Regulating lithium affinity of hosts for reversible lithium metal batteries

Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effec...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary materials (Print) Vol. 3; no. 2; pp. 297 - 305
Main Authors Liu, Hao, Ji, Yuchen, Li, Yang, Zheng, Shisheng, Dong, Zihang, Yang, Kai, Cao, Aimin, Huang, Yuxiang, Wang, Yinchao, Shen, Haifeng, Zhang, Shao‐jian, Pan, Feng, Yang, Luyi
Format Journal Article
LanguageEnglish
Published Wuhan John Wiley & Sons, Inc 01.03.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research. Through homogeneously incorporating indium (In) atoms onto N‐doped graphene via In–N bonds, Li‐substrate interaction is precisely tailored. In situ monitoring reveals enhanced reversibility of Li redox reactions with In, reducing lithophilicity and inhibiting irreversible Li–N bond formation. This proposes a “volcano curve” framework for optimizing substrate‐Li affinity, achieving balanced plating and stripping processes of Li metal anode.
AbstractList Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.
Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research. Through homogeneously incorporating indium (In) atoms onto N‐doped graphene via In–N bonds, Li‐substrate interaction is precisely tailored. In situ monitoring reveals enhanced reversibility of Li redox reactions with In, reducing lithophilicity and inhibiting irreversible Li–N bond formation. This proposes a “volcano curve” framework for optimizing substrate‐Li affinity, achieving balanced plating and stripping processes of Li metal anode.
Abstract Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.
Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N‐doped graphene via In‐N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N‐doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite‐free Li anode with much‐improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.
Author Liu, Hao
Shen, Haifeng
Dong, Zihang
Huang, Yuxiang
Zheng, Shisheng
Zhang, Shao‐jian
Pan, Feng
Yang, Kai
Ji, Yuchen
Yang, Luyi
Li, Yang
Cao, Aimin
Wang, Yinchao
Author_xml – sequence: 1
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Peking University Shenzhen Graduate School
– sequence: 2
  givenname: Yuchen
  surname: Ji
  fullname: Ji, Yuchen
  organization: Peking University Shenzhen Graduate School
– sequence: 3
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  email: ly21@zju.edu.cn
  organization: Zhejiang University
– sequence: 4
  givenname: Shisheng
  surname: Zheng
  fullname: Zheng, Shisheng
  organization: Xiamen University
– sequence: 5
  givenname: Zihang
  surname: Dong
  fullname: Dong, Zihang
  organization: Peking University Shenzhen Graduate School
– sequence: 6
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: University of Surrey
– sequence: 7
  givenname: Aimin
  surname: Cao
  fullname: Cao, Aimin
  organization: Peking University Shenzhen Graduate School
– sequence: 8
  givenname: Yuxiang
  surname: Huang
  fullname: Huang, Yuxiang
  organization: Peking University Shenzhen Graduate School
– sequence: 9
  givenname: Yinchao
  surname: Wang
  fullname: Wang, Yinchao
  organization: Peking University Shenzhen Graduate School
– sequence: 10
  givenname: Haifeng
  surname: Shen
  fullname: Shen, Haifeng
  organization: The University of Adelaide
– sequence: 11
  givenname: Shao‐jian
  surname: Zhang
  fullname: Zhang, Shao‐jian
  organization: The University of Adelaide
– sequence: 12
  givenname: Feng
  surname: Pan
  fullname: Pan, Feng
  email: panfeng@pkusz.edu.cn
  organization: Peking University Shenzhen Graduate School
– sequence: 13
  givenname: Luyi
  orcidid: 0000-0002-5516-9829
  surname: Yang
  fullname: Yang, Luyi
  email: yangly@pkusz.edu.cn
  organization: Peking University Shenzhen Graduate School
BookMark eNp9kVtLxDAQhYMoeH3xFxR8E3bNpU2aR_G6qAii4FuYpMmapdtoklX239u1KiLiUybDd84Mc7bRehc6i9A-wWOCMT3yzZyOCSUVW0NbVHAxKkvyuP6j3kR7Kc1wD0tCJGFb6OrOThctZN9Ni9bnJ7-YF-Cc73xeFsEVTyHlVLgQi2hfbUxet_YbnNsMbaEhZxu9Tbtow0Gb7N7nu4Mezs_uTy5H17cXk5Pj65EpMWMj0tRaVJQ7yRw0mJpKMGE4GOq4FppLKElJG2lczXX_laQphWAWuGsk1DXbQZPBtwkwU8_RzyEuVQCvPhohThXE7E1rFZbcAak0Z7UuK-k0GAdMCqll39G09zoYvJ5jeFnYlNUsLGLXr68YJXV_KlKuJuKBMjGkFK1Txuf-aKHLEXyrCFarBNQqAfWRQC85_CX5WvRPmAzwm2_t8h9STU5v6KB5BwaRl-o
CitedBy_id crossref_primary_10_1002_idm2_12222
crossref_primary_10_1002_adfm_202423552
crossref_primary_10_1149_1945_7111_adc15a
crossref_primary_10_1002_celc_202400441
Cites_doi 10.1007/s40820-020-00501-6
10.1016/j.ceramint.2016.01.177
10.1021/acs.nanolett.2c03919
10.1002/anie.201702099
10.1016/j.joule.2019.02.004
10.1038/s41563-019-0305-8
10.1038/nenergy.2016.10
10.1002/aenm.202103368
10.1021/acs.accounts.0c00857
10.1038/s41560-021-00839-0
10.1007/s40820-021-00731-2
10.1021/acsnano.1c00858
10.1002/agt2.153
10.1002/adma.201702714
10.1038/s41560-019-0338-x
10.1002/anie.202010903
10.1021/acs.chemrev.9b00618
10.1016/j.mattod.2020.06.011
10.1016/j.joule.2019.08.018
10.1038/s41570-023-00557-z
10.1002/anie.202009575
10.1002/adma.201706216
10.1038/s41565-020-00845-5
10.1103/PhysRevB.17.884
10.1039/D0CS01017K
10.1038/nnano.2014.152
10.1016/j.matt.2020.04.015
10.1007/s40820-021-00687-3
10.1002/adma.202202745
10.1039/D3CS00151B
10.1002/ange.202216189
10.1002/adfm.202104830
10.1002/adma.202004157
10.1002/aenm.201703505
10.1002/adma.201906722
10.1016/j.chempr.2023.06.002
10.1016/j.joule.2019.07.027
10.1002/adma.202006247
10.1002/adma.202104792
10.4236/ajac.2012.34043
10.1126/sciadv.adg0366
10.1038/s41560-021-00789-7
ContentType Journal Article
Copyright 2024 The Authors. published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/idm2.12153
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-441X
EndPage 305
ExternalDocumentID oai_doaj_org_article_096fa15b638b459fbacfa3979b938bb2
10_1002_idm2_12153
IDM212153
Genre shortCommunication
GrantInformation_xml – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  funderid: JCYJ20200109140416788
– fundername: Guangdong Provincial Department of Science and Technology
  funderid: 2017B030301013
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
KB.
PDBOC
PIMPY
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c4033-1d8b7526f93fad02c5737c6ac2f6b7b69a4142d9cf86bb6991d4773ea6fd9a883
IEDL.DBID 24P
ISSN 2767-441X
2767-4401
IngestDate Wed Aug 27 01:24:11 EDT 2025
Wed Aug 13 07:24:39 EDT 2025
Tue Jul 01 02:50:23 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:12:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4033-1d8b7526f93fad02c5737c6ac2f6b7b69a4142d9cf86bb6991d4773ea6fd9a883
Notes Hao Liu and Yuchen Ji authors contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5516-9829
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fidm2.12153
PQID 3218000148
PQPubID 6853479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_096fa15b638b459fbacfa3979b938bb2
proquest_journals_3218000148
crossref_citationtrail_10_1002_idm2_12153
crossref_primary_10_1002_idm2_12153
wiley_primary_10_1002_idm2_12153_IDM212153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationTitle Interdisciplinary materials (Print)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 6
2023; 52
2019; 4
2019; 3
2020; 120
2020; 40
2023; 8
2023; 9
2020; 59
2019; 18
1978; 17
2022; 41
2020; 12
2017; 29
2020; 32
2021; 50
2021; 13
2021; 16
2018; 8
2021; 15
2021; 54
2021; 31
2016; 1
2020; 3
2012; 3
2021; 33
2023; 23
2022; 3
2023; 135
2017; 56
2022; 34
2022; 12
2016; 42
2018; 30
2014; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
Song H (e_1_2_6_22_1) 2022; 41
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 34
  year: 2022
  article-title: Elastic lattice enabling reversible tetrahedral Li storage sites in a high‐capacity manganese oxide cathode
  publication-title: Adv Mater
– volume: 120
  start-page: 6934
  year: 2020
  end-page: 6976
  article-title: Exploring anomalous charge storage in anode materials for next‐generation Li rechargeable batteries
  publication-title: Chem Rev
– volume: 3
  start-page: 312
  year: 2012
  end-page: 319
  article-title: Amperometric glucose biosensor based on integration of glucose oxidase with palladium nanoparticles/reduced graphene oxide nanocomposite
  publication-title: Am J Anal Chem
– volume: 31
  year: 2021
  article-title: PIM‐1 as a multifunctional framework to enable high‐performance solid‐state lithium‐sulfur batteries
  publication-title: Adv Funct Mater
– volume: 15
  start-page: 5671
  year: 2021
  end-page: 5678
  article-title: Atomically dispersed indium sites for selective CO(2) electroreduction to formic acid
  publication-title: ACS Nano
– volume: 52
  start-page: 5255
  year: 2023
  end-page: 5316
  article-title: Insights into the solvation chemistry in liquid electrolytes for lithium‐based rechargeable batteries
  publication-title: Chem Soc Rev
– volume: 32
  year: 2020
  article-title: In situ designing a gradient Li(+) capture and quasi‐spontaneous diffusion anode protection layer toward long‐Life Li‐O(2) batteries
  publication-title: Adv Mater
– volume: 17
  start-page: 884
  year: 1978
  end-page: 893
  article-title: Infrared and Raman spectra and lattice dynamics of the superionic conductor Li N
  publication-title: Phys Rev B
– volume: 3
  start-page: 27
  year: 2020
  end-page: 41
  article-title: CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for battery full‐lifespan management
  publication-title: Matter
– volume: 3
  start-page: 2334
  year: 2019
  end-page: 2363
  article-title: Alkali‐metal anodes: from lab to market
  publication-title: Joule
– volume: 8
  year: 2018
  article-title: Dendrite‐free metallic lithium in lithiophilic carbonized metal‐organic frameworks
  publication-title: Adv Energy Mater
– volume: 13
  start-page: 210
  year: 2021
  article-title: Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries
  publication-title: Nano Micro Lett
– volume: 59
  start-page: 22194
  year: 2020
  end-page: 22201
  article-title: Lithium nitrate regulated sulfone electrolytes for lithium metal batteries
  publication-title: Angew Chem Int Ed
– volume: 33
  year: 2021
  article-title: 3D artificial solid‐electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures
  publication-title: Adv Mater
– volume: 30
  year: 2018
  article-title: Uniform lithium nucleation/growth induced by lightweight nitrogen‐doped graphitic carbon foams for high‐performance lithium metal anodes
  publication-title: Adv Mater
– volume: 135
  year: 2023
  article-title: Non‐flammable electrolyte enables high‐voltage and wide‐temperature lithium‐ion batteries with fast charging
  publication-title: Angew Chem Int Ed
– volume: 42
  start-page: 7647
  year: 2016
  end-page: 7654
  article-title: New graphene‐Co Zn Fe O nano‐heterostructures: magnetically separable visible light photocatalytic materials
  publication-title: Ceram Int
– volume: 40
  start-page: 140
  year: 2020
  end-page: 159
  article-title: Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries—a review
  publication-title: Mater Today
– volume: 3
  start-page: 2322
  year: 2019
  end-page: 2333
  article-title: Generation and evolution of the solid electrolyte interphase of lithium‐ion batteries
  publication-title: Joule
– volume: 3
  year: 2022
  article-title: Influence of electrolyte structural evolution on battery applications: cationic aggregation from dilute to high concentration
  publication-title: Aggregate
– volume: 12
  start-page: 158
  year: 2020
  article-title: Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries
  publication-title: Nano Micro Lett
– volume: 23
  start-page: 541
  year: 2023
  end-page: 549
  article-title: Nanoscale ultrafine zinc metal anodes for high stability aqueous zinc ion batteries
  publication-title: Nano Lett
– volume: 34
  year: 2022
  article-title: Magnetic and optical field multi‐sssisted Li‐O(2) batteries with ultrahigh energy efficiency and cycle stability
  publication-title: Adv Mater
– volume: 29
  year: 2017
  article-title: Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode
  publication-title: Adv Mater
– volume: 6
  start-page: 653
  year: 2021
  end-page: 662
  article-title: A high‐energy‐density and long‐life initial‐anode‐free lithium battery enabled by a Li O sacrificial agent
  publication-title: Nat Energy
– volume: 32
  year: 2020
  article-title: Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium‐sulfur batteries
  publication-title: Adv Mater
– volume: 9
  year: 2023
  article-title: Fe/Co dual metal catalysts modulated by S‐ligands for efficient acidic oxygen reduction in PEMFC
  publication-title: Sci Adv
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  article-title: Pathways for practical high‐energy long‐cycling lithium metal batteries
  publication-title: Nat Energy
– volume: 9
  start-page: 2943
  year: 2023
  end-page: 2955
  article-title: In situ probing the origin of interfacial instability of Na metal anode
  publication-title: Chem
– volume: 50
  start-page: 3178
  year: 2021
  end-page: 3210
  article-title: Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes
  publication-title: Chem Soc Rev
– volume: 16
  start-page: 549
  year: 2021
  end-page: 554
  article-title: Identification of LiH and nanocrystalline LiF in the solid‐electrolyte interphase of lithium metal anodes
  publication-title: Nat Nanotechnol
– volume: 12
  year: 2022
  article-title: Single‐atom reversible lithiophilic sites toward stable lithium anodes
  publication-title: Adv Energy Mater
– volume: 1
  year: 2016
  article-title: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
  publication-title: Nat Energy
– volume: 8
  start-page: 30
  year: 2023
  end-page: 44
  article-title: Designing electrolytes and interphases for high‐energy lithium batteries
  publication-title: Nat Rev Chem
– volume: 41
  start-page: 2205048
  year: 2022
  end-page: 2205054
  article-title: Polymeric wetting matrix for a stable interface between solidstate electrolytes and li metal anode
  publication-title: Chin J Struct Chem
– volume: 18
  start-page: 384
  year: 2019
  end-page: 389
  article-title: Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
  publication-title: Nat Mater
– volume: 3
  start-page: 1094
  year: 2019
  end-page: 1105
  article-title: Critical parameters for evaluating coin cells and pouch cells of rechargeable Li‐metal batteries
  publication-title: Joule
– volume: 13
  start-page: 170
  year: 2021
  article-title: Dendrite‐free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping
  publication-title: Nano Micro Lett
– volume: 9
  start-page: 618
  year: 2014
  end-page: 623
  article-title: Interconnected hollow carbon nanospheres for stable lithium metal anodes
  publication-title: Nat Nanotechnol
– volume: 54
  start-page: 1107
  year: 2021
  end-page: 1117
  article-title: The genesis of molecular volcano plots
  publication-title: Acc Chem Res
– volume: 56
  start-page: 7764
  year: 2017
  end-page: 7768
  article-title: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes
  publication-title: Angew Chem Int Ed
– volume: 6
  start-page: 378
  year: 2021
  end-page: 387
  article-title: Rejuvenating dead lithium supply in lithium metal anodes by iodine redox
  publication-title: Nat Energy
– volume: 59
  start-page: 22465
  year: 2020
  end-page: 22469
  article-title: Design of a single‐atom indium –N interface for efficient electroreduction of CO to formate
  publication-title: Angew Chem Int Ed
– ident: e_1_2_6_26_1
  doi: 10.1007/s40820-020-00501-6
– ident: e_1_2_6_35_1
  doi: 10.1016/j.ceramint.2016.01.177
– ident: e_1_2_6_38_1
  doi: 10.1021/acs.nanolett.2c03919
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_6_8_1
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_6_3_1
  doi: 10.1038/s41563-019-0305-8
– ident: e_1_2_6_16_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_6_24_1
  doi: 10.1002/aenm.202103368
– ident: e_1_2_6_30_1
  doi: 10.1021/acs.accounts.0c00857
– ident: e_1_2_6_42_1
  doi: 10.1038/s41560-021-00839-0
– ident: e_1_2_6_17_1
  doi: 10.1007/s40820-021-00731-2
– ident: e_1_2_6_36_1
  doi: 10.1021/acsnano.1c00858
– ident: e_1_2_6_18_1
  doi: 10.1002/agt2.153
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.201702714
– ident: e_1_2_6_4_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_6_37_1
  doi: 10.1002/anie.202010903
– ident: e_1_2_6_14_1
  doi: 10.1021/acs.chemrev.9b00618
– ident: e_1_2_6_20_1
  doi: 10.1016/j.mattod.2020.06.011
– ident: e_1_2_6_33_1
  doi: 10.1016/j.joule.2019.08.018
– ident: e_1_2_6_41_1
  doi: 10.1038/s41570-023-00557-z
– ident: e_1_2_6_7_1
  doi: 10.1002/anie.202009575
– ident: e_1_2_6_43_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_6_19_1
  doi: 10.1038/s41565-020-00845-5
– ident: e_1_2_6_44_1
  doi: 10.1103/PhysRevB.17.884
– ident: e_1_2_6_2_1
  doi: 10.1039/D0CS01017K
– ident: e_1_2_6_12_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_6_31_1
  doi: 10.1016/j.matt.2020.04.015
– ident: e_1_2_6_5_1
  doi: 10.1007/s40820-021-00687-3
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.202202745
– ident: e_1_2_6_40_1
  doi: 10.1039/D3CS00151B
– ident: e_1_2_6_21_1
  doi: 10.1002/ange.202216189
– ident: e_1_2_6_10_1
  doi: 10.1002/adfm.202104830
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.202004157
– ident: e_1_2_6_15_1
  doi: 10.1002/aenm.201703505
– volume: 41
  start-page: 2205048
  year: 2022
  ident: e_1_2_6_22_1
  article-title: Polymeric wetting matrix for a stable interface between solidstate electrolytes and li metal anode
  publication-title: Chin J Struct Chem
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201906722
– ident: e_1_2_6_39_1
  doi: 10.1016/j.chempr.2023.06.002
– ident: e_1_2_6_9_1
  doi: 10.1016/j.joule.2019.07.027
– ident: e_1_2_6_25_1
  doi: 10.1002/adma.202006247
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.202104792
– ident: e_1_2_6_34_1
  doi: 10.4236/ajac.2012.34043
– ident: e_1_2_6_29_1
  doi: 10.1126/sciadv.adg0366
– ident: e_1_2_6_13_1
  doi: 10.1038/s41560-021-00789-7
SSID ssj0002911913
Score 2.3182027
Snippet Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode hinders...
Abstract Lithium (Li) metal batteries are regarded as the “holy grail” of next‐generation rechargeable batteries, but the poor redox reversibility of Li anode...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Affinity
Efficiency
Electrodes
Electrolytes
Energy
Graphene
in situ AFM
Li metal anode
lithiophilic sites
Lithium
Lithium batteries
Morphology
Nanoparticles
Nitrogen
Plating
Rechargeable batteries
Silicon wafers
single atoms
Spectrum analysis
Substrates
Transmission electron microscopy
volcano plot
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6wvAnpRKLvNq83R1-IDPYjC3kKeuLAPWfXgv3eS1rILohdvTTqHYWaS-dJMv0HoOATjBEnfvzTJmfEhl87GCgDGeIC3NPWMvH8Q18_sdsAHc62-Yk1YTQ9cG64LEDvoghuIE8O4DEbboONllJEwY9LuCzlv7jAV92AiI3EZbflISXfoxiRRKdCFDJSI-hfQ5TxGTUmmv4ZWG3SIz2qt1tGSn2yglTnOwE1091h3j4cBBgj9MvwYYx3CEJbmJ54GHP_aeMMARXEkZ5pBxI98Kzj2gLWxSZyacETeQs_9q6eL67zpiJBbFpuuFa4yJSciSBq06xHLS1paoS0JwpRGSM0KRpy0oRIGhrJwrCyp1yI4qauKbqPOZDrxOwiLntWUcF2V1jPve9IRFyiXtAB_WW4ydPJtJWUbuvDYtWKkaqJjoqJFVbJoho5a2deaJONHqfNo7FYiElunCXC3atyt_nJ3hva_XaWa1famKOCUdNirMnSa3PeLGurm8p6kp93_UGgPLRPAOXVZ2j7qvM8-_AHglHdzmELyC6oX5gI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagucAB0QIikFaWygWkVbN-7fqEGkiUglKhiEi5WX5CpCYpSXrg3zP2OksjVb2td0er1Yxn_M3Y-w1CH0IwTpBU_9KkYMaHQjobTwAwxgM8paln5ORajGfs25zPc8Ftm49V7mNiCtRubWON_ILCWpQAff359k8Ru0bF3dXcQuMp6kAIriH56gyG1z-mbZWFyEhgFreZSRUJviGbaDlKycXCLUmiV6AHq1Ii7z9AnPdxa1p4Ri_Ri4wY8WVj4mP0xK9O0PN7PIKv0Pdp01EeBhhg9e_F3RLrEBbgrn_xOuD4J8cWAzzFkbBpA15w41vBpQf8jU3i2YS0-TWajYY_v4yL3CWhsCw2YitdbSpORJA0aNcnlle0skJbEoSpjJCalYw4aUMtDAxl6VhVUa9FcFLXNX2DjlbrlX-LsOhbTQnXdWU9874vHXGBcklLsKHlpos-7rWkbKYQj50sblRDfkxU1KhKGu2i81b2tiHOeFBqEJXdSkSy63Rjvfmlsu8oyLKCLrmBUGEYl8FoG3TcjzQS7hjSRb29qVT2wK36P1-66FMy3yOfoa6-Tki6evf4u96jZwRQTXMIrYeOdps7fwqoZGfO8tT7Bwox4BQ
  priority: 102
  providerName: ProQuest
Title Regulating lithium affinity of hosts for reversible lithium metal batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fidm2.12153
https://www.proquest.com/docview/3218000148
https://doaj.org/article/096fa15b638b459fbacfa3979b938bb2
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9q-6IP4ieerUdAXxSO3k4-dgO-WO1ZlZZSLNxbyGc96N3JXfvQ_95Jdm_bggi-LJvsLCwzO8lvJslvAN6l5ILCkv-yOBIuppEOPu8AEEImespLzcjjE3V0Lr5P5XQLPm7OwrT8EH3CLXtGGa-zg1u33r8lDZ2FORZuBP4AdvLZ2sycj-K0z7CgzuRleYkZ60zuLappz0-K-7ev35uRCnH_PbR5F7OWSWfyBB53aJF9as37FLbi4hk8usMh-Bx-nLXV5KnBCFL_ml3PmU1pRq56w5aJ5VMca0bQlGWyphV5wGXsBeeRsDdzhWOTQuYXcD45_Pn5aNRVSBh5kYuwVaFxtUSVNE82jNHLmtdeWY9JudopbUUlMGifGuWoqasg6ppHq1LQtmn4S9heLBfxFTA19pajtE3to4hxrAOGxKXmFdnPSzeA9xstGd_Rh-cqFpemJT5GkzVqikYH8LaX_d2SZvxV6iAru5fIRNelY7m6MJ3fGIqwkq2ko2HCCamTsz7ZvBbpNPU4HMDexlSm87614YRbSvDXDOBDMd8_PsN8-3KM5e71_wjvwkMkfNNuR9uD7avVdXxD-OTKDctvSNdm8nUIOweHJ6dnwxLr_wFiuuLs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcaKGAJOIC0ataP3fWhQkAJCWl6QK3Um_GzjdQkJWmF-qf6Gxl7H7QS6q239e7IWo1nxt_48Q3AuxCMK2ha_9I048aHTDobTwBwLgJ-Zalm5GSvGB7wH4ficA0u27sw8VhlGxNToHYLG9fItxjORQnQV59Of2exalTcXW1LaNRmMfYXfzBlW22PdnB831M6-Lb_dZg1VQUyy2PhstxVphS0CJIF7frUipKVttCWhsKUppCa55w6aUNVGGzK3PGyZF4XwUldVQz7vQN3OWMyelQ1-N6t6VAZ6dLipjYtI5045i4dIyrdmroZTWQO7NocmEoFXMO3V1FymuYGj-Bhg0_J59qgHsOanz-BB1dYC5_C-Gddvx4bBEH88fR8RnQIUwwOF2QRSLw3siIIhkmkh1qiz534TnDmEe0Tk1g9MUl_Bge3or3nsD5fzP0GkKJvNaNCV6X13Pu-dNQFJiTL0WKsMD340GpJ2YawPNbNOFE11TJVUaMqabQHbzvZ05qm479SX6KyO4lIrZ1eLJZHqvFUhTld0LkwGJgMFzIYbYOOu59G4htDe7DZDpVq_H2l_llnDz6m4bvhN9RoZ0LT04ub-3oD94b7k121O9obv4T7FPFUffxtE9bPluf-FeKhM_M6GSGBX7dt9X8BuV4bfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bSxwxFIcPVkHqg3hp6XppA_XFwuJObjMBX7R20XpBRGHfQm6nLri7suqD_71JZnZUKIW-TWbOwJAzJ_nl9h2AHUTrJc3zX4Z2uQ3YVd6lHQCcC4xPWc4ZeX4hj2_474EYzMH-7CxMzYdoJ9xSZOT2OgX4vce9V2jo0I9oZiOwD7CQV_sS15lftjMsVCV4WVpipmWCe_Ni0PJJ6d7r6-96pAzuf6c232rW3On0V2C5UYvkoHbvKsyF8RosvWEIrsPpVZ1NPhZIlNS3w6cRMYjDGKrPZIIkneJ4IFGakgRrmsYIuAut4ShE7U1sZmzGIfMnuOn_uv553G0yJHQdT0nYCl_ZUlCJiqHxPepEyUonjaMobWmlMrzg1CuHlbSxqArPy5IFI9ErU1XsM8yPJ-PwBYjsOcOoMFXpAg-hpzz1yIRiRfSfE7YDu7Na0q7Bh6csFne6Bh9TnWpU5xrtwPfW9r6GZvzV6jBVdmuRQNf5xmT6Rzdxo-MIC00hbGwmLBcKrXFo0lqkVfGOpR3YmrlKN9H3oFnULXnwV3XgR3bfPz5Dnxyd03y18T_G32Dx8qivz04uTjfhI41Sp96ZtgXzj9OnsB2lyqP9mv_IF6ty4hU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+lithium+affinity+of+hosts+for+reversible+lithium+metal+batteries&rft.jtitle=Interdisciplinary+materials+%28Print%29&rft.au=Liu%2C+Hao&rft.au=Ji%2C+Yuchen&rft.au=Li%2C+Yang&rft.au=Zheng%2C+Shisheng&rft.date=2024-03-01&rft.issn=2767-441X&rft.eissn=2767-441X&rft.volume=3&rft.issue=2&rft.spage=297&rft.epage=305&rft_id=info:doi/10.1002%2Fidm2.12153&rft.externalDBID=10.1002%252Fidm2.12153&rft.externalDocID=IDM212153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-441X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-441X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-441X&client=summon