Human CD8 T‐stem cell memory subsets phenotypic and functional characterization are defined by expression of CD122 or CXCR3

Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and f...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of immunology Vol. 51; no. 7; pp. 1732 - 1747
Main Authors Zhao, Yanran, Cai, Curtis, Samir, Jerome, Palgen, Jean‐Louis, Keoshkerian, Elizabeth, Li, Hui, Bull, Rowena A., Luciani, Fabio, An, Hongyan, Lloyd, Andrew R.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The TSCMCD122hi‐expressing subset (versus CD122lo) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The TSCMCXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCMCD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCMCD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.     
AbstractList Long‐lived T‐memory stem cells (T SCM ) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA + CCR7 + CD95 + phenotype. Significant heterogeneity within the T SCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 T SCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The T SCM CD122 hi ‐expressing subset (versus CD122 lo ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The T SCM CXCR3 lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the T SCM CD122 hi population had increased expression of activation and homing molecules, such as Ccr6 , Cxcr6 , Il12rb , and Il18rap , and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the T SCM CD122 hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.
Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The TSCMCD122hi‐expressing subset (versus CD122lo) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The TSCMCXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCMCD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCMCD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.     
Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by the CD45RA+CCR7+CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self‐renewal, and intracellular cytokine production (TNF‐α, IL‐2, IFN‐γ), together with transcriptomic profiles. The TSCMCD122hi‐expressing subset (versus CD122lo) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF‐α, IL‐2, IFN‐γ) cytokine‐producing cells upon exposure to recall antigen. The TSCMCXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCMCD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCMCD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory‐cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.
Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA+ CCR7+ CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The TSCM CD122hi -expressing subset (versus CD122lo ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The TSCM CXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCM CD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCM CD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA+ CCR7+ CD95+ phenotype. Significant heterogeneity within the TSCM population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 TSCM subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The TSCM CD122hi -expressing subset (versus CD122lo ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The TSCM CXCR3lo subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the TSCM CD122hi population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the TSCM CD122hi phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.
Long-lived T-memory stem cells (T ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by the CD45RA CCR7 CD95 phenotype. Significant heterogeneity within the T population is recognized, but distinguishing surface markers and functional characterization of potential subsets are lacking. Human CD8 T subsets were identified in healthy subjects who had been previously exposed to CMV or Influenza (Flu) virus in flow cytometry by expression of CD122 or CXCR3, and then characterized in proliferation, multipotency, self-renewal, and intracellular cytokine production (TNF-α, IL-2, IFN-γ), together with transcriptomic profiles. The T CD122 -expressing subset (versus CD122 ) demonstrated greater proliferation, greater multipotency, and enhanced polyfunctionality with higher frequencies of triple positive (TNF-α, IL-2, IFN-γ) cytokine-producing cells upon exposure to recall antigen. The T CXCR3 subpopulation also had increased proliferation and polyfunctional cytokine production. Transcriptomic analysis further showed that the T CD122 population had increased expression of activation and homing molecules, such as Ccr6, Cxcr6, Il12rb, and Il18rap, and downregulated cell proliferation inhibitors, S100A8 and S100A9. These data reveal that the T CD122 phenotype is associated with increased proliferation, enhanced multipotency and polyfunctionality with an activated memory-cell like transcriptional profile, and hence, may be favored for induction by immunization and for adoptive immunotherapy.
Author Keoshkerian, Elizabeth
Palgen, Jean‐Louis
Bull, Rowena A.
Samir, Jerome
Lloyd, Andrew R.
An, Hongyan
Zhao, Yanran
Li, Hui
Luciani, Fabio
Cai, Curtis
Author_xml – sequence: 1
  givenname: Yanran
  surname: Zhao
  fullname: Zhao, Yanran
  organization: University of New South Wales
– sequence: 2
  givenname: Curtis
  surname: Cai
  fullname: Cai, Curtis
  organization: University of New South Wales
– sequence: 3
  givenname: Jerome
  surname: Samir
  fullname: Samir, Jerome
  organization: University of New South Wales
– sequence: 4
  givenname: Jean‐Louis
  surname: Palgen
  fullname: Palgen, Jean‐Louis
  organization: University of New South Wales
– sequence: 5
  givenname: Elizabeth
  surname: Keoshkerian
  fullname: Keoshkerian, Elizabeth
  organization: University of New South Wales
– sequence: 6
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: University of New South Wales
– sequence: 7
  givenname: Rowena A.
  surname: Bull
  fullname: Bull, Rowena A.
  organization: University of New South Wales
– sequence: 8
  givenname: Fabio
  surname: Luciani
  fullname: Luciani, Fabio
  organization: University of New South Wales
– sequence: 9
  givenname: Hongyan
  surname: An
  fullname: An, Hongyan
  organization: University of New South Wales
– sequence: 10
  givenname: Andrew R.
  surname: Lloyd
  fullname: Lloyd, Andrew R.
  email: a.lloyd@unsw.edu.au
  organization: University of New South Wales
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33844287$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9qFEEQxhtJMJvo0as0ePEySfW_3ZmjjNFEAgGJ4K3p7a4mvcxMj90z6AiCj-Az-iTOuImHgDkVVP2qiu_7jslBFzsk5AWDUwbAz3AXTjlwkBWozROyYoqzQjLJDsgKgMmCVyUckeOcdwBQrVX1lBwJUUrJy82K_LgYW9PR-m1Jb37__JUHbKnFpqEttjFNNI_bjEOm_S12cZj6YKnpHPVjZ4cQO9NQe2uSsQOm8N0sLWoSUoc-dOjodqL4rU-Y8zKJfn7EOKcx0fpz_VE8I4feNBmf39UT8und-U19UVxdv7-s31wVVoKQBbPOOw-g_FqosvLWCWOtd4qvua244dyBWm9L6SRKw5gQfBbnRMmtZ86gOCGv93f7FL-MmAfdhrzINB3GMWuuGCsruRHVjL56gO7imGahCyU3s7sMxEy9vKPGbYtO9ym0Jk363tgZEHvApphzQq9tGP76MyQTGs1AL_HpOT79L755q3iwdX_4fzzf819Dg9PjsD7_cKlASfEHi7qqyA
CitedBy_id crossref_primary_10_3389_fonc_2021_723888
crossref_primary_10_21294_1814_4861_2023_22_1_43_54
crossref_primary_10_3390_cancers14246069
crossref_primary_10_1016_j_clim_2022_109078
crossref_primary_10_3389_fimmu_2022_864748
crossref_primary_10_3389_fimmu_2024_1367609
crossref_primary_10_3389_fimmu_2024_1423766
Cites_doi 10.1016/j.humimm.2013.04.017
10.1038/s41598-017-01188-3
10.4049/jimmunol.2000253
10.1186/s13045-017-0486-z
10.1186/gb-2013-14-4-r36
10.1002/art.41157
10.1016/j.immuni.2008.11.002
10.1182/blood-2014-11-608539
10.1084/jem.20102101
10.1016/j.immuni.2015.02.009
10.1016/j.it.2007.06.002
10.1084/jem.20020033
10.1007/978-1-4419-6451-9_7
10.1016/S1074-7613(00)80564-6
10.1084/jem.20020772
10.1016/j.isci.2020.100989
10.1038/nature24633
10.1084/jem.20020767
10.4049/jimmunol.1901072
10.1084/jem.192.4.F9
10.1126/scitranslmed.aac8265
10.1038/nm.2446
10.1002/eji.201970107
10.1073/pnas.1604256113
10.3389/fimmu.2018.00324
10.1084/jem.20052495
10.1182/bloodadvances.2019001032
10.1182/blood-2015-04-640631
10.3389/fimmu.2018.00847
10.1084/jem.187.6.875
10.1002/cyto.a.20643
10.2337/db17-1390
10.1038/nrc3322
10.1038/mi.2015.69
10.1172/JCI40178
10.1182/blood-2019-128717
10.1038/icb.2016.16
10.1093/bioinformatics/btu170
10.1111/j.1600-065X.2011.01004.x
10.1126/scitranslmed.aaa3700
10.1126/science.288.5466.675
10.1073/pnas.1101881108
10.1038/nprot.2014.006
10.1016/j.yexcr.2010.12.017
10.1172/jci.insight.87499
10.3389/fmed.2018.00271
10.1182/blood-2014-10-607465
10.1038/s41590-020-0791-5
10.1038/nm.4241
10.1038/nprot.2012.143
10.1182/blood-2002-11-3577
10.1038/nm.3445
10.4049/jimmunol.171.6.2812
10.3389/fimmu.2018.02987
10.1002/eji.201545959
10.1002/eji.201546000
10.1371/journal.pntd.0008414
10.1084/jem.194.12.1711
10.1038/nri1052
10.1053/j.gastro.2014.07.005
10.1093/bioinformatics/btp616
10.1016/S0022-1759(03)00010-3
10.1016/S1286-4579(03)00015-7
10.3389/fimmu.2017.00634
10.1016/j.immuni.2016.12.015
10.1111/j.0105-2896.2006.00401.x
10.4049/jimmunol.198.Supp.151.17
10.1038/nbt.1621
10.1371/journal.pbio.2005523
10.1186/s12920-020-0696-z
10.1016/B978-0-12-374279-7.14012-3
10.1038/nprot.2006.268
10.4049/jimmunol.162.7.3840
10.1016/j.jim.2011.10.004
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/eji.202049057
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Genetics Abstracts
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1521-4141
EndPage 1747
ExternalDocumentID 33844287
10_1002_eji_202049057
EJI5054
Genre article
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council (NHMRC)
  funderid: APP1150078
– fundername: NHMRC Career development Fellowships
  funderid: APP1084706; APP1128416
– fundername: NHMRC Practitioner Fellowship
  funderid: APP1137587
– fundername: NHMRC Career development Fellowships
  grantid: APP1084706
– fundername: NHMRC Career development Fellowships
  grantid: APP1128416
– fundername: NHMRC Practitioner Fellowship
  grantid: APP1137587
– fundername: National Health and Medical Research Council (NHMRC)
  grantid: APP1150078
GroupedDBID ---
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UPT
V2E
VH1
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
XPP
XV2
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QP
7T5
7TK
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4034-1cdfdf005f63589fcd3accfd5262c92a22d056b84d4e4a11332287d382cf1dae3
IEDL.DBID DR2
ISSN 0014-2980
1521-4141
IngestDate Fri Jul 11 12:05:48 EDT 2025
Fri Jul 25 12:19:21 EDT 2025
Thu Apr 03 06:53:28 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Tue Jul 01 03:51:31 EDT 2025
Wed Jan 22 16:28:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords RNA sequencing
CD8 T-memory stem cells
polyfunctionality
antigen-specific
multipotency
proliferation
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4034-1cdfdf005f63589fcd3accfd5262c92a22d056b84d4e4a11332287d382cf1dae3
Notes Hongyan An and Andrew R. Lloyd are joint authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eji.202049057
PMID 33844287
PQID 2547521103
PQPubID 986365
PageCount 16
ParticipantIDs proquest_miscellaneous_2511894739
proquest_journals_2547521103
pubmed_primary_33844287
crossref_citationtrail_10_1002_eji_202049057
crossref_primary_10_1002_eji_202049057
wiley_primary_10_1002_eji_202049057_EJI5054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle European journal of immunology
PublicationTitleAlternate Eur J Immunol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2011; 317
2017; 2
2002; 195
2002; 196
2017; 46
2013; 123
2019; 203
1999; 162
2020; 205
2020; 14
2020; 13
2017; 198
2011; 17
2017; 552
2013; 8
2008; 73
2012; 12
2006; 211
2003; 275
2014; 20
2007; 28
2015; 45
2018; 9
2011; 208
2020; 4
2010; 26
2012; 375
2013; 14
2018; 5
2010; 28
2008; 29
2015; 42
2016; 113
2003; 3
2003; 5
2000; 288
2014; 9
2006; 203
2011; 241
2019; 72
2015; 125
2010; 684
2017; 23
2003; 171
2010; 120
2016; 94
2006; 1
2018; 67
2015; 7
2000; 192
2001; 194
2011; 108
2017; 10
2013; 74
2019
2019; 49
2016
2020; 23
2020; 21
2014; 30
1998; 187
2003; 101
2018; 16
2014; 147
2016; 9
1998; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Lugli E. (e_1_2_8_31_1) 2013; 123
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – start-page: 300
  year: 2016
  end-page: 317
– volume: 113
  start-page: E5444
  year: 2016
  end-page: E5453
  article-title: IL2Rbeta‐dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 28
  start-page: 340
  year: 2007
  end-page: 345
  article-title: Neutrophil granules: a library of innate immunity proteins
  publication-title: Trends Immunol.
– volume: 45
  start-page: 3324
  year: 2015
  end-page: 3338
  article-title: IL‐2 and IL‐15 regulate CD8+ memory T‐cell differentiation but are dispensable for protective recall responses
  publication-title: Eur. J. Immunol.
– volume: 196
  start-page: 935
  year: 2002
  end-page: 946
  article-title: Interleukin 15 controls both proliferation and survival of a subset of memory‐phenotype CD8(+) T cells
  publication-title: J. Exp. Med.
– volume: 3
  start-page: 269
  year: 2003
  end-page: 279
  article-title: Cytokine control of memory T‐cell development and survival
  publication-title: Nat. Rev. Immunol.
– volume: 375
  start-page: 148
  year: 2012
  end-page: 158
  article-title: A novel assay for detection of hepatitis C virus‐specific effector CD4(+) T cells via co‐expression of CD25 and CD134
  publication-title: J. Immunol. Methods
– volume: 203
  start-page: 3179
  year: 2019
  end-page: 3189
  article-title: CXCR3 identifies human naive CD8(+) T cells with enhanced effector differentiation potential
  publication-title: J. Immunol.
– volume: 73
  start-page: 975
  year: 2008
  end-page: 983
  article-title: Phenotype and function of human T lymphocyte subsets: consensus and issues
  publication-title: Cytometry A
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  article-title: Transcript assembly and quantification by RNA‐Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
– volume: 187
  start-page: 875
  year: 1998
  end-page: 883
  article-title: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes
  publication-title: J. Exp. Med.
– volume: 123
  start-page: 594
  year: 2013
  end-page: 599
  article-title: Superior T memory stem cell persistence supports long‐lived T cell memory
  publication-title: J. Clin. Invest.
– volume: 49
  start-page: 1457
  year: 2019
  end-page: 1973
  article-title: Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  publication-title: Eur. J. Immunol.
– volume: 1
  start-page: 1507
  year: 2006
  end-page: 1516
  article-title: Intracellular cytokine optimization and standard operating procedure
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 324
  year: 2018
  article-title: Functional, antigen‐specific stem cell memory (TSCM) CD4(+) T cells are induced by human infection
  publication-title: Front. Immunol.
– volume: 198
  year: 2017
  article-title: Control of cytotoxic T lymphocyte memory development by beta 2‐adrenergic receptor signaling
  publication-title: J. Immunol.
– volume: 195
  start-page: F49
  year: 2002
  end-page: F52
  article-title: Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)‐7 and IL‐15
  publication-title: J. Exp. Med.
– volume: 13
  start-page: 29
  year: 2020
  article-title: Exploring and analysing single cell multi‐omics data with VDJView
  publication-title: BMC Med. Genomics
– volume: 12
  start-page: 671
  year: 2012
  end-page: 684
  article-title: Paths to stemness: building the ultimate antitumour T cell
  publication-title: Nat. Rev. Cancer
– volume: 4
  start-page: 3927
  year: 2020
  end-page: 3942
  article-title: Cellular and molecular profiling of T‐cell subsets at the onset of human acute GVHD
  publication-title: Blood Advanc.
– volume: 67
  start-page: 936
  year: 2018
  end-page: 945
  article-title: Detection and characterization of CD8(+) autoreactive memory stem T cells in patients with type 1 diabetes
  publication-title: Diabetes
– volume: 21
  start-page: 1552
  year: 2020
  end-page: 1562
  article-title: Two subsets of stem‐like CD8 memory T cell progenitors with distinct fate commitments in humans
  publication-title: Nat. Immunol.
– volume: 16
  year: 2018
  article-title: Human TSCM cell dynamics in vivo are compatible with long‐lived immunological memory and stemness
  publication-title: PLoS Biol.
– volume: 208
  start-page: 1605
  year: 2011
  end-page: 1620
  article-title: Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short‐lived effector cells leading to memory degeneration
  publication-title: J. Exp. Med.
– volume: 23
  year: 2020
  article-title: Homeostatic cytokines drive epigenetic reprogramming of activated T cells into a “naive‐memory” phenotype
  publication-title: Iscience
– volume: 5
  start-page: 227
  year: 2003
  end-page: 231
  article-title: Turnover of memory‐phenotype CD8(+) T cells
  publication-title: Microbes Infect.
– volume: 20
  start-page: 139
  year: 2014
  end-page: 142
  article-title: HIV‐1 persistence in CD4 T cells with stem cell‐like properties
  publication-title: Nat. Med.
– volume: 125
  start-page: 3527
  year: 2015
  end-page: 3535
  article-title: T memory stem cells are the hierarchical apex of adult T‐cell leukemia
  publication-title: Blood
– volume: 9
  start-page: 2987
  year: 2018
  article-title: Regulation of effector and memory CD8 T cell differentiation by IL‐2‐A balancing act
  publication-title: Front. Immunol.
– volume: 42
  start-page: 524
  year: 2015
  end-page: 537
  article-title: CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus‐infected cells
  publication-title: Immunity
– volume: 45
  start-page: 2762
  year: 2015
  end-page: 2765
  article-title: Hobit and human effector T‐cell differentiation: the beginning of a long journey
  publication-title: Eur. J. Immunol.
– volume: 552
  start-page: 362
  year: 2017
  end-page: 367
  article-title: Origin and differentiation of human memory CD8 T cells after vaccination
  publication-title: Nature
– volume: 8
  start-page: 634
  year: 2017
  article-title: Time and antigen‐stimulation history influence memory cd8 t cell bystander responses
  publication-title: Front. Immunol.
– year: 2019
– volume: 171
  start-page: 2812
  year: 2003
  end-page: 2824
  article-title: CXCR3 is induced early on the pathway of CD4(+) T cell differentiation and bridges central and peripheral functions
  publication-title: J. Immunol.
– volume: 10
  start-page: 124
  year: 2017
  article-title: Blimp‐1 impairs T cell function via upregulation of TIGIT and PD‐1 in patients with acute myeloid leukemia
  publication-title: J. Hematol. Oncol.
– volume: 147
  start-page: 870
  year: 2014
  end-page: 881
  article-title: Signatures of protective memory immune responses during hepatitis C virus reinfection
  publication-title: Gastroenterology
– volume: 125
  start-page: 3519
  year: 2015
  end-page: 3520
  article-title: The dark side of T memory stem cells
  publication-title: Blood
– volume: 120
  start-page: 168
  year: 2010
  end-page: 178
  article-title: CD27 sustains survival of CTLs in virus‐infected nonlymphoid tissue in mice by inducing autocrine IL‐2 production
  publication-title: J. Clin. Invest.
– volume: 94
  start-page: 604
  year: 2016
  end-page: 611
  article-title: Linking the T cell receptor to the single cell transcriptome in antigen‐specific human T cells
  publication-title: Immunol. Cell Biol.
– volume: 8
  start-page: 591
  year: 1998
  end-page: 599
  article-title: Potent and selective stimulation of memory‐phenotype CD8 T cells in vivo by IL‐15
  publication-title: Immunity
– volume: 9
  start-page: 401
  year: 2016
  end-page: 413
  article-title: CD161(int)CD8+T cells: a novel population of highly functional, memory CD8+T cells enriched within the gut
  publication-title: Mucosal Immunology
– volume: 7
  start-page: 1057
  year: 2017
  article-title: A novel mechanism linking memory stem cells with innate immunity in protection against HIV‐1 infection
  publication-title: Sci. Rep.
– volume: 5
  start-page: 271
  year: 2018
  article-title: The role of CXCR3 and its chemokine ligands in skin disease and cancer
  publication-title: Front. Med. (Lausanne)
– volume: 162
  start-page: 3840
  year: 1999
  end-page: 3850
  article-title: Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling
  publication-title: J. Immunol.
– volume: 211
  start-page: 154
  year: 2006
  end-page: 163
  article-title: Homeostasis of memory T cells
  publication-title: Immunol. Rev.
– volume: 74
  start-page: 899
  year: 2013
  end-page: 906
  article-title: Upregulation of CXCR3 expression on CD8 T cells due to the pervasive influence of chronic hepatitis B and C virus infection
  publication-title: Hum. Immunol.
– volume: 101
  start-page: 4260
  year: 2003
  end-page: 4266
  article-title: Proliferation and differentiation potential of human CD8+ memory T‐cell subsets in response to antigen or homeostatic cytokines
  publication-title: Blood
– volume: 192
  start-page: F9
  year: 2000
  end-page: F14
  article-title: Homeostatic T cell proliferation: how far can T cells be activated to self‐ligands?
  publication-title: J. Exp. Med.
– volume: 9
  start-page: 847
  year: 2018
  article-title: Interferon‐gamma at the crossroads of tumor immune surveillance or evasion
  publication-title: Front. Immunol.
– volume: 9
  start-page: 171
  year: 2014
  end-page: 181
  article-title: Full‐length RNA‐seq from single cells using Smart‐seq2
  publication-title: Nat. Protoc.
– volume: 7
  year: 2015
  article-title: Tracking genetically engineered lymphocytes long‐term reveals the dynamics of T cell immunological memory
  publication-title: Sci. Transl. Med.
– volume: 275
  start-page: 251
  year: 2003
  end-page: 255
  article-title: T cell stimulation and expansion using anti‐CD3/CD28 beads
  publication-title: J. Immunol. Methods
– volume: 14
  start-page: R36
  year: 2013
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 125
  start-page: 2865
  year: 2015
  end-page: 2874
  article-title: Generation of human memory stem T cells after haploidentical T‐replete hematopoietic stem cell transplantation
  publication-title: Blood
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 14
  year: 2020
  article-title: CXCR3 chemokine receptor contributes to specific CD8+ T cell activation by pDC during infection with intracellular pathogens
  publication-title: PLoS Negl. Trop. Dis.
– volume: 8
  start-page: 33
  year: 2013
  end-page: 42
  article-title: Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells
  publication-title: Nat. Protoc.
– volume: 108
  start-page: E118
  year: 2011
  end-page: E127
  article-title: Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T‐cell generation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 194
  start-page: 1711
  year: 2001
  end-page: 1720
  article-title: Cytokine‐driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells
  publication-title: J. Exp. Med.
– volume: 203
  start-page: 1817
  year: 2006
  end-page: 1825
  article-title: A major histocompatibility complex class I‐dependent subset of memory phenotype CD8(+) cells
  publication-title: J. Exp. Med.
– volume: 23
  start-page: 18
  year: 2017
  end-page: 27
  article-title: T memory stem cells in health and disease
  publication-title: Nat. Med.
– volume: 7
  year: 2015
  article-title: Long‐lasting stem cell‐like memory CD8 T cells with a naive‐like profile upon yellow fever vaccination
  publication-title: Sci. Transl. Med.
– volume: 46
  start-page: 51
  year: 2017
  end-page: 64
  article-title: SATB1 expression governs epigenetic repression of PD‐1 in tumor‐reactive T cells
  publication-title: Immunity
– volume: 205
  start-page: 2169
  year: 2020
  end-page: 2187
  article-title: Chemokine signatures of pathogen‐specific T cells I: effector T cells
  publication-title: J. Immunol.
– volume: 195
  start-page: 1515
  year: 2002
  end-page: 1522
  article-title: Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8 T cells
  publication-title: J. Exp. Med.
– volume: 17
  start-page: 1290
  year: 2011
  end-page: 1297
  article-title: A human memory T cell subset with stem cell‐like properties
  publication-title: Nat. Med.
– volume: 29
  start-page: 848
  year: 2008
  end-page: 862
  article-title: Homeostasis of naive and memory T cells
  publication-title: Immunity
– volume: 684
  start-page: 79
  year: 2010
  end-page: 95
  article-title: CD8 T‐cell memory differentiation during acute and chronic viral infections
  publication-title: Adv. Exp. Med. Biol.
– volume: 2
  year: 2017
  article-title: Polyfunctional and IFN‐gamma monofunctional human CD4(+) T cell populations are molecularly distinct
  publication-title: JCI Insight
– volume: 317
  start-page: 620
  year: 2011
  end-page: 631
  article-title: CXCR3 in T cell function
  publication-title: Exp. Cell Res.
– volume: 241
  start-page: 63
  year: 2011
  end-page: 76
  article-title: T‐cell tolerance and the multi‐functional role of IL‐2R signaling in T‐regulatory cells
  publication-title: Immunol. Rev.
– volume: 288
  start-page: 675
  year: 2000
  end-page: 678
  article-title: Control of homeostasis of CD8 memory T cells by opposing cytokines
  publication-title: Science
– volume: 72
  start-page: 565
  year: 2019
  end-page: 575
  article-title: CD4(+) memory stem T cells recognizing citrullinated epitopes are expanded in patients with rheumatoid arthritis and sensitive to TNF‐alpha blockade
  publication-title: Arthritis Rheumatol.
– ident: e_1_2_8_60_1
  doi: 10.1016/j.humimm.2013.04.017
– ident: e_1_2_8_5_1
  doi: 10.1038/s41598-017-01188-3
– ident: e_1_2_8_51_1
  doi: 10.4049/jimmunol.2000253
– ident: e_1_2_8_49_1
  doi: 10.1186/s13045-017-0486-z
– ident: e_1_2_8_75_1
  doi: 10.1186/gb-2013-14-4-r36
– ident: e_1_2_8_11_1
  doi: 10.1002/art.41157
– ident: e_1_2_8_35_1
  doi: 10.1016/j.immuni.2008.11.002
– ident: e_1_2_8_30_1
  doi: 10.1182/blood-2014-11-608539
– ident: e_1_2_8_28_1
  doi: 10.1084/jem.20102101
– ident: e_1_2_8_58_1
  doi: 10.1016/j.immuni.2015.02.009
– ident: e_1_2_8_68_1
  doi: 10.1016/j.it.2007.06.002
– ident: e_1_2_8_21_1
  doi: 10.1084/jem.20020033
– ident: e_1_2_8_42_1
  doi: 10.1007/978-1-4419-6451-9_7
– ident: e_1_2_8_20_1
  doi: 10.1016/S1074-7613(00)80564-6
– ident: e_1_2_8_22_1
  doi: 10.1084/jem.20020772
– ident: e_1_2_8_54_1
  doi: 10.1016/j.isci.2020.100989
– ident: e_1_2_8_9_1
  doi: 10.1038/nature24633
– ident: e_1_2_8_36_1
  doi: 10.1084/jem.20020767
– ident: e_1_2_8_53_1
  doi: 10.4049/jimmunol.1901072
– ident: e_1_2_8_37_1
  doi: 10.1084/jem.192.4.F9
– ident: e_1_2_8_4_1
  doi: 10.1126/scitranslmed.aac8265
– ident: e_1_2_8_29_1
  doi: 10.1038/nm.2446
– ident: e_1_2_8_70_1
  doi: 10.1002/eji.201970107
– ident: e_1_2_8_14_1
  doi: 10.1073/pnas.1604256113
– ident: e_1_2_8_46_1
  doi: 10.3389/fimmu.2018.00324
– ident: e_1_2_8_56_1
  doi: 10.1084/jem.20052495
– ident: e_1_2_8_66_1
  doi: 10.1182/bloodadvances.2019001032
– ident: e_1_2_8_8_1
  doi: 10.1182/blood-2015-04-640631
– ident: e_1_2_8_40_1
  doi: 10.3389/fimmu.2018.00847
– ident: e_1_2_8_26_1
  doi: 10.1084/jem.187.6.875
– ident: e_1_2_8_61_1
  doi: 10.1002/cyto.a.20643
– ident: e_1_2_8_10_1
  doi: 10.2337/db17-1390
– ident: e_1_2_8_33_1
  doi: 10.1038/nrc3322
– ident: e_1_2_8_67_1
  doi: 10.1038/mi.2015.69
– ident: e_1_2_8_63_1
  doi: 10.1172/JCI40178
– ident: e_1_2_8_52_1
  doi: 10.1182/blood-2019-128717
– ident: e_1_2_8_72_1
  doi: 10.1038/icb.2016.16
– ident: e_1_2_8_74_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1600-065X.2011.01004.x
– ident: e_1_2_8_2_1
  doi: 10.1126/scitranslmed.aaa3700
– ident: e_1_2_8_13_1
  doi: 10.1126/science.288.5466.675
– ident: e_1_2_8_57_1
  doi: 10.1073/pnas.1101881108
– ident: e_1_2_8_73_1
  doi: 10.1038/nprot.2014.006
– ident: e_1_2_8_27_1
  doi: 10.1016/j.yexcr.2010.12.017
– ident: e_1_2_8_39_1
  doi: 10.1172/jci.insight.87499
– ident: e_1_2_8_23_1
  doi: 10.3389/fmed.2018.00271
– ident: e_1_2_8_7_1
  doi: 10.1182/blood-2014-10-607465
– ident: e_1_2_8_47_1
  doi: 10.1038/s41590-020-0791-5
– ident: e_1_2_8_3_1
  doi: 10.1038/nm.4241
– ident: e_1_2_8_32_1
  doi: 10.1038/nprot.2012.143
– ident: e_1_2_8_19_1
  doi: 10.1182/blood-2002-11-3577
– ident: e_1_2_8_6_1
  doi: 10.1038/nm.3445
– ident: e_1_2_8_25_1
  doi: 10.4049/jimmunol.171.6.2812
– ident: e_1_2_8_43_1
  doi: 10.3389/fimmu.2018.02987
– ident: e_1_2_8_65_1
  doi: 10.1002/eji.201545959
– ident: e_1_2_8_15_1
  doi: 10.1002/eji.201546000
– ident: e_1_2_8_59_1
  doi: 10.1371/journal.pntd.0008414
– ident: e_1_2_8_38_1
  doi: 10.1084/jem.194.12.1711
– ident: e_1_2_8_18_1
  doi: 10.1038/nri1052
– ident: e_1_2_8_62_1
  doi: 10.1053/j.gastro.2014.07.005
– ident: e_1_2_8_45_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_8_34_1
  doi: 10.1016/S0022-1759(03)00010-3
– ident: e_1_2_8_55_1
  doi: 10.1016/S1286-4579(03)00015-7
– ident: e_1_2_8_64_1
  doi: 10.3389/fimmu.2017.00634
– ident: e_1_2_8_48_1
  doi: 10.1016/j.immuni.2016.12.015
– ident: e_1_2_8_17_1
  doi: 10.1111/j.0105-2896.2006.00401.x
– ident: e_1_2_8_50_1
  doi: 10.4049/jimmunol.198.Supp.151.17
– ident: e_1_2_8_76_1
  doi: 10.1038/nbt.1621
– volume: 123
  start-page: 594
  year: 2013
  ident: e_1_2_8_31_1
  article-title: Superior T memory stem cell persistence supports long‐lived T cell memory
  publication-title: J. Clin. Invest.
– ident: e_1_2_8_12_1
  doi: 10.1371/journal.pbio.2005523
– ident: e_1_2_8_44_1
  doi: 10.1186/s12920-020-0696-z
– ident: e_1_2_8_41_1
  doi: 10.1016/B978-0-12-374279-7.14012-3
– ident: e_1_2_8_71_1
  doi: 10.1038/nprot.2006.268
– ident: e_1_2_8_24_1
  doi: 10.4049/jimmunol.162.7.3840
– ident: e_1_2_8_69_1
  doi: 10.1016/j.jim.2011.10.004
SSID ssj0009659
Score 2.412936
Snippet Long‐lived T‐memory stem cells (TSCM) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized by...
Long‐lived T‐memory stem cells (T SCM ) are key to both naturally occurring and vaccine‐conferred protection against infection. These cells are characterized...
Long-lived T-memory stem cells (T ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by...
Long-lived T-memory stem cells (TSCM ) are key to both naturally occurring and vaccine-conferred protection against infection. These cells are characterized by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1732
SubjectTerms Adoptive immunotherapy
antigen‐specific
CCR6 protein
CCR7 protein
CD122 antigen
CD45RA antigen
CD8 antigen
CD8 T‐memory stem cells
CD95 antigen
Cell proliferation
Cell self-renewal
CXCR3 protein
Cytokines
Flow cytometry
Immunological memory
Immunotherapy
Influenza
Interferon
Interleukin 1
multipotency
Phenotypes
polyfunctionality
proliferation
RNA sequencing
Stem cells
Surface markers
Transcription
Tumor necrosis factor
Title Human CD8 T‐stem cell memory subsets phenotypic and functional characterization are defined by expression of CD122 or CXCR3
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.202049057
https://www.ncbi.nlm.nih.gov/pubmed/33844287
https://www.proquest.com/docview/2547521103
https://www.proquest.com/docview/2511894739
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-koPiitn5FWxlBfNG0ye7mbvdRzpZaqA-lhXuLm_2A-pGUuxx4guCf0L-xf4k72VzKKQriY8hsNtnM7M5vdvY3AC-8kp5XxTjNuLEBoDifVjrXqVXaj4kPTnbZ7sfvR4dn4mhaTPs6p3QWJvJDDAE3soxuviYD19V875o01H08D_CO0c5VQafJKV-LnKKTa_ooIsuLM7FImZJZz7EZ2u-ttV5fk35zNNf91m7hObgLH1avHPNNPu0u2mrXfPuFzfE_vuke3OmdUnwTtWgTbrh6C27GMpXLLbh13G_A34fvXdAfJ28lnl79uCQWaKTYP36hjN0lzsM85No5UuZY0y4vzg3q2iKtnjHoiGZgiI4HQFHPHFrnw-MtVkt0X_vU3BobHzrKGcNmhpPp5IQ_gLOD_dPJYdpXcEiNyLhIc2O99cHQffBrpPLGcm2MtwUbMaOYZswGB6ySwgondB7wMgsIznLJjM-tdvwhbNRN7R4DSsICzFcm00KoSmunjNDGMkYXoyyB16t_WJqe3pyqbHwuIzEzK8PglsPgJvByEL-IvB5_EtxeKUTZm_e8DKh6XBB05gk8H24Hw6QR17VrFiQTsJsSY64SeBQVaeiJcykIqybwqlOHv79CuX_0Ljiq4sk_ST-F24zyb7rU4m3YaGcLtxMcqLZ61lnJT_isExY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEY8Lj_IKFDAS4kLTJrazsY9oabUt3R6qrbS3yPFDKo-k2s1KLBISP4HfyC_BE2dTFgQS4hhlYifOjD3fePwNwAsnhWNllscJ08YDFOviUqUqNlK5HPngRJvtPj4ejE754TSb_nSKP_BD9AE3tIx2vkYDx4D07gVrqH135vEdxa2rLL8MV7CqdwuqTi4IpJAuL8zFPKZSJB3Lpm9gd-3x9VXpN1dz3XNtl579W6BWLx0yTt7vLJpyR3_-hc_xf77qNtzs_FLyOijSHbhkq024GipVLjfh2rjbg78LX9q4Pxm-EWTy_es3JIImGP4nHzFpd0nmfiqyzZxg8ljdLM_PNFGVIbiAhrgj0T1JdDgDStTMEmOdb96Qcknspy47tyK18x2llJJ6RobT4Qm7B6f7e5PhKO6KOMSaJ4zHqTbOOG_rzrs2QjptmNLamYwOqJZUUWq8D1YKbrjlKvWQmXoQZ5ig2qVGWXYfNqq6sg-BCIQD1JU6UZzLUikrNVfaUIoXgySC7dVPLHTHcI6FNj4UgZuZFn5wi35wI3jZi58Hao8_CW6tNKLoLHxeeGCdZ4ieWQTP-9veNnHEVWXrBcp4-CZ5zmQED4Im9T0xJjjC1Qhetfrw91co9g4PvK_KH_2T9DO4PpqMj4qjg-O3j-EGxXScNtN4Czaa2cI-8f5UUz5tTeYHISsXMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BERUvXMotUMBIiBdIm9jOxn5Eu121hVaoaqV9C44vUrkkq92sxCIh8Ql8I1-CJ86mWhBIiMcoEztxZuw54_EZgGdOCsfKLI8Tpo0HKNbFpUpVbKRyOfLBiTbb_eh4sH_GDyfZpKtzimdhAj9EH3BDy2jnazTwqXG7F6Sh9v25h3cUd66y_DJc4YNEoFqPTi74o5AtL0zFPKZSJB3Jpm9gd-3x9UXpN09z3XFtV57xDXi3eueQcPJhZ9GUO_rLL3SO__FRN-F655WSV0GNbsElW23B1VCncrkFm0fdDvxt-NpG_clwJMjpj2_fkQaaYPCffMKU3SWZ-4nINnOCqWN1s5yea6IqQ3D5DFFHonuK6HAClKiZJcY637wh5ZLYz11ubkVq5ztKKSX1jAwnwxN2B87Ge6fD_bgr4RBrnjAep9o447ylO-_YCOm0YUprZzI6oFpSRanxHlgpuOGWq9QDZuohnGGCapcaZdld2Kjqyt4HIhAMUFfqRHEuS6Ws1FxpQyleDJIIXq7-YaE7fnMss_GxCMzMtPCDW_SDG8HzXnwaiD3-JLi9Uoiis-954WF1niF2ZhE87W97y8QRV5WtFyjjwZvkOZMR3AuK1PfEmOAIViN40arD31-h2Ds88J4qf_BP0k9g8-1oXLw5OH79EK5RzMVp04y3YaOZLewj70w15ePWYH4C4iYV6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+CD8+T-stem+cell+memory+subsets+phenotypic+and+functional+characterization+are+defined+by+expression+of+CD122+or+CXCR3&rft.jtitle=European+journal+of+immunology&rft.au=Zhao%2C+Yanran&rft.au=Cai%2C+Curtis&rft.au=Samir%2C+Jerome&rft.au=Palgen%2C+Jean-Louis&rft.date=2021-07-01&rft.issn=1521-4141&rft.eissn=1521-4141&rft.volume=51&rft.issue=7&rft.spage=1732&rft_id=info:doi/10.1002%2Feji.202049057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon