Tackling COVID-19 with neutralizing monoclonal antibodies
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of...
Saved in:
Published in | Cell Vol. 184; no. 12; pp. 3086 - 3108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Intense efforts have been made to develop or identify drugs to treat people with COVID-19. Monoclonal antibodies are one of the few types of drugs that have shown efficacy in the clinic. |
---|---|
AbstractList | Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Intense efforts have been made to develop or identify drugs to treat people with COVID-19. Monoclonal antibodies are one of the few types of drugs that have shown efficacy in the clinic. Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics. Intense efforts have been made to develop or identify drugs to treat people with COVID-19. Monoclonal antibodies are one of the few types of drugs that have shown efficacy in the clinic. |
Author | Snell, Gyorgy Corti, Davide Veesler, David Purcell, Lisa A. |
Author_xml | – sequence: 1 givenname: Davide surname: Corti fullname: Corti, Davide email: dcorti@vir.bio organization: Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 2 givenname: Lisa A. surname: Purcell fullname: Purcell, Lisa A. organization: Vir Biotechnology, St. Louis, MO 63110, USA – sequence: 3 givenname: Gyorgy surname: Snell fullname: Snell, Gyorgy organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 4 givenname: David surname: Veesler fullname: Veesler, David organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34087172$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFP3DAQha0KVJaFP8Ch2iOXpGPHjm2pqoQW2iIhcaG9Wo4zAS9Zm8ZZUPvrcbQUAQfU0xzme09v5u2TnRADEnJEoaRA68-r0mHflwwYLUGUAOIDmVHQsuBUsh0yA9CsULXke2Q_pRUAKCHER7JXcVAyMzOir6y77X24Xiwvf52fFlQvHvx4swi4GQfb-7_Tah1DdH0Mtl_YMPomth7TAdntbJ_w8GnOyc9vZ1fLH8XF5ffz5clF4ThUonCaObTcOiHaloKohdSoJGLbMORad0rxWmeokYpXXT6Mq6ZulXBcS9VhNSdft753m2aNrcMwBTN3g1_b4Y-J1pvXm-BvzHW8N4oKpjTNBsdPBkP8vcE0mrVP0-dswLhJhglBtaoqYP-BVrKuGM-Xzcmnl7Ge8_x7bQbYFnBDTGnA7hmhYKb-zMpM1mbqz4Awub8sUm9Ezo929HE6zffvS79spZjLuPc4mOQ8BoetH9CNpo3-Pfkjplq00g |
CitedBy_id | crossref_primary_10_1667_RADE_22_00058_1 crossref_primary_10_1002_bit_28302 crossref_primary_10_1093_pnasnexus_pgae173 crossref_primary_10_1002_wnan_1785 crossref_primary_10_30895_2221_996X_2022_22_4_361_381 crossref_primary_10_1016_j_copbio_2022_102798 crossref_primary_10_1080_21645515_2021_1985891 crossref_primary_10_1126_scitranslmed_abm0899 crossref_primary_10_3390_life13030712 crossref_primary_10_1080_19420862_2023_2222874 crossref_primary_10_1093_ofid_ofad314 crossref_primary_10_1093_infdis_jiab540 crossref_primary_10_1038_s42003_022_03630_3 crossref_primary_10_1002_jmv_29035 crossref_primary_10_1016_j_bcp_2024_116303 crossref_primary_10_1002_jmv_28742 crossref_primary_10_1016_j_procbio_2022_09_009 crossref_primary_10_1002_bcp_70025 crossref_primary_10_1093_cid_ciac448 crossref_primary_10_1126_science_abn8652 crossref_primary_10_1016_j_ijid_2022_09_016 crossref_primary_10_1097_COH_0000000000000797 crossref_primary_10_1111_imr_13393 crossref_primary_10_3390_vaccines11030711 crossref_primary_10_3390_biom13111565 crossref_primary_10_1016_j_vacune_2022_11_007 crossref_primary_10_1111_joim_13478 crossref_primary_10_1126_science_abi7994 crossref_primary_10_1002_cbic_202200327 crossref_primary_10_1038_s41598_021_01081_0 crossref_primary_10_5227_skincancer_39_69 crossref_primary_10_1093_jac_dkad309 crossref_primary_10_1038_s41423_022_00884_z crossref_primary_10_1093_infdis_jiab554 crossref_primary_10_3389_fmicb_2021_761887 crossref_primary_10_1002_chem_202403039 crossref_primary_10_1038_s41586_021_04386_2 crossref_primary_10_1080_19420862_2021_2021601 crossref_primary_10_1056_NEJMc2119407 crossref_primary_10_1371_journal_pone_0291131 crossref_primary_10_1016_j_slast_2021_12_003 crossref_primary_10_1099_mgen_0_000912 crossref_primary_10_1126_science_abq0203 crossref_primary_10_33084_bjop_v7i4_6365 crossref_primary_10_1093_infdis_jiad267 crossref_primary_10_3389_fimmu_2023_1111385 crossref_primary_10_1126_sciimmunol_abp9962 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_1016_j_cell_2022_05_029 crossref_primary_10_1111_vox_13647 crossref_primary_10_3390_biomedicines10112815 crossref_primary_10_3390_ph14121272 crossref_primary_10_7554_eLife_75433 crossref_primary_10_1016_j_biopha_2021_112527 crossref_primary_10_1016_j_cell_2022_05_019 crossref_primary_10_3389_fimmu_2024_1397040 crossref_primary_10_3390_ijms25105509 crossref_primary_10_1038_s41467_022_33030_4 crossref_primary_10_1186_s12979_021_00248_7 crossref_primary_10_1007_s43188_024_00256_x crossref_primary_10_1016_j_celrep_2023_112621 crossref_primary_10_3390_v14081822 crossref_primary_10_3389_fnano_2022_1028186 crossref_primary_10_3389_fimmu_2021_752003 crossref_primary_10_3390_v14071461 crossref_primary_10_3390_jcm12186079 crossref_primary_10_1208_s12248_024_00904_y crossref_primary_10_1016_j_antiviral_2024_106006 crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_1016_j_cej_2025_159755 crossref_primary_10_1080_22221751_2022_2032374 crossref_primary_10_3390_vaccines12050459 crossref_primary_10_3390_v16020217 crossref_primary_10_7554_eLife_73027 crossref_primary_10_1128_jvi_00034_22 crossref_primary_10_3389_fimmu_2022_863831 crossref_primary_10_1038_s41375_021_01466_0 crossref_primary_10_1080_22221751_2021_2024455 crossref_primary_10_1021_acs_analchem_4c03574 crossref_primary_10_3390_ijms23179763 crossref_primary_10_1182_blood_2021012248 crossref_primary_10_1002_jia2_25829 crossref_primary_10_1016_j_ijbiomac_2024_130132 crossref_primary_10_1038_s41467_024_45171_9 crossref_primary_10_1111_jcmm_17103 crossref_primary_10_1016_j_antiviral_2023_105785 crossref_primary_10_1080_19420862_2022_2076775 crossref_primary_10_1007_s40121_023_00859_1 crossref_primary_10_1038_s43018_022_00503_w crossref_primary_10_3390_ijms25020739 crossref_primary_10_1016_j_vacun_2022_06_003 crossref_primary_10_1590_1806_9282_2022d686 crossref_primary_10_3390_ijms23095018 crossref_primary_10_1038_s41467_023_41312_8 crossref_primary_10_1038_s41541_021_00427_z crossref_primary_10_1097_IMNA_D_22_00022 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1002_eji_202249841 crossref_primary_10_1126_sciadv_abq6207 crossref_primary_10_3389_fmicb_2023_1256759 crossref_primary_10_12688_wellcomeopenres_16741_2 crossref_primary_10_1016_j_isci_2024_110354 crossref_primary_10_3390_ijms232415511 crossref_primary_10_2144_fsoa_2022_0048 crossref_primary_10_3389_fmedt_2022_867982 crossref_primary_10_1007_s12247_023_09713_w crossref_primary_10_1111_imcb_12646 crossref_primary_10_1016_j_ijpharm_2022_122463 crossref_primary_10_3389_fmicb_2023_1182914 crossref_primary_10_1080_1744666X_2022_2044797 crossref_primary_10_1093_glycob_cwab102 crossref_primary_10_2174_1872208317666230818092522 crossref_primary_10_1371_journal_ppat_1009885 crossref_primary_10_1038_s42003_022_04160_8 crossref_primary_10_1038_s41467_024_54458_w crossref_primary_10_1016_j_virs_2022_12_007 crossref_primary_10_1093_protein_gzad013 crossref_primary_10_1016_j_tips_2022_06_001 crossref_primary_10_1126_science_ado6481 crossref_primary_10_1016_j_heliyon_2022_e12667 crossref_primary_10_1080_22221751_2022_2125348 crossref_primary_10_3390_v13081487 crossref_primary_10_2147_IDR_S438915 crossref_primary_10_1016_j_biopha_2025_117936 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1172_JCI158190 crossref_primary_10_1186_s40164_023_00426_x crossref_primary_10_1073_pnas_2213361119 crossref_primary_10_3390_idr14060099 crossref_primary_10_1021_acscentsci_2c01513 crossref_primary_10_1080_20016689_2022_2160328 crossref_primary_10_2217_fvl_2023_0146 crossref_primary_10_3390_v14102242 crossref_primary_10_1016_j_chom_2022_07_002 crossref_primary_10_3389_fimmu_2022_1072702 crossref_primary_10_3389_fimmu_2021_751584 crossref_primary_10_3389_fviro_2024_1399993 crossref_primary_10_2147_DDDT_S359009 crossref_primary_10_1126_science_abm8108 crossref_primary_10_7759_cureus_27766 crossref_primary_10_3389_fimmu_2022_773652 crossref_primary_10_1016_j_antiviral_2023_105589 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1089_mab_2022_0030 crossref_primary_10_1128_spectrum_00333_23 crossref_primary_10_1016_j_immuni_2024_06_013 crossref_primary_10_1016_j_compbiomed_2023_107576 crossref_primary_10_1016_S2213_2600_22_00053_4 crossref_primary_10_7555_JBR_36_20220221 crossref_primary_10_1007_s11427_022_2166_y crossref_primary_10_1186_s12859_023_05562_z crossref_primary_10_1186_s44149_023_00100_z crossref_primary_10_1016_j_clim_2024_110164 crossref_primary_10_1038_s41586_023_06753_7 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_1186_s12929_021_00784_w crossref_primary_10_1016_j_jim_2021_113195 crossref_primary_10_3389_fimmu_2021_766821 crossref_primary_10_3389_fimmu_2022_947174 crossref_primary_10_1093_infdis_jiae192 crossref_primary_10_3390_v13122544 crossref_primary_10_1080_07391102_2023_2265485 crossref_primary_10_3390_ijerph19031023 crossref_primary_10_1038_s41586_022_04980_y crossref_primary_10_1021_acs_jpclett_3c01443 crossref_primary_10_3389_fmicb_2023_1122868 crossref_primary_10_1360_nso_20220005 crossref_primary_10_1038_s41422_022_00672_4 crossref_primary_10_3389_fcimb_2022_869832 crossref_primary_10_1016_j_isci_2023_106940 crossref_primary_10_3389_fimmu_2022_868020 crossref_primary_10_1080_1744666X_2022_2074403 crossref_primary_10_1038_s41467_023_42440_x crossref_primary_10_3389_fcimb_2023_1213806 crossref_primary_10_3390_antib11030050 crossref_primary_10_1016_j_chom_2022_03_035 crossref_primary_10_1016_j_celrep_2022_111528 crossref_primary_10_1038_s41587_022_01382_3 crossref_primary_10_1038_s41586_021_03807_6 crossref_primary_10_1371_journal_ppat_1011119 crossref_primary_10_1038_s41564_022_01170_4 crossref_primary_10_1093_cei_uxab015 crossref_primary_10_1111_imr_13084 crossref_primary_10_1128_jvi_00192_23 crossref_primary_10_1016_j_jfma_2023_08_029 crossref_primary_10_1038_s41564_023_01389_9 crossref_primary_10_3390_v13112201 crossref_primary_10_1016_j_bbadis_2025_167772 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_3389_fimmu_2022_889372 crossref_primary_10_2174_1871526523666230406100146 crossref_primary_10_1073_pnas_2205784119 crossref_primary_10_1016_j_annonc_2021_07_015 crossref_primary_10_3390_v14061255 crossref_primary_10_1016_j_isci_2022_104043 crossref_primary_10_3390_v14122696 crossref_primary_10_3389_fimmu_2022_863554 crossref_primary_10_1111_irv_70065 crossref_primary_10_1038_s41392_022_00910_6 crossref_primary_10_1080_22221751_2022_2076613 crossref_primary_10_1126_science_abm8143 crossref_primary_10_3724_abbs_2023075 crossref_primary_10_1556_650_2021_32414 crossref_primary_10_3390_ijms24054401 crossref_primary_10_3389_fcimb_2022_928279 crossref_primary_10_3390_v15112175 crossref_primary_10_1021_acsinfecdis_4c00015 crossref_primary_10_26508_lsa_202201796 crossref_primary_10_3390_v14020384 crossref_primary_10_1016_j_jaip_2022_06_011 crossref_primary_10_2139_ssrn_4141628 crossref_primary_10_1128_spectrum_00681_23 crossref_primary_10_3390_v14102278 crossref_primary_10_1016_j_jim_2024_113768 crossref_primary_10_1002_jmv_27623 crossref_primary_10_1016_j_chom_2021_12_010 crossref_primary_10_1093_abt_tbad003 crossref_primary_10_1007_s15010_021_01677_8 crossref_primary_10_1097_MRM_0000000000000386 crossref_primary_10_1126_sciadv_abj9815 crossref_primary_10_1021_acsnano_3c02050 crossref_primary_10_1089_dna_2021_0457 crossref_primary_10_3389_fimmu_2022_992787 crossref_primary_10_11150_kansenshogakuzasshi_96_39 crossref_primary_10_1016_j_curtheres_2022_100675 crossref_primary_10_4103_jfmpc_jfmpc_334_23 crossref_primary_10_1007_s11912_022_01330_z crossref_primary_10_3389_fimmu_2023_1278534 crossref_primary_10_1016_j_isci_2022_104705 crossref_primary_10_1186_s40814_023_01325_y crossref_primary_10_1016_j_tim_2024_01_005 crossref_primary_10_1073_pnas_2303292120 crossref_primary_10_3389_fimmu_2023_1186063 crossref_primary_10_3390_v14122677 crossref_primary_10_1128_jvi_00610_23 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1080_19420862_2022_2031483 crossref_primary_10_1038_s41421_022_00401_6 crossref_primary_10_1126_sciadv_ade3470 crossref_primary_10_1016_j_compbiomed_2022_106449 crossref_primary_10_1016_j_ijid_2022_12_035 crossref_primary_10_1038_s41467_024_49693_0 crossref_primary_10_1038_s41586_021_04266_9 crossref_primary_10_1016_j_celrep_2022_110757 crossref_primary_10_7759_cureus_36809 crossref_primary_10_1038_s42003_022_04138_6 crossref_primary_10_3389_fimmu_2021_690322 |
Cites_doi | 10.4049/jimmunol.2000583 10.1107/S0907444908007877 10.1038/s41586-020-2665-2 10.1016/j.xcrm.2021.100264 10.1016/j.chom.2020.11.007 10.1126/science.abb2507 10.1126/science.abd2985 10.1126/science.abc4730 10.1016/j.chom.2021.03.005 10.1038/s41591-021-01285-x 10.1038/s41586-020-2852-1 10.1056/NEJMoa2033130 10.1172/JCI84428 10.1038/nbt.1601 10.1038/s41586-021-03426-1 10.1128/AAC.00352-20 10.1038/s41586-018-0531-2 10.1056/NEJMoa2035002 10.1126/scitranslmed.aaf9418 10.1056/NEJMoa2031738 10.1517/14712590802610692 10.1016/j.cell.2020.02.058 10.1038/s41564-020-0688-y 10.1038/s41586-020-2538-8 10.1038/s41591-021-01294-w 10.1056/NEJMoa2029849 10.1126/science.abg3055 10.1016/j.ebiom.2018.12.051 10.1002/btpr.3139 10.1126/scitranslmed.abf1906 10.4049/jimmunol.169.9.5171 10.1038/s41586-020-2380-z 10.1056/NEJMoa1913556 10.1038/s41586-021-03530-2 10.1016/j.cell.2020.08.012 10.1093/infdis/jiu396 10.1001/jama.2021.0202 10.1542/peds.102.3.531 10.1038/s41586-020-03041-6 10.1038/s41586-020-2838-z 10.1016/bs.aivir.2019.08.002 10.4161/rna.8.2.15013 10.1038/s41467-019-12137-1 10.1016/j.cell.2021.03.055 10.1016/j.smim.2021.101475 10.1056/NEJMc2031364 10.1056/NEJMoa2022483 10.1038/s41591-019-0412-8 10.1126/science.aaf0972 10.1542/peds.2008-1036 10.1038/s41586-021-03412-7 10.1038/s41598-018-28706-1 10.1016/S2468-2667(21)00055-4 10.1016/j.cell.2020.09.037 10.1056/NEJMoa2034577 10.1038/s41587-020-0512-5 10.1056/NEJM191912111812406 10.1016/j.cell.2020.02.052 10.1016/j.chom.2021.01.014 10.1038/nature06106 10.1093/oxfordjournals.aje.a120955 10.1016/S1473-3099(21)00170-5 10.1126/science.abf4830 10.1016/j.cell.2020.11.020 10.1038/s41564-020-00789-5 10.1016/j.ijid.2021.02.054 10.1016/j.cell.2020.09.035 10.1016/j.virol.2003.10.018 10.1038/s41586-020-2381-y 10.1126/science.abd0827 10.1128/AAC.00694-18 10.1038/s41591-019-0463-x 10.1056/NEJMoa2028700 10.1038/s41591-021-01255-3 10.1016/j.xcrm.2021.100255 10.1016/j.cell.2020.07.012 10.1126/science.abe9728 10.1126/science.abd3072 10.1007/s00705-020-04911-0 10.1038/s41577-020-00410-0 10.1038/nature12744 10.1038/s41467-020-16256-y 10.1006/cimm.2000.1617 10.1126/science.abe2402 10.1016/j.cell.2021.04.025 10.1038/nature16988 10.1016/j.cell.2021.03.028 10.1126/science.abc7424 10.7554/eLife.61312 10.1056/NEJMoa1910993 10.1016/j.cell.2021.02.026 10.1016/j.chom.2021.02.003 10.1016/j.cell.2021.03.029 10.1038/s41586-020-2349-y 10.1093/infdis/jiq100 10.1126/science.abd0831 10.1038/s41467-020-20602-5 10.1016/j.coviro.2017.03.002 10.1016/S0140-6736(21)00183-5 10.1016/j.cell.2021.01.037 10.1126/science.abf6840 10.1056/NEJMoa2100433 10.1016/j.cell.2020.05.025 10.1038/s41467-018-03665-3 10.1126/science.abc7520 10.1056/NEJMc2102179 10.1016/j.cell.2018.12.028 10.1038/nm.3443 10.1056/NEJMc2102017 10.1038/s41586-020-2456-9 10.1128/JVI.75.24.12161-12168.2001 10.1038/nature13612 10.1038/s41564-020-0770-5 10.1038/s41586-021-03291-y 10.1126/science.abe5901 10.1038/s41586-021-03471-w 10.1126/scitranslmed.aaj1928 10.1016/j.cell.2016.05.073 10.1038/s41586-021-03398-2 10.1126/science.abf6950 10.1038/s41586-021-03324-6 10.1084/jem.20201993 10.1038/s41586-020-2012-7 10.1038/s41586-020-2548-6 10.1016/j.ygeno.2020.11.003 10.1126/science.abf9302 10.1172/JCI128437 10.1016/j.cell.2020.10.049 10.1126/science.abg6105 10.1016/j.cell.2020.10.043 10.1126/science.abc6952 10.1126/science.abe3354 10.1126/science.abb7269 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc. 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: 2021 Elsevier Inc. 2021 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2021.05.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 3108 |
ExternalDocumentID | PMC8152891 34087172 10_1016_j_cell_2021_05_005 S0092867421006024 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120553 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c4035-c92cea4ac55dd1056579e87eedb2e499f8846992cb7843f10148b6d85c4978fe3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:32:32 EDT 2025 Thu Aug 07 15:03:11 EDT 2025 Thu Jul 10 23:13:42 EDT 2025 Thu Apr 03 07:08:37 EDT 2025 Tue Jul 01 02:17:09 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Fri Feb 23 02:42:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | COVID-19 SARS-CoV-2 therapeutics monoclonal antibody neutralization |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4035-c92cea4ac55dd1056579e87eedb2e499f8846992cb7843f10148b6d85c4978fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8152891 |
PMID | 34087172 |
PQID | 2537632440 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8152891 proquest_miscellaneous_2551983302 proquest_miscellaneous_2537632440 pubmed_primary_34087172 crossref_primary_10_1016_j_cell_2021_05_005 crossref_citationtrail_10_1016_j_cell_2021_05_005 elsevier_sciencedirect_doi_10_1016_j_cell_2021_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-10 |
PublicationDateYYYYMMDD | 2021-06-10 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mair-Jenkins, Saavedra-Campos, Baillie, Cleary, Khaw, Lim, Makki, Rooney, Nguyen-Van-Tam, Beck (bib88) 2015; 211 Chen, Winkler, Case, Aziati, Bricker, Joshi, Darling, Ying, Errico, Shrihari (bib24) 2021 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib136) 2019; 176 Doud, Lee, Bloom (bib43) 2018; 9 Ali, Takas, Nyborg, Shoemaker, Kallewaard, Chiong, Dubovsky, Mallory (bib2) 2018; 62 Hoffmann, Hofmann-Winkler, Krüger, Kempf, Nehlmeier, Graichen, Sidarovich, Moldenhauer, Winkler, Schulz (bib160) 2021 Rappazzo, Tse, Kaku, Wrapp, Sakharkar, Huang, Deveau, Yockachonis, Herbert, Battles (bib106) 2021; 371 Soh, Liu, Nakayama, Ono, Torii, Nakagami, Matsuura, Shioda, Arase (bib120) 2020 Daly, Simonetti, Antón-Plágaro, Kavanagh Williamson, Shoemark, Simón-Gracia, Klein, Bauer, Hollandi, Greber (bib34) 2020; 370 Hezareh, Hessell, Jensen, van de Winkel, Parren (bib60) 2001; 75 (bib47) 2021 Kelley, Renshaw, Kamarck (bib72) 2021 Denison, Graham, Donaldson, Eckerle, Baric (bib39) 2011; 8 Starr, Czudnochowski, Zatta, Park, Liu, Addetia, Pinto, Beltramello, Hernandez, Greaney (bib122) 2021 Ryu, Song, Kim, Kim, Kim, Kim, Kwon, Tijsma, Nuijten, van Baalen (bib113) 2021 Kim, Canchola, Brandt, Pyles, Chanock, Jensen, Parrott (bib74) 1969; 89 Sarkar, Mitra, Chandra, Saha, Banerjee, Dutta, Chawla-Sarkar (bib115) 2021; 166 Schäfer, Muecksch, Lorenzi, Leist, Cipolla, Bournazos, Schmidt, Maison, Gazumyan, Martinez (bib116) 2021; 218 Deng, Garcia-Knight, Khalid, Servellita, Wang, Morris, Sotomayor-González, Glasner, Reyes, Gliwa (bib38) 2021 Xu, Alegre, Varga, Rothermel, Collins, Pulito, Hanna, Dolan, Parren, Bluestone (bib151) 2000; 200 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib8) 2020; 588 Shi, Shan, Duan, Chen, Liu, Song, Song, Bi, Han, Wu (bib118) 2020; 584 Weitzenfeld, Bournazos, Ravetch (bib146) 2019; 129 Wec, Wrapp, Herbert, Maurer, Haslwanter, Sakharkar, Jangra, Dieterle, Lilov, Huang (bib143) 2020; 369 Carbonell-Estrany, Simões, Dagan, Hall, Harris, Hultquist, Connor, Losonsky (bib18) 2010; 125 Davies, Jarvis, Edmunds, Jewell, Diaz-Ordaz, Keogh (bib35) 2021; 593 Gupta, Gonzales-Rojas, Juarez, Casal, Moya, Falci, Sarkis, Solis, Zheng, Scott (bib161) 2021 Walls, Fiala, Schäfer, Wrenn, Pham, Murphy, Tse, Shehata, O’Connor, Chen (bib137) 2020; 183 Letko, Marzi, Munster (bib82) 2020; 5 Gordon, Mouncey, Al-Beidh, Rowan, Nichol, Arabi, Annane, Beane, van Bentum-Puijk (bib108) 2021; 384 Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib110) 2020; 369 Avanzato, Matson, Seifert, Pryce, Williamson, Anzick, Barbian, Judson, Fischer, Martens (bib7) 2020; 183 Bournazos, Corti, Virgin, Ravetch (bib13) 2020; 588 Rambaut, Holmes, O’Toole, Hill, McCrone, Ruis, du Plessis, Pybus (bib105) 2020; 5 Tortorici, Czudnochowski, Starr, Marzi, Walls, Zatta, Bowen, Jaconi, Iulio, Wang (bib131) 2021 Dejnirattisai, Zhou, Supasa, Liu, Mentzer, Ginn, Zhao, Duyvesteyn, Tuekprakhon, Nutalai (bib37) 2021 Chen, Nirula, Heller, Gottlieb, Boscia, Morris, Huhn, Cardona, Mocherla, Stosor (bib23) 2021; 384 Simões, Forleo-Neto, Geba, Kamal, Yang, Cicirello, Houghton, Rideman, Zhao, Benvin (bib119) 2020; 390 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib156) 2020; 579 Kirkpatrick, Qiu, Wilson, Bahl, Krammer (bib76) 2018; 8 Cohen, Gnanapragasam, Lee, Hoffman, Ou, Kakutani, Keeffe, Wu, Howarth, West (bib28) 2021; 371 Davies, Abbott, Barnard, Jarvis, Kucharski, Munday, Pearson, Russell, Tully, Washburne (bib36) 2021; 372 Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib135) 2016; 531 Dong, Zost, Greaney, Starr, Dingens, Chen, Chen, Case, Sutton, Gilchuk (bib42) 2021 Du, Cao, Zhu, Yu, Qi, Wang, Du, Bao, Deng, Zhu (bib44) 2020; 183 Kim, Ryu, Lee, Kim, Seo, Kim, Jeong, Kim, Kim, Kim (bib75) 2021; 12 Gu, Chen, Yang, He, Fan, Deng, Wang, Teng, Zhao, Cui (bib56) 2020; 369 Starr, Greaney, Dingens, Bloom (bib124) 2021; 2 Copin, Baum, Wloga, Pascal, Giordano, Fulton, Zhou, Negron, Lanza, Chan (bib30) 2021 Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib141) 2021; 593 Thomson, Rosen, Shepherd, Spreafico, da Silva Filipe, Wojcechowskyj, Davis, Piccoli, Pascall, Dillen (bib128) 2021; 184 Zhu, McLellan, Kallewaard, Ulbrandt, Palaszynski, Zhang, Moldt, Khan, Svabek, McAuliffe (bib158) 2017; 9 Greaney, Loes, Crawford, Starr, Malone, Chu, Bloom (bib53) 2021; 29 Redden (bib107) 1919; 181 Wu, Werner, Koch, Choi, Narayanan, Stewart-Jones, Colpitts, Bennett, Boyoglu-Barnum, Shi (bib150) 2021; 384 Arunachalam, Walls, Golden, Atyeo, Fischinger, Li, Aye, Navarro, Lai, Edara (bib5) 2021 Graham, Sudre, May, Antonelli, Murray, Varsavsky, Kläser, Canas, Molteni, Modat (bib52) 2021; 6 Oganesyan, Gao, Shirinian, Wu, Dall’Acqua (bib99) 2008; 64 Hessell, Hangartner, Hunter, Havenith, Beurskens, Bakker, Lanigan, Landucci, Forthal, Parren (bib59) 2007; 449 Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz, Kuivanen, van der Meer, Kallio, Kaya, Anastasina (bib16) 2020; 370 Kustin, Harel, Finkel, Perchik, Harari, Tahor, Caspi, Levy, Leschinsky, Dror (bib79) 2021 Greaney, Starr, Gilchuk, Zost, Binshtein, Loes, Hilton, Huddleston, Eguia, Crawford (bib54) 2021; 29 Ortiz, Lansing, Rutitzky, Kurtagic, Prod’homme, Choudhury, Washburn, Bhatnagar, Beneduce, Holte (bib100) 2016; 8 Tortorici, Veesler (bib129) 2019; 105 Winkler, Gilchuk, Yu, Bailey, Chen, Chong, Zost, Jang, Huang, Allen (bib148) 2021; 184 Zhu, McAuliffe, Patel, Palmer-Hill, Yang, Liang, Su, Zhu, Wachter, Wilson (bib157) 2011; 203 Baum, Fulton, Wloga, Copin, Pascal, Russo, Giordano, Lanza, Negron, Ni (bib11) 2020; 369 Horby, Pessoa-Amorim, Peto, Brightling, Sarkar, Thomas, Jeebun, Ashish, Tully, Chadwick (bib63) 2021 Barouch, Whitney, Moldt, Klein, Oliveira, Liu, Stephenson, Chang, Shekhar, Gupta (bib9) 2013; 503 Georgescu, Chemaly (bib50) 2009; 9 Gottlieb, Nirula, Chen, Boscia, Heller, Morris, Huhn, Cardona, Mocherla, Stosor (bib51) 2021; 325 Tegally, Wilkinson, Lessells, Giandhari, Pillay, Msomi, Mlisana, Bhiman, von Gottberg, Walaza (bib127) 2021; 27 Liu, Liu, Xia, Zhang, Fontes-Garfias, Swanson, Cai, Sarkar, Chen, Cutler (bib85) 2021; 384 Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib67) 2020; 584 Chen, Zhang, Case, Winkler, Liu, VanBlargan, Liu, Errico, Xie, Suryadevara (bib25) 2021; 27 Baum, Ajithdoss, Copin, Zhou, Lanza, Negron, Ni, Wei, Mohammadi, Musser (bib10) 2020; 370 Corey, Gilbert, Juraska, Montefiori, Morris, Karuna, Edupuganti, Mgodi, deCamp, Rudnicki (bib31) 2021; 384 Tortorici, Beltramello, Lempp, Pinto, Dang, Rosen, McCallum, Bowen, Minola, Jaconi (bib130) 2020; 370 Klein, Cortese, Winter, Wachsmuth-Melm, Neufeldt, Cerikan, Stanifer, Boulant, Bartenschlager, Chlanda (bib77) 2020; 3 Rosas, Bräu, Waters, Go, Hunter, Bhagani, Skiest, Aziz, Cooper, Douglas (bib111) 2021; 384 Muik, Wallisch, Sänger, Swanson, Mühl, Chen, Cai, Maurus, Sarkar, Türeci (bib94) 2021; 371 Hershberger, Sloan, Narayan, Hay, Smith, Engler, Jeeninga, Smits, Trevejo, Shriver, Oldach (bib58) 2019; 40 Starr, Greaney, Hilton, Ellis, Crawford, Dingens, Navarro, Bowen, Tortorici, Walls (bib121) 2020; 182 Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel (bib57) 2020; 369 Sabino, Buss, Carvalho, Prete, Crispim, Fraiji, Pereira, Parag, da Silva Peixoto, Kraemer (bib114) 2021; 397 Frampton, Rampling, Cross, Bailey, Heaney, Byott, Scott, Sconza, Price, Margaritis (bib49) 2021 Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib83) 2020; 182 Choi, Choudhary, Regan, Sparks, Padera, Qiu, Solomon, Kuo, Boucau, Bowman (bib27) 2020; 383 Munitz, Yechezkel, Dickstein, Yamin, Gerlic (bib96) 2021; 2 Alsoussi, Turner, Case, Zhao, Schmitz, Zhou, Chen, Lei, Rizk, McIntire (bib3) 2020; 205 Suryadevara, Shrihari, Gilchuk, VanBlargan, Binshtein, Zost, Nargi, Sutton, Winkler, Chen (bib125) 2021; 184 Tworek, Jaroń, Uszyńska-Kałuża, Rydzewski, Gil, Deptała, Franek, Wójtowicz, Życińska, Walecka (bib132) 2021; 105 Kallewaard, Corti, Collins, Neu, McAuliffe, Benjamin, Wachter-Rosati, Palmer-Hill, Yuan, Walker (bib69) 2016; 166 Oude Munnink, Sikkema, Nieuwenhuijse, Molenaar, Munger, Molenkamp, van der Spek, Tolsma, Rietveld, Brouwer (bib101) 2021; 371 Ma, Wiggins, Kornatowski, Hailat, Clayburn, Guo, Johnson, Senefeld, Klassen, Baker (bib87) 2021 Cele, Gazy, Jackson, Hwa, Tegally, Lustig, Giandhari, Pillay, Wilkinson, Naidoo (bib21) 2021; 593 Tang, Chen, Cox, Su, Callahan, Fridman, Zhang, Patel, Cejas, Swoyer (bib126) 2019; 10 Zost, Gilchuk, Case, Binshtein, Chen, Nkolola, Schäfer, Reidy, Trivette, Nargi (bib159) 2020; 584 Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib139) 2020; 11 Griffin, Yuan, Takas, Domachowske, Madhi, Manzoni, Simões, Esser, Khan, Dubovsky (bib55) 2020; 383 Wibmer, Ayres, Hermanus, Madzivhandila, Kgagudi, Oosthuysen, Lambson, de Oliveira, Vermeulen, van der Berg (bib147) 2021; 27 Voss, Hou, Johnson, Kim, Delidakis, Horton, Bartzoka, Paresi, Tanno, Abbasi (bib134) 2020 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib61) 2020; 181 McMahan, Yu, Mercado, Loos, Tostanoski, Chandrashekar, Liu, Peter, Atyeo, Zhu (bib92) 2021; 590 Julg, Barouch (bib68) 2021 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib138) 2020; 181 McCarthy, Rennick, Nambulli, Robinson-McCarthy, Bain, Haidar, Duprex (bib91) 2021; 371 (bib98) 2021 Weinreich, Sivapalasingam, Norton, Ali, Gao, Bhore, Musser, Soo, Rofail, Im (bib144) 2021; 384 Cerutti, Guo, Zhou, Gorman, Lee, Rapp, Reddem, Yu, Bahna, Bimela (bib22) 2021; 29 Bournazos, Gupta, Ravetch (bib14) 2020; 20 Kelley (bib71) 2020; 38 McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib90) 2021; 184 Volz, Hill, McCrone, Price, Jorgensen, O’Toole, Southgate, Johnson, Jackson, Nascimento (bib133) 2021; 184 McCallum, Bassi, Marco, Chen, Walls, Iulio, Tortorici, Navarro, Silacci-Fregni, Saliba (bib89) 2021 Piccoli, Park, Tortorici, Czudnochowski, Walls, Beltramello, Silacci-Fregni, Pinto, Rosen, Bowen (bib102) 2020; 183 Ke, Oton, Qu, Cortese, Zila, McKeane, Nakane, Z McCallum (10.1016/j.cell.2021.05.005_bib89) 2021 Redden (10.1016/j.cell.2021.05.005_bib107) 1919; 181 Denison (10.1016/j.cell.2021.05.005_bib39) 2011; 8 Cantuti-Castelvetri (10.1016/j.cell.2021.05.005_bib16) 2020; 370 Dall’Acqua (10.1016/j.cell.2021.05.005_bib33) 2002; 169 Shi (10.1016/j.cell.2021.05.005_bib118) 2020; 584 Barnes (10.1016/j.cell.2021.05.005_bib8) 2020; 588 Behring (10.1016/j.cell.2021.05.005_bib12) 2013 Chen (10.1016/j.cell.2021.05.005_bib23) 2021; 384 (10.1016/j.cell.2021.05.005_bib98) 2021 Ortiz (10.1016/j.cell.2021.05.005_bib100) 2016; 8 Weinreich (10.1016/j.cell.2021.05.005_bib144) 2021; 384 Kallewaard (10.1016/j.cell.2021.05.005_bib69) 2016; 166 Ko (10.1016/j.cell.2021.05.005_bib78) 2014; 514 Tortorici (10.1016/j.cell.2021.05.005_bib129) 2019; 105 McCallum (10.1016/j.cell.2021.05.005_bib90) 2021; 184 Graham (10.1016/j.cell.2021.05.005_bib52) 2021; 6 Zhu (10.1016/j.cell.2021.05.005_bib157) 2011; 203 Tortorici (10.1016/j.cell.2021.05.005_bib131) 2021 Arvin (10.1016/j.cell.2021.05.005_bib6) 2020; 584 Ju (10.1016/j.cell.2021.05.005_bib67) 2020; 584 Lim (10.1016/j.cell.2021.05.005_bib84) 2020; 64 Bournazos (10.1016/j.cell.2021.05.005_bib13) 2020; 588 Muik (10.1016/j.cell.2021.05.005_bib94) 2021; 371 Bournazos (10.1016/j.cell.2021.05.005_bib14) 2020; 20 Thomson (10.1016/j.cell.2021.05.005_bib128) 2021; 184 Kim (10.1016/j.cell.2021.05.005_bib74) 1969; 89 Zhu (10.1016/j.cell.2021.05.005_bib158) 2017; 9 Sabino (10.1016/j.cell.2021.05.005_bib114) 2021; 397 Liu (10.1016/j.cell.2021.05.005_bib86) 2021; 29 Gu (10.1016/j.cell.2021.05.005_bib56) 2020; 369 Hessell (10.1016/j.cell.2021.05.005_bib59) 2007; 449 Zalevsky (10.1016/j.cell.2021.05.005_bib154) 2010; 28 Mulangu (10.1016/j.cell.2021.05.005_bib95) 2019; 381 Weitzenfeld (10.1016/j.cell.2021.05.005_bib146) 2019; 129 Georgescu (10.1016/j.cell.2021.05.005_bib50) 2009; 9 Wrapp (10.1016/j.cell.2021.05.005_bib149) 2020; 367 Copin (10.1016/j.cell.2021.05.005_bib30) 2021 Horby (10.1016/j.cell.2021.05.005_bib63) 2021 Pinto (10.1016/j.cell.2021.05.005_bib103) 2020; 583 Weisblum (10.1016/j.cell.2021.05.005_bib145) 2020; 9 Baum (10.1016/j.cell.2021.05.005_bib10) 2020; 370 (10.1016/j.cell.2021.05.005_bib46) 2020 Starr (10.1016/j.cell.2021.05.005_bib123) 2021; 371 Rambaut (10.1016/j.cell.2021.05.005_bib105) 2020; 5 Wec (10.1016/j.cell.2021.05.005_bib143) 2020; 369 Avanzato (10.1016/j.cell.2021.05.005_bib7) 2020; 183 Lempp (10.1016/j.cell.2021.05.005_bib81) 2021 Baum (10.1016/j.cell.2021.05.005_bib11) 2020; 369 Cao (10.1016/j.cell.2021.05.005_bib17) 2020; 182 Schäfer (10.1016/j.cell.2021.05.005_bib116) 2021; 218 Arunachalam (10.1016/j.cell.2021.05.005_bib5) 2021 Mair-Jenkins (10.1016/j.cell.2021.05.005_bib88) 2015; 211 Oude Munnink (10.1016/j.cell.2021.05.005_bib101) 2021; 371 Polack (10.1016/j.cell.2021.05.005_bib104) 2020; 383 Hansen (10.1016/j.cell.2021.05.005_bib57) 2020; 369 Walls (10.1016/j.cell.2021.05.005_bib136) 2019; 176 Kim (10.1016/j.cell.2021.05.005_bib75) 2021; 12 Choi (10.1016/j.cell.2021.05.005_bib27) 2020; 383 Davies (10.1016/j.cell.2021.05.005_bib36) 2021; 372 Rogers (10.1016/j.cell.2021.05.005_bib110) 2020; 369 Starr (10.1016/j.cell.2021.05.005_bib121) 2020; 182 Rosas (10.1016/j.cell.2021.05.005_bib111) 2021; 384 Cele (10.1016/j.cell.2021.05.005_bib21) 2021; 593 Griffin (10.1016/j.cell.2021.05.005_bib55) 2020; 383 Chen (10.1016/j.cell.2021.05.005_bib24) 2021 Deng (10.1016/j.cell.2021.05.005_bib38) 2021 Julg (10.1016/j.cell.2021.05.005_bib68) 2021 Wu (10.1016/j.cell.2021.05.005_bib150) 2021; 384 DiLillo (10.1016/j.cell.2021.05.005_bib40) 2014; 20 (10.1016/j.cell.2021.05.005_bib45) 2020 Alsoussi (10.1016/j.cell.2021.05.005_bib3) 2020; 205 Letko (10.1016/j.cell.2021.05.005_bib82) 2020; 5 Piccoli (10.1016/j.cell.2021.05.005_bib102) 2020; 183 Oganesyan (10.1016/j.cell.2021.05.005_bib99) 2008; 64 Soh (10.1016/j.cell.2021.05.005_bib120) 2020 Liu (10.1016/j.cell.2021.05.005_bib85) 2021; 384 Hoffmann (10.1016/j.cell.2021.05.005_bib61) 2020; 181 Tworek (10.1016/j.cell.2021.05.005_bib132) 2021; 105 Klein (10.1016/j.cell.2021.05.005_bib77) 2020; 3 Ali (10.1016/j.cell.2021.05.005_bib2) 2018; 62 Hoffmann (10.1016/j.cell.2021.05.005_bib62) 2021 Fedry (10.1016/j.cell.2021.05.005_bib48) 2020 Dong (10.1016/j.cell.2021.05.005_bib42) 2021 Buss (10.1016/j.cell.2021.05.005_bib15) 2021; 371 Greaney (10.1016/j.cell.2021.05.005_bib53) 2021; 29 Lee (10.1016/j.cell.2021.05.005_bib80) 2020; 5 Dejnirattisai (10.1016/j.cell.2021.05.005_bib37) 2021 Roy (10.1016/j.cell.2021.05.005_bib112) 2020; 112 Xu (10.1016/j.cell.2021.05.005_bib151) 2000; 200 Ke (10.1016/j.cell.2021.05.005_bib70) 2020; 588 Sarkar (10.1016/j.cell.2021.05.005_bib115) 2021; 166 Lundgren (10.1016/j.cell.2021.05.005_bib1) 2021; 384 Davies (10.1016/j.cell.2021.05.005_bib35) 2021; 593 Kustin (10.1016/j.cell.2021.05.005_bib79) 2021 Ng (10.1016/j.cell.2021.05.005_bib97) 2019; 25 Robbiani (10.1016/j.cell.2021.05.005_bib109) 2020; 584 Corey (10.1016/j.cell.2021.05.005_bib31) 2021; 384 Hoffmann (10.1016/j.cell.2021.05.005_bib160) 2021 Corti (10.1016/j.cell.2021.05.005_bib32) 2017; 24 Cohen (10.1016/j.cell.2021.05.005_bib28) 2021; 371 Greaney (10.1016/j.cell.2021.05.005_bib54) 2021; 29 Starr (10.1016/j.cell.2021.05.005_bib124) 2021; 2 Suryadevara (10.1016/j.cell.2021.05.005_bib125) 2021; 184 Zhou (10.1016/j.cell.2021.05.005_bib156) 2020; 579 Zhao (10.1016/j.cell.2021.05.005_bib155) 2004; 318 Gordon (10.1016/j.cell.2021.05.005_bib108) 2021; 384 Kemp (10.1016/j.cell.2021.05.005_bib73) 2021; 592 Jackson (10.1016/j.cell.2021.05.005_bib65) 2020; 383 Ryu (10.1016/j.cell.2021.05.005_bib113) 2021 Tegally (10.1016/j.cell.2021.05.005_bib127) 2021; 27 Dilillo (10.1016/j.cell.2021.05.005_bib41) 2016; 126 Hezareh (10.1016/j.cell.2021.05.005_bib60) 2001; 75 Gupta (10.1016/j.cell.2021.05.005_bib161) 2021 Chi (10.1016/j.cell.2021.05.005_bib26) 2020; 369 Volz (10.1016/j.cell.2021.05.005_bib133) 2021; 184 Zost (10.1016/j.cell.2021.05.005_bib159) 2020; 584 Winkler (10.1016/j.cell.2021.05.005_bib148) 2021; 184 Cerutti (10.1016/j.cell.2021.05.005_bib22) 2021; 29 Starr (10.1016/j.cell.2021.05.005_bib122) 2021 Kirkpatrick (10.1016/j.cell.2021.05.005_bib76) 2018; 8 Mendoza (10.1016/j.cell.2021.05.005_bib93) 2018; 561 (10.1016/j.cell.2021.05.005_bib47) 2021 Walls (10.1016/j.cell.2021.05.005_bib137) 2020; 183 Wang (10.1016/j.cell.2021.05.005_bib140) 2021 Daly (10.1016/j.cell.2021.05.005_bib34) 2020; 370 Hershberger (10.1016/j.cell.2021.05.005_bib58) 2019; 40 Chen (10.1016/j.cell.2021.05.005_bib25) 2021; 27 Ma (10.1016/j.cell.2021.05.005_bib87) 2021 Yuan (10.1016/j.cell.2021.05.005_bib153) 2020; 368 Tang (10.1016/j.cell.2021.05.005_bib126) 2019; 10 Schoofs (10.1016/j.cell.2021.05.005_bib117) 2016; 352 Barouch (10.1016/j.cell.2021.05.005_bib9) 2013; 503 Jones (10.1016/j.cell.2021.05.005_bib66) 2021; 13 Kelley (10.1016/j.cell.2021.05.005_bib71) 2020; 38 Gottlieb (10.1016/j.cell.2021.05.005_bib51) 2021; 325 (10.1016/j.cell.2021.05.005_bib64) 1998; 102 Du (10.1016/j.cell.2021.05.005_bib44) 2020; 183 Carbonell-Estrany (10.1016/j.cell.2021.05.005_bib18) 2010; 125 Tortorici (10.1016/j.cell.2021.05.005_bib130) 2020; 370 Voss (10.1016/j.cell.2021.05.005_bib134) 2020 Wang (10.1016/j.cell.2021.05.005_bib139) 2020; 11 Rappazzo (10.1016/j.cell.2021.05.005_bib106) 2021; 371 Doud (10.1016/j.cell.2021.05.005_bib43) 2018; 9 Andreano (10.1016/j.cell.2021.05.005_bib4) 2020 McMahan (10.1016/j.cell.2021.05.005_bib92) 2021; 590 Collier (10.1016/j.cell.2021.05.005_bib29) 2021; 593 McCarthy (10.1016/j.cell.2021.05.005_bib91) 2021; 371 Caskey (10.1016/j.cell.2021.05.005_bib19) 2019; 25 Munitz (10.1016/j.cell.2021.05.005_bib96) 2021; 2 Walls (10.1016/j.cell.2021.05.005_bib135) 2016; 531 Wibmer (10.1016/j.cell.2021.05.005_bib147) 2021; 27 Li (10.1016/j.cell.2021.05.005_bib83) 2020; 182 Kelley (10.1016/j.cell.2021.05.005_bib72) 2021 Simões (10.1016/j.cell.2021.05.005_bib119) 2020; 390 Cathcart (10.1016/j.cell.2021.05.005_bib20) 2021 Walls (10.1016/j.cell.2021.05.005_bib138) 2020; 181 Wang (10.1016/j.cell.2021.05.005_bib141) 2021; 593 Wang (10.1016/j.cell.2021.05.005_bib142) 2021; 592 Frampton (10.1016/j.cell.2021.05.005_bib49) 2021 34416148 - Cell. 2021 Aug 19;184(17):4593-4595. doi: 10.1016/j.cell.2021.07.027 |
References_xml | – volume: 370 start-page: 856 year: 2020 end-page: 860 ident: bib16 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science – volume: 369 start-page: 1014 year: 2020 end-page: 1018 ident: bib11 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science – volume: 6 start-page: e335 year: 2021 end-page: e345 ident: bib52 article-title: Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study publication-title: Lancet Public Health – volume: 64 year: 2020 ident: bib84 article-title: A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of MHAA4549A, a Monoclonal Antibody, plus Oseltamivir in Patients Hospitalized with Severe Influenza A Virus Infection publication-title: Antimicrob. Agents Chemother. – year: 2020 ident: bib134 article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma publication-title: bioRxiv – volume: 384 start-page: 1466 year: 2021 end-page: 1468 ident: bib85 article-title: Neutralizing Activity of BNT162b2-Elicited Serum publication-title: N. Engl. J. Med. – volume: 182 start-page: 73 year: 2020 end-page: 84.e16 ident: bib17 article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells publication-title: Cell – year: 2020 ident: bib45 article-title: Emergency Use Authorization (EUA) for bamlanivimab. Center for Drug Evaluation and Research (CDER) – year: 2021 ident: bib81 article-title: Membrane lectins enhance SARS-CoV-2 infection and influence the neutralizing activity of different classes of antibodies publication-title: bioRxiv – volume: 9 start-page: 1386 year: 2018 ident: bib43 article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin publication-title: Nat. Commun. – volume: 183 start-page: 1013 year: 2020 end-page: 1023.e13 ident: bib44 article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy publication-title: Cell – volume: 11 start-page: 2251 year: 2020 ident: bib139 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nat. Commun. – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib156 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 126 start-page: 605 year: 2016 end-page: 610 ident: bib41 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. – volume: 20 start-page: 633 year: 2020 end-page: 643 ident: bib14 article-title: The role of IgG Fc receptors in antibody-dependent enhancement publication-title: Nat. Rev. Immunol. – volume: 371 start-page: 1152 year: 2021 end-page: 1153 ident: bib94 article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera publication-title: Science – volume: 371 start-page: 1139 year: 2021 end-page: 1142 ident: bib91 article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape publication-title: Science – year: 2021 ident: bib122 article-title: Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape publication-title: bioRxiv – year: 2021 ident: bib72 article-title: Process and operations strategies to enable global access to antibody therapies publication-title: Biotechnol. Prog. – volume: 588 start-page: 498 year: 2020 end-page: 502 ident: bib70 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature – volume: 12 start-page: 288 year: 2021 ident: bib75 article-title: A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein publication-title: Nat. Commun. – volume: 200 start-page: 16 year: 2000 end-page: 26 ident: bib151 article-title: In vitro characterization of five humanized OKT3 effector function variant antibodies publication-title: Cell. Immunol. – volume: 211 start-page: 80 year: 2015 end-page: 90 ident: bib88 article-title: The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis publication-title: J. Infect. Dis. – volume: 29 start-page: 463 year: 2021 end-page: 476.e6 ident: bib53 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe – volume: 449 start-page: 101 year: 2007 end-page: 104 ident: bib59 article-title: Fc receptor but not complement binding is important in antibody protection against HIV publication-title: Nature – volume: 62 start-page: 1 year: 2018 end-page: 47 ident: bib2 article-title: Evaluation of MEDI8852, an Anti-Influenza A Monoclonal Antibody, in Treating Acute Uncomplicated Influenza publication-title: Antimicrob. Agents Chemother. – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: bib57 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science – volume: 371 start-page: 288 year: 2021 end-page: 292 ident: bib15 article-title: Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic publication-title: Science – year: 2021 ident: bib47 article-title: Development of Monoclonal Antibody Products Targeting SARS-CoV-2, Including Addressing the Impact of Emerging Variants, During the COVID 19 Public Health Emergency – volume: 102 start-page: 531 year: 1998 end-page: 537 ident: bib64 article-title: Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants publication-title: Pediatrics – volume: 10 start-page: 4153 year: 2019 ident: bib126 article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein publication-title: Nat. Commun. – volume: 27 start-page: 440 year: 2021 end-page: 446 ident: bib127 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. – volume: 584 start-page: 115 year: 2020 end-page: 119 ident: bib67 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature – year: 2021 ident: bib68 article-title: Broadly neutralizing antibodies for HIV-1 prevention and therapy publication-title: Semin. Immunol. – volume: 9 start-page: eaaj1928 year: 2017 ident: bib158 article-title: A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants publication-title: Sci. Transl. Med. – volume: 169 start-page: 5171 year: 2002 end-page: 5180 ident: bib33 article-title: Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences publication-title: J. Immunol. – volume: 218 start-page: 218 year: 2021 ident: bib116 article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo publication-title: J. Exp. Med. – volume: 25 start-page: 547 year: 2019 end-page: 553 ident: bib19 article-title: Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic publication-title: Nat. Med. – year: 2021 ident: bib63 article-title: Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial publication-title: medRxiv – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib103 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 166 start-page: 801 year: 2021 end-page: 812 ident: bib115 article-title: Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations publication-title: Arch. Virol. – year: 2021 ident: bib37 article-title: Antibody evasion by the P.1 strain of SARS-CoV-2 publication-title: Cell – volume: 8 start-page: 270 year: 2011 end-page: 279 ident: bib39 article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity publication-title: RNA Biol. – volume: 112 start-page: 5331 year: 2020 end-page: 5342 ident: bib112 article-title: Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus publication-title: Genomics – volume: 20 start-page: 143 year: 2014 end-page: 151 ident: bib40 article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo publication-title: Nat. Med. – volume: 28 start-page: 157 year: 2010 end-page: 159 ident: bib154 article-title: Enhanced antibody half-life improves in vivo activity publication-title: Nat. Biotechnol. – volume: 384 start-page: 229 year: 2021 end-page: 237 ident: bib23 article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19 publication-title: N. Engl. J. Med. – volume: 584 start-page: 443 year: 2020 end-page: 449 ident: bib159 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature – volume: 370 start-page: 861 year: 2020 end-page: 865 ident: bib34 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science – volume: 352 start-page: 997 year: 2016 end-page: 1001 ident: bib117 article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1 publication-title: Science – volume: 184 start-page: 64 year: 2021 end-page: 75.e11 ident: bib133 article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity publication-title: Cell – volume: 384 start-page: 1468 year: 2021 end-page: 1470 ident: bib150 article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine publication-title: N. Engl. J. Med. – year: 2021 ident: bib87 article-title: The Role of Disease Severity and Demographics in the Clinical Course of COVID-19 Patients Treated with Convalescent Plasma publication-title: medRxiv – volume: 105 start-page: 93 year: 2019 end-page: 116 ident: bib129 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. – volume: 3 start-page: 237 year: 2020 end-page: 238 ident: bib77 article-title: SARS-CoV-2 structure and replication characterized by in situcryo-electron tomography publication-title: Nat. Commun. – volume: 27 start-page: 717 year: 2021 end-page: 726 ident: bib25 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat. Med. – volume: 9 start-page: 139 year: 2009 end-page: 147 ident: bib50 article-title: Palivizumab: where to from here? publication-title: Expert Opin. Biol. Ther. – volume: 29 start-page: 477 year: 2021 end-page: 488.e4 ident: bib86 article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: Cell Host Microbe – year: 2021 ident: bib24 article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains publication-title: Research Square – volume: 384 start-page: 1003 year: 2021 end-page: 1014 ident: bib31 article-title: Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition publication-title: N. Engl. J. Med. – volume: 369 start-page: 1603 year: 2020 end-page: 1607 ident: bib56 article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy publication-title: Science – year: 2021 ident: bib161 article-title: Early Covid-19 Treatment With SARS-CoV-2 Neutralizing Antibody Sotrovimab publication-title: medRxiv – year: 2021 ident: bib131 article-title: Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody publication-title: bioRxiv – volume: 205 start-page: 915 year: 2020 end-page: 922 ident: bib3 article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection publication-title: J. Immunol. – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: bib135 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature – volume: 592 start-page: 616 year: 2021 end-page: 622 ident: bib142 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature – volume: 29 start-page: 819 year: 2021 end-page: 833.e7 ident: bib22 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe – volume: 8 start-page: 365ra158 year: 2016 ident: bib100 article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors publication-title: Sci. Transl. Med. – year: 2021 ident: bib140 article-title: Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization publication-title: bioRxiv – volume: 181 start-page: 688 year: 1919 end-page: 691 ident: bib107 article-title: Treatment of Influenza-Pneumonia by Use of Convalescent Human Serum publication-title: Boston Med. Surg. J. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib149 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 371 start-page: 172 year: 2021 end-page: 177 ident: bib101 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science – volume: 383 start-page: 1920 year: 2020 end-page: 1931 ident: bib65 article-title: An mRNA Vaccine against SARS-CoV-2 - Preliminary Report publication-title: N. Engl. J. Med. – year: 2020 ident: bib48 article-title: A human monoclonal antibody targeting a conserved pocket in the SARS-CoV-2 receptor-binding domain core publication-title: bioRxiv – year: 2021 ident: bib49 article-title: Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study publication-title: Lancet Infect. Dis. – volume: 184 start-page: 2332 year: 2021 end-page: 2347.e16 ident: bib90 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell – volume: 184 start-page: 2316 year: 2021 end-page: 2331.e15 ident: bib125 article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein publication-title: Cell – volume: 125 start-page: e35 year: 2010 end-page: e51 ident: bib18 article-title: Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial publication-title: Pediatrics – volume: 8 start-page: 10432 year: 2018 ident: bib76 article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain publication-title: Sci. Rep. – volume: 370 start-page: 950 year: 2020 end-page: 957 ident: bib130 article-title: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms publication-title: Science – volume: 381 start-page: 2293 year: 2019 end-page: 2303 ident: bib95 article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics publication-title: N. Engl. J. Med. – volume: 371 start-page: 823 year: 2021 end-page: 829 ident: bib106 article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody publication-title: Science – volume: 13 start-page: eabf1906 year: 2021 ident: bib66 article-title: The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates publication-title: Sci. Transl. Med. – volume: 592 start-page: 277 year: 2021 end-page: 282 ident: bib73 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature – volume: 384 start-page: 1491 year: 2021 end-page: 1502 ident: bib108 article-title: Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19 publication-title: N. Engl. J. Med. – year: 2021 ident: bib113 article-title: Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant publication-title: bioRxiv – year: 2021 ident: bib42 article-title: Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail publication-title: bioRxiv – volume: 75 start-page: 12161 year: 2001 end-page: 12168 ident: bib60 article-title: Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1 publication-title: J. Virol. – year: 2021 ident: bib5 article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity publication-title: Nature – volume: 318 start-page: 608 year: 2004 end-page: 612 ident: bib155 article-title: Respiratory syncytial virus escape mutant derived in vitro resists palivizumab prophylaxis in cotton rats publication-title: Virology – volume: 593 start-page: 136 year: 2021 end-page: 141 ident: bib29 article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies publication-title: Nature – volume: 384 start-page: 1503 year: 2021 end-page: 1516 ident: bib111 article-title: Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia publication-title: N. Engl. J. Med. – year: 2020 ident: bib120 article-title: The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN publication-title: bioRxiv – volume: 593 start-page: 270 year: 2021 end-page: 274 ident: bib35 article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7 publication-title: Nature – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib109 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 183 start-page: 1024 year: 2020 end-page: 1042.e21 ident: bib102 article-title: Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology publication-title: Cell – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: bib153 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 24 start-page: 60 year: 2017 end-page: 69 ident: bib32 article-title: Tackling influenza with broadly neutralizing antibodies publication-title: Curr. Opin. Virol. – year: 2020 ident: bib4 article-title: SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma publication-title: bioRxiv – volume: 590 start-page: 630 year: 2021 end-page: 634 ident: bib92 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature – volume: 584 start-page: 353 year: 2020 end-page: 363 ident: bib6 article-title: A perspective on potential antibody-dependent enhancement of SARS-CoV-2 publication-title: Nature – volume: 503 start-page: 224 year: 2013 end-page: 228 ident: bib9 article-title: Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys publication-title: Nature – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib138 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell – volume: 89 start-page: 422 year: 1969 end-page: 434 ident: bib74 article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine publication-title: Am. J. Epidemiol. – volume: 371 start-page: 850 year: 2021 end-page: 854 ident: bib123 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 publication-title: Science – volume: 383 start-page: 2291 year: 2020 end-page: 2293 ident: bib27 article-title: Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host publication-title: N. Engl. J. Med. – volume: 2 start-page: 100255 year: 2021 ident: bib124 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep Med – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: bib8 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – volume: 514 start-page: 642 year: 2014 end-page: 645 ident: bib78 article-title: Enhanced neonatal Fc receptor function improves protection against primate SHIV infection publication-title: Nature – volume: 203 start-page: 674 year: 2011 end-page: 682 ident: bib157 article-title: Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab publication-title: J. Infect. Dis. – year: 2021 ident: bib79 article-title: Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals publication-title: medRxiv – volume: 2 start-page: 100264 year: 2021 ident: bib96 article-title: BNT162b2 Vaccination Effectively Prevents the Rapid Rise of SARS-CoV-2 Variant B.1.1.7 in high risk populations in Israel publication-title: Cell Rep. Med. – volume: 182 start-page: 1295 year: 2020 end-page: 1310.e20 ident: bib121 article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding publication-title: Cell – volume: 372 start-page: 372 year: 2021 ident: bib36 article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Science – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: bib82 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. – volume: 370 start-page: 1110 year: 2020 end-page: 1115 ident: bib10 article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters publication-title: Science – year: 2013 ident: bib12 article-title: Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren – volume: 371 start-page: 735 year: 2021 end-page: 741 ident: bib28 article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice publication-title: Science – volume: 166 start-page: 596 year: 2016 end-page: 608 ident: bib69 article-title: Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes publication-title: Cell – year: 2021 ident: bib38 article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant publication-title: Cell – volume: 561 start-page: 479 year: 2018 end-page: 484 ident: bib93 article-title: Combination therapy with anti-HIV-1 antibodies maintains viral suppression publication-title: Nature – volume: 384 start-page: 905 year: 2021 end-page: 914 ident: bib1 article-title: A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19 publication-title: N. Engl. J. Med. – volume: 593 start-page: 142 year: 2021 end-page: 146 ident: bib21 article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma publication-title: Nature – volume: 184 start-page: 1804 year: 2021 end-page: 1820.e1816 ident: bib148 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell – volume: 390 start-page: 946 year: 2020 end-page: 949 ident: bib119 article-title: Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants publication-title: Clin. Infect. Dis. – year: 2021 ident: bib160 article-title: SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination publication-title: bioRxiv – year: 2021 ident: bib98 article-title: Statement—NIH-Sponsored ACTIV-3 Clinical Trial Closes Enrollment into Two Sub-Studies – volume: 176 start-page: 1026 year: 2019 end-page: 1039.e15 ident: bib136 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell – year: 2021 ident: bib30 article-title: In vitro and in vivo preclinical studies predict REGEN-COV protection against emergence of viral escape in humans publication-title: bioRxiv – year: 2021 ident: bib20 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 publication-title: bioRxiv – volume: 588 start-page: 485 year: 2020 end-page: 490 ident: bib13 article-title: Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection publication-title: Nature – year: 2020 ident: bib46 article-title: FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF CASIRIVIMAB AND IMDEVIMAB. Emergency Use Authorization – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib26 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: bib141 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 183 start-page: 1901 year: 2020 end-page: 1912.e1909 ident: bib7 article-title: Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer publication-title: Cell – volume: 40 start-page: 574 year: 2019 end-page: 582 ident: bib58 article-title: Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: Results from a randomized, double-blind, phase-2, placebo-controlled study publication-title: EBioMedicine – volume: 38 start-page: 540 year: 2020 end-page: 545 ident: bib71 article-title: Developing therapeutic monoclonal antibodies at pandemic pace publication-title: Nat. Biotechnol. – volume: 383 start-page: 415 year: 2020 end-page: 425 ident: bib55 article-title: Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants publication-title: N. Engl. J. Med. – volume: 384 start-page: 238 year: 2021 end-page: 251 ident: bib144 article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 publication-title: N. Engl. J. Med. – year: 2021 ident: bib62 article-title: SARS-CoV-2 variants B.1.351 and B.1.1.248: Escape from therapeutic antibodies and antibodies induced by infection and vaccination publication-title: bioRxiv – volume: 129 start-page: 3952 year: 2019 end-page: 3962 ident: bib146 article-title: Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways publication-title: J. Clin. Invest. – volume: 27 start-page: 622 year: 2021 end-page: 625 ident: bib147 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat. Med. – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib104 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: bib110 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 5 start-page: 1185 year: 2020 end-page: 1191 ident: bib80 article-title: Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies publication-title: Nat. Microbiol. – volume: 183 start-page: 1367 year: 2020 end-page: 1382.e17 ident: bib137 article-title: Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 publication-title: Cell – volume: 184 start-page: 1171 year: 2021 end-page: 1187.e20 ident: bib128 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell – volume: 325 start-page: 632 year: 2021 end-page: 644 ident: bib51 article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial publication-title: JAMA – volume: 182 start-page: 1284 year: 2020 end-page: 1294.e9 ident: bib83 article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity publication-title: Cell – year: 2021 ident: bib89 article-title: SARS-CoV-2 immune evasion by variant B.1.427/B.1.429 publication-title: bioRxiv – volume: 25 start-page: 962 year: 2019 end-page: 967 ident: bib97 article-title: Novel correlates of protection against pandemic H1N1 influenza A virus infection publication-title: Nat. Med. – volume: 5 start-page: 1403 year: 2020 end-page: 1407 ident: bib105 article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology publication-title: Nat. Microbiol. – volume: 397 start-page: 452 year: 2021 end-page: 455 ident: bib114 article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence publication-title: Lancet – volume: 9 start-page: e61312 year: 2020 ident: bib145 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: eLife – volume: 105 start-page: 209 year: 2021 end-page: 215 ident: bib132 article-title: Convalescent plasma treatment is associated with lower mortality and better outcomes in high-risk COVID-19 patients: propensity-score matched case-control study publication-title: Int. J. Infect. Dis. – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib61 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell – volume: 369 start-page: 731 year: 2020 end-page: 736 ident: bib143 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science – volume: 64 start-page: 700 year: 2008 end-page: 704 ident: bib99 article-title: Structural characterization of a human Fc fragment engineered for lack of effector functions publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 584 start-page: 120 year: 2020 end-page: 124 ident: bib118 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature – volume: 29 start-page: 44 year: 2021 end-page: 57.e9 ident: bib54 article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition publication-title: Cell Host Microbe – volume: 205 start-page: 915 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib3 article-title: A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection publication-title: J. Immunol. doi: 10.4049/jimmunol.2000583 – volume: 64 start-page: 700 year: 2008 ident: 10.1016/j.cell.2021.05.005_bib99 article-title: Structural characterization of a human Fc fragment engineered for lack of effector functions publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444908007877 – volume: 588 start-page: 498 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib70 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature doi: 10.1038/s41586-020-2665-2 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib20 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 publication-title: bioRxiv – volume: 2 start-page: 100264 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib96 article-title: BNT162b2 Vaccination Effectively Prevents the Rapid Rise of SARS-CoV-2 Variant B.1.1.7 in high risk populations in Israel publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100264 – volume: 29 start-page: 44 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib54 article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.007 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib149 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 370 start-page: 856 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib16 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science doi: 10.1126/science.abd2985 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib161 article-title: Early Covid-19 Treatment With SARS-CoV-2 Neutralizing Antibody Sotrovimab publication-title: medRxiv – volume: 369 start-page: 1603 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib56 article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy publication-title: Science doi: 10.1126/science.abc4730 – volume: 29 start-page: 819 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib22 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.005 – volume: 27 start-page: 622 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib147 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat. Med. doi: 10.1038/s41591-021-01285-x – volume: 588 start-page: 682 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib8 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 384 start-page: 905 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib1 article-title: A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2033130 – volume: 126 start-page: 605 year: 2016 ident: 10.1016/j.cell.2021.05.005_bib41 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. doi: 10.1172/JCI84428 – volume: 28 start-page: 157 year: 2010 ident: 10.1016/j.cell.2021.05.005_bib154 article-title: Enhanced antibody half-life improves in vivo activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1601 – volume: 593 start-page: 270 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib35 article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03426-1 – volume: 64 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib84 article-title: A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of MHAA4549A, a Monoclonal Antibody, plus Oseltamivir in Patients Hospitalized with Severe Influenza A Virus Infection publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00352-20 – volume: 561 start-page: 479 year: 2018 ident: 10.1016/j.cell.2021.05.005_bib93 article-title: Combination therapy with anti-HIV-1 antibodies maintains viral suppression publication-title: Nature doi: 10.1038/s41586-018-0531-2 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib122 article-title: Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape publication-title: bioRxiv – volume: 384 start-page: 238 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib144 article-title: REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035002 – year: 2020 ident: 10.1016/j.cell.2021.05.005_bib46 – volume: 8 start-page: 365ra158 year: 2016 ident: 10.1016/j.cell.2021.05.005_bib100 article-title: Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf9418 – volume: 384 start-page: 1003 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib31 article-title: Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2031738 – volume: 9 start-page: 139 year: 2009 ident: 10.1016/j.cell.2021.05.005_bib50 article-title: Palivizumab: where to from here? publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712590802610692 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib138 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – year: 2020 ident: 10.1016/j.cell.2021.05.005_bib48 article-title: A human monoclonal antibody targeting a conserved pocket in the SARS-CoV-2 receptor-binding domain core publication-title: bioRxiv – volume: 5 start-page: 562 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib82 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – year: 2020 ident: 10.1016/j.cell.2021.05.005_bib134 article-title: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma publication-title: bioRxiv – volume: 584 start-page: 353 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib6 article-title: A perspective on potential antibody-dependent enhancement of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2538-8 – year: 2013 ident: 10.1016/j.cell.2021.05.005_bib12 – volume: 27 start-page: 717 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib25 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – volume: 384 start-page: 229 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib23 article-title: SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2029849 – volume: 372 start-page: 372 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib36 article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Science doi: 10.1126/science.abg3055 – volume: 40 start-page: 574 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib58 article-title: Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: Results from a randomized, double-blind, phase-2, placebo-controlled study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.051 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib72 article-title: Process and operations strategies to enable global access to antibody therapies publication-title: Biotechnol. Prog. doi: 10.1002/btpr.3139 – volume: 13 start-page: eabf1906 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib66 article-title: The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abf1906 – volume: 169 start-page: 5171 year: 2002 ident: 10.1016/j.cell.2021.05.005_bib33 article-title: Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences publication-title: J. Immunol. doi: 10.4049/jimmunol.169.9.5171 – volume: 584 start-page: 115 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib67 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 390 start-page: 946 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib119 article-title: Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants publication-title: Clin. Infect. Dis. – volume: 383 start-page: 415 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib55 article-title: Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1913556 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib5 article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity publication-title: Nature doi: 10.1038/s41586-021-03530-2 – volume: 182 start-page: 1295 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib121 article-title: Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib79 article-title: Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals publication-title: medRxiv – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib30 article-title: In vitro and in vivo preclinical studies predict REGEN-COV protection against emergence of viral escape in humans publication-title: bioRxiv – volume: 211 start-page: 80 year: 2015 ident: 10.1016/j.cell.2021.05.005_bib88 article-title: The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiu396 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib131 article-title: Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody publication-title: bioRxiv – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib81 article-title: Membrane lectins enhance SARS-CoV-2 infection and influence the neutralizing activity of different classes of antibodies publication-title: bioRxiv – volume: 325 start-page: 632 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib51 article-title: Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2021.0202 – volume: 102 start-page: 531 year: 1998 ident: 10.1016/j.cell.2021.05.005_bib64 article-title: Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants publication-title: Pediatrics doi: 10.1542/peds.102.3.531 – volume: 590 start-page: 630 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib92 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature doi: 10.1038/s41586-020-03041-6 – volume: 588 start-page: 485 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib13 article-title: Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection publication-title: Nature doi: 10.1038/s41586-020-2838-z – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib63 article-title: Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial publication-title: medRxiv – volume: 105 start-page: 93 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib129 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2019.08.002 – volume: 8 start-page: 270 year: 2011 ident: 10.1016/j.cell.2021.05.005_bib39 article-title: Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity publication-title: RNA Biol. doi: 10.4161/rna.8.2.15013 – volume: 10 start-page: 4153 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib126 article-title: A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein publication-title: Nat. Commun. doi: 10.1038/s41467-019-12137-1 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib37 article-title: Antibody evasion by the P.1 strain of SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.055 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib68 article-title: Broadly neutralizing antibodies for HIV-1 prevention and therapy publication-title: Semin. Immunol. doi: 10.1016/j.smim.2021.101475 – volume: 383 start-page: 2291 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib27 article-title: Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2031364 – volume: 383 start-page: 1920 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib65 article-title: An mRNA Vaccine against SARS-CoV-2 - Preliminary Report publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2022483 – volume: 25 start-page: 547 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib19 article-title: Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic publication-title: Nat. Med. doi: 10.1038/s41591-019-0412-8 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib24 article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains publication-title: Research Square – volume: 352 start-page: 997 year: 2016 ident: 10.1016/j.cell.2021.05.005_bib117 article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1 publication-title: Science doi: 10.1126/science.aaf0972 – volume: 125 start-page: e35 year: 2010 ident: 10.1016/j.cell.2021.05.005_bib18 article-title: Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial publication-title: Pediatrics doi: 10.1542/peds.2008-1036 – volume: 593 start-page: 136 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib29 article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies publication-title: Nature doi: 10.1038/s41586-021-03412-7 – volume: 8 start-page: 10432 year: 2018 ident: 10.1016/j.cell.2021.05.005_bib76 article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain publication-title: Sci. Rep. doi: 10.1038/s41598-018-28706-1 – volume: 6 start-page: e335 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib52 article-title: Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00055-4 – volume: 183 start-page: 1024 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib102 article-title: Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology publication-title: Cell doi: 10.1016/j.cell.2020.09.037 – volume: 383 start-page: 2603 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib104 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 38 start-page: 540 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib71 article-title: Developing therapeutic monoclonal antibodies at pandemic pace publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0512-5 – volume: 181 start-page: 688 year: 1919 ident: 10.1016/j.cell.2021.05.005_bib107 article-title: Treatment of Influenza-Pneumonia by Use of Convalescent Human Serum publication-title: Boston Med. Surg. J. doi: 10.1056/NEJM191912111812406 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib61 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 29 start-page: 477 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib86 article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.01.014 – volume: 449 start-page: 101 year: 2007 ident: 10.1016/j.cell.2021.05.005_bib59 article-title: Fc receptor but not complement binding is important in antibody protection against HIV publication-title: Nature doi: 10.1038/nature06106 – volume: 89 start-page: 422 year: 1969 ident: 10.1016/j.cell.2021.05.005_bib74 article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a120955 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib49 article-title: Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00170-5 – volume: 371 start-page: 823 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib106 article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody publication-title: Science doi: 10.1126/science.abf4830 – volume: 184 start-page: 64 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib133 article-title: Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity publication-title: Cell doi: 10.1016/j.cell.2020.11.020 – volume: 5 start-page: 1185 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib80 article-title: Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-00789-5 – volume: 105 start-page: 209 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib132 article-title: Convalescent plasma treatment is associated with lower mortality and better outcomes in high-risk COVID-19 patients: propensity-score matched case-control study publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2021.02.054 – volume: 183 start-page: 1013 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib44 article-title: Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy publication-title: Cell doi: 10.1016/j.cell.2020.09.035 – volume: 318 start-page: 608 year: 2004 ident: 10.1016/j.cell.2021.05.005_bib155 article-title: Respiratory syncytial virus escape mutant derived in vitro resists palivizumab prophylaxis in cotton rats publication-title: Virology doi: 10.1016/j.virol.2003.10.018 – volume: 584 start-page: 120 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib118 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2381-y – volume: 369 start-page: 1010 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib57 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science doi: 10.1126/science.abd0827 – volume: 62 start-page: 1 year: 2018 ident: 10.1016/j.cell.2021.05.005_bib2 article-title: Evaluation of MEDI8852, an Anti-Influenza A Monoclonal Antibody, in Treating Acute Uncomplicated Influenza publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00694-18 – volume: 25 start-page: 962 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib97 article-title: Novel correlates of protection against pandemic H1N1 influenza A virus infection publication-title: Nat. Med. doi: 10.1038/s41591-019-0463-x – volume: 384 start-page: 1503 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib111 article-title: Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2028700 – year: 2020 ident: 10.1016/j.cell.2021.05.005_bib120 article-title: The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN publication-title: bioRxiv – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib140 article-title: Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization publication-title: bioRxiv – volume: 27 start-page: 440 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib127 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. doi: 10.1038/s41591-021-01255-3 – volume: 2 start-page: 100255 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib124 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100255 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib42 article-title: Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail publication-title: bioRxiv – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib89 article-title: SARS-CoV-2 immune evasion by variant B.1.427/B.1.429 publication-title: bioRxiv – volume: 182 start-page: 1284 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib83 article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 371 start-page: 288 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib15 article-title: Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic publication-title: Science doi: 10.1126/science.abe9728 – volume: 370 start-page: 861 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib34 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science doi: 10.1126/science.abd3072 – volume: 166 start-page: 801 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib115 article-title: Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: an endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations publication-title: Arch. Virol. doi: 10.1007/s00705-020-04911-0 – volume: 20 start-page: 633 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib14 article-title: The role of IgG Fc receptors in antibody-dependent enhancement publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00410-0 – volume: 503 start-page: 224 year: 2013 ident: 10.1016/j.cell.2021.05.005_bib9 article-title: Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys publication-title: Nature doi: 10.1038/nature12744 – volume: 11 start-page: 2251 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib139 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nat. Commun. doi: 10.1038/s41467-020-16256-y – volume: 200 start-page: 16 year: 2000 ident: 10.1016/j.cell.2021.05.005_bib151 article-title: In vitro characterization of five humanized OKT3 effector function variant antibodies publication-title: Cell. Immunol. doi: 10.1006/cimm.2000.1617 – volume: 370 start-page: 1110 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib10 article-title: REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters publication-title: Science doi: 10.1126/science.abe2402 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib38 article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant publication-title: Cell doi: 10.1016/j.cell.2021.04.025 – volume: 531 start-page: 114 year: 2016 ident: 10.1016/j.cell.2021.05.005_bib135 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 184 start-page: 2332 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib90 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib113 article-title: Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant publication-title: bioRxiv – volume: 369 start-page: 731 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib143 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science doi: 10.1126/science.abc7424 – volume: 9 start-page: e61312 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib145 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: eLife doi: 10.7554/eLife.61312 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib47 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib160 article-title: SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination publication-title: bioRxiv – volume: 381 start-page: 2293 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib95 article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1910993 – volume: 184 start-page: 1804 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib148 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 29 start-page: 463 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib53 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.003 – volume: 184 start-page: 2316 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib125 article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein publication-title: Cell doi: 10.1016/j.cell.2021.03.029 – volume: 3 start-page: 237 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib77 article-title: SARS-CoV-2 structure and replication characterized by in situcryo-electron tomography publication-title: Nat. Commun. – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib103 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 203 start-page: 674 year: 2011 ident: 10.1016/j.cell.2021.05.005_bib157 article-title: Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiq100 – volume: 369 start-page: 1014 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib11 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science doi: 10.1126/science.abd0831 – volume: 12 start-page: 288 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib75 article-title: A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein publication-title: Nat. Commun. doi: 10.1038/s41467-020-20602-5 – year: 2020 ident: 10.1016/j.cell.2021.05.005_bib4 article-title: SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma publication-title: bioRxiv – volume: 24 start-page: 60 year: 2017 ident: 10.1016/j.cell.2021.05.005_bib32 article-title: Tackling influenza with broadly neutralizing antibodies publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2017.03.002 – volume: 397 start-page: 452 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib114 article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence publication-title: Lancet doi: 10.1016/S0140-6736(21)00183-5 – volume: 184 start-page: 1171 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib128 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell doi: 10.1016/j.cell.2021.01.037 – volume: 371 start-page: 735 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib28 article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice publication-title: Science doi: 10.1126/science.abf6840 – volume: 384 start-page: 1491 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib108 article-title: Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2100433 – volume: 182 start-page: 73 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib17 article-title: Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 9 start-page: 1386 year: 2018 ident: 10.1016/j.cell.2021.05.005_bib43 article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin publication-title: Nat. Commun. doi: 10.1038/s41467-018-03665-3 – volume: 369 start-page: 956 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib110 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – volume: 384 start-page: 1468 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib150 article-title: Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2102179 – volume: 176 start-page: 1026 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib136 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 20 start-page: 143 year: 2014 ident: 10.1016/j.cell.2021.05.005_bib40 article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo publication-title: Nat. Med. doi: 10.1038/nm.3443 – volume: 384 start-page: 1466 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib85 article-title: Neutralizing Activity of BNT162b2-Elicited Serum publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2102017 – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib109 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib62 article-title: SARS-CoV-2 variants B.1.351 and B.1.1.248: Escape from therapeutic antibodies and antibodies induced by infection and vaccination publication-title: bioRxiv – volume: 75 start-page: 12161 year: 2001 ident: 10.1016/j.cell.2021.05.005_bib60 article-title: Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1 publication-title: J. Virol. doi: 10.1128/JVI.75.24.12161-12168.2001 – volume: 514 start-page: 642 year: 2014 ident: 10.1016/j.cell.2021.05.005_bib78 article-title: Enhanced neonatal Fc receptor function improves protection against primate SHIV infection publication-title: Nature doi: 10.1038/nature13612 – volume: 5 start-page: 1403 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib105 article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0770-5 – volume: 592 start-page: 277 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib73 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature doi: 10.1038/s41586-021-03291-y – volume: 371 start-page: 172 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib101 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science doi: 10.1126/science.abe5901 – volume: 593 start-page: 142 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib21 article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma publication-title: Nature doi: 10.1038/s41586-021-03471-w – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib87 article-title: The Role of Disease Severity and Demographics in the Clinical Course of COVID-19 Patients Treated with Convalescent Plasma publication-title: medRxiv – volume: 9 start-page: eaaj1928 year: 2017 ident: 10.1016/j.cell.2021.05.005_bib158 article-title: A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaj1928 – volume: 166 start-page: 596 year: 2016 ident: 10.1016/j.cell.2021.05.005_bib69 article-title: Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes publication-title: Cell doi: 10.1016/j.cell.2016.05.073 – volume: 593 start-page: 130 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib141 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 371 start-page: 1139 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib91 article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape publication-title: Science doi: 10.1126/science.abf6950 – volume: 592 start-page: 616 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib142 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature doi: 10.1038/s41586-021-03324-6 – year: 2020 ident: 10.1016/j.cell.2021.05.005_bib45 – volume: 218 start-page: 218 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib116 article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20201993 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib156 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 584 start-page: 443 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib159 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – volume: 112 start-page: 5331 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib112 article-title: Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus publication-title: Genomics doi: 10.1016/j.ygeno.2020.11.003 – volume: 371 start-page: 850 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib123 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 publication-title: Science doi: 10.1126/science.abf9302 – volume: 129 start-page: 3952 year: 2019 ident: 10.1016/j.cell.2021.05.005_bib146 article-title: Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways publication-title: J. Clin. Invest. doi: 10.1172/JCI128437 – year: 2021 ident: 10.1016/j.cell.2021.05.005_bib98 – volume: 183 start-page: 1901 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib7 article-title: Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer publication-title: Cell doi: 10.1016/j.cell.2020.10.049 – volume: 371 start-page: 1152 year: 2021 ident: 10.1016/j.cell.2021.05.005_bib94 article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera publication-title: Science doi: 10.1126/science.abg6105 – volume: 183 start-page: 1367 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib137 article-title: Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.10.043 – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib26 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – volume: 370 start-page: 950 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib130 article-title: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms publication-title: Science doi: 10.1126/science.abe3354 – volume: 368 start-page: 630 year: 2020 ident: 10.1016/j.cell.2021.05.005_bib153 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – reference: 34416148 - Cell. 2021 Aug 19;184(17):4593-4595. doi: 10.1016/j.cell.2021.07.027 |
SSID | ssj0008555 |
Score | 2.693275 |
SecondaryResourceType | review_article |
Snippet | Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3086 |
SubjectTerms | Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - immunology Angiotensin-Converting Enzyme 2 - metabolism Animals Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - immunology Antibodies, Monoclonal - therapeutic use Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - immunology Antibodies, Neutralizing - therapeutic use Antibodies, Viral - chemistry Antibodies, Viral - immunology Antibodies, Viral - therapeutic use autoimmunity COVID-19 COVID-19 - pathology COVID-19 - virology COVID-19 Drug Treatment COVID-19 infection Humans monoclonal antibody neutralization pandemic Review SARS-CoV-2 SARS-CoV-2 - immunology SARS-CoV-2 - isolation & purification SARS-CoV-2 - metabolism Spike Glycoprotein, Coronavirus - immunology therapeutics |
Title | Tackling COVID-19 with neutralizing monoclonal antibodies |
URI | https://dx.doi.org/10.1016/j.cell.2021.05.005 https://www.ncbi.nlm.nih.gov/pubmed/34087172 https://www.proquest.com/docview/2537632440 https://www.proquest.com/docview/2551983302 https://pubmed.ncbi.nlm.nih.gov/PMC8152891 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lIHgR39YXK3iTpbvZJJsctVqqoF5UegtJNqsV2Yq2B_31zuyjWJUePO5mAskkmXwTZr4h5FhYbgF1mDAxjIXMOhtKmZgwz7nlwtM0VZgofH0jBvfsasiHLdJrcmEwrLK2_ZVNL611_adba7P7Ohphjq-iUoBrFyOpCEVO0ITJMolveDazxpLzqoqBgpMP0nXiTBXjhY_j4CPSuGTvxBJ2f19Ov8HnzxjKb5dSf5Ws1GgyOK0GvEZavlgnS1V9yY8Nou6Mw4rsj0Hv9uHyPIxVgO-uQeGn5QPHJzbBPhy7FwTkAWh5ZMcYV7hJ7vsXd71BWNdKCB1D1kmnqPOGGcd5lgFmEhyULFO4AS314NXkEoCGAiGbSpbkWKFXWpFJ7rDEXO6TLdIuxoXfIUEKiE6aTAnPc2YyYYRRBpGBopnMLeuQuFGSdjWRONazeNFNxNizRsVqVKyOuAbFdsjJrM9rRaOxUJo3utdzm0GDnV_Y76hZKA2nBJtN4cfTd02RtQawI4sWycAUZZJEtEO2q8WdjTVhEXiWKbSkc8s-E0CW7vmWYvRUsnVLQEhSxbv_nNMeWcYvjE6Lo33SnrxN_QHgoIk9LDf6F8K7BQo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RqqpcEC0tLIU2lXpDEYljO_aRLqDdFuhlQXuzbMdpF6EsAvYAv56ZPFZdivbQa2YsOZ_t8TfWPAC-SSccsg4bZ5bzmDvvYqUyG5elcEIGlueaEoXPzuXggv8Yi_EK9LtcGAqrbG1_Y9Nra91-OWjRPLiZTCjHVzMl0bVLqagI46_gNbKBnE7ncPx9bo6VEE0bA41HH9XbzJkmyItex9FJZGldvpN62L18O_3LPp8HUf51K51swHpLJ6PDZsbvYCVU7-FN02DyYRP0yHpqyf476v-6HB7FqY7o4TWqwqx-4XgkEW7Eqb8mRh4hzBM3pcDCD3BxcjzqD-K2WULsOZWd9Jr5YLn1QhQFkiYpEGWV4xXoWEC3plTINDQquVzxrKQWvcrJQglPPebKkH2E1WpahW2IcqR0yhZaBlFyW0grrbZEDTQrVOl4D9IOJOPbSuLU0OLadCFjV4aANQSsSYRBYHuwPx9z09TRWKotOuzNwm4waOiXjvvaLZTBY0JiW4Xp7M4wKluD5JEny3TwF1WWJawHW83izuea8QRdyxwl-cKyzxWoTPeipJr8qct1K6RISqc7__lPX-DtYHR2ak6H5z8_wRpJKFQtTXZh9f52FvaQFN27z_WmfwLlVQgq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tackling+COVID-19+with+neutralizing+monoclonal+antibodies&rft.jtitle=Cell&rft.au=Corti%2C+Davide&rft.au=Purcell%2C+Lisa+A.&rft.au=Snell%2C+Gyorgy&rft.au=Veesler%2C+David&rft.date=2021-06-10&rft.issn=0092-8674&rft.volume=184&rft.issue=12&rft.spage=3086&rft.epage=3108&rft_id=info:doi/10.1016%2Fj.cell.2021.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2021_05_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |