (10.1016/j.cell.2021.05.005_bib113) 2021
Tegally (10.1016/j.cell.2021.05.005_bib127) 2021; 27
Dilillo (10.1016/j.cell.2021.05.005_bib41) 2016; 126
Hezareh (10.1016/j.cell.2021.05.005_bib60) 2001; 75
Gupta (10.1016/j.cell.2021.05.005_bib161) 2021
Chi (10.1016/j.cell.2021.05.005_bib26) 2020; 369
Volz (10.1016/j.cell.2021.05.005_bib133) 2021; 184
Zost (10.1016/j.cell.2021.05.005_bib159) 2020; 584
Winkler (10.1016/j.cell.2021.05.005_bib148) 2021; 184
Cerutti (10.1016/j.cell.2021.05.005_bib22) 2021; 29
Starr (10.1016/j.cell.2021.05.005_bib122) 2021
Kirkpatrick (10.1016/j.cell.2021.05.005_bib76) 2018; 8
Mendoza (10.1016/j.cell.2021.05.005_bib93) 2018; 561
(10.1016/j.cell.2021.05.005_bib47) 2021
Walls (10.1016/j.cell.2021.05.005_bib137) 2020; 183
Wang (10.1016/j.cell.2021.05.005_bib140) 2021
Daly (10.1016/j.cell.2021.05.005_bib34) 2020; 370
Hershberger (10.1016/j.cell.2021.05.005_bib58) 2019; 40
Chen (10.1016/j.cell.2021.05.005_bib25) 2021; 27
Ma (10.1016/j.cell.2021.05.005_bib87) 2021
Yuan (10.1016/j.cell.2021.05.005_bib153) 2020; 368
Tang (10.1016/j.cell.2021.05.005_bib126) 2019; 10
Schoofs (10.1016/j.cell.2021.05.005_bib117) 2016; 352
Barouch (10.1016/j.cell.2021.05.005_bib9) 2013; 503
Jones (10.1016/j.cell.2021.05.005_bib66) 2021; 13
Kelley (10.1016/j.cell.2021.05.005_bib71) 2020; 38
Gottlieb (10.1016/j.cell.2021.05.005_bib51) 2021; 325
(10.1016/j.cell.2021.05.005_bib64) 1998; 102
Du (10.1016/j.cell.2021.05.005_bib44) 2020; 183
Carbonell-Estrany (10.1016/j.cell.2021.05.005_bib18) 2010; 125
Tortorici (10.1016/j.cell.2021.05.005_bib130) 2020; 370
Voss (10.1016/j.cell.2021.05.005_bib134) 2020
Wang (10.1016/j.cell.2021.05.005_bib139) 2020; 11
Rappazzo (10.1016/j.cell.2021.05.005_bib106) 2021; 371
Doud (10.1016/j.cell.2021.05.005_bib43) 2018; 9
Andreano (10.1016/j.cell.2021.05.005_bib4) 2020
McMahan (10.1016/j.cell.2021.05.005_bib92) 2021; 590
Collier (10.1016/j.cell.2021.05.005_bib29) 2021; 593
McCarthy (10.1016/j.cell.2021.05.005_bib91) 2021; 371
Caskey (10.1016/j.cell.2021.05.005_bib19) 2019; 25
Munitz (10.1016/j.cell.2021.05.005_bib96) 2021; 2
Walls (10.1016/j.cell.2021.05.005_bib135) 2016; 531
Wibmer (10.1016/j.cell.2021.05.005_bib147) 2021; 27
Li (10.1016/j.cell.2021.05.005_bib83) 2020; 182
Kelley (10.1016/j.cell.2021.05.005_bib72) 2021
Simões (10.1016/j.cell.2021.05.005_bib119) 2020; 390
Cathcart (10.1016/j.cell.2021.05.005_bib20) 2021
Walls (10.1016/j.cell.2021.05.005_bib138) 2020; 181
Wang (10.1016/j.cell.2021.05.005_bib141) 2021; 593
Wang (10.1016/j.cell.2021.05.005_bib142) 2021; 592
Frampton (10.1016/j.cell.2021.05.005_bib49) 2021
34416148 - Cell. 2021 Aug 19;184(17):4593-4595. doi: 10.1016/j.cell.2021.07.027
References_xml – volume: 370
  start-page: 856
  year: 2020
  end-page: 860
  ident: bib16
  article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity
  publication-title: Science
– volume: 369
  start-page: 1014
  year: 2020
  end-page: 1018
  ident: bib11
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
– volume: 6
  start-page: e335
  year: 2021
  end-page: e345
  ident: bib52
  article-title: Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study
  publication-title: Lancet Public Health
– volume: 64
  year: 2020
  ident: bib84
  article-title: A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of MHAA4549A, a Monoclonal Antibody, plus Oseltamivir in Patients Hospitalized with Severe Influenza A Virus Infection
  publication-title: Antimicrob. Agents Chemother.
– year: 2020
  ident: bib134
  article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma
  publication-title: bioRxiv
– volume: 384
  start-page: 1466
  year: 2021
  end-page: 1468
  ident: bib85
  article-title: Neutralizing Activity of BNT162b2-Elicited Serum
  publication-title: N. Engl. J. Med.
– volume: 182
  start-page: 73
  year: 2020
  end-page: 84.e16
  ident: bib17
  article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells
  publication-title: Cell
– year: 2020
  ident: bib45
  article-title: Emergency Use Authorization (EUA) for bamlanivimab. Center for Drug Evaluation and Research (CDER)
– year: 2021
  ident: bib81
  article-title: Membrane lectins enhance SARS-CoV-2 infection and influence the neutralizing activity of different classes of antibodies
  publication-title: bioRxiv
– volume: 9
  start-page: 1386
  year: 2018
  ident: bib43
  article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin
  publication-title: Nat. Commun.
– volume: 183
  start-page: 1013
  year: 2020
  end-page: 1023.e13
  ident: bib44
  article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy
  publication-title: Cell
– volume: 11
  start-page: 2251
  year: 2020
  ident: bib139
  article-title: A human monoclonal antibody blocking SARS-CoV-2 infection
  publication-title: Nat. Commun.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib156
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 126
  start-page: 605
  year: 2016
  end-page: 610
  ident: bib41
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
– volume: 20
  start-page: 633
  year: 2020
  end-page: 643
  ident: bib14
  article-title: The role of IgG Fc receptors in antibody-dependent enhancement
  publication-title: Nat. Rev. Immunol.
– volume: 371
  start-page: 1152
  year: 2021
  end-page: 1153
  ident: bib94
  article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera
  publication-title: Science
– volume: 371
  start-page: 1139
  year: 2021
  end-page: 1142
  ident: bib91
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
– year: 2021
  ident: bib122
  article-title: Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape
  publication-title: bioRxiv
– year: 2021
  ident: bib72
  article-title: Process and operations strategies to enable global access to antibody therapies
  publication-title: Biotechnol. Prog.
– volume: 588
  start-page: 498
  year: 2020
  end-page: 502
  ident: bib70
  article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions
  publication-title: Nature
– volume: 12
  start-page: 288
  year: 2021
  ident: bib75
  article-title: A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein
  publication-title: Nat. Commun.
– volume: 200
  start-page: 16
  year: 2000
  end-page: 26
  ident: bib151
  article-title: In vitro characterization of five humanized OKT3 effector function variant antibodies
  publication-title: Cell. Immunol.
– volume: 211
  start-page: 80
  year: 2015
  end-page: 90
  ident: bib88
  article-title: The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis
  publication-title: J. Infect. Dis.
– volume: 29
  start-page: 463
  year: 2021
  end-page: 476.e6
  ident: bib53
  article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies
  publication-title: Cell Host Microbe
– volume: 449
  start-page: 101
  year: 2007
  end-page: 104
  ident: bib59
  article-title: Fc receptor but not complement binding is important in antibody protection against HIV
  publication-title: Nature
– volume: 62
  start-page: 1
  year: 2018
  end-page: 47
  ident: bib2
  article-title: Evaluation of MEDI8852, an Anti-Influenza A Monoclonal Antibody, in Treating Acute Uncomplicated Influenza
  publication-title: Antimicrob. Agents Chemother.
– volume: 369
  start-page: 1010
  year: 2020
  end-page: 1014
  ident: bib57
  article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
  publication-title: Science
– volume: 371
  start-page: 288
  year: 2021
  end-page: 292
  ident: bib15
  article-title: Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic
  publication-title: Science
– year: 2021
  ident: bib47
  article-title: Development of Monoclonal Antibody Products Targeting SARS-CoV-2, Including Addressing the Impact of Emerging Variants, During the COVID 19 Public Health Emergency
– volume: 102
  start-page: 531
  year: 1998
  end-page: 537
  ident: bib64
  article-title: Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants
  publication-title: Pediatrics
– volume: 10
  start-page: 4153
  year: 2019
  ident: bib126
  article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
  publication-title: Nat. Commun.
– volume: 27
  start-page: 440
  year: 2021
  end-page: 446
  ident: bib127
  article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa
  publication-title: Nat. Med.
– volume: 584
  start-page: 115
  year: 2020
  end-page: 119
  ident: bib67
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
– year: 2021
  ident: bib68
  article-title: Broadly neutralizing antibodies for HIV-1 prevention and therapy
  publication-title: Semin. Immunol.
– volume: 9
  start-page: eaaj1928
  year: 2017
  ident: bib158
  article-title: A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants
  publication-title: Sci. Transl. Med.
– volume: 169
  start-page: 5171
  year: 2002
  end-page: 5180
  ident: bib33
  article-title: Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences
  publication-title: J. Immunol.
– volume: 218
  start-page: 218
  year: 2021
  ident: bib116
  article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo
  publication-title: J. Exp. Med.
– volume: 25
  start-page: 547
  year: 2019
  end-page: 553
  ident: bib19
  article-title: Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic
  publication-title: Nat. Med.
– year: 2021
  ident: bib63
  article-title: Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial
  publication-title: medRxiv
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: bib103
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 166
  start-page: 801
  year: 2021
  end-page: 812
  ident: bib115
  article-title: Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations
  publication-title: Arch. Virol.
– year: 2021
  ident: bib37
  article-title: Antibody evasion by the P.1 strain of SARS-CoV-2
  publication-title: Cell
– volume: 8
  start-page: 270
  year: 2011
  end-page: 279
  ident: bib39
  article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity
  publication-title: RNA Biol.
– volume: 112
  start-page: 5331
  year: 2020
  end-page: 5342
  ident: bib112
  article-title: Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus
  publication-title: Genomics
– volume: 20
  start-page: 143
  year: 2014
  end-page: 151
  ident: bib40
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
– volume: 28
  start-page: 157
  year: 2010
  end-page: 159
  ident: bib154
  article-title: Enhanced antibody half-life improves in vivo activity
  publication-title: Nat. Biotechnol.
– volume: 384
  start-page: 229
  year: 2021
  end-page: 237
  ident: bib23
  article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
– volume: 584
  start-page: 443
  year: 2020
  end-page: 449
  ident: bib159
  article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2
  publication-title: Nature
– volume: 370
  start-page: 861
  year: 2020
  end-page: 865
  ident: bib34
  article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection
  publication-title: Science
– volume: 352
  start-page: 997
  year: 2016
  end-page: 1001
  ident: bib117
  article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1
  publication-title: Science
– volume: 184
  start-page: 64
  year: 2021
  end-page: 75.e11
  ident: bib133
  article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
  publication-title: Cell
– volume: 384
  start-page: 1468
  year: 2021
  end-page: 1470
  ident: bib150
  article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: bib87
  article-title: The Role of Disease Severity and Demographics in the Clinical Course of COVID-19 Patients Treated with Convalescent Plasma
  publication-title: medRxiv
– volume: 105
  start-page: 93
  year: 2019
  end-page: 116
  ident: bib129
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
– volume: 3
  start-page: 237
  year: 2020
  end-page: 238
  ident: bib77
  article-title: SARS-CoV-2 structure and replication characterized by in situcryo-electron tomography
  publication-title: Nat. Commun.
– volume: 27
  start-page: 717
  year: 2021
  end-page: 726
  ident: bib25
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat. Med.
– volume: 9
  start-page: 139
  year: 2009
  end-page: 147
  ident: bib50
  article-title: Palivizumab: where to from here?
  publication-title: Expert Opin. Biol. Ther.
– volume: 29
  start-page: 477
  year: 2021
  end-page: 488.e4
  ident: bib86
  article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization
  publication-title: Cell Host Microbe
– year: 2021
  ident: bib24
  article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains
  publication-title: Research Square
– volume: 384
  start-page: 1003
  year: 2021
  end-page: 1014
  ident: bib31
  article-title: Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition
  publication-title: N. Engl. J. Med.
– volume: 369
  start-page: 1603
  year: 2020
  end-page: 1607
  ident: bib56
  article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy
  publication-title: Science
– year: 2021
  ident: bib161
  article-title: Early Covid-19 Treatment With SARS-CoV-2 Neutralizing Antibody Sotrovimab
  publication-title: medRxiv
– year: 2021
  ident: bib131
  article-title: Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody
  publication-title: bioRxiv
– volume: 205
  start-page: 915
  year: 2020
  end-page: 922
  ident: bib3
  article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
  publication-title: J. Immunol.
– volume: 531
  start-page: 114
  year: 2016
  end-page: 117
  ident: bib135
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
– volume: 592
  start-page: 616
  year: 2021
  end-page: 622
  ident: bib142
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
– volume: 29
  start-page: 819
  year: 2021
  end-page: 833.e7
  ident: bib22
  article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
  publication-title: Cell Host Microbe
– volume: 8
  start-page: 365ra158
  year: 2016
  ident: bib100
  article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors
  publication-title: Sci. Transl. Med.
– year: 2021
  ident: bib140
  article-title: Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization
  publication-title: bioRxiv
– volume: 181
  start-page: 688
  year: 1919
  end-page: 691
  ident: bib107
  article-title: Treatment of Influenza-Pneumonia by Use of Convalescent Human Serum
  publication-title: Boston Med. Surg. J.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib149
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 371
  start-page: 172
  year: 2021
  end-page: 177
  ident: bib101
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
– volume: 383
  start-page: 1920
  year: 2020
  end-page: 1931
  ident: bib65
  article-title: An mRNA Vaccine against SARS-CoV-2 - Preliminary Report
  publication-title: N. Engl. J. Med.
– year: 2020
  ident: bib48
  article-title: A human monoclonal antibody targeting a conserved pocket in the SARS-CoV-2 receptor-binding domain core
  publication-title: bioRxiv
– year: 2021
  ident: bib49
  article-title: Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study
  publication-title: Lancet Infect. Dis.
– volume: 184
  start-page: 2332
  year: 2021
  end-page: 2347.e16
  ident: bib90
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
– volume: 184
  start-page: 2316
  year: 2021
  end-page: 2331.e15
  ident: bib125
  article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein
  publication-title: Cell
– volume: 125
  start-page: e35
  year: 2010
  end-page: e51
  ident: bib18
  article-title: Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial
  publication-title: Pediatrics
– volume: 8
  start-page: 10432
  year: 2018
  ident: bib76
  article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain
  publication-title: Sci. Rep.
– volume: 370
  start-page: 950
  year: 2020
  end-page: 957
  ident: bib130
  article-title: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms
  publication-title: Science
– volume: 381
  start-page: 2293
  year: 2019
  end-page: 2303
  ident: bib95
  article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics
  publication-title: N. Engl. J. Med.
– volume: 371
  start-page: 823
  year: 2021
  end-page: 829
  ident: bib106
  article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody
  publication-title: Science
– volume: 13
  start-page: eabf1906
  year: 2021
  ident: bib66
  article-title: The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates
  publication-title: Sci. Transl. Med.
– volume: 592
  start-page: 277
  year: 2021
  end-page: 282
  ident: bib73
  article-title: SARS-CoV-2 evolution during treatment of chronic infection
  publication-title: Nature
– volume: 384
  start-page: 1491
  year: 2021
  end-page: 1502
  ident: bib108
  article-title: Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: bib113
  article-title: Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant
  publication-title: bioRxiv
– year: 2021
  ident: bib42
  article-title: Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail
  publication-title: bioRxiv
– volume: 75
  start-page: 12161
  year: 2001
  end-page: 12168
  ident: bib60
  article-title: Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1
  publication-title: J. Virol.
– year: 2021
  ident: bib5
  article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity
  publication-title: Nature
– volume: 318
  start-page: 608
  year: 2004
  end-page: 612
  ident: bib155
  article-title: Respiratory syncytial virus escape mutant derived in vitro resists palivizumab prophylaxis in cotton rats
  publication-title: Virology
– volume: 593
  start-page: 136
  year: 2021
  end-page: 141
  ident: bib29
  article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
  publication-title: Nature
– volume: 384
  start-page: 1503
  year: 2021
  end-page: 1516
  ident: bib111
  article-title: Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia
  publication-title: N. Engl. J. Med.
– year: 2020
  ident: bib120
  article-title: The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN
  publication-title: bioRxiv
– volume: 593
  start-page: 270
  year: 2021
  end-page: 274
  ident: bib35
  article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7
  publication-title: Nature
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: bib109
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
– volume: 183
  start-page: 1024
  year: 2020
  end-page: 1042.e21
  ident: bib102
  article-title: Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology
  publication-title: Cell
– volume: 368
  start-page: 630
  year: 2020
  end-page: 633
  ident: bib153
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
– volume: 24
  start-page: 60
  year: 2017
  end-page: 69
  ident: bib32
  article-title: Tackling influenza with broadly neutralizing antibodies
  publication-title: Curr. Opin. Virol.
– year: 2020
  ident: bib4
  article-title: SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma
  publication-title: bioRxiv
– volume: 590
  start-page: 630
  year: 2021
  end-page: 634
  ident: bib92
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
– volume: 584
  start-page: 353
  year: 2020
  end-page: 363
  ident: bib6
  article-title: A perspective on potential antibody-dependent enhancement of SARS-CoV-2
  publication-title: Nature
– volume: 503
  start-page: 224
  year: 2013
  end-page: 228
  ident: bib9
  article-title: Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys
  publication-title: Nature
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: bib138
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
– volume: 89
  start-page: 422
  year: 1969
  end-page: 434
  ident: bib74
  article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine
  publication-title: Am. J. Epidemiol.
– volume: 371
  start-page: 850
  year: 2021
  end-page: 854
  ident: bib123
  article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
  publication-title: Science
– volume: 383
  start-page: 2291
  year: 2020
  end-page: 2293
  ident: bib27
  article-title: Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host
  publication-title: N. Engl. J. Med.
– volume: 2
  start-page: 100255
  year: 2021
  ident: bib124
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep Med
– volume: 588
  start-page: 682
  year: 2020
  end-page: 687
  ident: bib8
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
– volume: 514
  start-page: 642
  year: 2014
  end-page: 645
  ident: bib78
  article-title: Enhanced neonatal Fc receptor function improves protection against primate SHIV infection
  publication-title: Nature
– volume: 203
  start-page: 674
  year: 2011
  end-page: 682
  ident: bib157
  article-title: Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab
  publication-title: J. Infect. Dis.
– year: 2021
  ident: bib79
  article-title: Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals
  publication-title: medRxiv
– volume: 2
  start-page: 100264
  year: 2021
  ident: bib96
  article-title: BNT162b2 Vaccination Effectively Prevents the Rapid Rise of SARS-CoV-2 Variant B.1.1.7 in high risk populations in Israel
  publication-title: Cell Rep. Med.
– volume: 182
  start-page: 1295
  year: 2020
  end-page: 1310.e20
  ident: bib121
  article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
  publication-title: Cell
– volume: 372
  start-page: 372
  year: 2021
  ident: bib36
  article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England
  publication-title: Science
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: bib82
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
– volume: 370
  start-page: 1110
  year: 2020
  end-page: 1115
  ident: bib10
  article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters
  publication-title: Science
– year: 2013
  ident: bib12
  article-title: Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren
– volume: 371
  start-page: 735
  year: 2021
  end-page: 741
  ident: bib28
  article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice
  publication-title: Science
– volume: 166
  start-page: 596
  year: 2016
  end-page: 608
  ident: bib69
  article-title: Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes
  publication-title: Cell
– year: 2021
  ident: bib38
  article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant
  publication-title: Cell
– volume: 561
  start-page: 479
  year: 2018
  end-page: 484
  ident: bib93
  article-title: Combination therapy with anti-HIV-1 antibodies maintains viral suppression
  publication-title: Nature
– volume: 384
  start-page: 905
  year: 2021
  end-page: 914
  ident: bib1
  article-title: A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19
  publication-title: N. Engl. J. Med.
– volume: 593
  start-page: 142
  year: 2021
  end-page: 146
  ident: bib21
  article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
  publication-title: Nature
– volume: 184
  start-page: 1804
  year: 2021
  end-page: 1820.e1816
  ident: bib148
  article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection
  publication-title: Cell
– volume: 390
  start-page: 946
  year: 2020
  end-page: 949
  ident: bib119
  article-title: Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants
  publication-title: Clin. Infect. Dis.
– year: 2021
  ident: bib160
  article-title: SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination
  publication-title: bioRxiv
– year: 2021
  ident: bib98
  article-title: Statement—NIH-Sponsored ACTIV-3 Clinical Trial Closes Enrollment into Two Sub-Studies
– volume: 176
  start-page: 1026
  year: 2019
  end-page: 1039.e15
  ident: bib136
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
– year: 2021
  ident: bib30
  article-title: In vitro and in vivo preclinical studies predict REGEN-COV protection against emergence of viral escape in humans
  publication-title: bioRxiv
– year: 2021
  ident: bib20
  article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2
  publication-title: bioRxiv
– volume: 588
  start-page: 485
  year: 2020
  end-page: 490
  ident: bib13
  article-title: Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection
  publication-title: Nature
– year: 2020
  ident: bib46
  article-title: FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF CASIRIVIMAB AND IMDEVIMAB. Emergency Use Authorization
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: bib26
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: bib141
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 183
  start-page: 1901
  year: 2020
  end-page: 1912.e1909
  ident: bib7
  article-title: Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer
  publication-title: Cell
– volume: 40
  start-page: 574
  year: 2019
  end-page: 582
  ident: bib58
  article-title: Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: Results from a randomized, double-blind, phase-2, placebo-controlled study
  publication-title: EBioMedicine
– volume: 38
  start-page: 540
  year: 2020
  end-page: 545
  ident: bib71
  article-title: Developing therapeutic monoclonal antibodies at pandemic pace
  publication-title: Nat. Biotechnol.
– volume: 383
  start-page: 415
  year: 2020
  end-page: 425
  ident: bib55
  article-title: Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants
  publication-title: N. Engl. J. Med.
– volume: 384
  start-page: 238
  year: 2021
  end-page: 251
  ident: bib144
  article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: bib62
  article-title: SARS-CoV-2 variants B.1.351 and B.1.1.248: Escape from therapeutic antibodies and antibodies induced by infection and vaccination
  publication-title: bioRxiv
– volume: 129
  start-page: 3952
  year: 2019
  end-page: 3962
  ident: bib146
  article-title: Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways
  publication-title: J. Clin. Invest.
– volume: 27
  start-page: 622
  year: 2021
  end-page: 625
  ident: bib147
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat. Med.
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib104
  article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
  publication-title: N. Engl. J. Med.
– volume: 369
  start-page: 956
  year: 2020
  end-page: 963
  ident: bib110
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
– volume: 5
  start-page: 1185
  year: 2020
  end-page: 1191
  ident: bib80
  article-title: Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies
  publication-title: Nat. Microbiol.
– volume: 183
  start-page: 1367
  year: 2020
  end-page: 1382.e17
  ident: bib137
  article-title: Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2
  publication-title: Cell
– volume: 184
  start-page: 1171
  year: 2021
  end-page: 1187.e20
  ident: bib128
  article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
  publication-title: Cell
– volume: 325
  start-page: 632
  year: 2021
  end-page: 644
  ident: bib51
  article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial
  publication-title: JAMA
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: bib83
  article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
  publication-title: Cell
– year: 2021
  ident: bib89
  article-title: SARS-CoV-2 immune evasion by variant B.1.427/B.1.429
  publication-title: bioRxiv
– volume: 25
  start-page: 962
  year: 2019
  end-page: 967
  ident: bib97
  article-title: Novel correlates of protection against pandemic H1N1 influenza A virus infection
  publication-title: Nat. Med.
– volume: 5
  start-page: 1403
  year: 2020
  end-page: 1407
  ident: bib105
  article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology
  publication-title: Nat. Microbiol.
– volume: 397
  start-page: 452
  year: 2021
  end-page: 455
  ident: bib114
  article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence
  publication-title: Lancet
– volume: 9
  start-page: e61312
  year: 2020
  ident: bib145
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
– volume: 105
  start-page: 209
  year: 2021
  end-page: 215
  ident: bib132
  article-title: Convalescent plasma treatment is associated with lower mortality and better outcomes in high-risk COVID-19 patients: propensity-score matched case-control study
  publication-title: Int. J. Infect. Dis.
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280.e8
  ident: bib61
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– volume: 369
  start-page: 731
  year: 2020
  end-page: 736
  ident: bib143
  article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies
  publication-title: Science
– volume: 64
  start-page: 700
  year: 2008
  end-page: 704
  ident: bib99
  article-title: Structural characterization of a human Fc fragment engineered for lack of effector functions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 584
  start-page: 120
  year: 2020
  end-page: 124
  ident: bib118
  article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2
  publication-title: Nature
– volume: 29
  start-page: 44
  year: 2021
  end-page: 57.e9
  ident: bib54
  article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
  publication-title: Cell Host Microbe
– volume: 205
  start-page: 915
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib3
  article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.2000583
– volume: 64
  start-page: 700
  year: 2008
  ident: 10.1016/j.cell.2021.05.005_bib99
  article-title: Structural characterization of a human Fc fragment engineered for lack of effector functions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444908007877
– volume: 588
  start-page: 498
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib70
  article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions
  publication-title: Nature
  doi: 10.1038/s41586-020-2665-2
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib20
  article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2
  publication-title: bioRxiv
– volume: 2
  start-page: 100264
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib96
  article-title: BNT162b2 Vaccination Effectively Prevents the Rapid Rise of SARS-CoV-2 Variant B.1.1.7 in high risk populations in Israel
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100264
– volume: 29
  start-page: 44
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib54
  article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.007
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib149
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 370
  start-page: 856
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib16
  article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity
  publication-title: Science
  doi: 10.1126/science.abd2985
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib161
  article-title: Early Covid-19 Treatment With SARS-CoV-2 Neutralizing Antibody Sotrovimab
  publication-title: medRxiv
– volume: 369
  start-page: 1603
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib56
  article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy
  publication-title: Science
  doi: 10.1126/science.abc4730
– volume: 29
  start-page: 819
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib22
  article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.005
– volume: 27
  start-page: 622
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib147
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01285-x
– volume: 588
  start-page: 682
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib8
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
  doi: 10.1038/s41586-020-2852-1
– volume: 384
  start-page: 905
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib1
  article-title: A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2033130
– volume: 126
  start-page: 605
  year: 2016
  ident: 10.1016/j.cell.2021.05.005_bib41
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84428
– volume: 28
  start-page: 157
  year: 2010
  ident: 10.1016/j.cell.2021.05.005_bib154
  article-title: Enhanced antibody half-life improves in vivo activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1601
– volume: 593
  start-page: 270
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib35
  article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03426-1
– volume: 64
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib84
  article-title: A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of MHAA4549A, a Monoclonal Antibody, plus Oseltamivir in Patients Hospitalized with Severe Influenza A Virus Infection
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00352-20
– volume: 561
  start-page: 479
  year: 2018
  ident: 10.1016/j.cell.2021.05.005_bib93
  article-title: Combination therapy with anti-HIV-1 antibodies maintains viral suppression
  publication-title: Nature
  doi: 10.1038/s41586-018-0531-2
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib122
  article-title: Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape
  publication-title: bioRxiv
– volume: 384
  start-page: 238
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib144
  article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035002
– year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib46
– volume: 8
  start-page: 365ra158
  year: 2016
  ident: 10.1016/j.cell.2021.05.005_bib100
  article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf9418
– volume: 384
  start-page: 1003
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib31
  article-title: Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2031738
– volume: 9
  start-page: 139
  year: 2009
  ident: 10.1016/j.cell.2021.05.005_bib50
  article-title: Palivizumab: where to from here?
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712590802610692
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib138
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib48
  article-title: A human monoclonal antibody targeting a conserved pocket in the SARS-CoV-2 receptor-binding domain core
  publication-title: bioRxiv
– volume: 5
  start-page: 562
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib82
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib134
  article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma
  publication-title: bioRxiv
– volume: 584
  start-page: 353
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib6
  article-title: A perspective on potential antibody-dependent enhancement of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2538-8
– year: 2013
  ident: 10.1016/j.cell.2021.05.005_bib12
– volume: 27
  start-page: 717
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib25
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01294-w
– volume: 384
  start-page: 229
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib23
  article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2029849
– volume: 372
  start-page: 372
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib36
  article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England
  publication-title: Science
  doi: 10.1126/science.abg3055
– volume: 40
  start-page: 574
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib58
  article-title: Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: Results from a randomized, double-blind, phase-2, placebo-controlled study
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.12.051
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib72
  article-title: Process and operations strategies to enable global access to antibody therapies
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.3139
– volume: 13
  start-page: eabf1906
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib66
  article-title: The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abf1906
– volume: 169
  start-page: 5171
  year: 2002
  ident: 10.1016/j.cell.2021.05.005_bib33
  article-title: Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.9.5171
– volume: 584
  start-page: 115
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib67
  article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Nature
  doi: 10.1038/s41586-020-2380-z
– volume: 390
  start-page: 946
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib119
  article-title: Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants
  publication-title: Clin. Infect. Dis.
– volume: 383
  start-page: 415
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib55
  article-title: Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1913556
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib5
  article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity
  publication-title: Nature
  doi: 10.1038/s41586-021-03530-2
– volume: 182
  start-page: 1295
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib121
  article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib79
  article-title: Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals
  publication-title: medRxiv
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib30
  article-title: In vitro and in vivo preclinical studies predict REGEN-COV protection against emergence of viral escape in humans
  publication-title: bioRxiv
– volume: 211
  start-page: 80
  year: 2015
  ident: 10.1016/j.cell.2021.05.005_bib88
  article-title: The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiu396
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib131
  article-title: Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody
  publication-title: bioRxiv
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib81
  article-title: Membrane lectins enhance SARS-CoV-2 infection and influence the neutralizing activity of different classes of antibodies
  publication-title: bioRxiv
– volume: 325
  start-page: 632
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib51
  article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2021.0202
– volume: 102
  start-page: 531
  year: 1998
  ident: 10.1016/j.cell.2021.05.005_bib64
  article-title: Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants
  publication-title: Pediatrics
  doi: 10.1542/peds.102.3.531
– volume: 590
  start-page: 630
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib92
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
  doi: 10.1038/s41586-020-03041-6
– volume: 588
  start-page: 485
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib13
  article-title: Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection
  publication-title: Nature
  doi: 10.1038/s41586-020-2838-z
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib63
  article-title: Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial
  publication-title: medRxiv
– volume: 105
  start-page: 93
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib129
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2019.08.002
– volume: 8
  start-page: 270
  year: 2011
  ident: 10.1016/j.cell.2021.05.005_bib39
  article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity
  publication-title: RNA Biol.
  doi: 10.4161/rna.8.2.15013
– volume: 10
  start-page: 4153
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib126
  article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12137-1
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib37
  article-title: Antibody evasion by the P.1 strain of SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.055
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib68
  article-title: Broadly neutralizing antibodies for HIV-1 prevention and therapy
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2021.101475
– volume: 383
  start-page: 2291
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib27
  article-title: Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2031364
– volume: 383
  start-page: 1920
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib65
  article-title: An mRNA Vaccine against SARS-CoV-2 - Preliminary Report
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2022483
– volume: 25
  start-page: 547
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib19
  article-title: Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0412-8
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib24
  article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains
  publication-title: Research Square
– volume: 352
  start-page: 997
  year: 2016
  ident: 10.1016/j.cell.2021.05.005_bib117
  article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1
  publication-title: Science
  doi: 10.1126/science.aaf0972
– volume: 125
  start-page: e35
  year: 2010
  ident: 10.1016/j.cell.2021.05.005_bib18
  article-title: Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial
  publication-title: Pediatrics
  doi: 10.1542/peds.2008-1036
– volume: 593
  start-page: 136
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib29
  article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-03412-7
– volume: 8
  start-page: 10432
  year: 2018
  ident: 10.1016/j.cell.2021.05.005_bib76
  article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28706-1
– volume: 6
  start-page: e335
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib52
  article-title: Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00055-4
– volume: 183
  start-page: 1024
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib102
  article-title: Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.037
– volume: 383
  start-page: 2603
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib104
  article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 38
  start-page: 540
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib71
  article-title: Developing therapeutic monoclonal antibodies at pandemic pace
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0512-5
– volume: 181
  start-page: 688
  year: 1919
  ident: 10.1016/j.cell.2021.05.005_bib107
  article-title: Treatment of Influenza-Pneumonia by Use of Convalescent Human Serum
  publication-title: Boston Med. Surg. J.
  doi: 10.1056/NEJM191912111812406
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib61
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 29
  start-page: 477
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib86
  article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.01.014
– volume: 449
  start-page: 101
  year: 2007
  ident: 10.1016/j.cell.2021.05.005_bib59
  article-title: Fc receptor but not complement binding is important in antibody protection against HIV
  publication-title: Nature
  doi: 10.1038/nature06106
– volume: 89
  start-page: 422
  year: 1969
  ident: 10.1016/j.cell.2021.05.005_bib74
  article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a120955
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib49
  article-title: Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00170-5
– volume: 371
  start-page: 823
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib106
  article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody
  publication-title: Science
  doi: 10.1126/science.abf4830
– volume: 184
  start-page: 64
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib133
  article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.020
– volume: 5
  start-page: 1185
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib80
  article-title: Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-00789-5
– volume: 105
  start-page: 209
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib132
  article-title: Convalescent plasma treatment is associated with lower mortality and better outcomes in high-risk COVID-19 patients: propensity-score matched case-control study
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.02.054
– volume: 183
  start-page: 1013
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib44
  article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.035
– volume: 318
  start-page: 608
  year: 2004
  ident: 10.1016/j.cell.2021.05.005_bib155
  article-title: Respiratory syncytial virus escape mutant derived in vitro resists palivizumab prophylaxis in cotton rats
  publication-title: Virology
  doi: 10.1016/j.virol.2003.10.018
– volume: 584
  start-page: 120
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib118
  article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2381-y
– volume: 369
  start-page: 1010
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib57
  article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
  publication-title: Science
  doi: 10.1126/science.abd0827
– volume: 62
  start-page: 1
  year: 2018
  ident: 10.1016/j.cell.2021.05.005_bib2
  article-title: Evaluation of MEDI8852, an Anti-Influenza A Monoclonal Antibody, in Treating Acute Uncomplicated Influenza
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00694-18
– volume: 25
  start-page: 962
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib97
  article-title: Novel correlates of protection against pandemic H1N1 influenza A virus infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0463-x
– volume: 384
  start-page: 1503
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib111
  article-title: Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2028700
– year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib120
  article-title: The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN
  publication-title: bioRxiv
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib140
  article-title: Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization
  publication-title: bioRxiv
– volume: 27
  start-page: 440
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib127
  article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01255-3
– volume: 2
  start-page: 100255
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib124
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100255
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib42
  article-title: Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail
  publication-title: bioRxiv
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib89
  article-title: SARS-CoV-2 immune evasion by variant B.1.427/B.1.429
  publication-title: bioRxiv
– volume: 182
  start-page: 1284
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib83
  article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 371
  start-page: 288
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib15
  article-title: Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic
  publication-title: Science
  doi: 10.1126/science.abe9728
– volume: 370
  start-page: 861
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib34
  article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection
  publication-title: Science
  doi: 10.1126/science.abd3072
– volume: 166
  start-page: 801
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib115
  article-title: Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-020-04911-0
– volume: 20
  start-page: 633
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib14
  article-title: The role of IgG Fc receptors in antibody-dependent enhancement
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-00410-0
– volume: 503
  start-page: 224
  year: 2013
  ident: 10.1016/j.cell.2021.05.005_bib9
  article-title: Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys
  publication-title: Nature
  doi: 10.1038/nature12744
– volume: 11
  start-page: 2251
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib139
  article-title: A human monoclonal antibody blocking SARS-CoV-2 infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16256-y
– volume: 200
  start-page: 16
  year: 2000
  ident: 10.1016/j.cell.2021.05.005_bib151
  article-title: In vitro characterization of five humanized OKT3 effector function variant antibodies
  publication-title: Cell. Immunol.
  doi: 10.1006/cimm.2000.1617
– volume: 370
  start-page: 1110
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib10
  article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters
  publication-title: Science
  doi: 10.1126/science.abe2402
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib38
  article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.025
– volume: 531
  start-page: 114
  year: 2016
  ident: 10.1016/j.cell.2021.05.005_bib135
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 184
  start-page: 2332
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib90
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.028
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib113
  article-title: Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant
  publication-title: bioRxiv
– volume: 369
  start-page: 731
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib143
  article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies
  publication-title: Science
  doi: 10.1126/science.abc7424
– volume: 9
  start-page: e61312
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib145
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
  doi: 10.7554/eLife.61312
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib47
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib160
  article-title: SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination
  publication-title: bioRxiv
– volume: 381
  start-page: 2293
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib95
  article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1910993
– volume: 184
  start-page: 1804
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib148
  article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.026
– volume: 29
  start-page: 463
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib53
  article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.003
– volume: 184
  start-page: 2316
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib125
  article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.029
– volume: 3
  start-page: 237
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib77
  article-title: SARS-CoV-2 structure and replication characterized by in situcryo-electron tomography
  publication-title: Nat. Commun.
– volume: 583
  start-page: 290
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib103
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 203
  start-page: 674
  year: 2011
  ident: 10.1016/j.cell.2021.05.005_bib157
  article-title: Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiq100
– volume: 369
  start-page: 1014
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib11
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
  doi: 10.1126/science.abd0831
– volume: 12
  start-page: 288
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib75
  article-title: A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20602-5
– year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib4
  article-title: SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma
  publication-title: bioRxiv
– volume: 24
  start-page: 60
  year: 2017
  ident: 10.1016/j.cell.2021.05.005_bib32
  article-title: Tackling influenza with broadly neutralizing antibodies
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2017.03.002
– volume: 397
  start-page: 452
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib114
  article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00183-5
– volume: 184
  start-page: 1171
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib128
  article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.037
– volume: 371
  start-page: 735
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib28
  article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice
  publication-title: Science
  doi: 10.1126/science.abf6840
– volume: 384
  start-page: 1491
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib108
  article-title: Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2100433
– volume: 182
  start-page: 73
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib17
  article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.025
– volume: 9
  start-page: 1386
  year: 2018
  ident: 10.1016/j.cell.2021.05.005_bib43
  article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03665-3
– volume: 369
  start-page: 956
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib110
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
  doi: 10.1126/science.abc7520
– volume: 384
  start-page: 1468
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib150
  article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2102179
– volume: 176
  start-page: 1026
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib136
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– volume: 20
  start-page: 143
  year: 2014
  ident: 10.1016/j.cell.2021.05.005_bib40
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
  doi: 10.1038/nm.3443
– volume: 384
  start-page: 1466
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib85
  article-title: Neutralizing Activity of BNT162b2-Elicited Serum
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2102017
– volume: 584
  start-page: 437
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib109
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib62
  article-title: SARS-CoV-2 variants B.1.351 and B.1.1.248: Escape from therapeutic antibodies and antibodies induced by infection and vaccination
  publication-title: bioRxiv
– volume: 75
  start-page: 12161
  year: 2001
  ident: 10.1016/j.cell.2021.05.005_bib60
  article-title: Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.24.12161-12168.2001
– volume: 514
  start-page: 642
  year: 2014
  ident: 10.1016/j.cell.2021.05.005_bib78
  article-title: Enhanced neonatal Fc receptor function improves protection against primate SHIV infection
  publication-title: Nature
  doi: 10.1038/nature13612
– volume: 5
  start-page: 1403
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib105
  article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0770-5
– volume: 592
  start-page: 277
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib73
  article-title: SARS-CoV-2 evolution during treatment of chronic infection
  publication-title: Nature
  doi: 10.1038/s41586-021-03291-y
– volume: 371
  start-page: 172
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib101
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
  doi: 10.1126/science.abe5901
– volume: 593
  start-page: 142
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib21
  article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
  publication-title: Nature
  doi: 10.1038/s41586-021-03471-w
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib87
  article-title: The Role of Disease Severity and Demographics in the Clinical Course of COVID-19 Patients Treated with Convalescent Plasma
  publication-title: medRxiv
– volume: 9
  start-page: eaaj1928
  year: 2017
  ident: 10.1016/j.cell.2021.05.005_bib158
  article-title: A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaj1928
– volume: 166
  start-page: 596
  year: 2016
  ident: 10.1016/j.cell.2021.05.005_bib69
  article-title: Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.073
– volume: 593
  start-page: 130
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib141
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 371
  start-page: 1139
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib91
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
  doi: 10.1126/science.abf6950
– volume: 592
  start-page: 616
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib142
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
– year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib45
– volume: 218
  start-page: 218
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib116
  article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201993
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib156
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 584
  start-page: 443
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib159
  article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2548-6
– volume: 112
  start-page: 5331
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib112
  article-title: Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.11.003
– volume: 371
  start-page: 850
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib123
  article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
  publication-title: Science
  doi: 10.1126/science.abf9302
– volume: 129
  start-page: 3952
  year: 2019
  ident: 10.1016/j.cell.2021.05.005_bib146
  article-title: Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI128437
– year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib98
– volume: 183
  start-page: 1901
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib7
  article-title: Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.049
– volume: 371
  start-page: 1152
  year: 2021
  ident: 10.1016/j.cell.2021.05.005_bib94
  article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera
  publication-title: Science
  doi: 10.1126/science.abg6105
– volume: 183
  start-page: 1367
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib137
  article-title: Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.043
– volume: 369
  start-page: 650
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib26
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 370
  start-page: 950
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib130
  article-title: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms
  publication-title: Science
  doi: 10.1126/science.abe3354
– volume: 368
  start-page: 630
  year: 2020
  ident: 10.1016/j.cell.2021.05.005_bib153
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– reference: 34416148 - Cell. 2021 Aug 19;184(17):4593-4595. doi: 10.1016/j.cell.2021.07.027
SSID ssj0008555
Score 2.693275
SecondaryResourceType review_article
Snippet Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3086
SubjectTerms Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - immunology
Angiotensin-Converting Enzyme 2 - metabolism
Animals
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - therapeutic use
Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - immunology
Antibodies, Neutralizing - therapeutic use
Antibodies, Viral - chemistry
Antibodies, Viral - immunology
Antibodies, Viral - therapeutic use
autoimmunity
COVID-19
COVID-19 - pathology
COVID-19 - virology
COVID-19 Drug Treatment
COVID-19 infection
Humans
monoclonal antibody
neutralization
pandemic
Review
SARS-CoV-2
SARS-CoV-2 - immunology
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - metabolism
Spike Glycoprotein, Coronavirus - immunology
therapeutics
Title Tackling COVID-19 with neutralizing monoclonal antibodies
URI https://dx.doi.org/10.1016/j.cell.2021.05.005
https://www.ncbi.nlm.nih.gov/pubmed/34087172
https://www.proquest.com/docview/2537632440
https://www.proquest.com/docview/2551983302
https://pubmed.ncbi.nlm.nih.gov/PMC8152891
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lIHgR39YXK3iTpbvZJJsctVqqoF5UegtJNqsV2Yq2B_31zuyjWJUePO5mAskkmXwTZr4h5FhYbgF1mDAxjIXMOhtKmZgwz7nlwtM0VZgofH0jBvfsasiHLdJrcmEwrLK2_ZVNL611_adba7P7Ohphjq-iUoBrFyOpCEVO0ITJMolveDazxpLzqoqBgpMP0nXiTBXjhY_j4CPSuGTvxBJ2f19Ov8HnzxjKb5dSf5Ws1GgyOK0GvEZavlgnS1V9yY8Nou6Mw4rsj0Hv9uHyPIxVgO-uQeGn5QPHJzbBPhy7FwTkAWh5ZMcYV7hJ7vsXd71BWNdKCB1D1kmnqPOGGcd5lgFmEhyULFO4AS314NXkEoCGAiGbSpbkWKFXWpFJ7rDEXO6TLdIuxoXfIUEKiE6aTAnPc2YyYYRRBpGBopnMLeuQuFGSdjWRONazeNFNxNizRsVqVKyOuAbFdsjJrM9rRaOxUJo3utdzm0GDnV_Y76hZKA2nBJtN4cfTd02RtQawI4sWycAUZZJEtEO2q8WdjTVhEXiWKbSkc8s-E0CW7vmWYvRUsnVLQEhSxbv_nNMeWcYvjE6Lo33SnrxN_QHgoIk9LDf6F8K7BQo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RqqpcEC0tLIU2lXpDEYljO_aRLqDdFuhlQXuzbMdpF6EsAvYAv56ZPFZdivbQa2YsOZ_t8TfWPAC-SSccsg4bZ5bzmDvvYqUyG5elcEIGlueaEoXPzuXggv8Yi_EK9LtcGAqrbG1_Y9Nra91-OWjRPLiZTCjHVzMl0bVLqagI46_gNbKBnE7ncPx9bo6VEE0bA41HH9XbzJkmyItex9FJZGldvpN62L18O_3LPp8HUf51K51swHpLJ6PDZsbvYCVU7-FN02DyYRP0yHpqyf476v-6HB7FqY7o4TWqwqx-4XgkEW7Eqb8mRh4hzBM3pcDCD3BxcjzqD-K2WULsOZWd9Jr5YLn1QhQFkiYpEGWV4xXoWEC3plTINDQquVzxrKQWvcrJQglPPebKkH2E1WpahW2IcqR0yhZaBlFyW0grrbZEDTQrVOl4D9IOJOPbSuLU0OLadCFjV4aANQSsSYRBYHuwPx9z09TRWKotOuzNwm4waOiXjvvaLZTBY0JiW4Xp7M4wKluD5JEny3TwF1WWJawHW83izuea8QRdyxwl-cKyzxWoTPeipJr8qct1K6RISqc7__lPX-DtYHR2ak6H5z8_wRpJKFQtTXZh9f52FvaQFN27z_WmfwLlVQgq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tackling+COVID-19+with+neutralizing+monoclonal+antibodies&rft.jtitle=Cell&rft.au=Corti%2C+Davide&rft.au=Purcell%2C+Lisa+A.&rft.au=Snell%2C+Gyorgy&rft.au=Veesler%2C+David&rft.date=2021-06-10&rft.issn=0092-8674&rft.volume=184&rft.issue=12&rft.spage=3086&rft.epage=3108&rft_id=info:doi/10.1016%2Fj.cell.2021.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2021_05_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon