Proton storage chemistry in aqueous zinc‐organic batteries: A review
Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueo...
Saved in:
Published in | InfoMat Vol. 5; no. 2 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.02.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co‐storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application.
This review focuses on proton (H+) storage chemistry in aqueous Zn‐organic batteries and summarizes the reported electrochemical mechanisms as well as the impact of H+ storage on the electrochemical performance. |
---|---|
AbstractList | Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H
+
) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn
2+
intercalation, pure H
+
storage, and H
+
/Zn
2+
co‐storage. Moreover, the impact of H
+
storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H
+
storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H
+
storage chemistry of organic electrode materials to advance our understanding and further its application.
image Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn-ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn-organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co-storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application. Abstract Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co‐storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application. Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co‐storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application. This review focuses on proton (H+) storage chemistry in aqueous Zn‐organic batteries and summarizes the reported electrochemical mechanisms as well as the impact of H+ storage on the electrochemical performance. |
Author | Li, Baohua Hao, Jing Li, Linyuan Zhang, Guobin Zhao, Xu Sarpong, James Kumankuma Han, Cuiping Deng, Xianming Li, Hongfei |
Author_xml | – sequence: 1 givenname: Xianming surname: Deng fullname: Deng, Xianming organization: Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 2 givenname: James Kumankuma surname: Sarpong fullname: Sarpong, James Kumankuma organization: Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 3 givenname: Guobin surname: Zhang fullname: Zhang, Guobin organization: Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 4 givenname: Jing surname: Hao fullname: Hao, Jing organization: Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 5 givenname: Xu surname: Zhao fullname: Zhao, Xu organization: Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 6 givenname: Linyuan surname: Li fullname: Li, Linyuan organization: Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 7 givenname: Hongfei surname: Li fullname: Li, Hongfei organization: Southern University of Science and Technology – sequence: 8 givenname: Cuiping orcidid: 0000-0003-1186-3234 surname: Han fullname: Han, Cuiping email: cp.han@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – sequence: 9 givenname: Baohua orcidid: 0000-0002-8469-0162 surname: Li fullname: Li, Baohua email: libh@mail.sz.tsinghua.edu.cn organization: Tsinghua Shenzhen International Graduate School, Tsinghua University |
BookMark | eNp9kM1KQzEQhYMoWKsbn-CCO6Gav_sTdyJWC0Vd6DrkJhNNqUlNUqWufASf0Sfx6hUREVczDN85M3O20LoPHhDaJfiAYEwPnbf0gFDW0DU0oGVVjxipyvUf_SbaSWmGO7jEnJZkgMZXMeTgi5RDVLdQ6Du4dynHVeF8oR6WEJapeHZev728hnirvNNFq3KG6CAdFcdFhEcHT9tow6p5gp2vOkQ349Prk_PR9PJscnI8HWmOGR0poWzLRcW4MJYabLRoKmYVEy0z2DY1E1bzUtWYCsoIt4DBGNDU2qrR2rAhmvS-JqiZXER3r-JKBuXk56C7UKqYnZ6DNKYFy1pWNhQ4I1i0hlfdxBjRNKSqO6-93msRQ_doynIWltF350ta1w3HgvCyo_Z7SseQUgT7vZVg-RG7_IhdfsbewfgXrF1W2QWfo3LzvyWklzy5Oaz-MZeTizHtNe-j5Zco |
CitedBy_id | crossref_primary_10_1016_j_jechem_2023_10_039 crossref_primary_10_1038_s41467_023_40969_5 crossref_primary_10_1002_adma_202304209 crossref_primary_10_1002_adma_202414019 crossref_primary_10_1002_adma_202414379 crossref_primary_10_1016_j_ensm_2023_103012 crossref_primary_10_1360_nso_20230078 crossref_primary_10_1016_j_jpowsour_2024_235591 crossref_primary_10_1002_advs_202310319 crossref_primary_10_1007_s40843_023_2772_5 crossref_primary_10_1002_celc_202300569 crossref_primary_10_1016_j_cej_2024_152324 crossref_primary_10_1002_adma_202409946 crossref_primary_10_1021_acsnano_4c18422 crossref_primary_10_1021_jacs_4c02364 crossref_primary_10_1002_smll_202309022 crossref_primary_10_1002_adma_202407852 crossref_primary_10_1002_adma_202415676 crossref_primary_10_1002_celc_202400212 crossref_primary_10_1021_acsaem_4c02629 crossref_primary_10_1016_j_pmatsci_2024_101374 crossref_primary_10_1007_s11581_024_05441_4 crossref_primary_10_1021_acsnano_5c00124 crossref_primary_10_1021_acs_jpclett_3c02482 crossref_primary_10_1002_aenm_202303695 crossref_primary_10_1002_adma_202302199 crossref_primary_10_1002_bte2_20230020 crossref_primary_10_1016_j_est_2023_109814 crossref_primary_10_1002_bte2_20230063 crossref_primary_10_1021_acs_energyfuels_4c01836 crossref_primary_10_1021_acsaem_3c01892 crossref_primary_10_26599_NRE_2024_9120124 crossref_primary_10_1039_D3QM00297G crossref_primary_10_1002_ange_202400045 crossref_primary_10_1016_j_jpowsour_2024_236022 crossref_primary_10_1016_j_molstruc_2025_141391 crossref_primary_10_1039_D5SC00311C crossref_primary_10_1039_D3SE01334K crossref_primary_10_1002_aenm_202302495 crossref_primary_10_1002_ange_202309446 crossref_primary_10_1002_adfm_202313241 crossref_primary_10_1016_j_cej_2025_160086 crossref_primary_10_1039_D4EE02097A crossref_primary_10_1016_j_mtener_2024_101606 crossref_primary_10_1002_adfm_202416000 crossref_primary_10_1002_aenm_202400580 crossref_primary_10_1016_j_ensm_2023_103046 crossref_primary_10_1002_inf2_12601 crossref_primary_10_1002_anie_202400045 crossref_primary_10_1021_jacs_4c14751 crossref_primary_10_1002_smll_202306697 crossref_primary_10_1016_j_cej_2023_147410 crossref_primary_10_1021_acsami_3c00905 crossref_primary_10_1021_acsami_3c17412 crossref_primary_10_1002_anie_202309446 crossref_primary_10_1016_j_jcis_2023_07_063 crossref_primary_10_20517_energymater_2023_116 |
Cites_doi | 10.1021/jacs.9b12436 10.1038/am.2016.82 10.1021/acsenergylett.0c00740 10.1021/jacs.7b04471 10.1002/macp.200900257 10.1016/j.nanoen.2019.05.059 10.1021/acsaem.8b01851 10.1038/s41467-018-04949-4 10.1021/acs.chemmater.8b01317 10.1021/acsami.6b01592 10.1002/adma.202106469 10.1016/j.jechem.2018.12.023 10.1038/s41560-018-0309-7 10.1021/ja104391g 10.1021/acs.chemrev.9b00628 10.1039/C9TA05252F 10.1039/C9SC03052B 10.1002/adma.202000338 10.1039/c1ee01598b 10.1021/acs.chemmater.0c02357 10.1002/anie.202008960 10.1002/adfm.201802564 10.1002/aenm.201400930 10.1016/j.ensm.2021.02.022 10.1002/advs.202000146 10.1039/C9TA08693E 10.1016/j.nanoen.2020.104523 10.1038/s41563-018-0215-1 10.1016/j.ensm.2020.08.027 10.1002/anie.201903941 10.1016/j.nanoen.2020.104766 10.1002/adfm.202010958 10.1016/j.jpowsour.2007.02.090 10.1002/anie.202117511 10.1016/j.cej.2021.131454 10.1002/aenm.201904199 10.1038/451652a 10.1038/nenergy.2016.39 10.1016/j.ensm.2018.01.009 10.1002/adma.201704682 10.1038/s41467-017-00467-x 10.1016/j.mser.2018.10.002 10.1002/adma.201900567 10.1073/pnas.2116775119 10.1002/adma.201901521 10.1002/aenm.202000477 10.1038/35104644 10.1021/acsnano.0c07041 10.1002/aenm.201903864 10.1021/acsenergylett.8b01426 10.1002/anie.202116289 10.1016/j.ensm.2020.10.019 10.1080/00268948508074859 10.1002/adfm.202002711 10.1039/c3ee40709h 10.1016/j.jallcom.2009.12.129 10.1039/D0DT04404K 10.1039/C9TA05053A 10.1016/j.ensm.2021.05.002 10.1002/chem.201902660 10.1002/cssc.201600702 10.1021/acsenergylett.0c00903 10.1002/anie.201700148 10.1039/C9EE02526J 10.1002/smll.201805061 10.1038/nmat4919 10.1002/anie.202000162 10.1039/C9EE00596J 10.1002/adfm.202200517 10.1002/anie.201916529 10.1002/adma.202103617 10.1002/batt.202200160 10.1039/D0EE02620D 10.1002/smtd.201800272 10.1016/j.ensm.2019.04.022 10.1038/s41586-020-2081-7 10.1016/j.nanoen.2019.05.042 10.1021/acs.nanolett.7b04889 10.2166/wst.2017.450 10.1021/acsami.9b20384 10.1002/anie.202017098 10.1016/j.electacta.2012.08.085 10.1002/adfm.201804560 10.1039/D0TA03947K 10.1021/acs.chemrev.6b00070 10.1021/ja503449w 10.1002/anie.201808886 10.1016/j.joule.2020.03.002 10.1126/sciadv.aao1761 10.1002/adfm.202010049 10.1039/D0EE01723J 10.1016/j.chempr.2018.09.005 10.1016/j.ensm.2019.07.030 10.1016/0378-7753(95)80024-B 10.1038/s41467-021-24701-9 10.1021/acsami.5b07966 10.1002/aenm.201703320 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/inf2.12382 |
DatabaseName | Wiley-Blackwell Open Access Collection CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ddbef3b3582e43109bd46ef3dd988167 10_1002_inf2_12382 INF212382 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Open Research Found of Songshan Lake Materials Laboratory funderid: 2021SLABFN04 – fundername: National Natural Science Foundation of China funderid: 22109134 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2022A1515010920 – fundername: Science and Technology Foundation of Shenzhen funderid: JCYJ20190808153609561 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4032-a9afb496349df2d0dc9863fa39b3d0f8739fc45a70292314fe0eddec2ff68ccd3 |
IEDL.DBID | DOA |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Wed Aug 13 04:37:26 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Wed Jan 22 16:23:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4032-a9afb496349df2d0dc9863fa39b3d0f8739fc45a70292314fe0eddec2ff68ccd3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 22109134; Guangdong Basic and Applied Basic Research Foundation, Grant/Award Number: 2022A1515010920; Science and Technology Foundation of Shenzhen, Grant/Award Number: JCYJ20190808153609561; Open Research Found of Songshan Lake Materials Laboratory, Grant/Award Number: 2021SLABFN04 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8469-0162 0000-0003-1186-3234 |
OpenAccessLink | https://doaj.org/article/ddbef3b3582e43109bd46ef3dd988167 |
PQID | 2778409145 |
PQPubID | 5068510 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ddbef3b3582e43109bd46ef3dd988167 proquest_journals_2778409145 crossref_primary_10_1002_inf2_12382 crossref_citationtrail_10_1002_inf2_12382 wiley_primary_10_1002_inf2_12382_INF212382 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 8 2020; 120 2019; 10 2019; 12 2019; 15 2019; 58 2020; 59 2020; 14 2019; 18 2020; 13 2020; 12 2020; 10 2013; 6 2014; 136 1985; 121 2020; 8 2020; 7 2018; 9 2020; 5 2018; 8 2021; 37 2018; 3 2020; 4 2021; 31 2019; 62 2021; 34 2018; 4 2021; 33 2019; 20 2007; 170 2017; 76 2019; 25 2020; 579 2018; 30 2016; 116 2022; 32 2021; 40 2001; 414 2019; 8 2019; 7 2018; 28 2019; 4 2015; 5 2019; 3 2019; 31 2019; 2 2020; 142 2021; 425 1995; 56 2019; 38 2009; 210 2020; 33 2020; 32 2011; 4 2022; 119 2021; 50 2015; 7 2017; 139 2018; 18 2016; 1 2021; 12 2020; 30 2022; 5 2022; 61 2020; 73 2017; 16 2020; 70 2017; 56 2010; 132 2019; 135 2010; 493 2020; 24 2009; 7 2021; 60 2008; 451 2016; 8 2016; 9 2012; 85 2018; 13 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 Koshika K (e_1_2_9_66_1) 2009; 7 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Zhang M (e_1_2_9_54_1) 2019; 8 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 59 start-page: 13180 issue: 32 year: 2020 end-page: 13191 article-title: Interfacial design of dendrite‐free zinc anodes for aqueous zinc‐ion batteries publication-title: Angew Chem Int Ed – volume: 57 start-page: 16359 issue: 50 year: 2018 end-page: 16363 article-title: A long‐cycle‐life self‐doped polyaniline cathode for rechargeable aqueous zinc batteries publication-title: Angew Chem Int Ed – volume: 24 start-page: 394 year: 2020 end-page: 401 article-title: Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc‐ion battery publication-title: Energy Stor Mater – volume: 7 start-page: 23378 issue: 41 year: 2019 end-page: 23415 article-title: Organic quinones towards advanced electrochemical energy storage: recent advances and challenges publication-title: J Mater Chem A – volume: 210 start-page: 1989 issue: 22 year: 2009 end-page: 1995 article-title: An aqueous, electrolyte‐type, rechargeable device utilizing a hydrophilic radical polymer‐cathode publication-title: Macromol Chem Phys – volume: 62 start-page: 550 year: 2019 end-page: 587 article-title: Advanced rechargeable zinc‐based batteries: recent progress and future perspectives publication-title: Nano Energy – volume: 37 start-page: 378 year: 2021 end-page: 386 article-title: High‐rate aqueous zinc‐organic battery achieved by lowering HOMO/LUMO of organic cathode publication-title: Energy Stor Mater – volume: 8 start-page: 53 issue: 2 year: 2019 end-page: 65 article-title: Tin dioxide/graphene composite for sodium‐ion‐based dual‐ion‐batteries publication-title: J Integr Technol – volume: 9 start-page: 2906 issue: 1 year: 2018 article-title: Polyaniline‐intercalated manganese dioxide nanolayers as a high‐performance cathode material for an aqueous zinc‐ion battery publication-title: Nat Commun – volume: 56 start-page: 2909 issue: 11 year: 2017 end-page: 2913 article-title: Hydronium‐ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode publication-title: Angew Chem Int Ed – volume: 7) start-page: 836 year: 2009 end-page: 838 article-title: An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte publication-title: ChemComm – volume: 4 issue: 3 year: 2018 article-title: High‐capacity aqueous zinc batteries using sustainable quinone electrodes publication-title: Sci Adv – volume: 33 issue: 52 year: 2021 article-title: High‐performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers publication-title: Adv Mater – volume: 12 start-page: 1938 issue: 6 year: 2019 end-page: 1949 article-title: Long‐life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener‐inspired interphase publication-title: Energy Environ Sci – volume: 12 start-page: 5361 issue: 5 year: 2020 end-page: 5380 article-title: Organic electrode materials for metal ion batteries publication-title: ACS Appl Mater Interfaces – volume: 425 year: 2021 article-title: Flexible solid‐state Zn‐polymer batteries with practical functions publication-title: Chem Eng J – volume: 59 start-page: 4920 issue: 12 year: 2020 end-page: 4924 article-title: Proton insertion chemistry of a zinc‐organic battery publication-title: Angew Chem Int Ed – volume: 62 start-page: 275 year: 2019 end-page: 281 article-title: Diethyl ether as self‐healing electrolyte additive enabled long‐life rechargeable aqueous zinc ion batteries publication-title: Nano Energy – volume: 31 issue: 29 year: 2019 article-title: Joint charge storage for high‐rate aqueous zinc‐manganese dioxide batteries publication-title: Adv Mater – volume: 2 start-page: 1288 issue: 2 year: 2019 end-page: 1294 article-title: An organic cathode based dual‐ion aqueous zinc battery enabled by a cellulose membrane publication-title: ACS Appl Energy Mater – volume: 119 issue: 6 year: 2022 article-title: A nitroaromatic cathode with an ultrahigh energy density based on six‐electron reaction per nitro group for lithium batteries publication-title: Proc Natl Acad Sci U S A – volume: 451 start-page: 652 issue: 7179 year: 2008 end-page: 657 article-title: Building better batteries publication-title: Nature – volume: 32 issue: 16 year: 2020 article-title: Binding zinc ions by carboxyl groups from adjacent molecules toward long‐life aqueous zinc‐organic batteries publication-title: Adv Mater – volume: 7 start-page: 26585 issue: 48 year: 2015 end-page: 26594 article-title: Quantification of the mass and viscoelasticity of interfacial films on tin anodes using EQCM‐D publication-title: ACS Appl Mater – volume: 60 start-page: 7056 issue: 13 year: 2021 end-page: 7060 article-title: Non‐metal ion Co‐insertion chemistry in aqueous Zn/MnO batteries publication-title: Angew Chem Int Ed – volume: 7 issue: 14 year: 2020 article-title: Building high rate capability and ultrastable dendrite‐free organic anode for rechargeable aqueous zinc batteries publication-title: Adv Sci – volume: 8 issue: 19 year: 2018 article-title: A review on the features and progress of dual‐ion batteries publication-title: Adv Energy Mater – volume: 31 issue: 20 year: 2021 article-title: A review of emerging dual‐ion batteries: fundamentals and recent advances publication-title: Adv Funct Mater – volume: 56 start-page: 133 issue: 2 year: 1995 end-page: 136 article-title: A comparative study of zinc‐polyaniline electrochemical cells having sulfate and chloride electrolytes publication-title: J Power Sources – volume: 135 start-page: 58 year: 2019 end-page: 84 article-title: Zinc‐ion batteries: materials, mechanisms, and applications publication-title: Mater Sci Eng R Rep – volume: 13 start-page: 4625 issue: 12 year: 2020 end-page: 4665 article-title: Fundamentals and perspectives in developing zinc‐ion battery electrolytes: a comprehensive review publication-title: Energy Environ Sci – volume: 132 start-page: 13220 issue: 38 year: 2010 end-page: 13222 article-title: Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons publication-title: J Am Chem Soc – volume: 61 issue: 12 year: 2022 article-title: Orthoquinone‐based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc‐organic batteries publication-title: Angew Chem Int Ed – volume: 50 start-page: 4237 issue: 12 year: 2021 end-page: 4243 article-title: Naphthalene dianhydride organic anode for a 'rocking‐chair' zinc‐proton hybrid ion battery publication-title: Dalton Trans – volume: 493 start-page: 471 issue: 1–2 year: 2010 end-page: 475 article-title: Phase evolution from rod‐like ZnO to plate‐like zinc hydroxysulfate during electrochemical deposition publication-title: J Alloys Compd – volume: 58 start-page: 16358 issue: 46 year: 2019 end-page: 16367 article-title: Design strategies for vanadium‐based aqueous zinc‐ion batteries publication-title: Angew Chem Int Ed – volume: 33 issue: 39 year: 2021 article-title: Molecular engineering of covalent organic framework cathodes for enhanced zinc‐ion batteries publication-title: Adv Mater – volume: 16 start-page: 841 issue: 8 year: 2017 end-page: 848 article-title: Universal quinone electrodes for long cycle life aqueous rechargeable batteries publication-title: Nat Mater – volume: 5 start-page: 2376 issue: 7 year: 2020 end-page: 2400 article-title: Manganese and vanadium oxide cathodes for aqueous rechargeable zinc‐ion batteries: a focused view on performance, mechanism, and developments publication-title: ACS Energy Lett – volume: 18 start-page: 69 issue: 1 year: 2019 article-title: Real‐time insight into the doping mechanism of redox‐active organic radical polymers publication-title: Nat Mater – volume: 76 start-page: 2733 issue: 10 year: 2017 end-page: 2741 article-title: Recovery of nutrients from digested sludge as struvite with a combination process of acid hydrolysis and Donnan dialysis publication-title: Water Sci Technol – volume: 5 issue: 2 year: 2015 article-title: Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system publication-title: Adv Energy Mater – volume: 31 issue: 16 year: 2021 article-title: Poly(2,5‐Dihydroxy‐1,4‐Benzoquinonyl sulfide) as an efficient cathode for high‐performance aqueous zinc‐organic batteries publication-title: Adv Funct Mater – volume: 13 start-page: 168 year: 2018 end-page: 174 article-title: Pilotaxitic Na V O nanoribbons/graphene as high‐performance sodium ion battery and aqueous zinc ion battery cathode publication-title: Energy Stor Mater – volume: 7 start-page: 23076 issue: 40 year: 2019 end-page: 23083 article-title: A high‐capacity aqueous Zn‐ion hybrid energy storage device using poly(4,40‐thiodiphenol)modified activated carbon as a cathode material publication-title: J Mater Chem A – volume: 10 issue: 25 year: 2020 article-title: Recent advances in vanadium‐based aqueous rechargeable zinc‐ion batteries publication-title: Adv Energy Mater – volume: 28 issue: 48 year: 2018 article-title: Hydrogel electrolytes for flexible aqueous energy storage devices publication-title: Adv Funct Mater – volume: 6 start-page: 2280 issue: 8 year: 2013 end-page: 2301 article-title: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials publication-title: Energy Environ Sci – volume: 14 start-page: 16321 issue: 12 year: 2020 end-page: 16347 article-title: Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives publication-title: ACS Nano – volume: 136 start-page: 8722 issue: 24 year: 2014 end-page: 8728 article-title: Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons publication-title: J Am Chem Soc – volume: 12 start-page: 4424 issue: 1 year: 2021 article-title: A high capacity small molecule quinone cathode for rechargeable aqueous zinc‐organic batteries publication-title: Nat Commun – volume: 18 start-page: 1758 issue: 3 year: 2018 end-page: 1763 article-title: Highly durable Na V O ·1.63H O nanowire cathode for aqueous zinc‐ion battery publication-title: Nano Lett – volume: 579 start-page: 224 issue: 7798 year: 2020 article-title: In situ NMR metrology reveals reaction mechanisms in redox flow batteries publication-title: Nature – volume: 4 start-page: 123 issue: 2 year: 2019 end-page: 130 article-title: Diffusion‐free Grotthuss topochemistry for high‐rate and long‐life proton batteries publication-title: Nat Energy – volume: 121 start-page: 187 issue: 1–4 year: 1985 end-page: 190 article-title: Electrochemical characteristics of polyaniline cathodes and anodes in aqueous‐electrolytes publication-title: Mol Cryst Liq Cryst – volume: 10 start-page: 8889 issue: 38 year: 2019 end-page: 8894 article-title: Zinc ion interactions in a two‐dimensional covalent organic framework based aqueous zinc ion battery publication-title: Chem Sci – volume: 34 start-page: 545 year: 2021 end-page: 562 article-title: Fundamentals and perspectives of electrolyte additives for aqueous zinc‐ion batteries publication-title: Energy Stor Mater – volume: 8 start-page: 405 issue: 1 year: 2017 article-title: Rechargeable aqueous zinc‐manganese dioxide batteries with high energy and power densities publication-title: Nat Commun – volume: 170 start-page: 513 issue: 2 year: 2007 end-page: 519 article-title: Synthesis of polyaniline/graphite composite as a cathode of Zn‐polyaniline rechargeable battery publication-title: J Power Sources – volume: 70 year: 2020 article-title: Recent advances in zinc anodes for high‐performance aqueous Zn‐ion batteries publication-title: Nano Energy – volume: 30 issue: 42 year: 2018 article-title: Recent progress in organic electrodes for Li and Na rechargeable batteries publication-title: Adv Mater – volume: 40 start-page: 31 year: 2021 end-page: 40 article-title: A high‐performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine publication-title: Energy Stor Mater – volume: 25 start-page: 14480 issue: 64 year: 2019 end-page: 14494 article-title: Recent progress in the electrolytes of aqueous zinc‐ion batteries publication-title: Chem A Eur J – volume: 15 issue: 15 year: 2019 article-title: Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal‐ion rechargeable batteries with organic materials as promising electrodes publication-title: Small – volume: 85 start-page: 438 year: 2012 end-page: 443 article-title: Growth of porous ZnO nanosheets by electrodeposition with Zn SO (OH) ·4H O as precursor publication-title: Electrochim Acta – volume: 3 start-page: 2480 issue: 10 year: 2018 end-page: 2501 article-title: Recent advances in aqueous zinc‐ion batteries publication-title: ACS Energy Lett – volume: 30 start-page: 3874 issue: 11 year: 2018 end-page: 3881 article-title: Organic cathode for aqueous Zn‐ion batteries: taming a unique phase evolution toward stable electrochemical cycling publication-title: Chem Mater – volume: 1 issue: 5 year: 2016 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat Energy – volume: 61 issue: 37 year: 2022 article-title: Two‐dimensional organic supramolecule via hydrogen bonding and pi‐pi stacking for ultrahigh capacity and long‐life aqueous zinc‐organic batteries publication-title: Angew Chem Int Ed – volume: 59 start-page: 21293 issue: 48 year: 2020 end-page: 21303 article-title: Design strategies for high‐performance aqueous Zn/organic batteries publication-title: Angew Chem Int Ed – volume: 3 issue: 1 year: 2019 article-title: Recent progress of rechargeable batteries using mild aqueous electrolytes publication-title: Small Methods – volume: 142 start-page: 2541 issue: 5 year: 2020 end-page: 2548 article-title: Redox‐active phenanthrenequinone triangles in aqueous rechargeable zinc batteries publication-title: J Am Chem Soc – volume: 13 start-page: 2515 issue: 8 year: 2020 end-page: 2523 article-title: Aromatic organic molecular crystal with enhanced pi‐pi stacking interaction for ultrafast Zn‐ion storage publication-title: Energy Environ Sci – volume: 8 start-page: 12158 issue: 19 year: 2016 end-page: 12164 article-title: A prussian blue/zinc secondary battery with a bio‐ionic liquid‐water mixture as electrolyte publication-title: ACS Appl Mater Interfaces – volume: 28 issue: 41 year: 2018 article-title: Recent advances in Zn‐ion batteries publication-title: Adv Funct Mater – volume: 120 start-page: 7795 issue: 15 year: 2020 end-page: 7866 article-title: Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry publication-title: Chem Rev – volume: 139 start-page: 9775 issue: 29 year: 2017 end-page: 9778 article-title: Zn/MnO battery chemistry with H and Zn coinsertion publication-title: J Am Chem Soc – volume: 20 start-page: 410 year: 2019 end-page: 437 publication-title: Energy Stor Mater – volume: 38 start-page: 20 year: 2019 end-page: 25 article-title: Porous V O nanofibers as cathode materials for rechargeable aqueous zinc‐ion batteries publication-title: J Energy Chem – volume: 4 start-page: 3243 issue: 9 year: 2011 end-page: 3262 article-title: Challenges in the development of advanced Li‐ion batteries: a review publication-title: Energ Environ Sci – volume: 4 start-page: 771 issue: 4 year: 2020 end-page: 799 article-title: Scientific challenges for the implementation of Zn‐ion batteries publication-title: Joule – volume: 4 start-page: 2786 issue: 12 year: 2018 end-page: 2813 article-title: Design strategies toward enhancing the performance of organic electrode materials in metal‐ion batteries publication-title: Chem – volume: 10 issue: 19 year: 2020 article-title: Covalent‐organic frameworks: advanced organic electrode materials for rechargeable batteries publication-title: Adv Energy Mater – volume: 32 start-page: 6990 issue: 16 year: 2020 end-page: 6997 article-title: Effects of Zn and H association with naphthalene diimide electrodes for aqueous Zn‐ion batteries publication-title: Chem Mater – volume: 31 issue: 32 year: 2019 article-title: Activating C‐coordinated iron of iron hexacyanoferrate for Zn hybrid‐ion batteries with 10 000‐cycle lifespan and superior rate capability publication-title: Adv Mater – volume: 414 start-page: 359 issue: 6861 year: 2001 end-page: 367 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature – volume: 8 issue: 7 year: 2016 article-title: Aqueous zinc‐organic polymer battery with a high rate performance and long lifetime publication-title: NPG Asia Mater – volume: 33 start-page: 283 year: 2020 end-page: 289 article-title: An irreversible electrolyte anion‐doping strategy toward a superior aqueous Zn‐organic battery publication-title: Energy Stor Mater – volume: 12 start-page: 3288 issue: 11 year: 2019 end-page: 3304 article-title: Issues and opportunities facing aqueous zinc‐ion batteries publication-title: Energy Environ Sci – volume: 30 issue: 30 year: 2020 article-title: Electrochemical activation of manganese‐based cathode in aqueous zinc‐ion electrolyte publication-title: Adv Funct Mater – volume: 8 start-page: 15479 issue: 31 year: 2020 end-page: 15512 article-title: The rise of aqueous rechargeable batteries with organic electrode materials publication-title: J Mater Chem A – volume: 5 issue: 7 year: 2022 article-title: Recent progress on organic electrode materials for multivalent (Zn, Al, Mg, Ca) secondary batteries publication-title: Batter Supercaps – volume: 32 issue: 27 year: 2022 article-title: Manipulating polymer configuration to accelerate cation intercalation kinetics for high‐performance aqueous zinc‐ion batteries publication-title: Adv Funct Mater – volume: 9 start-page: 2948 issue: 20 year: 2016 end-page: 2956 article-title: Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries publication-title: ChemSusChem – volume: 10 issue: 12 year: 2020 article-title: Ni‐rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges publication-title: Adv Energy Mater – volume: 116 start-page: 9438 issue: 16 year: 2016 end-page: 9484 article-title: Polymer‐based organic batteries publication-title: Chem Rev – volume: 5 start-page: 2256 issue: 7 year: 2020 end-page: 2264 article-title: Phenanthroline covalent organic framework electrodes for high‐performance zinc‐ion supercapattery publication-title: ACS Energy Lett – volume: 73 year: 2020 article-title: Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes publication-title: Nano Energy – volume: 7 start-page: 18209 issue: 31 year: 2019 end-page: 18236 article-title: A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn‐ion batteries publication-title: J Mater Chem A – ident: e_1_2_9_71_1 doi: 10.1021/jacs.9b12436 – ident: e_1_2_9_58_1 doi: 10.1038/am.2016.82 – ident: e_1_2_9_34_1 doi: 10.1021/acsenergylett.0c00740 – ident: e_1_2_9_27_1 doi: 10.1021/jacs.7b04471 – ident: e_1_2_9_57_1 doi: 10.1002/macp.200900257 – ident: e_1_2_9_8_1 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_9_60_1 doi: 10.1021/acsaem.8b01851 – ident: e_1_2_9_74_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_9_38_1 doi: 10.1021/acs.chemmater.8b01317 – ident: e_1_2_9_37_1 doi: 10.1021/acsami.6b01592 – ident: e_1_2_9_72_1 doi: 10.1002/adma.202106469 – ident: e_1_2_9_15_1 doi: 10.1016/j.jechem.2018.12.023 – ident: e_1_2_9_50_1 doi: 10.1038/s41560-018-0309-7 – ident: e_1_2_9_98_1 doi: 10.1021/ja104391g – ident: e_1_2_9_16_1 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_9_43_1 doi: 10.1039/C9TA05252F – ident: e_1_2_9_61_1 doi: 10.1039/C9SC03052B – ident: e_1_2_9_68_1 doi: 10.1002/adma.202000338 – ident: e_1_2_9_3_1 doi: 10.1039/c1ee01598b – ident: e_1_2_9_80_1 doi: 10.1021/acs.chemmater.0c02357 – ident: e_1_2_9_24_1 doi: 10.1002/anie.202008960 – ident: e_1_2_9_31_1 doi: 10.1002/adfm.201802564 – volume: 7 start-page: 836 year: 2009 ident: e_1_2_9_66_1 article-title: An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte publication-title: ChemComm – ident: e_1_2_9_35_1 doi: 10.1002/aenm.201400930 – ident: e_1_2_9_84_1 doi: 10.1016/j.ensm.2021.02.022 – ident: e_1_2_9_81_1 doi: 10.1002/advs.202000146 – ident: e_1_2_9_86_1 doi: 10.1039/C9TA08693E – ident: e_1_2_9_14_1 doi: 10.1016/j.nanoen.2020.104523 – ident: e_1_2_9_97_1 doi: 10.1038/s41563-018-0215-1 – ident: e_1_2_9_46_1 doi: 10.1016/j.ensm.2020.08.027 – ident: e_1_2_9_32_1 doi: 10.1002/anie.201903941 – ident: e_1_2_9_69_1 doi: 10.1016/j.nanoen.2020.104766 – ident: e_1_2_9_55_1 doi: 10.1002/adfm.202010958 – ident: e_1_2_9_65_1 doi: 10.1016/j.jpowsour.2007.02.090 – ident: e_1_2_9_70_1 doi: 10.1002/anie.202117511 – ident: e_1_2_9_85_1 doi: 10.1016/j.cej.2021.131454 – volume: 8 start-page: 53 issue: 2 year: 2019 ident: e_1_2_9_54_1 article-title: Tin dioxide/graphene composite for sodium‐ion‐based dual‐ion‐batteries publication-title: J Integr Technol – ident: e_1_2_9_67_1 doi: 10.1002/aenm.201904199 – ident: e_1_2_9_2_1 doi: 10.1038/451652a – ident: e_1_2_9_77_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_9_17_1 doi: 10.1016/j.ensm.2018.01.009 – ident: e_1_2_9_42_1 doi: 10.1002/adma.201704682 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_9_9_1 doi: 10.1016/j.mser.2018.10.002 – ident: e_1_2_9_78_1 doi: 10.1002/adma.201900567 – ident: e_1_2_9_89_1 doi: 10.1073/pnas.2116775119 – ident: e_1_2_9_36_1 doi: 10.1002/adma.201901521 – ident: e_1_2_9_33_1 doi: 10.1002/aenm.202000477 – ident: e_1_2_9_5_1 doi: 10.1038/35104644 – ident: e_1_2_9_13_1 doi: 10.1021/acsnano.0c07041 – ident: e_1_2_9_4_1 doi: 10.1002/aenm.201903864 – ident: e_1_2_9_6_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_9_63_1 doi: 10.1002/anie.202116289 – ident: e_1_2_9_20_1 doi: 10.1016/j.ensm.2020.10.019 – ident: e_1_2_9_56_1 doi: 10.1080/00268948508074859 – ident: e_1_2_9_29_1 doi: 10.1002/adfm.202002711 – ident: e_1_2_9_39_1 doi: 10.1039/c3ee40709h – ident: e_1_2_9_94_1 doi: 10.1016/j.jallcom.2009.12.129 – ident: e_1_2_9_91_1 doi: 10.1039/D0DT04404K – ident: e_1_2_9_26_1 doi: 10.1039/C9TA05053A – ident: e_1_2_9_82_1 doi: 10.1016/j.ensm.2021.05.002 – ident: e_1_2_9_19_1 doi: 10.1002/chem.201902660 – ident: e_1_2_9_93_1 doi: 10.1002/cssc.201600702 – ident: e_1_2_9_76_1 doi: 10.1021/acsenergylett.0c00903 – ident: e_1_2_9_90_1 doi: 10.1002/anie.201700148 – ident: e_1_2_9_18_1 doi: 10.1039/C9EE02526J – ident: e_1_2_9_47_1 doi: 10.1002/smll.201805061 – ident: e_1_2_9_73_1 doi: 10.1038/nmat4919 – ident: e_1_2_9_12_1 doi: 10.1002/anie.202000162 – ident: e_1_2_9_11_1 doi: 10.1039/C9EE00596J – ident: e_1_2_9_87_1 doi: 10.1002/adfm.202200517 – ident: e_1_2_9_62_1 doi: 10.1002/anie.201916529 – ident: e_1_2_9_88_1 doi: 10.1002/adma.202103617 – ident: e_1_2_9_45_1 doi: 10.1002/batt.202200160 – ident: e_1_2_9_22_1 doi: 10.1039/D0EE02620D – ident: e_1_2_9_48_1 doi: 10.1002/smtd.201800272 – ident: e_1_2_9_10_1 doi: 10.1016/j.ensm.2019.04.022 – ident: e_1_2_9_95_1 doi: 10.1038/s41586-020-2081-7 – ident: e_1_2_9_21_1 doi: 10.1016/j.nanoen.2019.05.042 – ident: e_1_2_9_25_1 doi: 10.1021/acs.nanolett.7b04889 – ident: e_1_2_9_75_1 doi: 10.2166/wst.2017.450 – ident: e_1_2_9_40_1 doi: 10.1021/acsami.9b20384 – ident: e_1_2_9_51_1 doi: 10.1002/anie.202017098 – ident: e_1_2_9_92_1 doi: 10.1016/j.electacta.2012.08.085 – ident: e_1_2_9_23_1 doi: 10.1002/adfm.201804560 – ident: e_1_2_9_44_1 doi: 10.1039/D0TA03947K – ident: e_1_2_9_52_1 doi: 10.1021/acs.chemrev.6b00070 – ident: e_1_2_9_99_1 doi: 10.1021/ja503449w – ident: e_1_2_9_96_1 doi: 10.1002/anie.201808886 – ident: e_1_2_9_7_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_9_59_1 doi: 10.1126/sciadv.aao1761 – ident: e_1_2_9_49_1 doi: 10.1002/adfm.202010049 – ident: e_1_2_9_83_1 doi: 10.1039/D0EE01723J – ident: e_1_2_9_41_1 doi: 10.1016/j.chempr.2018.09.005 – ident: e_1_2_9_30_1 doi: 10.1016/j.ensm.2019.07.030 – ident: e_1_2_9_64_1 doi: 10.1016/0378-7753(95)80024-B – ident: e_1_2_9_79_1 doi: 10.1038/s41467-021-24701-9 – ident: e_1_2_9_100_1 doi: 10.1021/acsami.5b07966 – ident: e_1_2_9_53_1 doi: 10.1002/aenm.201703320 |
SSID | ssj0002504251 |
Score | 2.4840703 |
SecondaryResourceType | review_article |
Snippet | Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive... Abstract Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | aqueous zinc‐ion batteries Electrochemical analysis Electrode materials Electrodes Electrolytes Energy storage H+/Zn2+ co‐storage organic electrode materials Organic materials Polymers proton storage chemistry Protons Rechargeable batteries Zinc |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA4uFz2IK44bAb0oRNMknZl4kboUFSxFLPQWJhsUZFq3i7_el0xaFcTbEEII7yUv38u8fB9CR62igFSWa2K400QwTYnm0hDmAMlxQ2kVqyofevntQNwP28N04faWyiqnMTEGajs24Y78jBVFyEVaon0xeSFBNSr8XU0SGvNoEUJwCcnX4uVNr_84u2UJBF1wgs94SdkZ-I2dQrgu2a-TKBL2_0KZP7FqPGy6q2gloUTcady6huZcvY6Wf3AHbqDr_usYcBsO1Y0QE7CZKrfhUY0rGB1Sevw5qg1phJsM1pFKEzLjc9zBzZOVTTTo3jxd3ZIkiUCMoJyRSlZeC9g0QlrPLLVGljn3FZeaW-rLgktvRLsqKAvITXhHHQQww7zPS2Ms30IL9bh22wizwuVOVlVL55Aet6mWzHFtuA9yPE7TDB1PzaNM4gsPshXPqmE6ZiqYUkVTZuhw1nfSsGT82esyWHnWIzBbxwawg0obRVmrnec6POB1ItCWaityaLFWlmUrLzK0N_WRStvtTX0vjgydRL_9Mw111-uy-LXz_1i7aCmIyzc12nto4f31w-0DBHnXB2mdfQFhbtrR priority: 102 providerName: ProQuest – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsUwEA2iG12IT7x6lYBuFKq5SfqIuLmKFxUUFwruQp4gSBUfG1d-gt_olziT9lYFEdyVMi1lpjM5EzLnELI1KEtoZYXNnAg2k9yyzArlMh4AyQnHmEmnKs8vipNreXaT30yQg_EsTMMP0W24YWakeo0JbuzT3hdpKASA70LdraAAT-FsLTLnc3nZ7bAgORdP-ouwrONmXJF3_KR87-vxHytSIu7_gTa_Y9a06IzmyGyLFumwCe88mQj1Apn5xiG4SEaXj_eA3yiecoTaQN1YwY3e1tTA26G1p6-3tft4e28knBy1iVQTeuR9OqTN8MoSuR4dXx2dZK04QuYkEzwzykQrIX2k8pF75p2qChGNUFZ4FqtSqOhkbkrGEcPJGFiAUuZ4jEXlnBfLZLK-r8MKobwMRVDGDGwBjXLOrOJBWCciCvMEy3pke-wg7VrmcBSwuNMN5zHX6EydnNkjm53tQ8OX8avVIfq5s0CO63QD_KDblNHe2xCFxVHeIJHA1HpZwB3vVVUNirJH-uMo6TbxnjQvS2xZBzLvkZ0UuT8-Q59ejHi6Wv2P8RqZRtH55ux2n0w-P76EdYAmz3Yj_YGfvXPdnw priority: 102 providerName: Wiley-Blackwell |
Title | Proton storage chemistry in aqueous zinc‐organic batteries: A review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12382 https://www.proquest.com/docview/2778409145 https://doaj.org/article/ddbef3b3582e43109bd46ef3dd988167 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50vehBfOLqugT0olDNJtm28aZifYDLIgreQvMCQar4uHjyJ_gb_SVO0u6ygujFSykhlDDTzHwDM98HsN3LMixluU4MdzoRTNNEc2kS5hDJcUNpGbsqLwfp2Y24uO3fTkh9hZ6wmh64Nty-tdp5rsNApxOBxlJbkeKKtTLPe2mcI8ecN1FMhRgciLkwc4_5SNk--ovtYZjO2bcMFIn6v6HLSYwak0yxAPMNOiSH9akWYcpVSzA3wRm4DMXw6QHxGgldjRgLiBkptpG7ipT4dSzlydtdZT7fP2rJJkN0JNHEmviAHJJ6WGUFboqT6-OzpBFDSIygnCWlLL0WeF2EtJ5Zao3MU-5LLjW31OcZl96IfplRFjCb8I46DF2GeZ_mxli-Cq3qoXJrQFjmUifLsqdTLIz7VEvmuDbcByEep2kbdkYGUqZhCg-CFfeq5jhmKhhTRWO2YWu897Hmx_hx11Gw83hH4LSOC2gH1Xha_eXpNnRGXlLNRXtWLMtCidoT_TbsRs_9cgx1PihYfFv_jwNtwGwQn697uDvQenl6dZsIUV50F6aZGOIzL067MHN0MhhedeMf-gXbyOeS |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB5qfVAfxJ94tmpAfVCIzSW53Y0gUq3nnW0PH1roW7r5BQXZa3ston-Uf6Mz2d2zBelb35YQQphMJt9kJ98H8GpYlpjKKse9io5r6QR3ynguIyI55YWoc1Xl7qyY7OtvB6ODFfjTv4Whsso-JuZAHeae7sg3ZFlSLjLUo4_HJ5xUo-jvai-h0brFdvz1E1O2xYfpFq7vaynHX_Y-T3inKsC9Fkry2tTJafQ7bUKSQQRvqkKlWhmngkhVqUzyelSXQhL40SmKiDHAy5SKyvugcNwbcFMrZWhHVeOvyzsdogNDvLBkQZUb6CXyHR4Olbx07mV5gEuY9iIyzkfb-B7c7TAp22yd6D6sxOYB3LnAVPgQtr6fzhElMqqlxAjEfK8Tx44aVuPo8_MF-33UeN7KRHnmMnEn5uHv2SZrH8g8gv1rMdVjWG3mTXwCTJaxiKauh67AZHwknJFROa8Sif9EJwbwpjeP9R07OYlk_LAtr7K0ZEqbTTmAl8u-xy0nx397fSIrL3sQj3ZuQDvYblvaEFxMytFz4aiJJNUFXWBLCKaqhkU5gPV-jWy3uRf2nysO4G1etyumYaezscxfT68e6wXcmuzt7tid6Wx7DW6TrH1bHb4Oq2en5_EZgp8z9zx7HIPD63bxv1p4F6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3ULRR9ELWKq1UD2geFuNkkO5kIIq3bpWvrsoiFvsXJFxRktnZbRH-av86bzMzagvStb0MIYbg5Sc6duTkH4NVQKUxlhaVOBEslt4xaoR3lAZmccIxVuary86zYP5KfjkfHa_CnuwuTyiq7PTFv1H7h0jfyAVcq5SJDORrEtixiPp58OP1Bk4NU-tPa2Wk0EDkIv35i-rZ8Px3jXG9zPtn7-nGftg4D1EkmOK10Fa1EDErtI_fMO10WIlZCW-FZLJXQ0clRpRhPREjGwALuB47HWJTOeYHj3oJ1hVkR68H67t5s_mX1hSeJgyF7WGmi8gFihr_Fo6LkV07BbBZwheFe5sn5oJvcg7stQyU7DaTuw1qoH8CdS7qFmzCeny2QM5JUWYn7EXGdaxw5qUmFoy8uluT3Se1oYxrliM0ynpiVvyM7pLku8xCObiRYj6BXL-rwGAhXoQi6qoa2wNR8xKzmQVgnYrICCpb14XUXHuNarfJkmfHdNCrL3KRQmhzKPrxc9T1tFDr-22s3RXnVI6lq5waMg2kXqfHehihsujwcZJJMtV4W2OK9Lsthofqw1c2RaZf60vwDZh_e5Hm75jXMdDbh-enJ9WO9gA2Etzmczg6ewu3kcd-Uim9B7_zsIjxDJnRun7eQI_DtplH-F9m8HTI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+storage+chemistry+in+aqueous+zinc%E2%80%90organic+batteries%3A+A+review&rft.jtitle=InfoMat&rft.au=Xianming+Deng&rft.au=James+Kumankuma+Sarpong&rft.au=Guobin+Zhang&rft.au=Jing+Hao&rft.date=2023-02-01&rft.pub=Wiley&rft.eissn=2567-3165&rft.volume=5&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Finf2.12382&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ddbef3b3582e43109bd46ef3dd988167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |