Human CD8 T‐stem cell memory subsets phenotypic and functional characterization are defined by expression of CD122 or CXCR3
Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and f...
Saved in:
Published in | European journal of immunology Vol. 51; no. 7; pp. 1732 - 1747 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The TSCMCD122hi‐expressing subset (versus CD122lo) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The TSCMCXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCMCD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCMCD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.
|
---|---|
AbstractList | Long‐lived T‐memory stem cells (T
SCM
) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA
+
CCR7
+
CD95
+
phenotype. Significant heterogeneity within the T
SCM
population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 T
SCM
subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The T
SCM
CD122
hi
‐expressing subset (versus CD122
lo
) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The T
SCM
CXCR3
lo
subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the T
SCM
CD122
hi
population had increased expression of activation and homing molecules, such as
Ccr6
,
Cxcr6
,
Il12rb
, and
Il18rap
, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the T
SCM
CD122
hi
phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy. Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The TSCMCD122hi‐expressing subset (versus CD122lo) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The TSCMCXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCMCD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCMCD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy. Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The TSCMCD122hi‐expressing subset (versus CD122lo) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The TSCMCXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCMCD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCMCD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy. Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA+ CCR7+ CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The TSCM CD122hi -expressing subset (versus CD122lo ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The TSCM CXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCM CD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCM CD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA+ CCR7+ CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The TSCM CD122hi -expressing subset (versus CD122lo ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The TSCM CXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCM CD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCM CD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy. Long-lived T-memory stem cells (T ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA CCR7 CD95 phenotype. Significant heterogeneity within the T population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 T subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The T CD122 -expressing subset (versus CD122 ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The T CXCR3 subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the T CD122 population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the T CD122 phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy. |
Author | Keoshkerian, Elizabeth Palgen, Jean‐Louis Bull, Rowena A. Samir, Jerome Lloyd, Andrew R. An, Hongyan Zhao, Yanran Li, Hui Luciani, Fabio Cai, Curtis |
Author_xml | – sequence: 1 givenname: Yanran surname: Zhao fullname: Zhao, Yanran organization: University of New South Wales – sequence: 2 givenname: Curtis surname: Cai fullname: Cai, Curtis organization: University of New South Wales – sequence: 3 givenname: Jerome surname: Samir fullname: Samir, Jerome organization: University of New South Wales – sequence: 4 givenname: Jean‐Louis surname: Palgen fullname: Palgen, Jean‐Louis organization: University of New South Wales – sequence: 5 givenname: Elizabeth surname: Keoshkerian fullname: Keoshkerian, Elizabeth organization: University of New South Wales – sequence: 6 givenname: Hui surname: Li fullname: Li, Hui organization: University of New South Wales – sequence: 7 givenname: Rowena A. surname: Bull fullname: Bull, Rowena A. organization: University of New South Wales – sequence: 8 givenname: Fabio surname: Luciani fullname: Luciani, Fabio organization: University of New South Wales – sequence: 9 givenname: Hongyan surname: An fullname: An, Hongyan organization: University of New South Wales – sequence: 10 givenname: Andrew R. surname: Lloyd fullname: Lloyd, Andrew R. email: a.lloyd@unsw.edu.au organization: University of New South Wales |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33844287$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9qFEEQxhtJMJvo0as0ePEySfW_3ZmjjNFEAgGJ4K3p7a4mvcxMj90z6AiCj-Az-iTOuImHgDkVVP2qiu_7jslBFzsk5AWDUwbAz3AXTjlwkBWozROyYoqzQjLJDsgKgMmCVyUckeOcdwBQrVX1lBwJUUrJy82K_LgYW9PR-m1Jb37__JUHbKnFpqEttjFNNI_bjEOm_S12cZj6YKnpHPVjZ4cQO9NQe2uSsQOm8N0sLWoSUoc-dOjodqL4rU-Y8zKJfn7EOKcx0fpz_VE8I4feNBmf39UT8und-U19UVxdv7-s31wVVoKQBbPOOw-g_FqosvLWCWOtd4qvua244dyBWm9L6SRKw5gQfBbnRMmtZ86gOCGv93f7FL-MmAfdhrzINB3GMWuuGCsruRHVjL56gO7imGahCyU3s7sMxEy9vKPGbYtO9ym0Jk363tgZEHvApphzQq9tGP76MyQTGs1AL_HpOT79L755q3iwdX_4fzzf819Dg9PjsD7_cKlASfEHi7qqyA |
CitedBy_id | crossref_primary_10_3389_fonc_2021_723888 crossref_primary_10_21294_1814_4861_2023_22_1_43_54 crossref_primary_10_3390_cancers14246069 crossref_primary_10_1016_j_clim_2022_109078 crossref_primary_10_3389_fimmu_2022_864748 crossref_primary_10_3389_fimmu_2024_1367609 crossref_primary_10_3389_fimmu_2024_1423766 |
Cites_doi | 10.1016/j.humimm.2013.04.017 10.1038/s41598-017-01188-3 10.4049/jimmunol.2000253 10.1186/s13045-017-0486-z 10.1186/gb-2013-14-4-r36 10.1002/art.41157 10.1016/j.immuni.2008.11.002 10.1182/blood-2014-11-608539 10.1084/jem.20102101 10.1016/j.immuni.2015.02.009 10.1016/j.it.2007.06.002 10.1084/jem.20020033 10.1007/978-1-4419-6451-9_7 10.1016/S1074-7613(00)80564-6 10.1084/jem.20020772 10.1016/j.isci.2020.100989 10.1038/nature24633 10.1084/jem.20020767 10.4049/jimmunol.1901072 10.1084/jem.192.4.F9 10.1126/scitranslmed.aac8265 10.1038/nm.2446 10.1002/eji.201970107 10.1073/pnas.1604256113 10.3389/fimmu.2018.00324 10.1084/jem.20052495 10.1182/bloodadvances.2019001032 10.1182/blood-2015-04-640631 10.3389/fimmu.2018.00847 10.1084/jem.187.6.875 10.1002/cyto.a.20643 10.2337/db17-1390 10.1038/nrc3322 10.1038/mi.2015.69 10.1172/JCI40178 10.1182/blood-2019-128717 10.1038/icb.2016.16 10.1093/bioinformatics/btu170 10.1111/j.1600-065X.2011.01004.x 10.1126/scitranslmed.aaa3700 10.1126/science.288.5466.675 10.1073/pnas.1101881108 10.1038/nprot.2014.006 10.1016/j.yexcr.2010.12.017 10.1172/jci.insight.87499 10.3389/fmed.2018.00271 10.1182/blood-2014-10-607465 10.1038/s41590-020-0791-5 10.1038/nm.4241 10.1038/nprot.2012.143 10.1182/blood-2002-11-3577 10.1038/nm.3445 10.4049/jimmunol.171.6.2812 10.3389/fimmu.2018.02987 10.1002/eji.201545959 10.1002/eji.201546000 10.1371/journal.pntd.0008414 10.1084/jem.194.12.1711 10.1038/nri1052 10.1053/j.gastro.2014.07.005 10.1093/bioinformatics/btp616 10.1016/S0022-1759(03)00010-3 10.1016/S1286-4579(03)00015-7 10.3389/fimmu.2017.00634 10.1016/j.immuni.2016.12.015 10.1111/j.0105-2896.2006.00401.x 10.4049/jimmunol.198.Supp.151.17 10.1038/nbt.1621 10.1371/journal.pbio.2005523 10.1186/s12920-020-0696-z 10.1016/B978-0-12-374279-7.14012-3 10.1038/nprot.2006.268 10.4049/jimmunol.162.7.3840 10.1016/j.jim.2011.10.004 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 |
DOI | 10.1002/eji.202049057 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1521-4141 |
EndPage | 1747 |
ExternalDocumentID | 33844287 10_1002_eji_202049057 EJI5054 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Health and Medical Research Council (NHMRC) funderid: APP1150078 – fundername: NHMRC Career development Fellowships funderid: APP1084706; APP1128416 – fundername: NHMRC Practitioner Fellowship funderid: APP1137587 – fundername: NHMRC Career development Fellowships grantid: APP1084706 – fundername: NHMRC Career development Fellowships grantid: APP1128416 – fundername: NHMRC Practitioner Fellowship grantid: APP1137587 – fundername: National Health and Medical Research Council (NHMRC) grantid: APP1150078 |
GroupedDBID | --- .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 UPT V2E VH1 W8V W99 WBKPD WHWMO WIB WIH WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QP 7T5 7TK 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4034-1cdfdf005f63589fcd3accfd5262c92a22d056b84d4e4a11332287d382cf1dae3 |
IEDL.DBID | DR2 |
ISSN | 0014-2980 1521-4141 |
IngestDate | Fri Jul 11 12:05:48 EDT 2025 Fri Jul 25 12:19:21 EDT 2025 Thu Apr 03 06:53:28 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Tue Jul 01 03:51:31 EDT 2025 Wed Jan 22 16:28:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | RNA sequencing CD8 T-memory stem cells polyfunctionality antigen-specific multipotency proliferation |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4034-1cdfdf005f63589fcd3accfd5262c92a22d056b84d4e4a11332287d382cf1dae3 |
Notes | Hongyan An and Andrew R. Lloyd are joint authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eji.202049057 |
PMID | 33844287 |
PQID | 2547521103 |
PQPubID | 986365 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2511894739 proquest_journals_2547521103 pubmed_primary_33844287 crossref_citationtrail_10_1002_eji_202049057 crossref_primary_10_1002_eji_202049057 wiley_primary_10_1002_eji_202049057_EJI5054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | European journal of immunology |
PublicationTitleAlternate | Eur J Immunol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2011; 317 2017; 2 2002; 195 2002; 196 2017; 46 2013; 123 2019; 203 1999; 162 2020; 205 2020; 14 2020; 13 2017; 198 2011; 17 2017; 552 2013; 8 2008; 73 2012; 12 2006; 211 2003; 275 2014; 20 2007; 28 2015; 45 2018; 9 2011; 208 2020; 4 2010; 26 2012; 375 2013; 14 2018; 5 2010; 28 2008; 29 2015; 42 2016; 113 2003; 3 2003; 5 2000; 288 2014; 9 2006; 203 2011; 241 2019; 72 2015; 125 2010; 684 2017; 23 2003; 171 2010; 120 2016; 94 2006; 1 2018; 67 2015; 7 2000; 192 2001; 194 2011; 108 2017; 10 2013; 74 2019 2019; 49 2016 2020; 23 2020; 21 2014; 30 1998; 187 2003; 101 2018; 16 2014; 147 2016; 9 1998; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Lugli E. (e_1_2_8_31_1) 2013; 123 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – start-page: 300 year: 2016 end-page: 317 – volume: 113 start-page: E5444 year: 2016 end-page: E5453 article-title: IL2Rbeta‐dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 28 start-page: 340 year: 2007 end-page: 345 article-title: Neutrophil granules: a library of innate immunity proteins publication-title: Trends Immunol. – volume: 45 start-page: 3324 year: 2015 end-page: 3338 article-title: IL‐2 and IL‐15 regulate CD8+ memory T‐cell differentiation but are dispensable for protective recall responses publication-title: Eur. J. Immunol. – volume: 196 start-page: 935 year: 2002 end-page: 946 article-title: Interleukin 15 controls both proliferation and survival of a subset of memory‐phenotype CD8(+) T cells publication-title: J. Exp. Med. – volume: 3 start-page: 269 year: 2003 end-page: 279 article-title: Cytokine control of memory T‐cell development and survival publication-title: Nat. Rev. Immunol. – volume: 375 start-page: 148 year: 2012 end-page: 158 article-title: A novel assay for detection of hepatitis C virus‐specific effector CD4(+) T cells via co‐expression of CD25 and CD134 publication-title: J. Immunol. Methods – volume: 203 start-page: 3179 year: 2019 end-page: 3189 article-title: CXCR3 identifies human naive CD8(+) T cells with enhanced effector differentiation potential publication-title: J. Immunol. – volume: 73 start-page: 975 year: 2008 end-page: 983 article-title: Phenotype and function of human T lymphocyte subsets: consensus and issues publication-title: Cytometry A – volume: 28 start-page: 511 year: 2010 end-page: 515 article-title: Transcript assembly and quantification by RNA‐Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. – volume: 187 start-page: 875 year: 1998 end-page: 883 article-title: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes publication-title: J. Exp. Med. – volume: 123 start-page: 594 year: 2013 end-page: 599 article-title: Superior T memory stem cell persistence supports long‐lived T cell memory publication-title: J. Clin. Invest. – volume: 49 start-page: 1457 year: 2019 end-page: 1973 article-title: Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition) publication-title: Eur. J. Immunol. – volume: 1 start-page: 1507 year: 2006 end-page: 1516 article-title: Intracellular cytokine optimization and standard operating procedure publication-title: Nat. Protoc. – volume: 9 start-page: 324 year: 2018 article-title: Functional, antigen‐specific stem cell memory (TSCM) CD4(+) T cells are induced by human infection publication-title: Front. Immunol. – volume: 198 year: 2017 article-title: Control of cytotoxic T lymphocyte memory development by beta 2‐adrenergic receptor signaling publication-title: J. Immunol. – volume: 195 start-page: F49 year: 2002 end-page: F52 article-title: Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)‐7 and IL‐15 publication-title: J. Exp. Med. – volume: 13 start-page: 29 year: 2020 article-title: Exploring and analysing single cell multi‐omics data with VDJView publication-title: BMC Med. Genomics – volume: 12 start-page: 671 year: 2012 end-page: 684 article-title: Paths to stemness: building the ultimate antitumour T cell publication-title: Nat. Rev. Cancer – volume: 4 start-page: 3927 year: 2020 end-page: 3942 article-title: Cellular and molecular profiling of T‐cell subsets at the onset of human acute GVHD publication-title: Blood Advanc. – volume: 67 start-page: 936 year: 2018 end-page: 945 article-title: Detection and characterization of CD8(+) autoreactive memory stem T cells in patients with type 1 diabetes publication-title: Diabetes – volume: 21 start-page: 1552 year: 2020 end-page: 1562 article-title: Two subsets of stem‐like CD8 memory T cell progenitors with distinct fate commitments in humans publication-title: Nat. Immunol. – volume: 16 year: 2018 article-title: Human TSCM cell dynamics in vivo are compatible with long‐lived immunological memory and stemness publication-title: PLoS Biol. – volume: 208 start-page: 1605 year: 2011 end-page: 1620 article-title: Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short‐lived effector cells leading to memory degeneration publication-title: J. Exp. Med. – volume: 23 year: 2020 article-title: Homeostatic cytokines drive epigenetic reprogramming of activated T cells into a “naive‐memory” phenotype publication-title: Iscience – volume: 5 start-page: 227 year: 2003 end-page: 231 article-title: Turnover of memory‐phenotype CD8(+) T cells publication-title: Microbes Infect. – volume: 20 start-page: 139 year: 2014 end-page: 142 article-title: HIV‐1 persistence in CD4 T cells with stem cell‐like properties publication-title: Nat. Med. – volume: 125 start-page: 3527 year: 2015 end-page: 3535 article-title: T memory stem cells are the hierarchical apex of adult T‐cell leukemia publication-title: Blood – volume: 9 start-page: 2987 year: 2018 article-title: Regulation of effector and memory CD8 T cell differentiation by IL‐2‐A balancing act publication-title: Front. Immunol. – volume: 42 start-page: 524 year: 2015 end-page: 537 article-title: CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus‐infected cells publication-title: Immunity – volume: 45 start-page: 2762 year: 2015 end-page: 2765 article-title: Hobit and human effector T‐cell differentiation: the beginning of a long journey publication-title: Eur. J. Immunol. – volume: 552 start-page: 362 year: 2017 end-page: 367 article-title: Origin and differentiation of human memory CD8 T cells after vaccination publication-title: Nature – volume: 8 start-page: 634 year: 2017 article-title: Time and antigen‐stimulation history influence memory cd8 t cell bystander responses publication-title: Front. Immunol. – year: 2019 – volume: 171 start-page: 2812 year: 2003 end-page: 2824 article-title: CXCR3 is induced early on the pathway of CD4(+) T cell differentiation and bridges central and peripheral functions publication-title: J. Immunol. – volume: 10 start-page: 124 year: 2017 article-title: Blimp‐1 impairs T cell function via upregulation of TIGIT and PD‐1 in patients with acute myeloid leukemia publication-title: J. Hematol. Oncol. – volume: 147 start-page: 870 year: 2014 end-page: 881 article-title: Signatures of protective memory immune responses during hepatitis C virus reinfection publication-title: Gastroenterology – volume: 125 start-page: 3519 year: 2015 end-page: 3520 article-title: The dark side of T memory stem cells publication-title: Blood – volume: 120 start-page: 168 year: 2010 end-page: 178 article-title: CD27 sustains survival of CTLs in virus‐infected nonlymphoid tissue in mice by inducing autocrine IL‐2 production publication-title: J. Clin. Invest. – volume: 94 start-page: 604 year: 2016 end-page: 611 article-title: Linking the T cell receptor to the single cell transcriptome in antigen‐specific human T cells publication-title: Immunol. Cell Biol. – volume: 8 start-page: 591 year: 1998 end-page: 599 article-title: Potent and selective stimulation of memory‐phenotype CD8 T cells in vivo by IL‐15 publication-title: Immunity – volume: 9 start-page: 401 year: 2016 end-page: 413 article-title: CD161(int)CD8+T cells: a novel population of highly functional, memory CD8+T cells enriched within the gut publication-title: Mucosal Immunology – volume: 7 start-page: 1057 year: 2017 article-title: A novel mechanism linking memory stem cells with innate immunity in protection against HIV‐1 infection publication-title: Sci. Rep. – volume: 5 start-page: 271 year: 2018 article-title: The role of CXCR3 and its chemokine ligands in skin disease and cancer publication-title: Front. Med. (Lausanne) – volume: 162 start-page: 3840 year: 1999 end-page: 3850 article-title: Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling publication-title: J. Immunol. – volume: 211 start-page: 154 year: 2006 end-page: 163 article-title: Homeostasis of memory T cells publication-title: Immunol. Rev. – volume: 74 start-page: 899 year: 2013 end-page: 906 article-title: Upregulation of CXCR3 expression on CD8 T cells due to the pervasive influence of chronic hepatitis B and C virus infection publication-title: Hum. Immunol. – volume: 101 start-page: 4260 year: 2003 end-page: 4266 article-title: Proliferation and differentiation potential of human CD8+ memory T‐cell subsets in response to antigen or homeostatic cytokines publication-title: Blood – volume: 192 start-page: F9 year: 2000 end-page: F14 article-title: Homeostatic T cell proliferation: how far can T cells be activated to self‐ligands? publication-title: J. Exp. Med. – volume: 9 start-page: 847 year: 2018 article-title: Interferon‐gamma at the crossroads of tumor immune surveillance or evasion publication-title: Front. Immunol. – volume: 9 start-page: 171 year: 2014 end-page: 181 article-title: Full‐length RNA‐seq from single cells using Smart‐seq2 publication-title: Nat. Protoc. – volume: 7 year: 2015 article-title: Tracking genetically engineered lymphocytes long‐term reveals the dynamics of T cell immunological memory publication-title: Sci. Transl. Med. – volume: 275 start-page: 251 year: 2003 end-page: 255 article-title: T cell stimulation and expansion using anti‐CD3/CD28 beads publication-title: J. Immunol. Methods – volume: 14 start-page: R36 year: 2013 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. – volume: 30 start-page: 2114 year: 2014 end-page: 2120 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 125 start-page: 2865 year: 2015 end-page: 2874 article-title: Generation of human memory stem T cells after haploidentical T‐replete hematopoietic stem cell transplantation publication-title: Blood – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 14 year: 2020 article-title: CXCR3 chemokine receptor contributes to specific CD8+ T cell activation by pDC during infection with intracellular pathogens publication-title: PLoS Negl. Trop. Dis. – volume: 8 start-page: 33 year: 2013 end-page: 42 article-title: Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells publication-title: Nat. Protoc. – volume: 108 start-page: E118 year: 2011 end-page: E127 article-title: Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T‐cell generation publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 194 start-page: 1711 year: 2001 end-page: 1720 article-title: Cytokine‐driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells publication-title: J. Exp. Med. – volume: 203 start-page: 1817 year: 2006 end-page: 1825 article-title: A major histocompatibility complex class I‐dependent subset of memory phenotype CD8(+) cells publication-title: J. Exp. Med. – volume: 23 start-page: 18 year: 2017 end-page: 27 article-title: T memory stem cells in health and disease publication-title: Nat. Med. – volume: 7 year: 2015 article-title: Long‐lasting stem cell‐like memory CD8 T cells with a naive‐like profile upon yellow fever vaccination publication-title: Sci. Transl. Med. – volume: 46 start-page: 51 year: 2017 end-page: 64 article-title: SATB1 expression governs epigenetic repression of PD‐1 in tumor‐reactive T cells publication-title: Immunity – volume: 205 start-page: 2169 year: 2020 end-page: 2187 article-title: Chemokine signatures of pathogen‐specific T cells I: effector T cells publication-title: J. Immunol. – volume: 195 start-page: 1515 year: 2002 end-page: 1522 article-title: Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8 T cells publication-title: J. Exp. Med. – volume: 17 start-page: 1290 year: 2011 end-page: 1297 article-title: A human memory T cell subset with stem cell‐like properties publication-title: Nat. Med. – volume: 29 start-page: 848 year: 2008 end-page: 862 article-title: Homeostasis of naive and memory T cells publication-title: Immunity – volume: 684 start-page: 79 year: 2010 end-page: 95 article-title: CD8 T‐cell memory differentiation during acute and chronic viral infections publication-title: Adv. Exp. Med. Biol. – volume: 2 year: 2017 article-title: Polyfunctional and IFN‐gamma monofunctional human CD4(+) T cell populations are molecularly distinct publication-title: JCI Insight – volume: 317 start-page: 620 year: 2011 end-page: 631 article-title: CXCR3 in T cell function publication-title: Exp. Cell Res. – volume: 241 start-page: 63 year: 2011 end-page: 76 article-title: T‐cell tolerance and the multi‐functional role of IL‐2R signaling in T‐regulatory cells publication-title: Immunol. Rev. – volume: 288 start-page: 675 year: 2000 end-page: 678 article-title: Control of homeostasis of CD8 memory T cells by opposing cytokines publication-title: Science – volume: 72 start-page: 565 year: 2019 end-page: 575 article-title: CD4(+) memory stem T cells recognizing citrullinated epitopes are expanded in patients with rheumatoid arthritis and sensitive to TNF‐alpha blockade publication-title: Arthritis Rheumatol. – ident: e_1_2_8_60_1 doi: 10.1016/j.humimm.2013.04.017 – ident: e_1_2_8_5_1 doi: 10.1038/s41598-017-01188-3 – ident: e_1_2_8_51_1 doi: 10.4049/jimmunol.2000253 – ident: e_1_2_8_49_1 doi: 10.1186/s13045-017-0486-z – ident: e_1_2_8_75_1 doi: 10.1186/gb-2013-14-4-r36 – ident: e_1_2_8_11_1 doi: 10.1002/art.41157 – ident: e_1_2_8_35_1 doi: 10.1016/j.immuni.2008.11.002 – ident: e_1_2_8_30_1 doi: 10.1182/blood-2014-11-608539 – ident: e_1_2_8_28_1 doi: 10.1084/jem.20102101 – ident: e_1_2_8_58_1 doi: 10.1016/j.immuni.2015.02.009 – ident: e_1_2_8_68_1 doi: 10.1016/j.it.2007.06.002 – ident: e_1_2_8_21_1 doi: 10.1084/jem.20020033 – ident: e_1_2_8_42_1 doi: 10.1007/978-1-4419-6451-9_7 – ident: e_1_2_8_20_1 doi: 10.1016/S1074-7613(00)80564-6 – ident: e_1_2_8_22_1 doi: 10.1084/jem.20020772 – ident: e_1_2_8_54_1 doi: 10.1016/j.isci.2020.100989 – ident: e_1_2_8_9_1 doi: 10.1038/nature24633 – ident: e_1_2_8_36_1 doi: 10.1084/jem.20020767 – ident: e_1_2_8_53_1 doi: 10.4049/jimmunol.1901072 – ident: e_1_2_8_37_1 doi: 10.1084/jem.192.4.F9 – ident: e_1_2_8_4_1 doi: 10.1126/scitranslmed.aac8265 – ident: e_1_2_8_29_1 doi: 10.1038/nm.2446 – ident: e_1_2_8_70_1 doi: 10.1002/eji.201970107 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.1604256113 – ident: e_1_2_8_46_1 doi: 10.3389/fimmu.2018.00324 – ident: e_1_2_8_56_1 doi: 10.1084/jem.20052495 – ident: e_1_2_8_66_1 doi: 10.1182/bloodadvances.2019001032 – ident: e_1_2_8_8_1 doi: 10.1182/blood-2015-04-640631 – ident: e_1_2_8_40_1 doi: 10.3389/fimmu.2018.00847 – ident: e_1_2_8_26_1 doi: 10.1084/jem.187.6.875 – ident: e_1_2_8_61_1 doi: 10.1002/cyto.a.20643 – ident: e_1_2_8_10_1 doi: 10.2337/db17-1390 – ident: e_1_2_8_33_1 doi: 10.1038/nrc3322 – ident: e_1_2_8_67_1 doi: 10.1038/mi.2015.69 – ident: e_1_2_8_63_1 doi: 10.1172/JCI40178 – ident: e_1_2_8_52_1 doi: 10.1182/blood-2019-128717 – ident: e_1_2_8_72_1 doi: 10.1038/icb.2016.16 – ident: e_1_2_8_74_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_2_8_16_1 doi: 10.1111/j.1600-065X.2011.01004.x – ident: e_1_2_8_2_1 doi: 10.1126/scitranslmed.aaa3700 – ident: e_1_2_8_13_1 doi: 10.1126/science.288.5466.675 – ident: e_1_2_8_57_1 doi: 10.1073/pnas.1101881108 – ident: e_1_2_8_73_1 doi: 10.1038/nprot.2014.006 – ident: e_1_2_8_27_1 doi: 10.1016/j.yexcr.2010.12.017 – ident: e_1_2_8_39_1 doi: 10.1172/jci.insight.87499 – ident: e_1_2_8_23_1 doi: 10.3389/fmed.2018.00271 – ident: e_1_2_8_7_1 doi: 10.1182/blood-2014-10-607465 – ident: e_1_2_8_47_1 doi: 10.1038/s41590-020-0791-5 – ident: e_1_2_8_3_1 doi: 10.1038/nm.4241 – ident: e_1_2_8_32_1 doi: 10.1038/nprot.2012.143 – ident: e_1_2_8_19_1 doi: 10.1182/blood-2002-11-3577 – ident: e_1_2_8_6_1 doi: 10.1038/nm.3445 – ident: e_1_2_8_25_1 doi: 10.4049/jimmunol.171.6.2812 – ident: e_1_2_8_43_1 doi: 10.3389/fimmu.2018.02987 – ident: e_1_2_8_65_1 doi: 10.1002/eji.201545959 – ident: e_1_2_8_15_1 doi: 10.1002/eji.201546000 – ident: e_1_2_8_59_1 doi: 10.1371/journal.pntd.0008414 – ident: e_1_2_8_38_1 doi: 10.1084/jem.194.12.1711 – ident: e_1_2_8_18_1 doi: 10.1038/nri1052 – ident: e_1_2_8_62_1 doi: 10.1053/j.gastro.2014.07.005 – ident: e_1_2_8_45_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_8_34_1 doi: 10.1016/S0022-1759(03)00010-3 – ident: e_1_2_8_55_1 doi: 10.1016/S1286-4579(03)00015-7 – ident: e_1_2_8_64_1 doi: 10.3389/fimmu.2017.00634 – ident: e_1_2_8_48_1 doi: 10.1016/j.immuni.2016.12.015 – ident: e_1_2_8_17_1 doi: 10.1111/j.0105-2896.2006.00401.x – ident: e_1_2_8_50_1 doi: 10.4049/jimmunol.198.Supp.151.17 – ident: e_1_2_8_76_1 doi: 10.1038/nbt.1621 – volume: 123 start-page: 594 year: 2013 ident: e_1_2_8_31_1 article-title: Superior T memory stem cell persistence supports long‐lived T cell memory publication-title: J. Clin. Invest. – ident: e_1_2_8_12_1 doi: 10.1371/journal.pbio.2005523 – ident: e_1_2_8_44_1 doi: 10.1186/s12920-020-0696-z – ident: e_1_2_8_41_1 doi: 10.1016/B978-0-12-374279-7.14012-3 – ident: e_1_2_8_71_1 doi: 10.1038/nprot.2006.268 – ident: e_1_2_8_24_1 doi: 10.4049/jimmunol.162.7.3840 – ident: e_1_2_8_69_1 doi: 10.1016/j.jim.2011.10.004 |
SSID | ssj0009659 |
Score | 2.412936 |
Snippet | Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by... Long‐lived T‐memory stem cells (T SCM ) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized... Long-lived T-memory stem cells (T ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by... Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1732 |
SubjectTerms | Adoptive immunotherapy antigen‐specific CCR6 protein CCR7 protein CD122 antigen CD45RA antigen CD8 antigen CD8 T‐memory stem cells CD95 antigen Cell proliferation Cell self-renewal CXCR3 protein Cytokines Flow cytometry Immunological memory Immunotherapy Influenza Interferon Interleukin 1 multipotency Phenotypes polyfunctionality proliferation RNA sequencing Stem cells Surface markers Transcription Tumor necrosis factor |
Title | Human CD8 T‐stem cell memory subsets phenotypic and functional characterization are defined by expression of CD122 or CXCR3 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.202049057 https://www.ncbi.nlm.nih.gov/pubmed/33844287 https://www.proquest.com/docview/2547521103 https://www.proquest.com/docview/2511894739 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-koPiitn5FWxlBfNG0ye7mbvdRzpZaqA-lhXuLm_2A-pGUuxx4guCf0L-xf4k72VzKKQriY8hsNtnM7M5vdvY3AC-8kp5XxTjNuLEBoDifVjrXqVXaj4kPTnbZ7sfvR4dn4mhaTPs6p3QWJvJDDAE3soxuviYD19V875o01H08D_CO0c5VQafJKV-LnKKTa_ooIsuLM7FImZJZz7EZ2u-ttV5fk35zNNf91m7hObgLH1avHPNNPu0u2mrXfPuFzfE_vuke3OmdUnwTtWgTbrh6C27GMpXLLbh13G_A34fvXdAfJ28lnl79uCQWaKTYP36hjN0lzsM85No5UuZY0y4vzg3q2iKtnjHoiGZgiI4HQFHPHFrnw-MtVkt0X_vU3BobHzrKGcNmhpPp5IQ_gLOD_dPJYdpXcEiNyLhIc2O99cHQffBrpPLGcm2MtwUbMaOYZswGB6ySwgondB7wMgsIznLJjM-tdvwhbNRN7R4DSsICzFcm00KoSmunjNDGMkYXoyyB16t_WJqe3pyqbHwuIzEzK8PglsPgJvByEL-IvB5_EtxeKUTZm_e8DKh6XBB05gk8H24Hw6QR17VrFiQTsJsSY64SeBQVaeiJcykIqybwqlOHv79CuX_0Ljiq4sk_ST-F24zyb7rU4m3YaGcLtxMcqLZ61lnJT_isExY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEY8Lj_IKFDAS4kLTJrazsY9oabUt3R6qrbS3yPFDKo-k2s1KLBISP4HfyC_BE2dTFgQS4hhlYifOjD3fePwNwAsnhWNllscJ08YDFOviUqUqNlK5HPngRJvtPj4ejE754TSb_nSKP_BD9AE3tIx2vkYDx4D07gVrqH135vEdxa2rLL8MV7CqdwuqTi4IpJAuL8zFPKZSJB3Lpm9gd-3x9VXpN1dz3XNtl579W6BWLx0yTt7vLJpyR3_-hc_xf77qNtzs_FLyOijSHbhkq024GipVLjfh2rjbg78LX9q4Pxm-EWTy_es3JIImGP4nHzFpd0nmfiqyzZxg8ljdLM_PNFGVIbiAhrgj0T1JdDgDStTMEmOdb96Qcknspy47tyK18x2llJJ6RobT4Qm7B6f7e5PhKO6KOMSaJ4zHqTbOOG_rzrs2QjptmNLamYwOqJZUUWq8D1YKbrjlKvWQmXoQZ5ig2qVGWXYfNqq6sg-BCIQD1JU6UZzLUikrNVfaUIoXgySC7dVPLHTHcI6FNj4UgZuZFn5wi35wI3jZi58Hao8_CW6tNKLoLHxeeGCdZ4ieWQTP-9veNnHEVWXrBcp4-CZ5zmQED4Im9T0xJjjC1Qhetfrw91co9g4PvK_KH_2T9DO4PpqMj4qjg-O3j-EGxXScNtN4Czaa2cI-8f5UUz5tTeYHISsXMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BERUvXMotUMBIiBdIm9jOxn5Eu121hVaoaqV9C44vUrkkq92sxCIh8Ql8I1-CJ86mWhBIiMcoEztxZuw54_EZgGdOCsfKLI8Tpo0HKNbFpUpVbKRyOfLBiTbb_eh4sH_GDyfZpKtzimdhAj9EH3BDy2jnazTwqXG7F6Sh9v25h3cUd66y_DJc4YNEoFqPTi74o5AtL0zFPKZSJB3Jpm9gd-3x9UXpN09z3XFtV57xDXi3eueQcPJhZ9GUO_rLL3SO__FRN-F655WSV0GNbsElW23B1VCncrkFm0fdDvxt-NpG_clwJMjpj2_fkQaaYPCffMKU3SWZ-4nINnOCqWN1s5yea6IqQ3D5DFFHonuK6HAClKiZJcY637wh5ZLYz11ubkVq5ztKKSX1jAwnwxN2B87Ge6fD_bgr4RBrnjAep9o447ylO-_YCOm0YUprZzI6oFpSRanxHlgpuOGWq9QDZuohnGGCapcaZdld2Kjqyt4HIhAMUFfqRHEuS6Ws1FxpQyleDJIIXq7-YaE7fnMss_GxCMzMtPCDW_SDG8HzXnwaiD3-JLi9Uoiis-954WF1niF2ZhE87W97y8QRV5WtFyjjwZvkOZMR3AuK1PfEmOAIViN40arD31-h2Ds88J4qf_BP0k9g8-1oXLw5OH79EK5RzMVp04y3YaOZLewj70w15ePWYH4C4iYV6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+CD8+T-stem+cell+memory+subsets+phenotypic+and+functional+characterization+are+defined+by+expression+of+CD122+or+CXCR3&rft.jtitle=European+journal+of+immunology&rft.au=Zhao%2C+Yanran&rft.au=Cai%2C+Curtis&rft.au=Samir%2C+Jerome&rft.au=Palgen%2C+Jean-Louis&rft.date=2021-07-01&rft.issn=1521-4141&rft.eissn=1521-4141&rft.volume=51&rft.issue=7&rft.spage=1732&rft_id=info:doi/10.1002%2Feji.202049057&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon |