Application of machine learning for advanced material prediction and design
In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 4; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research.
Due to the low computational cost and short development cycle, machine learning has been widely used in material detection, material analysis, and material design. In this review, the background of machine learning has been systematically introduced and their applications in materials science from both macroscopic and microscopic perspectives has been summarized. |
---|---|
AbstractList | In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research.
image In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research. In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research. Due to the low computational cost and short development cycle, machine learning has been widely used in material detection, material analysis, and material design. In this review, the background of machine learning has been systematically introduced and their applications in materials science from both macroscopic and microscopic perspectives has been summarized. Abstract In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit the experiments. Sometimes, traditional approaches may not yield satisfactory results for the desired purpose. Therefore, it is essential to develop a new approach to accelerate experimental progress and avoid unnecessary wasting of time and resources. As a data‐driven method, machine learning provides reliable and accurate performance to solve problems in material science. This review first outlines the fundamental information of machine learning. It continues with the research concerning the prediction of various properties of materials by machine learning. Then it discusses the methods for the discovery of new materials and the prediction of their structural information. Finally, we summarize other applications of machine learning in material science. This review will be beneficial for future application of machine learning in more material science research. |
Author | Huang, Bolong Chan, Cheuk Hei Sun, Mingzi |
Author_xml | – sequence: 1 givenname: Cheuk Hei surname: Chan fullname: Chan, Cheuk Hei organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Mingzi surname: Sun fullname: Sun, Mingzi organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Bolong orcidid: 0000-0002-2526-2002 surname: Huang fullname: Huang, Bolong email: bhuang@polyu.edu.hk organization: The Hong Kong Polytechnic University |
BookMark | eNp9kMFO3DAQhq2KSgXKpU8QqTekpR47dpwjQkBRqbi0Z2tij7deZe3gBBBvT3ZTVQihnjzyfP9v6ztiByknYuwL8DPgXHyjvBVnIKCtP7BDoXSzktDIg1fzJ3Yyjhs-w4rXooZD9uN8GProcIo5VTlUW3R_YqKqJywppnUVcqnQP2Jy5OftRCViXw2FfHT7ECZfeRrjOn1mHwP2I538PY_Z76vLXxffV7d31zcX57crV3NZr4yW2gtsfatJm2CgawOgIC4RGlW7RkuFQgbRKO6ECzq0QhjtWolOG0B5zG6WXp9xY4cSt1iebcZo9xe5rC2WKbqebNcE1QllDDldO41d5wJJ0GCUpwAwd31duoaS7x9onOwmP5Q0f98KbRSY2dqOOl0oV_I4Fgr_XgVud-7tzr3du59h_gZ2cdoLngrG_v0ILJGn2NPzf8rt5d1PsWReANnulsc |
CitedBy_id | crossref_primary_10_1016_j_trac_2025_118141 crossref_primary_10_3390_su162310439 crossref_primary_10_1039_D4TA06452F crossref_primary_10_1016_j_commatsci_2024_112998 crossref_primary_10_3390_met13101690 crossref_primary_10_1021_acssuschemeng_2c05225 crossref_primary_10_1016_j_coelec_2025_101649 crossref_primary_10_1021_acs_jpcc_2c03926 crossref_primary_10_1016_j_seppur_2025_132613 crossref_primary_10_1002_celc_202400084 crossref_primary_10_1016_j_compstruct_2023_116920 crossref_primary_10_3390_antibiotics13030220 crossref_primary_10_1002_adma_202310455 crossref_primary_10_1088_2633_4356_acb30a crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_1039_D4CP03090G crossref_primary_10_1016_j_mtcomm_2025_112134 crossref_primary_10_1021_acs_jcim_3c00242 crossref_primary_10_1021_acs_jpclett_4c03357 crossref_primary_10_1038_s41524_024_01486_1 crossref_primary_10_1016_j_scriptamat_2023_115918 crossref_primary_10_1080_00268976_2024_2341959 crossref_primary_10_1016_j_snb_2023_133678 crossref_primary_10_1002_advs_202307982 crossref_primary_10_1038_s41529_024_00549_4 crossref_primary_10_1007_s41779_024_01098_4 crossref_primary_10_1016_j_ccr_2023_215565 crossref_primary_10_1002_eom2_12330 crossref_primary_10_1016_j_engappai_2024_109853 crossref_primary_10_1016_j_apor_2024_104402 crossref_primary_10_1016_j_scitotenv_2023_166316 crossref_primary_10_3390_app13179992 crossref_primary_10_1038_s41598_025_87305_z crossref_primary_10_3390_ma17246217 crossref_primary_10_1039_D3TC02522E crossref_primary_10_3390_chemengineering7010002 crossref_primary_10_1016_j_isci_2024_109673 crossref_primary_10_1088_2053_1583_ad8011 crossref_primary_10_1016_j_actamat_2024_119703 crossref_primary_10_1088_1402_4896_ad5d2d crossref_primary_10_1016_j_talanta_2024_125949 crossref_primary_10_3390_jcs7090364 crossref_primary_10_1016_j_ijpvp_2023_105039 crossref_primary_10_1002_adfm_202214271 crossref_primary_10_1002_adma_202312887 crossref_primary_10_1038_s41598_023_41000_z crossref_primary_10_4236_ti_2024_154011 crossref_primary_10_1016_j_addma_2024_104248 crossref_primary_10_32604_cmc_2025_060109 crossref_primary_10_1016_j_ceramint_2023_07_035 crossref_primary_10_3390_app14062554 |
Cites_doi | 10.1016/j.commatsci.2016.05.034 10.1007/978-1-4615-0377-4_5 10.1021/co5001579 10.1021/acs.chemmater.7b00156 10.1517/17460441.2010.492827 10.1016/S0014-5793(03)01275-4 10.1007/s40192-017-0098-z 10.38094/jastt20165 10.1038/s41524-018-0081-z 10.1063/1.5020223 10.1063/1.4977487 10.1103/PhysRevB.89.094104 10.1103/PhysRevMaterials.2.083802 10.1007/978-1-4899-7687-1 10.1021/acs.chemmater.7b05304 10.1162/neco.1992.4.1.1 10.1038/s41580-021-00407-0 10.1038/nature21419 10.1080/10589750802258986 10.1007/978-1-4842-2766-4_7 10.1145/2347736.2347755 10.1021/acsami.9b14530 10.1021/acsomega.9b04012 10.1103/PhysRevB.95.094203 10.1007/s11837-019-03704-4 10.17222/mit.2018.043 10.1103/PhysRevLett.90.075503 10.1038/nature25978 10.1002/aenm.202003796 10.1038/sdata.2016.18 10.1557/mrs.2016.93 10.1038/s41524-019-0221-0 10.1177/0263276413480951 10.1016/j.eswa.2009.02.037 10.1039/C6SC05720A 10.1201/b17476 10.1021/acs.chemmater.8b00686 10.1107/S2052520616007447 10.1557/mrs.2018.208 10.1021/jacs.8b03913 10.1109/TPAMI.2013.50 10.1016/j.cirp.2019.03.021 10.1126/sciadv.aat0346 10.1021/ja902302h 10.1016/j.actamat.2020.05.001 10.1038/s41586-018-0337-2 10.1063/5.0055035 10.1021/ci200346b 10.1016/S1369-7021(05)71123-8 10.1038/s41524-020-00360-0 10.1088/0953-8984/23/5/053201 10.1103/PhysRevLett.115.036402 10.1021/acs.chemmater.6b02724 10.1002/adts.201900215 10.1126/science.288.5468.993 10.1016/j.neucom.2020.07.061 10.1103/PhysRevLett.114.105503 10.1103/PhysRevB.102.224104 10.7551/mitpress/7011.001.0001 10.1007/978-1-4612-0711-5 10.1021/co200007w 10.1016/j.mattod.2020.06.010 10.1063/1.2210932 10.1007/s00521-020-04874-y 10.1016/j.ijfatigue.2021.106236 10.1016/j.ensm.2020.06.033 10.1103/PhysRevB.72.024545 10.1016/j.commatsci.2017.01.017 10.1557/mrc.2019.44 10.1038/s41524-018-0085-8 10.1142/S0218271810017160 10.1002/aenm.201903949 10.1038/nature17439 10.1038/s41524-021-00520-w 10.1016/j.jmst.2020.08.008 10.1088/2632-2153/abc81d 10.7551/mitpress/4057.001.0001 10.1002/wcms.1450 10.1038/s41586-020-2242-8 10.1038/s41524-020-00367-7 10.1038/nmat4717 10.1039/c39920000089 10.1038/sdata.2015.53 10.1021/ci300415d 10.1021/acs.jctc.9b00322 10.1038/d41586-019-02307-y 10.1021/acscentsci.7b00303 10.1063/1.1724816 10.1039/C5CY01332A 10.1016/j.physc.2020.1353689 10.1103/PhysRevLett.108.253002 10.1093/bioinformatics/btz199 10.1557/mrs2008.221 10.1016/j.commatsci.2009.06.013 10.1103/PhysRevLett.97.045504 10.1038/nmat1157 10.1002/aenm.202101404 10.1038/npjcompumats.2016.28 10.3389/fenrg.2021.609070 10.1002/chem.201605499 10.1103/PhysRevLett.102.226401 10.1021/acscentsci.8b00357 10.1016/j.msea.2017.11.002 10.1016/j.conbuildmat.2020.118271 10.1103/PhysRevB.100.174513 10.1038/s41598-018-35934-y 10.1021/acs.jpcc.6b10908 10.1016/j.nanoen.2019.06.008 10.1039/C9SC02298H 10.1021/acs.chemmater.8b01621 10.1021/acscentsci.6b00367 10.1103/PhysRevB.72.024546 10.1126/science.1135080 10.1021/acscatal.9b05248 10.1023/A:1007369909943 10.1038/s41524-017-0038-7 10.1039/C8SC02239A |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.1002/eom2.12194 |
DatabaseName | Wiley Online Library Open Access (Hollins) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library : Open Access journals [open access] url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_b7f5b2588ec64c6abbcfe316185def11 10_1002_eom2_12194 EOM212194 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2021YFA1501101 – fundername: National Natural Science Foundation of China/RGC Joint Research Scheme funderid: N_PolyU502/21 – fundername: Projects of Strategic Importance of The Hong Kong Polytechnic University funderid: 1‐ZE2V |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c4034-8636d2a9d96e68f81b9f1a2e03a1754c7635a23f2750c2cf6f92286c93ac681a3 |
IEDL.DBID | DOA |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:32:25 EDT 2025 Wed Aug 13 10:34:21 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jan 22 16:24:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4034-8636d2a9d96e68f81b9f1a2e03a1754c7635a23f2750c2cf6f92286c93ac681a3 |
Notes | Funding information Projects of Strategic Importance of The Hong Kong Polytechnic University, Grant/Award Number: 1‐ZE2V; National Natural Science Foundation of China/RGC Joint Research Scheme, Grant/Award Number: N_PolyU502/21; National Key R&D Program of China, Grant/Award Number: 2021YFA1501101 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2526-2002 |
OpenAccessLink | https://doaj.org/article/b7f5b2588ec64c6abbcfe316185def11 |
PQID | 2685181731 |
PQPubID | 5066170 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b7f5b2588ec64c6abbcfe316185def11 proquest_journals_2685181731 crossref_primary_10_1002_eom2_12194 crossref_citationtrail_10_1002_eom2_12194 wiley_primary_10_1002_eom2_12194_EOM212194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 68 2010; 19 2019; 10 2019; 12 2019; 15 2004; 3 2008; 33 2020; 10 2003; 555 2018; 43 1996; 77 2018; 9 2018; 8 2018; 2 2018; 4 1990 2016; 41 2008; 23 2018; 30 2005; 72 2020; 575 2010; 5 1992; 2 1992; 4 2019; 9 1960; 11 2019; 5 2020; 41 2021; 148 2019; 35 1997; 27 2020; 32 2016; 15 2017; 136 2019; 100 2012; 108 1999 2007; 316 2016; 2 2016; 3 2020; 31 2015; 115 2015; 114 2005; 8 2009; 102 2016; 28 2017; 543 2019; 572 2017; 6 2009; 47 2004; 120 2017; 8 2017; 3 2021; 23 2017; 4 2011; 13 2020; 244 2016; 72 2011; 12 2012; 55 1996; 31 2012; 52 2020; 6 2020; 5 2020; 3 2003; 90 2019; 62 2001 2000; 56 2013; 12 2019; 68 2020; 415 2011; 23 2000; 288 2017; 121 2006; 124 2015; 2 2021; 9 2021; 8 2021; 7 2015; 17 2019; 71 2015; 5 2006; 97 2018; 140 2021; 2 2020; 581 2011 2018; 148 2017; 23 2016; 123 2005 2004 2017; 29 2003 2020; 102 2009; 131 2014; 89 2017; 95 2009; 36 2021; 11 2020; 195 2018; 710 2018; 559 2013; 35 2018; 555 2013; 30 2018 2017 2018; 52 2015 2014 2016; 533 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 Waibel A (e_1_2_7_4_1) 1990 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 Gulli A (e_1_2_7_39_1) 2017 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 Bellman RE (e_1_2_7_66_1) 2015 e_1_2_7_109_1 e_1_2_7_128_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 Mohri M (e_1_2_7_42_1) 2018 e_1_2_7_113_1 Pedregosa F (e_1_2_7_8_1) 2011; 12 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 Perdew JP (e_1_2_7_86_1) 1996; 77 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 Newnham RE (e_1_2_7_14_1) 2005 e_1_2_7_43_1 e_1_2_7_85_1 Baldi P (e_1_2_7_9_1) 2001 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 Curtarolo S (e_1_2_7_15_1) 2013; 12 e_1_2_7_28_1 Sutton RS (e_1_2_7_44_1) 2018 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 Van Eijck BP (e_1_2_7_105_1) 2000; 56 e_1_2_7_119_1 Noordik JH (e_1_2_7_10_1) 2004 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 Eliashberg G (e_1_2_7_92_1) 1960; 11 e_1_2_7_134_1 Oganov AR (e_1_2_7_12_1) 2011 e_1_2_7_138_1 |
References_xml | – year: 2011 – volume: 10 start-page: 4377 issue: 7 year: 2020 article-title: An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts publication-title: ACS Catal – volume: 52 start-page: 2864 issue: 11 year: 2012 article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB‐17 publication-title: J Chem Inf Model – volume: 56 start-page: 535 issue: 3 year: 2000 article-title: Structure predictions allowing more than one molecule in the asymmetric unit publication-title: Sect B Struct Sci – year: 2005 – volume: 72 start-page: 024546 issue: 2 year: 2005 article-title: Ab initio theory of superconductivity. II. Application to elemental metals publication-title: Phys Rev B – volume: 35 start-page: 4072 issue: 20 year: 2019 article-title: Simulation‐assisted machine learning publication-title: Bioinformatics – volume: 572 start-page: 27 year: 2019 article-title: Three pitfalls to avoid in machine learning publication-title: Nature – volume: 415 start-page: 295 year: 2020 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – volume: 100 start-page: 174513 issue: 17 year: 2019 article-title: Functional form of the superconducting critical temperature from machine learning publication-title: Phys Rev B – volume: 23 start-page: 053201 issue: 5 year: 2011 article-title: Ab initio random structure searching publication-title: J Phys: Condens Matter – volume: 3 start-page: 429 issue: 7 year: 2004 article-title: Combinatorial solid‐state chemistry of inorganic materials publication-title: Nat Mater – volume: 108 start-page: 253002 issue: 25 year: 2012 article-title: Finding density functionals with machine learning publication-title: Phys Rev Lett – volume: 123 start-page: 176 year: 2016 article-title: Image driven machine learning methods for microstructure recognition publication-title: Comput Mater Sci – volume: 288 start-page: 993 issue: 5468 year: 2000 article-title: Scikit‐learn: Machine learning in Python publication-title: Science – year: 1990 – volume: 2 start-page: 150053 issue: 1 year: 2015 article-title: A database to enable discovery and design of piezoelectric materials publication-title: Sci Data – year: 2014 – volume: 3 start-page: 1 issue: 1 year: 2017 article-title: Learning surface molecular structures via machine vision publication-title: NPJ Comput Mater – volume: 148 issue: 24 year: 2018 article-title: Predicting the stability of ternary intermetallics with density functional theory and machine learning publication-title: J Chem Phys – volume: 89 start-page: 094104 issue: 9 year: 2014 article-title: Combinatorial screening for new materials in unconstrained composition space with machine learning publication-title: Phys Rev B – volume: 2 start-page: 083802 issue: 8 year: 2018 article-title: A compressed‐sensing method for identifying the best low‐dimensional descriptor in an immensity of offered candidates publication-title: Phys Rev Mater – start-page: 81 year: 2003 – volume: 575 year: 2020 article-title: Predicting new superconductors and their critical temperatures using machine learning publication-title: Phys C – volume: 41 start-page: 399 issue: 5 year: 2016 article-title: Materials science with large‐scale data and informatics: Unlocking new opportunities publication-title: MRS Bull – volume: 71 start-page: 3433 issue: 10 year: 2019 article-title: Prediction of the composition and hardness of high‐entropy alloys by machine learning publication-title: JOM – volume: 581 start-page: 178 issue: 7807 year: 2020 article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning publication-title: Nature – volume: 6 start-page: 104 year: 2020 article-title: Machine‐learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide publication-title: NPJ Comput Mater – volume: 31 start-page: 434 year: 2020 article-title: Machine learning assisted materials design and discovery for rechargeable batteries publication-title: Energy Storage Mater – volume: 72 start-page: 024545 issue: 2 year: 2005 article-title: Density functional formalism and approximate functionals publication-title: Phys Rev B – volume: 5 start-page: 633 issue: 7 year: 2010 article-title: Advances in computational methods to predict the biological activity of compounds publication-title: Expert Opin Drug Discovery – volume: 6 start-page: 96 year: 2020 article-title: Exchange‐correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning publication-title: NPJ Comput Mater – volume: 68 start-page: 70 year: 2021 article-title: High‐throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy publication-title: J Mater Sci Technol – volume: 4 start-page: 1 issue: 1 year: 1992 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput – volume: 710 start-page: 309 year: 2018 article-title: The creep deformation mechanisms of a newly designed nickel‐base superalloy publication-title: Mater Sci Eng, A – volume: 7 start-page: 55 year: 2021 article-title: Two‐step machine learning enables optimized nanoparticle synthesis publication-title: NPJ Comput Mater – volume: 9 start-page: 7642 issue: 39 year: 2018 article-title: Chimera: enabling hierarchy based multi‐objective optimization for self‐driving laboratories publication-title: Chem Sci – volume: 5 start-page: 1 issue: 1 year: 2019 article-title: Recent advances and applications of machine learning in solid‐state materials science publication-title: NPJ Comput Mater – volume: 30 start-page: 122 issue: 5 year: 2013 article-title: On topology publication-title: Theory Cult Soc – volume: 36 issue: 7 year: 2009 article-title: A review of machine learning approaches to spam filtering publication-title: Expert Syst Appl – volume: 3 start-page: 283 issue: 4 year: 2017 article-title: Low data drug discovery with one‐shot learning publication-title: ACS Cent Sci – volume: 244 year: 2020 article-title: An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete publication-title: Constr Build Mater – volume: 148 year: 2021 article-title: A deep learning based life prediction method for components under creep, fatigue and creep‐fatigue conditions publication-title: Int J Fatigue – volume: 31 year: 1996 – volume: 77 start-page: 3865 issue: 18 year: 1996 article-title: Generalized gradient approximation made simple publication-title: Phys Rev B – volume: 8 start-page: 031409 issue: 3 year: 2021 article-title: Machine learning for materials discovery: Two‐dimensional topological insulators publication-title: Appl Phys Rev – volume: 6 start-page: 207 issue: 3 year: 2017 article-title: High‐dimensional materials and process optimization using data‐driven experimental design with well‐calibrated uncertainty estimates publication-title: Integr Mater Manuf Innov – volume: 15 start-page: 1120 issue: 10 year: 2016 article-title: Design of efficient molecular organic light‐emitting diodes by a high‐throughput virtual screening and experimental approach publication-title: Nat Mater – volume: 17 start-page: 224 issue: 4 year: 2015 article-title: Combinatorial solid‐state chemistry of inorganic materials. publication-title: ACS Comb Sci – volume: 4 start-page: 1 issue: 1 year: 2018 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: NPJ Comput Mater – volume: 10 issue: 3 year: 2020 article-title: Machine learning and artificial neural network accelerated computational discoveries in materials science publication-title: Comput Mol Sci – volume: 533 start-page: 73 issue: 7601 year: 2016 article-title: Machine‐learning‐assisted materials discovery using failed experiments publication-title: Nature – volume: 62 start-page: 754 year: 2019 article-title: Mapping of atomic catalyst on graphdiyne publication-title: Nano Energy – volume: 23 start-page: 273 issue: 4 year: 2008 article-title: A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network publication-title: Nondestr Test Eval – volume: 136 year: 2017 article-title: The AFLOW library of crystallographic prototypes: part 1 publication-title: Comput Mater Sci – volume: 47 start-page: 46 issue: 1 year: 2009 article-title: Analysis of workability behavior of Al–SiC P/M composites using backpropagation neural network model and statistical technique publication-title: Comput Mater Sci – volume: 28 start-page: 7324 issue: 20 year: 2016 article-title: High‐throughput machine‐learning‐driven synthesis of full‐Heusler compounds publication-title: Chem Mater – volume: 12 start-page: 2825 year: 2011 article-title: Scikit‐learn: Machine learning in Python publication-title: J Mach Learn Res – volume: 52 start-page: 38 issue: 1 year: 2012 article-title: Improved machine learning models for predicting selective compounds publication-title: J Chem Inf Model – volume: 30 start-page: 4361 issue: 13 year: 2018 article-title: Large‐scale computational screening of molecular organic semiconductors using crystal structure prediction publication-title: Chem Mater – volume: 8 start-page: 3192 issue: 4 year: 2017 article-title: ANI‐1: an extensible neural network potential with DFT accuracy at force field computational cost publication-title: Chem Sci – volume: 8 start-page: 38 issue: 10 year: 2005 article-title: Materials informatics publication-title: Mater Today – start-page: 97 year: 2017 – volume: 9 start-page: 52 year: 2021 article-title: Driven framework for the accelerated discovery of CO2 reduction electrocatalysts publication-title: Front Energy Res – volume: 19 start-page: 1049 issue: 7 year: 2010 article-title: Data mining and machine learning in astronomy publication-title: Int J Mod Phys D – volume: 11 start-page: 696 issue: 3 year: 1960 article-title: Interactions between electrons and lattice vibrations in a superconductor publication-title: Sov Phys JETP – volume: 4 start-page: 29 year: 2018 article-title: Machine learning modeling of superconducting critical temperature publication-title: NPJ Comput Mater – volume: 10 start-page: 1903949 issue: 12 year: 2020 article-title: Accelerating atomic catalyst discovery by theoretical calculations‐machine learning strategy publication-title: Adv Energy Mater – volume: 2 start-page: 16028 issue: 1 year: 2016 article-title: A general‐purpose machine learning framework for predicting properties of inorganic materials publication-title: NPJ Comput Mater – volume: 30 start-page: 4031 issue: 12 year: 2018 article-title: Machine‐learning‐assisted accurate band gap predictions of functionalized MXene publication-title: Chem Mater – volume: 5 start-page: 3596 issue: 7 year: 2020 article-title: Machine learning‐based prediction of crystal systems and space groups from inorganic materials compositions publication-title: ACS Omega – volume: 3 start-page: 160018 year: 2016 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data – volume: 68 start-page: 451 issue: 1 year: 2019 article-title: Machine learning‐based image processing for on‐line defect recognition in additive manufacturing publication-title: CIRP Ann – volume: 102 start-page: 224104 issue: 22 year: 2020 article-title: Training machine‐learning potentials for crystal structure prediction using disordered structures publication-title: Phys Rev B – volume: 102 start-page: 226401 issue: 22 year: 2009 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange‐correlation potential publication-title: Phys Rev Lett – volume: 2 start-page: 20 issue: 1 year: 2021 article-title: Classification based on decision tree algorithm for machine learning publication-title: J Appl Sci Technol Trends – volume: 316 start-page: 561 issue: 5824 year: 2007 article-title: The problem with determining atomic structure at the nanoscale publication-title: Science – year: 2001 – volume: 33 start-page: 1017 issue: 11 year: 2008 article-title: Gate oxides beyond SiO2 publication-title: MRS Bull – volume: 90 start-page: 075503 issue: 7 year: 2003 article-title: Predicting crystal structures: the Parrinello‐Rahman method revisited publication-title: Phys Rev Lett – volume: 2 start-page: 89 year: 1992 end-page: 91 article-title: Structure predictions in inorganic solids publication-title: J Chem Soc, Chem Commun – volume: 52 start-page: 639 issue: 5 year: 2018 article-title: Prediction of superconducting transition temperature using a machine‐learning method publication-title: Mater Tehnol – volume: 121 start-page: 511 issue: 1 year: 2017 article-title: Machine learning force fields: construction, validation, and outlook publication-title: J Phys Chem C – volume: 195 start-page: 454 year: 2020 article-title: Predicting creep rupture life of Ni‐based single crystal superalloys using divide‐and‐conquer approach based machine learning publication-title: Acta Mater – volume: 11 start-page: 2101404 issue: 30 year: 2021 article-title: Stepping out of transition metals: activating the dual atomic catalyst through main group elements publication-title: Adv Energy Mater – volume: 140 start-page: 10158 issue: 32 year: 2018 article-title: Crystal structure prediction via deep learning publication-title: J Am Chem Soc – volume: 12 start-page: 191 issue: 3 year: 2013 article-title: The high‐throughput highway to computational materials design publication-title: NatMater – year: 2018 – volume: 12 issue: 18 year: 2019 article-title: Exploring two‐dimensional materials thermodynamic stability via machine learning publication-title: ACS Appl Mater Interfaces – volume: 2 year: 2021 article-title: Prediction of chemical reaction yields using deep learning publication-title: Mach Learn Sci Technol – volume: 3 start-page: 1103 issue: 10 year: 2017 article-title: Retrosynthetic reaction prediction using neural sequence‐to‐sequence models publication-title: ACS Cent Sci – volume: 131 start-page: 8732 issue: 25 year: 2009 article-title: 970 million druglike small molecules for virtual screening in the chemical universe database GDB‐13 publication-title: J Am Chem Soc – volume: 43 start-page: 676 issue: 9 year: 2018 article-title: NOMAD: The FAIR concept for big data‐driven materials science publication-title: MRS Bull – volume: 559 start-page: 547 issue: 7715 year: 2018 article-title: Machine learning for molecular and materials science publication-title: Nature – volume: 3 start-page: 1900215 issue: 2 year: 2020 article-title: Multi‐layer feature selection incorporating weighted score‐based expert knowledge toward modeling materials with targeted properties publication-title: Adv Theory Simul – year: 2004 – volume: 555 start-page: 358 issue: 2 year: 2003 article-title: Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines publication-title: FEBS Lett – volume: 27 start-page: 313 issue: 3 year: 1997 article-title: Learning and revising user profiles: The identification of interesting web sites publication-title: Mach Learn – volume: 11 start-page: 2003796 issue: 13 year: 2021 article-title: Self‐validated machine learning study of graphdiyne‐based dual atomic catalyst publication-title: Adv Energy Mater – volume: 4 issue: 1 year: 2017 article-title: Fulfilling the promise of the materials genome initiative with high‐throughput experimental methodologies publication-title: Appl Phys Rev – year: 2015 – volume: 41 start-page: 72 year: 2020 article-title: Machine learning‐guided synthesis of advanced inorganic materials publication-title: Mater Today – volume: 10 start-page: 7913 issue: 34 year: 2019 article-title: A quantitative uncertainty metric controls error in neural network‐driven chemical discover publication-title: Chem Sci – volume: 32 issue: 20 year: 2020 article-title: Machine learning and data analytics for the IoT publication-title: Neural Comput Appl – volume: 15 start-page: 5069 issue: 3 year: 2019 article-title: Interactions between electrons and lattice vibrations in a superconductor publication-title: J Chem Theory Comput – volume: 72 start-page: 439 issue: 4 year: 2016 article-title: Report on the sixth blind test of organic crystal structure prediction methods publication-title: Acta Crystallogr Sect B Struct Sci Cryst Eng Mater – volume: 30 start-page: 3601 issue: 11 year: 2018 article-title: Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons publication-title: Chem Mater – volume: 9 start-page: 576 issue: 2 year: 2019 article-title: Machine learning prediction of elastic properties and glass‐forming ability of bulk metallic glasses publication-title: MRS Commun – volume: 120 start-page: 9911 issue: 21 year: 2004 article-title: Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems publication-title: J Chem Phys – volume: 124 issue: 24 year: 2006 article-title: Crystal structure prediction using ab initio evolutionary techniques: Principles and applications publication-title: J Chem Phys – volume: 115 start-page: 036402 issue: 3 year: 2015 article-title: Strongly constrained and appropriately normed semilocal density functional publication-title: Phys Rev Lett – volume: 35 start-page: 1798 issue: 8 year: 2013 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 97 issue: 4 year: 2006 article-title: High‐pressure phases of silane publication-title: Phys Rev Lett – volume: 543 start-page: 657 issue: 7647 year: 2017 article-title: Functional materials discovery using energy–structure–function maps publication-title: Nature – volume: 23 start-page: 40 year: 2021 article-title: A guide to machine learning for biologists publication-title: Nat Rev Mol Cell Biol – volume: 555 start-page: 604 issue: 7698 year: 2018 article-title: Planning chemical syntheses with deep neural networks and symbolic AI publication-title: Nature – volume: 4 start-page: eaat0346 issue: 6 year: 2018 article-title: Higher‐order topological insulators publication-title: Sci Adv – volume: 8 start-page: 17593 year: 2018 article-title: Deep learning the chemistry of materials from only elemental composition publication-title: Sci Rep – volume: 13 start-page: 579 issue: 6 year: 2011 article-title: Combinatorial and high‐throughput screening of materials libraries: review of state of the art publication-title: ACS Comb Sci – year: 2017 – volume: 114 start-page: 105503 issue: 10 year: 2015 article-title: Phys. Rev. Lett. publication-title: Phys Rev Lett – volume: 29 start-page: 5090 issue: 12 year: 2017 article-title: Predicting the thermodynamic stability of solids combining density functional theory and machine learning publication-title: Chem Mater – volume: 23 start-page: 5966 issue: 25 year: 2017 article-title: Neural‐symbolic machine learning for retrosynthesis and reaction prediction publication-title: Chem Eur J – volume: 5 start-page: 4946 issue: 11 year: 2015 article-title: Identifying systematic DFT errors in catalytic reactions publication-title: Catal Sci Technol – volume: 95 start-page: 094203 issue: 9 year: 2017 article-title: Machine learning based interatomic potential for amorphous carbon publication-title: Phys Rev B – volume: 4 start-page: 1465 issue: 11 year: 2018 article-title: Using machine learning to predict suitable conditions for organic reactions publication-title: ACS Cent Sci – year: 1999 – volume: 55 start-page: 78 issue: 10 year: 2012 article-title: A few useful things to know about machine learning publication-title: Commun ACM – ident: e_1_2_7_133_1 doi: 10.1016/j.commatsci.2016.05.034 – ident: e_1_2_7_130_1 – ident: e_1_2_7_76_1 doi: 10.1007/978-1-4615-0377-4_5 – ident: e_1_2_7_18_1 doi: 10.1021/co5001579 – ident: e_1_2_7_74_1 – ident: e_1_2_7_111_1 doi: 10.1021/acs.chemmater.7b00156 – ident: e_1_2_7_70_1 doi: 10.1517/17460441.2010.492827 – ident: e_1_2_7_97_1 doi: 10.1016/S0014-5793(03)01275-4 – ident: e_1_2_7_35_1 doi: 10.1007/s40192-017-0098-z – ident: e_1_2_7_77_1 doi: 10.38094/jastt20165 – ident: e_1_2_7_54_1 doi: 10.1038/s41524-018-0081-z – volume-title: Modern Methods of Crystal Structure Prediction year: 2011 ident: e_1_2_7_12_1 – ident: e_1_2_7_112_1 doi: 10.1063/1.5020223 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_7_8_1 article-title: Scikit‐learn: Machine learning in Python publication-title: J Mach Learn Res – ident: e_1_2_7_16_1 doi: 10.1063/1.4977487 – ident: e_1_2_7_115_1 doi: 10.1103/PhysRevB.89.094104 – volume: 11 start-page: 696 issue: 3 year: 1960 ident: e_1_2_7_92_1 article-title: Interactions between electrons and lattice vibrations in a superconductor publication-title: Sov Phys JETP – ident: e_1_2_7_67_1 doi: 10.1103/PhysRevMaterials.2.083802 – ident: e_1_2_7_53_1 doi: 10.1007/978-1-4899-7687-1 – ident: e_1_2_7_121_1 doi: 10.1021/acs.chemmater.7b05304 – ident: e_1_2_7_52_1 doi: 10.1162/neco.1992.4.1.1 – ident: e_1_2_7_51_1 doi: 10.1038/s41580-021-00407-0 – ident: e_1_2_7_25_1 doi: 10.1038/nature21419 – ident: e_1_2_7_28_1 doi: 10.1080/10589750802258986 – ident: e_1_2_7_38_1 doi: 10.1007/978-1-4842-2766-4_7 – ident: e_1_2_7_49_1 doi: 10.1145/2347736.2347755 – ident: e_1_2_7_114_1 doi: 10.1021/acsami.9b14530 – ident: e_1_2_7_116_1 doi: 10.1021/acsomega.9b04012 – ident: e_1_2_7_135_1 doi: 10.1103/PhysRevB.95.094203 – ident: e_1_2_7_68_1 – ident: e_1_2_7_119_1 doi: 10.1007/s11837-019-03704-4 – ident: e_1_2_7_95_1 doi: 10.17222/mit.2018.043 – ident: e_1_2_7_108_1 doi: 10.1103/PhysRevLett.90.075503 – ident: e_1_2_7_20_1 doi: 10.1038/nature25978 – ident: e_1_2_7_29_1 – ident: e_1_2_7_45_1 – ident: e_1_2_7_126_1 doi: 10.1002/aenm.202003796 – ident: e_1_2_7_55_1 doi: 10.1038/sdata.2016.18 – ident: e_1_2_7_26_1 doi: 10.1557/mrs.2016.93 – ident: e_1_2_7_103_1 – volume: 56 start-page: 535 issue: 3 year: 2000 ident: e_1_2_7_105_1 article-title: Structure predictions allowing more than one molecule in the asymmetric unit publication-title: Sect B Struct Sci – ident: e_1_2_7_46_1 doi: 10.1038/s41524-019-0221-0 – ident: e_1_2_7_100_1 doi: 10.1177/0263276413480951 – ident: e_1_2_7_5_1 doi: 10.1016/j.eswa.2009.02.037 – ident: e_1_2_7_139_1 doi: 10.1039/C6SC05720A – ident: e_1_2_7_2_1 doi: 10.1201/b17476 – ident: e_1_2_7_89_1 doi: 10.1021/acs.chemmater.8b00686 – ident: e_1_2_7_110_1 doi: 10.1107/S2052520616007447 – ident: e_1_2_7_56_1 doi: 10.1557/mrs.2018.208 – ident: e_1_2_7_57_1 doi: 10.1021/jacs.8b03913 – ident: e_1_2_7_64_1 doi: 10.1109/TPAMI.2013.50 – ident: e_1_2_7_134_1 doi: 10.1016/j.cirp.2019.03.021 – volume-title: Foundations of Machine Learning year: 2018 ident: e_1_2_7_42_1 – ident: e_1_2_7_101_1 doi: 10.1126/sciadv.aat0346 – ident: e_1_2_7_62_1 doi: 10.1021/ja902302h – ident: e_1_2_7_84_1 doi: 10.1016/j.actamat.2020.05.001 – ident: e_1_2_7_31_1 doi: 10.1038/s41586-018-0337-2 – ident: e_1_2_7_102_1 doi: 10.1063/5.0055035 – ident: e_1_2_7_79_1 doi: 10.1021/ci200346b – ident: e_1_2_7_83_1 doi: 10.1016/S1369-7021(05)71123-8 – volume-title: Bioinformatics: The Machine Learning Approach year: 2001 ident: e_1_2_7_9_1 – ident: e_1_2_7_90_1 doi: 10.1038/s41524-020-00360-0 – ident: e_1_2_7_107_1 doi: 10.1088/0953-8984/23/5/053201 – ident: e_1_2_7_88_1 doi: 10.1103/PhysRevLett.115.036402 – ident: e_1_2_7_117_1 doi: 10.1021/acs.chemmater.6b02724 – volume-title: Cheminformatics Developments: History, Reviews and Current Research year: 2004 ident: e_1_2_7_10_1 – ident: e_1_2_7_69_1 doi: 10.1002/adts.201900215 – volume-title: Readings in Speech Recognition year: 1990 ident: e_1_2_7_4_1 – ident: e_1_2_7_11_1 doi: 10.1126/science.288.5468.993 – ident: e_1_2_7_50_1 doi: 10.1016/j.neucom.2020.07.061 – ident: e_1_2_7_59_1 doi: 10.1103/PhysRevLett.114.105503 – ident: e_1_2_7_122_1 doi: 10.1103/PhysRevB.102.224104 – ident: e_1_2_7_43_1 doi: 10.7551/mitpress/7011.001.0001 – ident: e_1_2_7_73_1 doi: 10.1007/978-1-4612-0711-5 – ident: e_1_2_7_19_1 doi: 10.1021/co200007w – ident: e_1_2_7_132_1 doi: 10.1016/j.mattod.2020.06.010 – ident: e_1_2_7_3_1 – ident: e_1_2_7_13_1 doi: 10.1063/1.2210932 – ident: e_1_2_7_48_1 doi: 10.1007/s00521-020-04874-y – ident: e_1_2_7_85_1 doi: 10.1016/j.ijfatigue.2021.106236 – ident: e_1_2_7_78_1 doi: 10.1016/j.ensm.2020.06.033 – ident: e_1_2_7_93_1 doi: 10.1103/PhysRevB.72.024545 – ident: e_1_2_7_60_1 doi: 10.1016/j.commatsci.2017.01.017 – ident: e_1_2_7_80_1 doi: 10.1557/mrc.2019.44 – ident: e_1_2_7_98_1 doi: 10.1038/s41524-018-0085-8 – ident: e_1_2_7_47_1 doi: 10.1142/S0218271810017160 – ident: e_1_2_7_125_1 doi: 10.1002/aenm.201903949 – ident: e_1_2_7_58_1 doi: 10.1038/nature17439 – volume-title: Adaptive Control Processes year: 2015 ident: e_1_2_7_66_1 – ident: e_1_2_7_131_1 doi: 10.1038/s41524-021-00520-w – ident: e_1_2_7_118_1 doi: 10.1016/j.jmst.2020.08.008 – ident: e_1_2_7_142_1 doi: 10.1088/2632-2153/abc81d – ident: e_1_2_7_72_1 doi: 10.7551/mitpress/4057.001.0001 – ident: e_1_2_7_75_1 doi: 10.1002/wcms.1450 – ident: e_1_2_7_123_1 doi: 10.1038/s41586-020-2242-8 – ident: e_1_2_7_137_1 doi: 10.1038/s41524-020-00367-7 – ident: e_1_2_7_21_1 doi: 10.1038/nmat4717 – ident: e_1_2_7_104_1 doi: 10.1039/c39920000089 – ident: e_1_2_7_61_1 doi: 10.1038/sdata.2015.53 – ident: e_1_2_7_63_1 doi: 10.1021/ci300415d – ident: e_1_2_7_91_1 doi: 10.1021/acs.jctc.9b00322 – ident: e_1_2_7_34_1 doi: 10.1038/d41586-019-02307-y – ident: e_1_2_7_24_1 doi: 10.1021/acscentsci.7b00303 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: e_1_2_7_86_1 article-title: Generalized gradient approximation made simple publication-title: Phys Rev B – ident: e_1_2_7_109_1 doi: 10.1063/1.1724816 – ident: e_1_2_7_32_1 doi: 10.1039/C5CY01332A – ident: e_1_2_7_96_1 doi: 10.1016/j.physc.2020.1353689 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevLett.108.253002 – ident: e_1_2_7_41_1 doi: 10.1093/bioinformatics/btz199 – ident: e_1_2_7_136_1 doi: 10.1557/mrs2008.221 – ident: e_1_2_7_71_1 doi: 10.1016/j.commatsci.2009.06.013 – ident: e_1_2_7_106_1 doi: 10.1103/PhysRevLett.97.045504 – ident: e_1_2_7_40_1 – volume-title: Properties of Materials: Anisotropy, Symmetry, Structure year: 2005 ident: e_1_2_7_14_1 – ident: e_1_2_7_17_1 doi: 10.1038/nmat1157 – ident: e_1_2_7_127_1 doi: 10.1002/aenm.202101404 – ident: e_1_2_7_22_1 – ident: e_1_2_7_65_1 doi: 10.1038/npjcompumats.2016.28 – ident: e_1_2_7_129_1 doi: 10.3389/fenrg.2021.609070 – ident: e_1_2_7_141_1 doi: 10.1002/chem.201605499 – ident: e_1_2_7_7_1 – ident: e_1_2_7_87_1 doi: 10.1103/PhysRevLett.102.226401 – ident: e_1_2_7_140_1 doi: 10.1021/acscentsci.8b00357 – ident: e_1_2_7_82_1 doi: 10.1016/j.msea.2017.11.002 – ident: e_1_2_7_81_1 doi: 10.1016/j.conbuildmat.2020.118271 – ident: e_1_2_7_99_1 doi: 10.1103/PhysRevB.100.174513 – ident: e_1_2_7_113_1 doi: 10.1038/s41598-018-35934-y – ident: e_1_2_7_138_1 doi: 10.1021/acs.jpcc.6b10908 – volume-title: Deep Learning with Keras year: 2017 ident: e_1_2_7_39_1 – ident: e_1_2_7_124_1 doi: 10.1016/j.nanoen.2019.06.008 – ident: e_1_2_7_36_1 doi: 10.1039/C9SC02298H – ident: e_1_2_7_120_1 doi: 10.1021/acs.chemmater.8b01621 – ident: e_1_2_7_23_1 doi: 10.1021/acscentsci.6b00367 – ident: e_1_2_7_94_1 doi: 10.1103/PhysRevB.72.024546 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: e_1_2_7_44_1 – ident: e_1_2_7_27_1 doi: 10.1126/science.1135080 – volume: 12 start-page: 191 issue: 3 year: 2013 ident: e_1_2_7_15_1 article-title: The high‐throughput highway to computational materials design publication-title: NatMater – ident: e_1_2_7_128_1 doi: 10.1021/acscatal.9b05248 – ident: e_1_2_7_6_1 doi: 10.1023/A:1007369909943 – ident: e_1_2_7_30_1 doi: 10.1038/s41524-017-0038-7 – ident: e_1_2_7_37_1 doi: 10.1039/C8SC02239A |
SSID | ssj0002504241 |
Score | 2.4973638 |
SecondaryResourceType | review_article |
Snippet | In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental conditions limit... Abstract In material science, traditional experimental and computational approaches require investing enormous time and resources, and the experimental... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Algorithms Artificial intelligence Computer applications Data collection Data mining Datasets Efficiency Experiments Learning algorithms Machine learning Material properties materials science new structure design Optimization Pattern recognition systems Predictions property predictions Science Simulation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vehBfGK1SkAvCku7yW6aPUkrLUVpFbHQW8jm4cV2a1v_v0mavkB6W3azYZnJzHzMzH4DcC8zY6ggMrJWqKIEa2pNSqiIpkrFpp43iJ_W0OvT7iB5GabDkHCbhbbKpU_0jloV0uXIa5habMDiBomfJj-RmxrlqqthhMY-lK0LZqwE5Va7__6xyrI4gi4bo1a8pLimixF2lApZshWJPGH_FsrcxKo-2HSO4SigRNRcqPUE9vT4FA43uAPP4LW5Lj2jwqCR74rUKIyB-EIWjaJlhd8-nfujhiZTV5nxL4mxQso3cJzDoNP-fO5GYTJCJJM6SSJGCVVYZCqjmjJjoWdmYoF1nQgLBxLpWOYEJsaRt0ssDTUZxozKjAhJWSzIBZTGxVhfAjIKJ8LuRC1WsMFdMGyV1JAiJdQRd7MKPCylxGWgDXfTK775gvAYcydR7iVagbvV2smCLOPfVS0n7NUKR3DtbxTTLx7shecNk-Y4ZUxLmkgq8lwaTRy7f6q0ieMKVJeq4sHqZnx9Rirw6NW34zN4-62H_dXV7r2u4QC7fx58j24VSvPpr76xSGSe34bj9gchmt0A priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access (Hollins) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDnBc9iD9xOiWgF4Xi-pJmKXiZsjEUfxwUvIU0P7zoKtv8_83L2k5BBG-lTUrJy-v7krx8HiGnJvdeaGaS4IU24eBEcCltE5FZm_pe0WexWsPdvRg_85uX7KVFLuuzMAs-RLPghp4R_9fo4LqYXSyhoa58B2Qj5HyFrOLZWkzoA_7YrLAgnAti6coQ1nExrs8aPilcLLv_iEgR3P9DbX7XrDHojDbJRqUW6WBh3i3ScpNtsv6NIbhDbgfLLWhaevoesyMdrcpBvNKgSmm90x-ezuOUox9T3KGJnfTEUhsTOXbJ82j4dD1OqgoJieE9xhMpmLCgc5sLJ6QPEjT3qQbXYzrIAm6QNqeBeYS4GzBe-BxACpMzbYRMNdsj7Uk5cfuEegtchzeJoBlCkNcSgrH6RmdMIMBbdshZPUrKVPhwrGLxphbgY1A4oiqOaIecNG0_FtCMX1td4WA3LRB0HW-U01dV-Y0q-j4rIJPSGcGN0EVhvGNI-c-s82naId3aVKryvpkCEXSkDPYOj8-j-f74DDV8uIN4dfCfxodkDfAkRMzc7ZL2fPrpjoI-mRfHcRp-Ac_S3h8 priority: 102 providerName: Wiley-Blackwell |
Title | Application of machine learning for advanced material prediction and design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12194 https://www.proquest.com/docview/2685181731 https://doaj.org/article/b7f5b2588ec64c6abbcfe316185def11 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDj4sexCeurktALwrF3UmapsdVdhXFVUTBW0jz8OI-0PX7O0m7axdEL15KadISZprOv2TyG0JOTO690MwkOAttwsEJnFLaJiK1tuPbRcZitYa7gbh-5jcv6Uut1FfICSvxwKXhzovMpwWkUjojuBG6KIx3LGDeU-t8uasXY17tZyp8gwOYC2PTnEcK5248hIBSyPlCBIqg_gV1WdeoMcj0N8lGpQ5ptxzVFllyo22yXmMG7pDb7veSMx17OozZkI5W5R9eKapQOlvZx9ZpfMXo5D2syMSb9MhSGxM3dslzv_d0eZ1UFRESw9uMJ1IwYUHnNhdOSI-SM_cdDa7NNMoAbgJdTgPzAdpuwHjhcwApTM60EbKj2R5ZGY1Hbp9Qb4FrfJJAjYBBXUtA52RGp0wEYLdskNOZlZSpcOGhasWbKkHHoIJFVbRogxzP-05KSMaPvS6Csec9Atg6XkB3q8rd6i93N0hz5ipVzbYPBQJ1o-xkDJvPovt-GYbq3d9BPDv4jwEdkjUIOyJiBm-TrEzfP90R6pRp0SLLwB_wKPtXLbJ60Rs8PLbia_oFzKnorQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ReqA9VBRadVsoltoeWiliM3a8zgEhCmwXlqUXkLi5jj-4lM122arqn-pvrMebLCAhbtyixLGi8YznxR6_B_DRliFIw20Wo9BlAr2MIWVcJgvn8tCtejypNYxO5eBcHF8UF0vwrz0LQ2WV7ZyYJmpXW1oj30YZsYHKezzfnfzKSDWKdldbCY25Wwz93z_xl-165-ggju8nxP7h2f4ga1QFMiu6XGRKcunQlK6UXqoQYVsZcoO-y01MpcISQ5tBHoj43KINMpSIStqSGytVbnjs9wk8FTxmcjqZ3v-2WNMhOrCYERcsqLjt6yskAodS3Ml7SR7gDqa9jYxTauuvwosGk7K9uRO9hCU_XoPnt5gK12G4d7PRzerArlINpmeN6MQli9iXtfUE8eksOTabTGkfKL1kxo65VC7yCs4fxWKvYXlcj_0bYMGhMLEnGZFJhBJGYXSJnjUFl0QTrjrwubWStg1JOWll_NRzemXUZFGdLNqBD4u2kzk1x72tvpKxFy2ITjvdqKeXuolOXfVCUWGhlLdSWGmqygbPSUugcD7keQc22qHSTYxf6xuP7MCXNHwPfIY-_D7CdPX24b62YGVwNjrRJ0enw3fwDOm0RaoO3oDl2fS334wYaFa9T47H4Mdje_p_a0IWyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRarKoaJfYltoLUEPrRTtZpw4zqGqoOwKurBFVZG4GccfXMpmu2xV9a_113XsTRaQEDduUeJY0XjG82KP3wPYMaX3QnOTUBTaJEMnKKS0TURuber7VcGjWsPxWBycZl_P8rMV-NeehQllle2cGCdqW5uwRt5DQdhApgVPe74pizjZH36e_kqCglTYaW3lNBYuMnJ__9Dv29Wnw30a6_eIw8GPLwdJozCQmKzPs0QKLizq0pbCCekJwpU-1ej6XFNazUxga9PIfSBBN2i88CWiFKbk2giZak79PoLVIvwVdWB1bzA--b5c4QnkYJQfl5yo2HP1JQY6hzK7lQWjWMAthHsTJ8dEN1yHpw1CZbsLl3oGK27yHNZu8Ba-gNHu9bY3qz27jBWZjjUSFBeMkDBrqwvo6Ty6OZvOwq5QfElPLLOxeOQlnD6IzV5BZ1JP3AYwbzHT1JMgnELAQkskBymMzrkIpOGyCx9aKynTUJYH5YyfakG2jCpYVEWLdmF72Xa6IOq4s9VeMPayRSDXjjfq2YVqYlVVhc8rzKV0RmRG6Koy3vGgLJBb59O0C5vtUKkm4q_UtX924WMcvns-Qw2-HWO8en1_X-_gMXm5Ojocj97AEwxHL2Kp8CZ05rPfbosA0bx623geg_OHdvb_FQAcXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+for+advanced+material+prediction+and+design&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Cheuk+Hei+Chan&rft.au=Mingzi+Sun&rft.au=Bolong+Huang&rft.date=2022-07-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=4&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12194&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b7f5b2588ec64c6abbcfe316185def11 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |