Application of machine learning for advanced material prediction and design

In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 4; no. 4
Main Authors Chan, Cheuk Hei, Sun, Mingzi, Huang, Bolong
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research. Due to the low computational cost and short development cycle, machine learning has been widely used in material detection, material analysis, and material design. In this review, the background of machine learning has been systematically introduced and their applications in materials science from both macroscopic and microscopic perspectives has been summarized.
AbstractList In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research. image
In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research.
In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research. Due to the low computational cost and short development cycle, machine learning has been widely used in material detection, material analysis, and material design. In this review, the background of machine learning has been systematically introduced and their applications in materials science from both macroscopic and microscopic perspectives has been summarized.
Abstract In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research.
Author Huang, Bolong
Chan, Cheuk Hei
Sun, Mingzi
Author_xml – sequence: 1
  givenname: Cheuk Hei
  surname: Chan
  fullname: Chan, Cheuk Hei
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Mingzi
  surname: Sun
  fullname: Sun, Mingzi
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Bolong
  orcidid: 0000-0002-2526-2002
  surname: Huang
  fullname: Huang, Bolong
  email: bhuang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNp9kMFO3DAQhq2KSgXKpU8QqTekpR47dpwjQkBRqbi0Z2tij7deZe3gBBBvT3ZTVQihnjzyfP9v6ztiByknYuwL8DPgXHyjvBVnIKCtP7BDoXSzktDIg1fzJ3Yyjhs-w4rXooZD9uN8GProcIo5VTlUW3R_YqKqJywppnUVcqnQP2Jy5OftRCViXw2FfHT7ECZfeRrjOn1mHwP2I538PY_Z76vLXxffV7d31zcX57crV3NZr4yW2gtsfatJm2CgawOgIC4RGlW7RkuFQgbRKO6ECzq0QhjtWolOG0B5zG6WXp9xY4cSt1iebcZo9xe5rC2WKbqebNcE1QllDDldO41d5wJJ0GCUpwAwd31duoaS7x9onOwmP5Q0f98KbRSY2dqOOl0oV_I4Fgr_XgVud-7tzr3du59h_gZ2cdoLngrG_v0ILJGn2NPzf8rt5d1PsWReANnulsc
CitedBy_id crossref_primary_10_1016_j_trac_2025_118141
crossref_primary_10_3390_su162310439
crossref_primary_10_1039_D4TA06452F
crossref_primary_10_1016_j_commatsci_2024_112998
crossref_primary_10_3390_met13101690
crossref_primary_10_1021_acssuschemeng_2c05225
crossref_primary_10_1016_j_coelec_2025_101649
crossref_primary_10_1021_acs_jpcc_2c03926
crossref_primary_10_1016_j_seppur_2025_132613
crossref_primary_10_1002_celc_202400084
crossref_primary_10_1016_j_compstruct_2023_116920
crossref_primary_10_3390_antibiotics13030220
crossref_primary_10_1002_adma_202310455
crossref_primary_10_1088_2633_4356_acb30a
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_1039_D4CP03090G
crossref_primary_10_1016_j_mtcomm_2025_112134
crossref_primary_10_1021_acs_jcim_3c00242
crossref_primary_10_1021_acs_jpclett_4c03357
crossref_primary_10_1038_s41524_024_01486_1
crossref_primary_10_1016_j_scriptamat_2023_115918
crossref_primary_10_1080_00268976_2024_2341959
crossref_primary_10_1016_j_snb_2023_133678
crossref_primary_10_1002_advs_202307982
crossref_primary_10_1038_s41529_024_00549_4
crossref_primary_10_1007_s41779_024_01098_4
crossref_primary_10_1016_j_ccr_2023_215565
crossref_primary_10_1002_eom2_12330
crossref_primary_10_1016_j_engappai_2024_109853
crossref_primary_10_1016_j_apor_2024_104402
crossref_primary_10_1016_j_scitotenv_2023_166316
crossref_primary_10_3390_app13179992
crossref_primary_10_1038_s41598_025_87305_z
crossref_primary_10_3390_ma17246217
crossref_primary_10_1039_D3TC02522E
crossref_primary_10_3390_chemengineering7010002
crossref_primary_10_1016_j_isci_2024_109673
crossref_primary_10_1088_2053_1583_ad8011
crossref_primary_10_1016_j_actamat_2024_119703
crossref_primary_10_1088_1402_4896_ad5d2d
crossref_primary_10_1016_j_talanta_2024_125949
crossref_primary_10_3390_jcs7090364
crossref_primary_10_1016_j_ijpvp_2023_105039
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_1002_adma_202312887
crossref_primary_10_1038_s41598_023_41000_z
crossref_primary_10_4236_ti_2024_154011
crossref_primary_10_1016_j_addma_2024_104248
crossref_primary_10_32604_cmc_2025_060109
crossref_primary_10_1016_j_ceramint_2023_07_035
crossref_primary_10_3390_app14062554
Cites_doi 10.1016/j.commatsci.2016.05.034
10.1007/978-1-4615-0377-4_5
10.1021/co5001579
10.1021/acs.chemmater.7b00156
10.1517/17460441.2010.492827
10.1016/S0014-5793(03)01275-4
10.1007/s40192-017-0098-z
10.38094/jastt20165
10.1038/s41524-018-0081-z
10.1063/1.5020223
10.1063/1.4977487
10.1103/PhysRevB.89.094104
10.1103/PhysRevMaterials.2.083802
10.1007/978-1-4899-7687-1
10.1021/acs.chemmater.7b05304
10.1162/neco.1992.4.1.1
10.1038/s41580-021-00407-0
10.1038/nature21419
10.1080/10589750802258986
10.1007/978-1-4842-2766-4_7
10.1145/2347736.2347755
10.1021/acsami.9b14530
10.1021/acsomega.9b04012
10.1103/PhysRevB.95.094203
10.1007/s11837-019-03704-4
10.17222/mit.2018.043
10.1103/PhysRevLett.90.075503
10.1038/nature25978
10.1002/aenm.202003796
10.1038/sdata.2016.18
10.1557/mrs.2016.93
10.1038/s41524-019-0221-0
10.1177/0263276413480951
10.1016/j.eswa.2009.02.037
10.1039/C6SC05720A
10.1201/b17476
10.1021/acs.chemmater.8b00686
10.1107/S2052520616007447
10.1557/mrs.2018.208
10.1021/jacs.8b03913
10.1109/TPAMI.2013.50
10.1016/j.cirp.2019.03.021
10.1126/sciadv.aat0346
10.1021/ja902302h
10.1016/j.actamat.2020.05.001
10.1038/s41586-018-0337-2
10.1063/5.0055035
10.1021/ci200346b
10.1016/S1369-7021(05)71123-8
10.1038/s41524-020-00360-0
10.1088/0953-8984/23/5/053201
10.1103/PhysRevLett.115.036402
10.1021/acs.chemmater.6b02724
10.1002/adts.201900215
10.1126/science.288.5468.993
10.1016/j.neucom.2020.07.061
10.1103/PhysRevLett.114.105503
10.1103/PhysRevB.102.224104
10.7551/mitpress/7011.001.0001
10.1007/978-1-4612-0711-5
10.1021/co200007w
10.1016/j.mattod.2020.06.010
10.1063/1.2210932
10.1007/s00521-020-04874-y
10.1016/j.ijfatigue.2021.106236
10.1016/j.ensm.2020.06.033
10.1103/PhysRevB.72.024545
10.1016/j.commatsci.2017.01.017
10.1557/mrc.2019.44
10.1038/s41524-018-0085-8
10.1142/S0218271810017160
10.1002/aenm.201903949
10.1038/nature17439
10.1038/s41524-021-00520-w
10.1016/j.jmst.2020.08.008
10.1088/2632-2153/abc81d
10.7551/mitpress/4057.001.0001
10.1002/wcms.1450
10.1038/s41586-020-2242-8
10.1038/s41524-020-00367-7
10.1038/nmat4717
10.1039/c39920000089
10.1038/sdata.2015.53
10.1021/ci300415d
10.1021/acs.jctc.9b00322
10.1038/d41586-019-02307-y
10.1021/acscentsci.7b00303
10.1063/1.1724816
10.1039/C5CY01332A
10.1016/j.physc.2020.1353689
10.1103/PhysRevLett.108.253002
10.1093/bioinformatics/btz199
10.1557/mrs2008.221
10.1016/j.commatsci.2009.06.013
10.1103/PhysRevLett.97.045504
10.1038/nmat1157
10.1002/aenm.202101404
10.1038/npjcompumats.2016.28
10.3389/fenrg.2021.609070
10.1002/chem.201605499
10.1103/PhysRevLett.102.226401
10.1021/acscentsci.8b00357
10.1016/j.msea.2017.11.002
10.1016/j.conbuildmat.2020.118271
10.1103/PhysRevB.100.174513
10.1038/s41598-018-35934-y
10.1021/acs.jpcc.6b10908
10.1016/j.nanoen.2019.06.008
10.1039/C9SC02298H
10.1021/acs.chemmater.8b01621
10.1021/acscentsci.6b00367
10.1103/PhysRevB.72.024546
10.1126/science.1135080
10.1021/acscatal.9b05248
10.1023/A:1007369909943
10.1038/s41524-017-0038-7
10.1039/C8SC02239A
ContentType Journal Article
Copyright 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.1002/eom2.12194
DatabaseName Wiley Online Library Open Access (Hollins)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library : Open Access journals [open access]
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b7f5b2588ec64c6abbcfe316185def11
10_1002_eom2_12194
EOM212194
Genre reviewArticle
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2021YFA1501101
– fundername: National Natural Science Foundation of China/RGC Joint Research Scheme
  funderid: N_PolyU502/21
– fundername: Projects of Strategic Importance of The Hong Kong Polytechnic University
  funderid: 1‐ZE2V
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c4034-8636d2a9d96e68f81b9f1a2e03a1754c7635a23f2750c2cf6f92286c93ac681a3
IEDL.DBID DOA
ISSN 2567-3173
IngestDate Wed Aug 27 01:32:25 EDT 2025
Wed Aug 13 10:34:21 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Wed Jan 22 16:24:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4034-8636d2a9d96e68f81b9f1a2e03a1754c7635a23f2750c2cf6f92286c93ac681a3
Notes Funding information
Projects of Strategic Importance of The Hong Kong Polytechnic University, Grant/Award Number: 1‐ZE2V; National Natural Science Foundation of China/RGC Joint Research Scheme, Grant/Award Number: N_PolyU502/21; National Key R&D Program of China, Grant/Award Number: 2021YFA1501101
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2526-2002
OpenAccessLink https://doaj.org/article/b7f5b2588ec64c6abbcfe316185def11
PQID 2685181731
PQPubID 5066170
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_b7f5b2588ec64c6abbcfe316185def11
proquest_journals_2685181731
crossref_primary_10_1002_eom2_12194
crossref_citationtrail_10_1002_eom2_12194
wiley_primary_10_1002_eom2_12194_EOM212194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Beijing
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 68
2010; 19
2019; 10
2019; 12
2019; 15
2004; 3
2008; 33
2020; 10
2003; 555
2018; 43
1996; 77
2018; 9
2018; 8
2018; 2
2018; 4
1990
2016; 41
2008; 23
2018; 30
2005; 72
2020; 575
2010; 5
1992; 2
1992; 4
2019; 9
1960; 11
2019; 5
2020; 41
2021; 148
2019; 35
1997; 27
2020; 32
2016; 15
2017; 136
2019; 100
2012; 108
1999
2007; 316
2016; 2
2016; 3
2020; 31
2015; 115
2015; 114
2005; 8
2009; 102
2016; 28
2017; 543
2019; 572
2017; 6
2009; 47
2004; 120
2017; 8
2017; 3
2021; 23
2017; 4
2011; 13
2020; 244
2016; 72
2011; 12
2012; 55
1996; 31
2012; 52
2020; 6
2020; 5
2020; 3
2003; 90
2019; 62
2001
2000; 56
2013; 12
2019; 68
2020; 415
2011; 23
2000; 288
2017; 121
2006; 124
2015; 2
2021; 9
2021; 8
2021; 7
2015; 17
2019; 71
2015; 5
2006; 97
2018; 140
2021; 2
2020; 581
2011
2018; 148
2017; 23
2016; 123
2005
2004
2017; 29
2003
2020; 102
2009; 131
2014; 89
2017; 95
2009; 36
2021; 11
2020; 195
2018; 710
2018; 559
2013; 35
2018; 555
2013; 30
2018
2017
2018; 52
2015
2014
2016; 533
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
Waibel A (e_1_2_7_4_1) 1990
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
Gulli A (e_1_2_7_39_1) 2017
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_139_1
Bellman RE (e_1_2_7_66_1) 2015
e_1_2_7_109_1
e_1_2_7_128_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_117_1
Mohri M (e_1_2_7_42_1) 2018
e_1_2_7_113_1
Pedregosa F (e_1_2_7_8_1) 2011; 12
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
Perdew JP (e_1_2_7_86_1) 1996; 77
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
Newnham RE (e_1_2_7_14_1) 2005
e_1_2_7_43_1
e_1_2_7_85_1
Baldi P (e_1_2_7_9_1) 2001
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
Curtarolo S (e_1_2_7_15_1) 2013; 12
e_1_2_7_28_1
Sutton RS (e_1_2_7_44_1) 2018
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_133_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
Van Eijck BP (e_1_2_7_105_1) 2000; 56
e_1_2_7_119_1
Noordik JH (e_1_2_7_10_1) 2004
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
Eliashberg G (e_1_2_7_92_1) 1960; 11
e_1_2_7_134_1
Oganov AR (e_1_2_7_12_1) 2011
e_1_2_7_138_1
References_xml – year: 2011
– volume: 10
  start-page: 4377
  issue: 7
  year: 2020
  article-title: An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts
  publication-title: ACS Catal
– volume: 52
  start-page: 2864
  issue: 11
  year: 2012
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB‐17
  publication-title: J Chem Inf Model
– volume: 56
  start-page: 535
  issue: 3
  year: 2000
  article-title: Structure predictions allowing more than one molecule in the asymmetric unit
  publication-title: Sect B Struct Sci
– year: 2005
– volume: 72
  start-page: 024546
  issue: 2
  year: 2005
  article-title: Ab initio theory of superconductivity. II. Application to elemental metals
  publication-title: Phys Rev B
– volume: 35
  start-page: 4072
  issue: 20
  year: 2019
  article-title: Simulation‐assisted machine learning
  publication-title: Bioinformatics
– volume: 572
  start-page: 27
  year: 2019
  article-title: Three pitfalls to avoid in machine learning
  publication-title: Nature
– volume: 415
  start-page: 295
  year: 2020
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 100
  start-page: 174513
  issue: 17
  year: 2019
  article-title: Functional form of the superconducting critical temperature from machine learning
  publication-title: Phys Rev B
– volume: 23
  start-page: 053201
  issue: 5
  year: 2011
  article-title: Ab initio random structure searching
  publication-title: J Phys: Condens Matter
– volume: 3
  start-page: 429
  issue: 7
  year: 2004
  article-title: Combinatorial solid‐state chemistry of inorganic materials
  publication-title: Nat Mater
– volume: 108
  start-page: 253002
  issue: 25
  year: 2012
  article-title: Finding density functionals with machine learning
  publication-title: Phys Rev Lett
– volume: 123
  start-page: 176
  year: 2016
  article-title: Image driven machine learning methods for microstructure recognition
  publication-title: Comput Mater Sci
– volume: 288
  start-page: 993
  issue: 5468
  year: 2000
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Science
– year: 1990
– volume: 2
  start-page: 150053
  issue: 1
  year: 2015
  article-title: A database to enable discovery and design of piezoelectric materials
  publication-title: Sci Data
– year: 2014
– volume: 3
  start-page: 1
  issue: 1
  year: 2017
  article-title: Learning surface molecular structures via machine vision
  publication-title: NPJ Comput Mater
– volume: 148
  issue: 24
  year: 2018
  article-title: Predicting the stability of ternary intermetallics with density functional theory and machine learning
  publication-title: J Chem Phys
– volume: 89
  start-page: 094104
  issue: 9
  year: 2014
  article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning
  publication-title: Phys Rev B
– volume: 2
  start-page: 083802
  issue: 8
  year: 2018
  article-title: A compressed‐sensing method for identifying the best low‐dimensional descriptor in an immensity of offered candidates
  publication-title: Phys Rev Mater
– start-page: 81
  year: 2003
– volume: 575
  year: 2020
  article-title: Predicting new superconductors and their critical temperatures using machine learning
  publication-title: Phys C
– volume: 41
  start-page: 399
  issue: 5
  year: 2016
  article-title: Materials science with large‐scale data and informatics: Unlocking new opportunities
  publication-title: MRS Bull
– volume: 71
  start-page: 3433
  issue: 10
  year: 2019
  article-title: Prediction of the composition and hardness of high‐entropy alloys by machine learning
  publication-title: JOM
– volume: 581
  start-page: 178
  issue: 7807
  year: 2020
  article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning
  publication-title: Nature
– volume: 6
  start-page: 104
  year: 2020
  article-title: Machine‐learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
  publication-title: NPJ Comput Mater
– volume: 31
  start-page: 434
  year: 2020
  article-title: Machine learning assisted materials design and discovery for rechargeable batteries
  publication-title: Energy Storage Mater
– volume: 72
  start-page: 024545
  issue: 2
  year: 2005
  article-title: Density functional formalism and approximate functionals
  publication-title: Phys Rev B
– volume: 5
  start-page: 633
  issue: 7
  year: 2010
  article-title: Advances in computational methods to predict the biological activity of compounds
  publication-title: Expert Opin Drug Discovery
– volume: 6
  start-page: 96
  year: 2020
  article-title: Exchange‐correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning
  publication-title: NPJ Comput Mater
– volume: 68
  start-page: 70
  year: 2021
  article-title: High‐throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy
  publication-title: J Mater Sci Technol
– volume: 4
  start-page: 1
  issue: 1
  year: 1992
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput
– volume: 710
  start-page: 309
  year: 2018
  article-title: The creep deformation mechanisms of a newly designed nickel‐base superalloy
  publication-title: Mater Sci Eng, A
– volume: 7
  start-page: 55
  year: 2021
  article-title: Two‐step machine learning enables optimized nanoparticle synthesis
  publication-title: NPJ Comput Mater
– volume: 9
  start-page: 7642
  issue: 39
  year: 2018
  article-title: Chimera: enabling hierarchy based multi‐objective optimization for self‐driving laboratories
  publication-title: Chem Sci
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  article-title: Recent advances and applications of machine learning in solid‐state materials science
  publication-title: NPJ Comput Mater
– volume: 30
  start-page: 122
  issue: 5
  year: 2013
  article-title: On topology
  publication-title: Theory Cult Soc
– volume: 36
  issue: 7
  year: 2009
  article-title: A review of machine learning approaches to spam filtering
  publication-title: Expert Syst Appl
– volume: 3
  start-page: 283
  issue: 4
  year: 2017
  article-title: Low data drug discovery with one‐shot learning
  publication-title: ACS Cent Sci
– volume: 244
  year: 2020
  article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete
  publication-title: Constr Build Mater
– volume: 148
  year: 2021
  article-title: A deep learning based life prediction method for components under creep, fatigue and creep‐fatigue conditions
  publication-title: Int J Fatigue
– volume: 31
  year: 1996
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev B
– volume: 8
  start-page: 031409
  issue: 3
  year: 2021
  article-title: Machine learning for materials discovery: Two‐dimensional topological insulators
  publication-title: Appl Phys Rev
– volume: 6
  start-page: 207
  issue: 3
  year: 2017
  article-title: High‐dimensional materials and process optimization using data‐driven experimental design with well‐calibrated uncertainty estimates
  publication-title: Integr Mater Manuf Innov
– volume: 15
  start-page: 1120
  issue: 10
  year: 2016
  article-title: Design of efficient molecular organic light‐emitting diodes by a high‐throughput virtual screening and experimental approach
  publication-title: Nat Mater
– volume: 17
  start-page: 224
  issue: 4
  year: 2015
  article-title: Combinatorial solid‐state chemistry of inorganic materials.
  publication-title: ACS Comb Sci
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: NPJ Comput Mater
– volume: 10
  issue: 3
  year: 2020
  article-title: Machine learning and artificial neural network accelerated computational discoveries in materials science
  publication-title: Comput Mol Sci
– volume: 533
  start-page: 73
  issue: 7601
  year: 2016
  article-title: Machine‐learning‐assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 62
  start-page: 754
  year: 2019
  article-title: Mapping of atomic catalyst on graphdiyne
  publication-title: Nano Energy
– volume: 23
  start-page: 273
  issue: 4
  year: 2008
  article-title: A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network
  publication-title: Nondestr Test Eval
– volume: 136
  year: 2017
  article-title: The AFLOW library of crystallographic prototypes: part 1
  publication-title: Comput Mater Sci
– volume: 47
  start-page: 46
  issue: 1
  year: 2009
  article-title: Analysis of workability behavior of Al–SiC P/M composites using backpropagation neural network model and statistical technique
  publication-title: Comput Mater Sci
– volume: 28
  start-page: 7324
  issue: 20
  year: 2016
  article-title: High‐throughput machine‐learning‐driven synthesis of full‐Heusler compounds
  publication-title: Chem Mater
– volume: 12
  start-page: 2825
  year: 2011
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 38
  issue: 1
  year: 2012
  article-title: Improved machine learning models for predicting selective compounds
  publication-title: J Chem Inf Model
– volume: 30
  start-page: 4361
  issue: 13
  year: 2018
  article-title: Large‐scale computational screening of molecular organic semiconductors using crystal structure prediction
  publication-title: Chem Mater
– volume: 8
  start-page: 3192
  issue: 4
  year: 2017
  article-title: ANI‐1: an extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem Sci
– volume: 8
  start-page: 38
  issue: 10
  year: 2005
  article-title: Materials informatics
  publication-title: Mater Today
– start-page: 97
  year: 2017
– volume: 9
  start-page: 52
  year: 2021
  article-title: Driven framework for the accelerated discovery of CO2 reduction electrocatalysts
  publication-title: Front Energy Res
– volume: 19
  start-page: 1049
  issue: 7
  year: 2010
  article-title: Data mining and machine learning in astronomy
  publication-title: Int J Mod Phys D
– volume: 11
  start-page: 696
  issue: 3
  year: 1960
  article-title: Interactions between electrons and lattice vibrations in a superconductor
  publication-title: Sov Phys JETP
– volume: 4
  start-page: 29
  year: 2018
  article-title: Machine learning modeling of superconducting critical temperature
  publication-title: NPJ Comput Mater
– volume: 10
  start-page: 1903949
  issue: 12
  year: 2020
  article-title: Accelerating atomic catalyst discovery by theoretical calculations‐machine learning strategy
  publication-title: Adv Energy Mater
– volume: 2
  start-page: 16028
  issue: 1
  year: 2016
  article-title: A general‐purpose machine learning framework for predicting properties of inorganic materials
  publication-title: NPJ Comput Mater
– volume: 30
  start-page: 4031
  issue: 12
  year: 2018
  article-title: Machine‐learning‐assisted accurate band gap predictions of functionalized MXene
  publication-title: Chem Mater
– volume: 5
  start-page: 3596
  issue: 7
  year: 2020
  article-title: Machine learning‐based prediction of crystal systems and space groups from inorganic materials compositions
  publication-title: ACS Omega
– volume: 3
  start-page: 160018
  year: 2016
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
– volume: 68
  start-page: 451
  issue: 1
  year: 2019
  article-title: Machine learning‐based image processing for on‐line defect recognition in additive manufacturing
  publication-title: CIRP Ann
– volume: 102
  start-page: 224104
  issue: 22
  year: 2020
  article-title: Training machine‐learning potentials for crystal structure prediction using disordered structures
  publication-title: Phys Rev B
– volume: 102
  start-page: 226401
  issue: 22
  year: 2009
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange‐correlation potential
  publication-title: Phys Rev Lett
– volume: 2
  start-page: 20
  issue: 1
  year: 2021
  article-title: Classification based on decision tree algorithm for machine learning
  publication-title: J Appl Sci Technol Trends
– volume: 316
  start-page: 561
  issue: 5824
  year: 2007
  article-title: The problem with determining atomic structure at the nanoscale
  publication-title: Science
– year: 2001
– volume: 33
  start-page: 1017
  issue: 11
  year: 2008
  article-title: Gate oxides beyond SiO2
  publication-title: MRS Bull
– volume: 90
  start-page: 075503
  issue: 7
  year: 2003
  article-title: Predicting crystal structures: the Parrinello‐Rahman method revisited
  publication-title: Phys Rev Lett
– volume: 2
  start-page: 89
  year: 1992
  end-page: 91
  article-title: Structure predictions in inorganic solids
  publication-title: J Chem Soc, Chem Commun
– volume: 52
  start-page: 639
  issue: 5
  year: 2018
  article-title: Prediction of superconducting transition temperature using a machine‐learning method
  publication-title: Mater Tehnol
– volume: 121
  start-page: 511
  issue: 1
  year: 2017
  article-title: Machine learning force fields: construction, validation, and outlook
  publication-title: J Phys Chem C
– volume: 195
  start-page: 454
  year: 2020
  article-title: Predicting creep rupture life of Ni‐based single crystal superalloys using divide‐and‐conquer approach based machine learning
  publication-title: Acta Mater
– volume: 11
  start-page: 2101404
  issue: 30
  year: 2021
  article-title: Stepping out of transition metals: activating the dual atomic catalyst through main group elements
  publication-title: Adv Energy Mater
– volume: 140
  start-page: 10158
  issue: 32
  year: 2018
  article-title: Crystal structure prediction via deep learning
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 191
  issue: 3
  year: 2013
  article-title: The high‐throughput highway to computational materials design
  publication-title: NatMater
– year: 2018
– volume: 12
  issue: 18
  year: 2019
  article-title: Exploring two‐dimensional materials thermodynamic stability via machine learning
  publication-title: ACS Appl Mater Interfaces
– volume: 2
  year: 2021
  article-title: Prediction of chemical reaction yields using deep learning
  publication-title: Mach Learn Sci Technol
– volume: 3
  start-page: 1103
  issue: 10
  year: 2017
  article-title: Retrosynthetic reaction prediction using neural sequence‐to‐sequence models
  publication-title: ACS Cent Sci
– volume: 131
  start-page: 8732
  issue: 25
  year: 2009
  article-title: 970 million druglike small molecules for virtual screening in the chemical universe database GDB‐13
  publication-title: J Am Chem Soc
– volume: 43
  start-page: 676
  issue: 9
  year: 2018
  article-title: NOMAD: The FAIR concept for big data‐driven materials science
  publication-title: MRS Bull
– volume: 559
  start-page: 547
  issue: 7715
  year: 2018
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 3
  start-page: 1900215
  issue: 2
  year: 2020
  article-title: Multi‐layer feature selection incorporating weighted score‐based expert knowledge toward modeling materials with targeted properties
  publication-title: Adv Theory Simul
– year: 2004
– volume: 555
  start-page: 358
  issue: 2
  year: 2003
  article-title: Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines
  publication-title: FEBS Lett
– volume: 27
  start-page: 313
  issue: 3
  year: 1997
  article-title: Learning and revising user profiles: The identification of interesting web sites
  publication-title: Mach Learn
– volume: 11
  start-page: 2003796
  issue: 13
  year: 2021
  article-title: Self‐validated machine learning study of graphdiyne‐based dual atomic catalyst
  publication-title: Adv Energy Mater
– volume: 4
  issue: 1
  year: 2017
  article-title: Fulfilling the promise of the materials genome initiative with high‐throughput experimental methodologies
  publication-title: Appl Phys Rev
– year: 2015
– volume: 41
  start-page: 72
  year: 2020
  article-title: Machine learning‐guided synthesis of advanced inorganic materials
  publication-title: Mater Today
– volume: 10
  start-page: 7913
  issue: 34
  year: 2019
  article-title: A quantitative uncertainty metric controls error in neural network‐driven chemical discover
  publication-title: Chem Sci
– volume: 32
  issue: 20
  year: 2020
  article-title: Machine learning and data analytics for the IoT
  publication-title: Neural Comput Appl
– volume: 15
  start-page: 5069
  issue: 3
  year: 2019
  article-title: Interactions between electrons and lattice vibrations in a superconductor
  publication-title: J Chem Theory Comput
– volume: 72
  start-page: 439
  issue: 4
  year: 2016
  article-title: Report on the sixth blind test of organic crystal structure prediction methods
  publication-title: Acta Crystallogr Sect B Struct Sci Cryst Eng Mater
– volume: 30
  start-page: 3601
  issue: 11
  year: 2018
  article-title: Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons
  publication-title: Chem Mater
– volume: 9
  start-page: 576
  issue: 2
  year: 2019
  article-title: Machine learning prediction of elastic properties and glass‐forming ability of bulk metallic glasses
  publication-title: MRS Commun
– volume: 120
  start-page: 9911
  issue: 21
  year: 2004
  article-title: Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
  publication-title: J Chem Phys
– volume: 124
  issue: 24
  year: 2006
  article-title: Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
  publication-title: J Chem Phys
– volume: 115
  start-page: 036402
  issue: 3
  year: 2015
  article-title: Strongly constrained and appropriately normed semilocal density functional
  publication-title: Phys Rev Lett
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 97
  issue: 4
  year: 2006
  article-title: High‐pressure phases of silane
  publication-title: Phys Rev Lett
– volume: 543
  start-page: 657
  issue: 7647
  year: 2017
  article-title: Functional materials discovery using energy–structure–function maps
  publication-title: Nature
– volume: 23
  start-page: 40
  year: 2021
  article-title: A guide to machine learning for biologists
  publication-title: Nat Rev Mol Cell Biol
– volume: 555
  start-page: 604
  issue: 7698
  year: 2018
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
– volume: 4
  start-page: eaat0346
  issue: 6
  year: 2018
  article-title: Higher‐order topological insulators
  publication-title: Sci Adv
– volume: 8
  start-page: 17593
  year: 2018
  article-title: Deep learning the chemistry of materials from only elemental composition
  publication-title: Sci Rep
– volume: 13
  start-page: 579
  issue: 6
  year: 2011
  article-title: Combinatorial and high‐throughput screening of materials libraries: review of state of the art
  publication-title: ACS Comb Sci
– year: 2017
– volume: 114
  start-page: 105503
  issue: 10
  year: 2015
  article-title: Phys. Rev. Lett.
  publication-title: Phys Rev Lett
– volume: 29
  start-page: 5090
  issue: 12
  year: 2017
  article-title: Predicting the thermodynamic stability of solids combining density functional theory and machine learning
  publication-title: Chem Mater
– volume: 23
  start-page: 5966
  issue: 25
  year: 2017
  article-title: Neural‐symbolic machine learning for retrosynthesis and reaction prediction
  publication-title: Chem Eur J
– volume: 5
  start-page: 4946
  issue: 11
  year: 2015
  article-title: Identifying systematic DFT errors in catalytic reactions
  publication-title: Catal Sci Technol
– volume: 95
  start-page: 094203
  issue: 9
  year: 2017
  article-title: Machine learning based interatomic potential for amorphous carbon
  publication-title: Phys Rev B
– volume: 4
  start-page: 1465
  issue: 11
  year: 2018
  article-title: Using machine learning to predict suitable conditions for organic reactions
  publication-title: ACS Cent Sci
– year: 1999
– volume: 55
  start-page: 78
  issue: 10
  year: 2012
  article-title: A few useful things to know about machine learning
  publication-title: Commun ACM
– ident: e_1_2_7_133_1
  doi: 10.1016/j.commatsci.2016.05.034
– ident: e_1_2_7_130_1
– ident: e_1_2_7_76_1
  doi: 10.1007/978-1-4615-0377-4_5
– ident: e_1_2_7_18_1
  doi: 10.1021/co5001579
– ident: e_1_2_7_74_1
– ident: e_1_2_7_111_1
  doi: 10.1021/acs.chemmater.7b00156
– ident: e_1_2_7_70_1
  doi: 10.1517/17460441.2010.492827
– ident: e_1_2_7_97_1
  doi: 10.1016/S0014-5793(03)01275-4
– ident: e_1_2_7_35_1
  doi: 10.1007/s40192-017-0098-z
– ident: e_1_2_7_77_1
  doi: 10.38094/jastt20165
– ident: e_1_2_7_54_1
  doi: 10.1038/s41524-018-0081-z
– volume-title: Modern Methods of Crystal Structure Prediction
  year: 2011
  ident: e_1_2_7_12_1
– ident: e_1_2_7_112_1
  doi: 10.1063/1.5020223
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_7_8_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: e_1_2_7_16_1
  doi: 10.1063/1.4977487
– ident: e_1_2_7_115_1
  doi: 10.1103/PhysRevB.89.094104
– volume: 11
  start-page: 696
  issue: 3
  year: 1960
  ident: e_1_2_7_92_1
  article-title: Interactions between electrons and lattice vibrations in a superconductor
  publication-title: Sov Phys JETP
– ident: e_1_2_7_67_1
  doi: 10.1103/PhysRevMaterials.2.083802
– ident: e_1_2_7_53_1
  doi: 10.1007/978-1-4899-7687-1
– ident: e_1_2_7_121_1
  doi: 10.1021/acs.chemmater.7b05304
– ident: e_1_2_7_52_1
  doi: 10.1162/neco.1992.4.1.1
– ident: e_1_2_7_51_1
  doi: 10.1038/s41580-021-00407-0
– ident: e_1_2_7_25_1
  doi: 10.1038/nature21419
– ident: e_1_2_7_28_1
  doi: 10.1080/10589750802258986
– ident: e_1_2_7_38_1
  doi: 10.1007/978-1-4842-2766-4_7
– ident: e_1_2_7_49_1
  doi: 10.1145/2347736.2347755
– ident: e_1_2_7_114_1
  doi: 10.1021/acsami.9b14530
– ident: e_1_2_7_116_1
  doi: 10.1021/acsomega.9b04012
– ident: e_1_2_7_135_1
  doi: 10.1103/PhysRevB.95.094203
– ident: e_1_2_7_68_1
– ident: e_1_2_7_119_1
  doi: 10.1007/s11837-019-03704-4
– ident: e_1_2_7_95_1
  doi: 10.17222/mit.2018.043
– ident: e_1_2_7_108_1
  doi: 10.1103/PhysRevLett.90.075503
– ident: e_1_2_7_20_1
  doi: 10.1038/nature25978
– ident: e_1_2_7_29_1
– ident: e_1_2_7_45_1
– ident: e_1_2_7_126_1
  doi: 10.1002/aenm.202003796
– ident: e_1_2_7_55_1
  doi: 10.1038/sdata.2016.18
– ident: e_1_2_7_26_1
  doi: 10.1557/mrs.2016.93
– ident: e_1_2_7_103_1
– volume: 56
  start-page: 535
  issue: 3
  year: 2000
  ident: e_1_2_7_105_1
  article-title: Structure predictions allowing more than one molecule in the asymmetric unit
  publication-title: Sect B Struct Sci
– ident: e_1_2_7_46_1
  doi: 10.1038/s41524-019-0221-0
– ident: e_1_2_7_100_1
  doi: 10.1177/0263276413480951
– ident: e_1_2_7_5_1
  doi: 10.1016/j.eswa.2009.02.037
– ident: e_1_2_7_139_1
  doi: 10.1039/C6SC05720A
– ident: e_1_2_7_2_1
  doi: 10.1201/b17476
– ident: e_1_2_7_89_1
  doi: 10.1021/acs.chemmater.8b00686
– ident: e_1_2_7_110_1
  doi: 10.1107/S2052520616007447
– ident: e_1_2_7_56_1
  doi: 10.1557/mrs.2018.208
– ident: e_1_2_7_57_1
  doi: 10.1021/jacs.8b03913
– ident: e_1_2_7_64_1
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_2_7_134_1
  doi: 10.1016/j.cirp.2019.03.021
– volume-title: Foundations of Machine Learning
  year: 2018
  ident: e_1_2_7_42_1
– ident: e_1_2_7_101_1
  doi: 10.1126/sciadv.aat0346
– ident: e_1_2_7_62_1
  doi: 10.1021/ja902302h
– ident: e_1_2_7_84_1
  doi: 10.1016/j.actamat.2020.05.001
– ident: e_1_2_7_31_1
  doi: 10.1038/s41586-018-0337-2
– ident: e_1_2_7_102_1
  doi: 10.1063/5.0055035
– ident: e_1_2_7_79_1
  doi: 10.1021/ci200346b
– ident: e_1_2_7_83_1
  doi: 10.1016/S1369-7021(05)71123-8
– volume-title: Bioinformatics: The Machine Learning Approach
  year: 2001
  ident: e_1_2_7_9_1
– ident: e_1_2_7_90_1
  doi: 10.1038/s41524-020-00360-0
– ident: e_1_2_7_107_1
  doi: 10.1088/0953-8984/23/5/053201
– ident: e_1_2_7_88_1
  doi: 10.1103/PhysRevLett.115.036402
– ident: e_1_2_7_117_1
  doi: 10.1021/acs.chemmater.6b02724
– volume-title: Cheminformatics Developments: History, Reviews and Current Research
  year: 2004
  ident: e_1_2_7_10_1
– ident: e_1_2_7_69_1
  doi: 10.1002/adts.201900215
– volume-title: Readings in Speech Recognition
  year: 1990
  ident: e_1_2_7_4_1
– ident: e_1_2_7_11_1
  doi: 10.1126/science.288.5468.993
– ident: e_1_2_7_50_1
  doi: 10.1016/j.neucom.2020.07.061
– ident: e_1_2_7_59_1
  doi: 10.1103/PhysRevLett.114.105503
– ident: e_1_2_7_122_1
  doi: 10.1103/PhysRevB.102.224104
– ident: e_1_2_7_43_1
  doi: 10.7551/mitpress/7011.001.0001
– ident: e_1_2_7_73_1
  doi: 10.1007/978-1-4612-0711-5
– ident: e_1_2_7_19_1
  doi: 10.1021/co200007w
– ident: e_1_2_7_132_1
  doi: 10.1016/j.mattod.2020.06.010
– ident: e_1_2_7_3_1
– ident: e_1_2_7_13_1
  doi: 10.1063/1.2210932
– ident: e_1_2_7_48_1
  doi: 10.1007/s00521-020-04874-y
– ident: e_1_2_7_85_1
  doi: 10.1016/j.ijfatigue.2021.106236
– ident: e_1_2_7_78_1
  doi: 10.1016/j.ensm.2020.06.033
– ident: e_1_2_7_93_1
  doi: 10.1103/PhysRevB.72.024545
– ident: e_1_2_7_60_1
  doi: 10.1016/j.commatsci.2017.01.017
– ident: e_1_2_7_80_1
  doi: 10.1557/mrc.2019.44
– ident: e_1_2_7_98_1
  doi: 10.1038/s41524-018-0085-8
– ident: e_1_2_7_47_1
  doi: 10.1142/S0218271810017160
– ident: e_1_2_7_125_1
  doi: 10.1002/aenm.201903949
– ident: e_1_2_7_58_1
  doi: 10.1038/nature17439
– volume-title: Adaptive Control Processes
  year: 2015
  ident: e_1_2_7_66_1
– ident: e_1_2_7_131_1
  doi: 10.1038/s41524-021-00520-w
– ident: e_1_2_7_118_1
  doi: 10.1016/j.jmst.2020.08.008
– ident: e_1_2_7_142_1
  doi: 10.1088/2632-2153/abc81d
– ident: e_1_2_7_72_1
  doi: 10.7551/mitpress/4057.001.0001
– ident: e_1_2_7_75_1
  doi: 10.1002/wcms.1450
– ident: e_1_2_7_123_1
  doi: 10.1038/s41586-020-2242-8
– ident: e_1_2_7_137_1
  doi: 10.1038/s41524-020-00367-7
– ident: e_1_2_7_21_1
  doi: 10.1038/nmat4717
– ident: e_1_2_7_104_1
  doi: 10.1039/c39920000089
– ident: e_1_2_7_61_1
  doi: 10.1038/sdata.2015.53
– ident: e_1_2_7_63_1
  doi: 10.1021/ci300415d
– ident: e_1_2_7_91_1
  doi: 10.1021/acs.jctc.9b00322
– ident: e_1_2_7_34_1
  doi: 10.1038/d41586-019-02307-y
– ident: e_1_2_7_24_1
  doi: 10.1021/acscentsci.7b00303
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: e_1_2_7_86_1
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev B
– ident: e_1_2_7_109_1
  doi: 10.1063/1.1724816
– ident: e_1_2_7_32_1
  doi: 10.1039/C5CY01332A
– ident: e_1_2_7_96_1
  doi: 10.1016/j.physc.2020.1353689
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevLett.108.253002
– ident: e_1_2_7_41_1
  doi: 10.1093/bioinformatics/btz199
– ident: e_1_2_7_136_1
  doi: 10.1557/mrs2008.221
– ident: e_1_2_7_71_1
  doi: 10.1016/j.commatsci.2009.06.013
– ident: e_1_2_7_106_1
  doi: 10.1103/PhysRevLett.97.045504
– ident: e_1_2_7_40_1
– volume-title: Properties of Materials: Anisotropy, Symmetry, Structure
  year: 2005
  ident: e_1_2_7_14_1
– ident: e_1_2_7_17_1
  doi: 10.1038/nmat1157
– ident: e_1_2_7_127_1
  doi: 10.1002/aenm.202101404
– ident: e_1_2_7_22_1
– ident: e_1_2_7_65_1
  doi: 10.1038/npjcompumats.2016.28
– ident: e_1_2_7_129_1
  doi: 10.3389/fenrg.2021.609070
– ident: e_1_2_7_141_1
  doi: 10.1002/chem.201605499
– ident: e_1_2_7_7_1
– ident: e_1_2_7_87_1
  doi: 10.1103/PhysRevLett.102.226401
– ident: e_1_2_7_140_1
  doi: 10.1021/acscentsci.8b00357
– ident: e_1_2_7_82_1
  doi: 10.1016/j.msea.2017.11.002
– ident: e_1_2_7_81_1
  doi: 10.1016/j.conbuildmat.2020.118271
– ident: e_1_2_7_99_1
  doi: 10.1103/PhysRevB.100.174513
– ident: e_1_2_7_113_1
  doi: 10.1038/s41598-018-35934-y
– ident: e_1_2_7_138_1
  doi: 10.1021/acs.jpcc.6b10908
– volume-title: Deep Learning with Keras
  year: 2017
  ident: e_1_2_7_39_1
– ident: e_1_2_7_124_1
  doi: 10.1016/j.nanoen.2019.06.008
– ident: e_1_2_7_36_1
  doi: 10.1039/C9SC02298H
– ident: e_1_2_7_120_1
  doi: 10.1021/acs.chemmater.8b01621
– ident: e_1_2_7_23_1
  doi: 10.1021/acscentsci.6b00367
– ident: e_1_2_7_94_1
  doi: 10.1103/PhysRevB.72.024546
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: e_1_2_7_44_1
– ident: e_1_2_7_27_1
  doi: 10.1126/science.1135080
– volume: 12
  start-page: 191
  issue: 3
  year: 2013
  ident: e_1_2_7_15_1
  article-title: The high‐throughput highway to computational materials design
  publication-title: NatMater
– ident: e_1_2_7_128_1
  doi: 10.1021/acscatal.9b05248
– ident: e_1_2_7_6_1
  doi: 10.1023/A:1007369909943
– ident: e_1_2_7_30_1
  doi: 10.1038/s41524-017-0038-7
– ident: e_1_2_7_37_1
  doi: 10.1039/C8SC02239A
SSID ssj0002504241
Score 2.4973638
SecondaryResourceType review_article
Snippet In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit...
Abstract In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Computer applications
Data collection
Data mining
Datasets
Efficiency
Experiments
Learning algorithms
Machine learning
Material properties
materials science
new structure design
Optimization
Pattern recognition systems
Predictions
property predictions
Science
Simulation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vehBfGK1SkAvCku7yW6aPUkrLUVpFbHQW8jm4cV2a1v_v0mavkB6W3azYZnJzHzMzH4DcC8zY6ggMrJWqKIEa2pNSqiIpkrFpp43iJ_W0OvT7iB5GabDkHCbhbbKpU_0jloV0uXIa5habMDiBomfJj-RmxrlqqthhMY-lK0LZqwE5Va7__6xyrI4gi4bo1a8pLimixF2lApZshWJPGH_FsrcxKo-2HSO4SigRNRcqPUE9vT4FA43uAPP4LW5Lj2jwqCR74rUKIyB-EIWjaJlhd8-nfujhiZTV5nxL4mxQso3cJzDoNP-fO5GYTJCJJM6SSJGCVVYZCqjmjJjoWdmYoF1nQgLBxLpWOYEJsaRt0ssDTUZxozKjAhJWSzIBZTGxVhfAjIKJ8LuRC1WsMFdMGyV1JAiJdQRd7MKPCylxGWgDXfTK775gvAYcydR7iVagbvV2smCLOPfVS0n7NUKR3DtbxTTLx7shecNk-Y4ZUxLmkgq8lwaTRy7f6q0ieMKVJeq4sHqZnx9Rirw6NW34zN4-62H_dXV7r2u4QC7fx58j24VSvPpr76xSGSe34bj9gchmt0A
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access (Hollins)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDnBc9iD9xOiWgF4Xi-pJmKXiZsjEUfxwUvIU0P7zoKtv8_83L2k5BBG-lTUrJy-v7krx8HiGnJvdeaGaS4IU24eBEcCltE5FZm_pe0WexWsPdvRg_85uX7KVFLuuzMAs-RLPghp4R_9fo4LqYXSyhoa58B2Qj5HyFrOLZWkzoA_7YrLAgnAti6coQ1nExrs8aPilcLLv_iEgR3P9DbX7XrDHojDbJRqUW6WBh3i3ScpNtsv6NIbhDbgfLLWhaevoesyMdrcpBvNKgSmm90x-ezuOUox9T3KGJnfTEUhsTOXbJ82j4dD1OqgoJieE9xhMpmLCgc5sLJ6QPEjT3qQbXYzrIAm6QNqeBeYS4GzBe-BxACpMzbYRMNdsj7Uk5cfuEegtchzeJoBlCkNcSgrH6RmdMIMBbdshZPUrKVPhwrGLxphbgY1A4oiqOaIecNG0_FtCMX1td4WA3LRB0HW-U01dV-Y0q-j4rIJPSGcGN0EVhvGNI-c-s82naId3aVKryvpkCEXSkDPYOj8-j-f74DDV8uIN4dfCfxodkDfAkRMzc7ZL2fPrpjoI-mRfHcRp-Ac_S3h8
  priority: 102
  providerName: Wiley-Blackwell
Title Application of machine learning for advanced material prediction and design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12194
https://www.proquest.com/docview/2685181731
https://doaj.org/article/b7f5b2588ec64c6abbcfe316185def11
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDj4sexCeurktALwrF3UmapsdVdhXFVUTBW0jz8OI-0PX7O0m7axdEL15KadISZprOv2TyG0JOTO690MwkOAttwsEJnFLaJiK1tuPbRcZitYa7gbh-5jcv6Uut1FfICSvxwKXhzovMpwWkUjojuBG6KIx3LGDeU-t8uasXY17tZyp8gwOYC2PTnEcK5248hIBSyPlCBIqg_gV1WdeoMcj0N8lGpQ5ptxzVFllyo22yXmMG7pDb7veSMx17OozZkI5W5R9eKapQOlvZx9ZpfMXo5D2syMSb9MhSGxM3dslzv_d0eZ1UFRESw9uMJ1IwYUHnNhdOSI-SM_cdDa7NNMoAbgJdTgPzAdpuwHjhcwApTM60EbKj2R5ZGY1Hbp9Qb4FrfJJAjYBBXUtA52RGp0wEYLdskNOZlZSpcOGhasWbKkHHoIJFVbRogxzP-05KSMaPvS6Csec9Atg6XkB3q8rd6i93N0hz5ipVzbYPBQJ1o-xkDJvPovt-GYbq3d9BPDv4jwEdkjUIOyJiBm-TrEzfP90R6pRp0SLLwB_wKPtXLbJ60Rs8PLbia_oFzKnorQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ReqA9VBRadVsoltoeWiliM3a8zgEhCmwXlqUXkLi5jj-4lM122arqn-pvrMebLCAhbtyixLGi8YznxR6_B_DRliFIw20Wo9BlAr2MIWVcJgvn8tCtejypNYxO5eBcHF8UF0vwrz0LQ2WV7ZyYJmpXW1oj30YZsYHKezzfnfzKSDWKdldbCY25Wwz93z_xl-165-ggju8nxP7h2f4ga1QFMiu6XGRKcunQlK6UXqoQYVsZcoO-y01MpcISQ5tBHoj43KINMpSIStqSGytVbnjs9wk8FTxmcjqZ3v-2WNMhOrCYERcsqLjt6yskAodS3Ml7SR7gDqa9jYxTauuvwosGk7K9uRO9hCU_XoPnt5gK12G4d7PRzerArlINpmeN6MQli9iXtfUE8eksOTabTGkfKL1kxo65VC7yCs4fxWKvYXlcj_0bYMGhMLEnGZFJhBJGYXSJnjUFl0QTrjrwubWStg1JOWll_NRzemXUZFGdLNqBD4u2kzk1x72tvpKxFy2ITjvdqKeXuolOXfVCUWGhlLdSWGmqygbPSUugcD7keQc22qHSTYxf6xuP7MCXNHwPfIY-_D7CdPX24b62YGVwNjrRJ0enw3fwDOm0RaoO3oDl2fS334wYaFa9T47H4Mdje_p_a0IWyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRarKoaJfYltoLUEPrRTtZpw4zqGqoOwKurBFVZG4GccfXMpmu2xV9a_113XsTRaQEDduUeJY0XjG82KP3wPYMaX3QnOTUBTaJEMnKKS0TURuber7VcGjWsPxWBycZl_P8rMV-NeehQllle2cGCdqW5uwRt5DQdhApgVPe74pizjZH36e_kqCglTYaW3lNBYuMnJ__9Dv29Wnw30a6_eIw8GPLwdJozCQmKzPs0QKLizq0pbCCekJwpU-1ej6XFNazUxga9PIfSBBN2i88CWiFKbk2giZak79PoLVIvwVdWB1bzA--b5c4QnkYJQfl5yo2HP1JQY6hzK7lQWjWMAthHsTJ8dEN1yHpw1CZbsLl3oGK27yHNZu8Ba-gNHu9bY3qz27jBWZjjUSFBeMkDBrqwvo6Ty6OZvOwq5QfElPLLOxeOQlnD6IzV5BZ1JP3AYwbzHT1JMgnELAQkskBymMzrkIpOGyCx9aKynTUJYH5YyfakG2jCpYVEWLdmF72Xa6IOq4s9VeMPayRSDXjjfq2YVqYlVVhc8rzKV0RmRG6Koy3vGgLJBb59O0C5vtUKkm4q_UtX924WMcvns-Qw2-HWO8en1_X-_gMXm5Ojocj97AEwxHL2Kp8CZ05rPfbosA0bx623geg_OHdvb_FQAcXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+for+advanced+material+prediction+and+design&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Cheuk+Hei+Chan&rft.au=Mingzi+Sun&rft.au=Bolong+Huang&rft.date=2022-07-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=4&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12194&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b7f5b2588ec64c6abbcfe316185def11
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon