Regulating lithium affinity of hosts for reversible lithium metal batteries
Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effec...
Saved in:
Published in | Interdisciplinary materials (Print) Vol. 3; no. 2; pp. 297 - 305 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wuhan
John Wiley & Sons, Inc
01.03.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.
Through homogeneously incorporating indium (In) atoms onto N‐doped graphene via In–N bonds, Li‐substrate interaction is precisely tailored. In situ monitoring reveals enhanced reversibility of Li redox reactions with In, reducing lithophilicity and inhibiting irreversible Li–N bond formation. This proposes a “volcano curve” framework for optimizing substrate‐Li affinity, achieving balanced plating and stripping processes of Li metal anode. |
---|---|
AbstractList | Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research. Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research. Through homogeneously incorporating indium (In) atoms onto N‐doped graphene via In–N bonds, Li‐substrate interaction is precisely tailored. In situ monitoring reveals enhanced reversibility of Li redox reactions with In, reducing lithophilicity and inhibiting irreversible Li–N bond formation. This proposes a “volcano curve” framework for optimizing substrate‐Li affinity, achieving balanced plating and stripping processes of Li metal anode. Abstract Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research. Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research. |
Author | Liu, Hao Shen, Haifeng Dong, Zihang Huang, Yuxiang Zheng, Shisheng Zhang, Shao‐jian Pan, Feng Yang, Kai Ji, Yuchen Yang, Luyi Li, Yang Cao, Aimin Wang, Yinchao |
Author_xml | – sequence: 1 givenname: Hao surname: Liu fullname: Liu, Hao organization: Peking University Shenzhen Graduate School – sequence: 2 givenname: Yuchen surname: Ji fullname: Ji, Yuchen organization: Peking University Shenzhen Graduate School – sequence: 3 givenname: Yang surname: Li fullname: Li, Yang email: ly21@zju.edu.cn organization: Zhejiang University – sequence: 4 givenname: Shisheng surname: Zheng fullname: Zheng, Shisheng organization: Xiamen University – sequence: 5 givenname: Zihang surname: Dong fullname: Dong, Zihang organization: Peking University Shenzhen Graduate School – sequence: 6 givenname: Kai surname: Yang fullname: Yang, Kai organization: University of Surrey – sequence: 7 givenname: Aimin surname: Cao fullname: Cao, Aimin organization: Peking University Shenzhen Graduate School – sequence: 8 givenname: Yuxiang surname: Huang fullname: Huang, Yuxiang organization: Peking University Shenzhen Graduate School – sequence: 9 givenname: Yinchao surname: Wang fullname: Wang, Yinchao organization: Peking University Shenzhen Graduate School – sequence: 10 givenname: Haifeng surname: Shen fullname: Shen, Haifeng organization: The University of Adelaide – sequence: 11 givenname: Shao‐jian surname: Zhang fullname: Zhang, Shao‐jian organization: The University of Adelaide – sequence: 12 givenname: Feng surname: Pan fullname: Pan, Feng email: panfeng@pkusz.edu.cn organization: Peking University Shenzhen Graduate School – sequence: 13 givenname: Luyi orcidid: 0000-0002-5516-9829 surname: Yang fullname: Yang, Luyi email: yangly@pkusz.edu.cn organization: Peking University Shenzhen Graduate School |
BookMark | eNp9kVtLxDAQhYMoeH3xFxR8E3bNpU2aR_G6qAii4FuYpMmapdtoklX239u1KiLiUybDd84Mc7bRehc6i9A-wWOCMT3yzZyOCSUVW0NbVHAxKkvyuP6j3kR7Kc1wD0tCJGFb6OrOThctZN9Ni9bnJ7-YF-Cc73xeFsEVTyHlVLgQi2hfbUxet_YbnNsMbaEhZxu9Tbtow0Gb7N7nu4Mezs_uTy5H17cXk5Pj65EpMWMj0tRaVJQ7yRw0mJpKMGE4GOq4FppLKElJG2lczXX_laQphWAWuGsk1DXbQZPBtwkwU8_RzyEuVQCvPhohThXE7E1rFZbcAak0Z7UuK-k0GAdMCqll39G09zoYvJ5jeFnYlNUsLGLXr68YJXV_KlKuJuKBMjGkFK1Txuf-aKHLEXyrCFarBNQqAfWRQC85_CX5WvRPmAzwm2_t8h9STU5v6KB5BwaRl-o |
CitedBy_id | crossref_primary_10_1002_idm2_12222 crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1149_1945_7111_adc15a crossref_primary_10_1002_celc_202400441 |
Cites_doi | 10.1007/s40820-020-00501-6 10.1016/j.ceramint.2016.01.177 10.1021/acs.nanolett.2c03919 10.1002/anie.201702099 10.1016/j.joule.2019.02.004 10.1038/s41563-019-0305-8 10.1038/nenergy.2016.10 10.1002/aenm.202103368 10.1021/acs.accounts.0c00857 10.1038/s41560-021-00839-0 10.1007/s40820-021-00731-2 10.1021/acsnano.1c00858 10.1002/agt2.153 10.1002/adma.201702714 10.1038/s41560-019-0338-x 10.1002/anie.202010903 10.1021/acs.chemrev.9b00618 10.1016/j.mattod.2020.06.011 10.1016/j.joule.2019.08.018 10.1038/s41570-023-00557-z 10.1002/anie.202009575 10.1002/adma.201706216 10.1038/s41565-020-00845-5 10.1103/PhysRevB.17.884 10.1039/D0CS01017K 10.1038/nnano.2014.152 10.1016/j.matt.2020.04.015 10.1007/s40820-021-00687-3 10.1002/adma.202202745 10.1039/D3CS00151B 10.1002/ange.202216189 10.1002/adfm.202104830 10.1002/adma.202004157 10.1002/aenm.201703505 10.1002/adma.201906722 10.1016/j.chempr.2023.06.002 10.1016/j.joule.2019.07.027 10.1002/adma.202006247 10.1002/adma.202104792 10.4236/ajac.2012.34043 10.1126/sciadv.adg0366 10.1038/s41560-021-00789-7 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/idm2.12153 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2767-441X |
EndPage | 305 |
ExternalDocumentID | oai_doaj_org_article_096fa15b638b459fbacfa3979b938bb2 10_1002_idm2_12153 IDM212153 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality funderid: JCYJ20200109140416788 – fundername: Guangdong Provincial Department of Science and Technology funderid: 2017B030301013 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ KB. PDBOC PIMPY AAYXX CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c4033-1d8b7526f93fad02c5737c6ac2f6b7b69a4142d9cf86bb6991d4773ea6fd9a883 |
IEDL.DBID | 24P |
ISSN | 2767-441X 2767-4401 |
IngestDate | Wed Aug 27 01:24:11 EDT 2025 Wed Aug 13 07:24:39 EDT 2025 Tue Jul 01 02:50:23 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:12:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4033-1d8b7526f93fad02c5737c6ac2f6b7b69a4142d9cf86bb6991d4773ea6fd9a883 |
Notes | Hao Liu and Yuchen Ji authors contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5516-9829 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fidm2.12153 |
PQID | 3218000148 |
PQPubID | 6853479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_096fa15b638b459fbacfa3979b938bb2 proquest_journals_3218000148 crossref_citationtrail_10_1002_idm2_12153 crossref_primary_10_1002_idm2_12153 wiley_primary_10_1002_idm2_12153_IDM212153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Wuhan |
PublicationPlace_xml | – name: Wuhan |
PublicationTitle | Interdisciplinary materials (Print) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 6 2023; 52 2019; 4 2019; 3 2020; 120 2020; 40 2023; 8 2023; 9 2020; 59 2019; 18 1978; 17 2022; 41 2020; 12 2017; 29 2020; 32 2021; 50 2021; 13 2021; 16 2018; 8 2021; 15 2021; 54 2021; 31 2016; 1 2020; 3 2012; 3 2021; 33 2023; 23 2022; 3 2023; 135 2017; 56 2022; 34 2022; 12 2016; 42 2018; 30 2014; 9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 Song H (e_1_2_6_22_1) 2022; 41 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 34 year: 2022 article-title: Elastic lattice enabling reversible tetrahedral Li storage sites in a high‐capacity manganese oxide cathode publication-title: Adv Mater – volume: 120 start-page: 6934 year: 2020 end-page: 6976 article-title: Exploring anomalous charge storage in anode materials for next‐generation Li rechargeable batteries publication-title: Chem Rev – volume: 3 start-page: 312 year: 2012 end-page: 319 article-title: Amperometric glucose biosensor based on integration of glucose oxidase with palladium nanoparticles/reduced graphene oxide nanocomposite publication-title: Am J Anal Chem – volume: 31 year: 2021 article-title: PIM‐1 as a multifunctional framework to enable high‐performance solid‐state lithium‐sulfur batteries publication-title: Adv Funct Mater – volume: 15 start-page: 5671 year: 2021 end-page: 5678 article-title: Atomically dispersed indium sites for selective CO(2) electroreduction to formic acid publication-title: ACS Nano – volume: 52 start-page: 5255 year: 2023 end-page: 5316 article-title: Insights into the solvation chemistry in liquid electrolytes for lithium‐based rechargeable batteries publication-title: Chem Soc Rev – volume: 32 year: 2020 article-title: In situ designing a gradient Li(+) capture and quasi‐spontaneous diffusion anode protection layer toward long‐Life Li‐O(2) batteries publication-title: Adv Mater – volume: 17 start-page: 884 year: 1978 end-page: 893 article-title: Infrared and Raman spectra and lattice dynamics of the superionic conductor Li N publication-title: Phys Rev B – volume: 3 start-page: 27 year: 2020 end-page: 41 article-title: CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for battery full‐lifespan management publication-title: Matter – volume: 3 start-page: 2334 year: 2019 end-page: 2363 article-title: Alkali‐metal anodes: from lab to market publication-title: Joule – volume: 8 year: 2018 article-title: Dendrite‐free metallic lithium in lithiophilic carbonized metal‐organic frameworks publication-title: Adv Energy Mater – volume: 13 start-page: 210 year: 2021 article-title: Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries publication-title: Nano Micro Lett – volume: 59 start-page: 22194 year: 2020 end-page: 22201 article-title: Lithium nitrate regulated sulfone electrolytes for lithium metal batteries publication-title: Angew Chem Int Ed – volume: 33 year: 2021 article-title: 3D artificial solid‐electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures publication-title: Adv Mater – volume: 30 year: 2018 article-title: Uniform lithium nucleation/growth induced by lightweight nitrogen‐doped graphitic carbon foams for high‐performance lithium metal anodes publication-title: Adv Mater – volume: 135 year: 2023 article-title: Non‐flammable electrolyte enables high‐voltage and wide‐temperature lithium‐ion batteries with fast charging publication-title: Angew Chem Int Ed – volume: 42 start-page: 7647 year: 2016 end-page: 7654 article-title: New graphene‐Co Zn Fe O nano‐heterostructures: magnetically separable visible light photocatalytic materials publication-title: Ceram Int – volume: 40 start-page: 140 year: 2020 end-page: 159 article-title: Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries—a review publication-title: Mater Today – volume: 3 start-page: 2322 year: 2019 end-page: 2333 article-title: Generation and evolution of the solid electrolyte interphase of lithium‐ion batteries publication-title: Joule – volume: 3 year: 2022 article-title: Influence of electrolyte structural evolution on battery applications: cationic aggregation from dilute to high concentration publication-title: Aggregate – volume: 12 start-page: 158 year: 2020 article-title: Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries publication-title: Nano Micro Lett – volume: 23 start-page: 541 year: 2023 end-page: 549 article-title: Nanoscale ultrafine zinc metal anodes for high stability aqueous zinc ion batteries publication-title: Nano Lett – volume: 34 year: 2022 article-title: Magnetic and optical field multi‐sssisted Li‐O(2) batteries with ultrahigh energy efficiency and cycle stability publication-title: Adv Mater – volume: 29 year: 2017 article-title: Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode publication-title: Adv Mater – volume: 6 start-page: 653 year: 2021 end-page: 662 article-title: A high‐energy‐density and long‐life initial‐anode‐free lithium battery enabled by a Li O sacrificial agent publication-title: Nat Energy – volume: 32 year: 2020 article-title: Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium‐sulfur batteries publication-title: Adv Mater – volume: 9 year: 2023 article-title: Fe/Co dual metal catalysts modulated by S‐ligands for efficient acidic oxygen reduction in PEMFC publication-title: Sci Adv – volume: 4 start-page: 180 year: 2019 end-page: 186 article-title: Pathways for practical high‐energy long‐cycling lithium metal batteries publication-title: Nat Energy – volume: 9 start-page: 2943 year: 2023 end-page: 2955 article-title: In situ probing the origin of interfacial instability of Na metal anode publication-title: Chem – volume: 50 start-page: 3178 year: 2021 end-page: 3210 article-title: Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes publication-title: Chem Soc Rev – volume: 16 start-page: 549 year: 2021 end-page: 554 article-title: Identification of LiH and nanocrystalline LiF in the solid‐electrolyte interphase of lithium metal anodes publication-title: Nat Nanotechnol – volume: 12 year: 2022 article-title: Single‐atom reversible lithiophilic sites toward stable lithium anodes publication-title: Adv Energy Mater – volume: 1 year: 2016 article-title: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth publication-title: Nat Energy – volume: 8 start-page: 30 year: 2023 end-page: 44 article-title: Designing electrolytes and interphases for high‐energy lithium batteries publication-title: Nat Rev Chem – volume: 41 start-page: 2205048 year: 2022 end-page: 2205054 article-title: Polymeric wetting matrix for a stable interface between solidstate electrolytes and li metal anode publication-title: Chin J Struct Chem – volume: 18 start-page: 384 year: 2019 end-page: 389 article-title: Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions publication-title: Nat Mater – volume: 3 start-page: 1094 year: 2019 end-page: 1105 article-title: Critical parameters for evaluating coin cells and pouch cells of rechargeable Li‐metal batteries publication-title: Joule – volume: 13 start-page: 170 year: 2021 article-title: Dendrite‐free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping publication-title: Nano Micro Lett – volume: 9 start-page: 618 year: 2014 end-page: 623 article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes publication-title: Nat Nanotechnol – volume: 54 start-page: 1107 year: 2021 end-page: 1117 article-title: The genesis of molecular volcano plots publication-title: Acc Chem Res – volume: 56 start-page: 7764 year: 2017 end-page: 7768 article-title: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes publication-title: Angew Chem Int Ed – volume: 6 start-page: 378 year: 2021 end-page: 387 article-title: Rejuvenating dead lithium supply in lithium metal anodes by iodine redox publication-title: Nat Energy – volume: 59 start-page: 22465 year: 2020 end-page: 22469 article-title: Design of a single‐atom indium –N interface for efficient electroreduction of CO to formate publication-title: Angew Chem Int Ed – ident: e_1_2_6_26_1 doi: 10.1007/s40820-020-00501-6 – ident: e_1_2_6_35_1 doi: 10.1016/j.ceramint.2016.01.177 – ident: e_1_2_6_38_1 doi: 10.1021/acs.nanolett.2c03919 – ident: e_1_2_6_23_1 doi: 10.1002/anie.201702099 – ident: e_1_2_6_8_1 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_6_3_1 doi: 10.1038/s41563-019-0305-8 – ident: e_1_2_6_16_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_6_24_1 doi: 10.1002/aenm.202103368 – ident: e_1_2_6_30_1 doi: 10.1021/acs.accounts.0c00857 – ident: e_1_2_6_42_1 doi: 10.1038/s41560-021-00839-0 – ident: e_1_2_6_17_1 doi: 10.1007/s40820-021-00731-2 – ident: e_1_2_6_36_1 doi: 10.1021/acsnano.1c00858 – ident: e_1_2_6_18_1 doi: 10.1002/agt2.153 – ident: e_1_2_6_27_1 doi: 10.1002/adma.201702714 – ident: e_1_2_6_4_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_6_37_1 doi: 10.1002/anie.202010903 – ident: e_1_2_6_14_1 doi: 10.1021/acs.chemrev.9b00618 – ident: e_1_2_6_20_1 doi: 10.1016/j.mattod.2020.06.011 – ident: e_1_2_6_33_1 doi: 10.1016/j.joule.2019.08.018 – ident: e_1_2_6_41_1 doi: 10.1038/s41570-023-00557-z – ident: e_1_2_6_7_1 doi: 10.1002/anie.202009575 – ident: e_1_2_6_43_1 doi: 10.1002/adma.201706216 – ident: e_1_2_6_19_1 doi: 10.1038/s41565-020-00845-5 – ident: e_1_2_6_44_1 doi: 10.1103/PhysRevB.17.884 – ident: e_1_2_6_2_1 doi: 10.1039/D0CS01017K – ident: e_1_2_6_12_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_6_31_1 doi: 10.1016/j.matt.2020.04.015 – ident: e_1_2_6_5_1 doi: 10.1007/s40820-021-00687-3 – ident: e_1_2_6_6_1 doi: 10.1002/adma.202202745 – ident: e_1_2_6_40_1 doi: 10.1039/D3CS00151B – ident: e_1_2_6_21_1 doi: 10.1002/ange.202216189 – ident: e_1_2_6_10_1 doi: 10.1002/adfm.202104830 – ident: e_1_2_6_32_1 doi: 10.1002/adma.202004157 – ident: e_1_2_6_15_1 doi: 10.1002/aenm.201703505 – volume: 41 start-page: 2205048 year: 2022 ident: e_1_2_6_22_1 article-title: Polymeric wetting matrix for a stable interface between solidstate electrolytes and li metal anode publication-title: Chin J Struct Chem – ident: e_1_2_6_28_1 doi: 10.1002/adma.201906722 – ident: e_1_2_6_39_1 doi: 10.1016/j.chempr.2023.06.002 – ident: e_1_2_6_9_1 doi: 10.1016/j.joule.2019.07.027 – ident: e_1_2_6_25_1 doi: 10.1002/adma.202006247 – ident: e_1_2_6_11_1 doi: 10.1002/adma.202104792 – ident: e_1_2_6_34_1 doi: 10.4236/ajac.2012.34043 – ident: e_1_2_6_29_1 doi: 10.1126/sciadv.adg0366 – ident: e_1_2_6_13_1 doi: 10.1038/s41560-021-00789-7 |
SSID | ssj0002911913 |
Score | 2.3182027 |
Snippet | Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders... Abstract Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 297 |
SubjectTerms | Affinity Efficiency Electrodes Electrolytes Energy Graphene in situ AFM Li metal anode lithiophilic sites Lithium Lithium batteries Morphology Nanoparticles Nitrogen Plating Rechargeable batteries Silicon wafers single atoms Spectrum analysis Substrates Transmission electron microscopy volcano plot |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6wvAnpRKLvNq83R1-IDPYjC3kKeuLAPWfXgv3eS1rILohdvTTqHYWaS-dJMv0HoOATjBEnfvzTJmfEhl87GCgDGeIC3NPWMvH8Q18_sdsAHc62-Yk1YTQ9cG64LEDvoghuIE8O4DEbboONllJEwY9LuCzlv7jAV92AiI3EZbflISXfoxiRRKdCFDJSI-hfQ5TxGTUmmv4ZWG3SIz2qt1tGSn2yglTnOwE1091h3j4cBBgj9MvwYYx3CEJbmJ54GHP_aeMMARXEkZ5pBxI98Kzj2gLWxSZyacETeQs_9q6eL67zpiJBbFpuuFa4yJSciSBq06xHLS1paoS0JwpRGSM0KRpy0oRIGhrJwrCyp1yI4qauKbqPOZDrxOwiLntWUcF2V1jPve9IRFyiXtAB_WW4ydPJtJWUbuvDYtWKkaqJjoqJFVbJoho5a2deaJONHqfNo7FYiElunCXC3atyt_nJ3hva_XaWa1famKOCUdNirMnSa3PeLGurm8p6kp93_UGgPLRPAOXVZ2j7qvM8-_AHglHdzmELyC6oX5gI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagucAB0QIikFaWygWkVbN-7fqEGkiUglKhiEi5WX5CpCYpSXrg3zP2OksjVb2td0er1Yxn_M3Y-w1CH0IwTpBU_9KkYMaHQjobTwAwxgM8paln5ORajGfs25zPc8Ftm49V7mNiCtRubWON_ILCWpQAff359k8Ru0bF3dXcQuMp6kAIriH56gyG1z-mbZWFyEhgFreZSRUJviGbaDlKycXCLUmiV6AHq1Ii7z9AnPdxa1p4Ri_Ri4wY8WVj4mP0xK9O0PN7PIKv0Pdp01EeBhhg9e_F3RLrEBbgrn_xOuD4J8cWAzzFkbBpA15w41vBpQf8jU3i2YS0-TWajYY_v4yL3CWhsCw2YitdbSpORJA0aNcnlle0skJbEoSpjJCalYw4aUMtDAxl6VhVUa9FcFLXNX2DjlbrlX-LsOhbTQnXdWU9874vHXGBcklLsKHlpos-7rWkbKYQj50sblRDfkxU1KhKGu2i81b2tiHOeFBqEJXdSkSy63Rjvfmlsu8oyLKCLrmBUGEYl8FoG3TcjzQS7hjSRb29qVT2wK36P1-66FMy3yOfoa6-Tki6evf4u96jZwRQTXMIrYeOdps7fwqoZGfO8tT7Bwox4BQ priority: 102 providerName: ProQuest |
Title | Regulating lithium affinity of hosts for reversible lithium metal batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fidm2.12153 https://www.proquest.com/docview/3218000148 https://doaj.org/article/096fa15b638b459fbacfa3979b938bb2 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9q-6IP4ieerUdAXxSO3k4-dgO-WO1ZlZZSLNxbyGc96N3JXfvQ_95Jdm_bggi-LJvsLCwzO8lvJslvAN6l5ILCkv-yOBIuppEOPu8AEEImespLzcjjE3V0Lr5P5XQLPm7OwrT8EH3CLXtGGa-zg1u33r8lDZ2FORZuBP4AdvLZ2sycj-K0z7CgzuRleYkZ60zuLappz0-K-7ev35uRCnH_PbR5F7OWSWfyBB53aJF9as37FLbi4hk8usMh-Bx-nLXV5KnBCFL_ml3PmU1pRq56w5aJ5VMca0bQlGWyphV5wGXsBeeRsDdzhWOTQuYXcD45_Pn5aNRVSBh5kYuwVaFxtUSVNE82jNHLmtdeWY9JudopbUUlMGifGuWoqasg6ppHq1LQtmn4S9heLBfxFTA19pajtE3to4hxrAOGxKXmFdnPSzeA9xstGd_Rh-cqFpemJT5GkzVqikYH8LaX_d2SZvxV6iAru5fIRNelY7m6MJ3fGIqwkq2ko2HCCamTsz7ZvBbpNPU4HMDexlSm87614YRbSvDXDOBDMd8_PsN8-3KM5e71_wjvwkMkfNNuR9uD7avVdXxD-OTKDctvSNdm8nUIOweHJ6dnwxLr_wFiuuLs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcaKGAJOIC0ataP3fWhQkAJCWl6QK3Um_GzjdQkJWmF-qf6Gxl7H7QS6q239e7IWo1nxt_48Q3AuxCMK2ha_9I048aHTDobTwBwLgJ-Zalm5GSvGB7wH4ficA0u27sw8VhlGxNToHYLG9fItxjORQnQV59Of2exalTcXW1LaNRmMfYXfzBlW22PdnB831M6-Lb_dZg1VQUyy2PhstxVphS0CJIF7frUipKVttCWhsKUppCa55w6aUNVGGzK3PGyZF4XwUldVQz7vQN3OWMyelQ1-N6t6VAZ6dLipjYtI5045i4dIyrdmroZTWQO7NocmEoFXMO3V1FymuYGj-Bhg0_J59qgHsOanz-BB1dYC5_C-Gddvx4bBEH88fR8RnQIUwwOF2QRSLw3siIIhkmkh1qiz534TnDmEe0Tk1g9MUl_Bge3or3nsD5fzP0GkKJvNaNCV6X13Pu-dNQFJiTL0WKsMD340GpJ2YawPNbNOFE11TJVUaMqabQHbzvZ05qm479SX6KyO4lIrZ1eLJZHqvFUhTld0LkwGJgMFzIYbYOOu59G4htDe7DZDpVq_H2l_llnDz6m4bvhN9RoZ0LT04ub-3oD94b7k121O9obv4T7FPFUffxtE9bPluf-FeKhM_M6GSGBX7dt9X8BuV4bfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bSxwxFIcPVkHqg3hp6XppA_XFwuJObjMBX7R20XpBRGHfQm6nLri7suqD_71JZnZUKIW-TWbOwJAzJ_nl9h2AHUTrJc3zX4Z2uQ3YVd6lHQCcC4xPWc4ZeX4hj2_474EYzMH-7CxMzYdoJ9xSZOT2OgX4vce9V2jo0I9oZiOwD7CQV_sS15lftjMsVCV4WVpipmWCe_Ni0PJJ6d7r6-96pAzuf6c232rW3On0V2C5UYvkoHbvKsyF8RosvWEIrsPpVZ1NPhZIlNS3w6cRMYjDGKrPZIIkneJ4IFGakgRrmsYIuAut4ShE7U1sZmzGIfMnuOn_uv553G0yJHQdT0nYCl_ZUlCJiqHxPepEyUonjaMobWmlMrzg1CuHlbSxqArPy5IFI9ErU1XsM8yPJ-PwBYjsOcOoMFXpAg-hpzz1yIRiRfSfE7YDu7Na0q7Bh6csFne6Bh9TnWpU5xrtwPfW9r6GZvzV6jBVdmuRQNf5xmT6Rzdxo-MIC00hbGwmLBcKrXFo0lqkVfGOpR3YmrlKN9H3oFnULXnwV3XgR3bfPz5Dnxyd03y18T_G32Dx8qivz04uTjfhI41Sp96ZtgXzj9OnsB2lyqP9mv_IF6ty4hU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+lithium+affinity+of+hosts+for+reversible+lithium+metal+batteries&rft.jtitle=Interdisciplinary+materials+%28Print%29&rft.au=Liu%2C+Hao&rft.au=Ji%2C+Yuchen&rft.au=Li%2C+Yang&rft.au=Zheng%2C+Shisheng&rft.date=2024-03-01&rft.issn=2767-441X&rft.eissn=2767-441X&rft.volume=3&rft.issue=2&rft.spage=297&rft.epage=305&rft_id=info:doi/10.1002%2Fidm2.12153&rft.externalDBID=10.1002%252Fidm2.12153&rft.externalDocID=IDM212153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-441X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-441X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-441X&client=summon |