Proton storage chemistry in aqueous zinc‐organic batteries: A review

Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueo...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 5; no. 2
Main Authors Deng, Xianming, Sarpong, James Kumankuma, Zhang, Guobin, Hao, Jing, Zhao, Xu, Li, Linyuan, Li, Hongfei, Han, Cuiping, Li, Baohua
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.02.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co‐storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application. This review focuses on proton (H+) storage chemistry in aqueous Zn‐organic batteries and summarizes the reported electrochemical mechanisms as well as the impact of H+ storage on the electrochemical performance.
AbstractList Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H + ) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn 2+ intercalation, pure H + storage, and H + /Zn 2+ co‐storage. Moreover, the impact of H + storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H + storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H + storage chemistry of organic electrode materials to advance our understanding and further its application. image
Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn-ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn-organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co-storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application.
Abstract Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co‐storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application.
Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive cathode materials for aqueous Zn‐ion batteries (ZIBs). In this review, we discuss the recent developments of organic electrode materials for aqueous ZIBs. Although the proton (H+) storage chemistry in aqueous Zn‐organic batteries has triggered an overwhelming literature surge in recent years, this topic remains controversial. Therefore, our review focuses on this significant issue and summarizes the reported electrochemical mechanisms, including pure Zn2+ intercalation, pure H+ storage, and H+/Zn2+ co‐storage. Moreover, the impact of H+ storage on the electrochemical performance of aqueous ZIBs is discussed systematically. Given the significance of H+ storage, we also highlight the relevant characterization methods employed. Finally, perspectives and directions on further understanding the charge storage mechanisms of organic materials are outlined. We hope that this review will stimulate more attention on the H+ storage chemistry of organic electrode materials to advance our understanding and further its application. This review focuses on proton (H+) storage chemistry in aqueous Zn‐organic batteries and summarizes the reported electrochemical mechanisms as well as the impact of H+ storage on the electrochemical performance.
Author Li, Baohua
Hao, Jing
Li, Linyuan
Zhang, Guobin
Zhao, Xu
Sarpong, James Kumankuma
Han, Cuiping
Deng, Xianming
Li, Hongfei
Author_xml – sequence: 1
  givenname: Xianming
  surname: Deng
  fullname: Deng, Xianming
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 2
  givenname: James Kumankuma
  surname: Sarpong
  fullname: Sarpong, James Kumankuma
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 3
  givenname: Guobin
  surname: Zhang
  fullname: Zhang, Guobin
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 4
  givenname: Jing
  surname: Hao
  fullname: Hao, Jing
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 5
  givenname: Xu
  surname: Zhao
  fullname: Zhao, Xu
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 6
  givenname: Linyuan
  surname: Li
  fullname: Li, Linyuan
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 7
  givenname: Hongfei
  surname: Li
  fullname: Li, Hongfei
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Cuiping
  orcidid: 0000-0003-1186-3234
  surname: Han
  fullname: Han, Cuiping
  email: cp.han@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 9
  givenname: Baohua
  orcidid: 0000-0002-8469-0162
  surname: Li
  fullname: Li, Baohua
  email: libh@mail.sz.tsinghua.edu.cn
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University
BookMark eNp9kM1KQzEQhYMoWKsbn-CCO6Gav_sTdyJWC0Vd6DrkJhNNqUlNUqWufASf0Sfx6hUREVczDN85M3O20LoPHhDaJfiAYEwPnbf0gFDW0DU0oGVVjxipyvUf_SbaSWmGO7jEnJZkgMZXMeTgi5RDVLdQ6Du4dynHVeF8oR6WEJapeHZev728hnirvNNFq3KG6CAdFcdFhEcHT9tow6p5gp2vOkQ349Prk_PR9PJscnI8HWmOGR0poWzLRcW4MJYabLRoKmYVEy0z2DY1E1bzUtWYCsoIt4DBGNDU2qrR2rAhmvS-JqiZXER3r-JKBuXk56C7UKqYnZ6DNKYFy1pWNhQ4I1i0hlfdxBjRNKSqO6-93msRQ_doynIWltF350ta1w3HgvCyo_Z7SseQUgT7vZVg-RG7_IhdfsbewfgXrF1W2QWfo3LzvyWklzy5Oaz-MZeTizHtNe-j5Zco
CitedBy_id crossref_primary_10_1016_j_jechem_2023_10_039
crossref_primary_10_1038_s41467_023_40969_5
crossref_primary_10_1002_adma_202304209
crossref_primary_10_1002_adma_202414019
crossref_primary_10_1002_adma_202414379
crossref_primary_10_1016_j_ensm_2023_103012
crossref_primary_10_1360_nso_20230078
crossref_primary_10_1016_j_jpowsour_2024_235591
crossref_primary_10_1002_advs_202310319
crossref_primary_10_1007_s40843_023_2772_5
crossref_primary_10_1002_celc_202300569
crossref_primary_10_1016_j_cej_2024_152324
crossref_primary_10_1002_adma_202409946
crossref_primary_10_1021_acsnano_4c18422
crossref_primary_10_1021_jacs_4c02364
crossref_primary_10_1002_smll_202309022
crossref_primary_10_1002_adma_202407852
crossref_primary_10_1002_adma_202415676
crossref_primary_10_1002_celc_202400212
crossref_primary_10_1021_acsaem_4c02629
crossref_primary_10_1016_j_pmatsci_2024_101374
crossref_primary_10_1007_s11581_024_05441_4
crossref_primary_10_1021_acsnano_5c00124
crossref_primary_10_1021_acs_jpclett_3c02482
crossref_primary_10_1002_aenm_202303695
crossref_primary_10_1002_adma_202302199
crossref_primary_10_1002_bte2_20230020
crossref_primary_10_1016_j_est_2023_109814
crossref_primary_10_1002_bte2_20230063
crossref_primary_10_1021_acs_energyfuels_4c01836
crossref_primary_10_1021_acsaem_3c01892
crossref_primary_10_26599_NRE_2024_9120124
crossref_primary_10_1039_D3QM00297G
crossref_primary_10_1002_ange_202400045
crossref_primary_10_1016_j_jpowsour_2024_236022
crossref_primary_10_1016_j_molstruc_2025_141391
crossref_primary_10_1039_D5SC00311C
crossref_primary_10_1039_D3SE01334K
crossref_primary_10_1002_aenm_202302495
crossref_primary_10_1002_ange_202309446
crossref_primary_10_1002_adfm_202313241
crossref_primary_10_1016_j_cej_2025_160086
crossref_primary_10_1039_D4EE02097A
crossref_primary_10_1016_j_mtener_2024_101606
crossref_primary_10_1002_adfm_202416000
crossref_primary_10_1002_aenm_202400580
crossref_primary_10_1016_j_ensm_2023_103046
crossref_primary_10_1002_inf2_12601
crossref_primary_10_1002_anie_202400045
crossref_primary_10_1021_jacs_4c14751
crossref_primary_10_1002_smll_202306697
crossref_primary_10_1016_j_cej_2023_147410
crossref_primary_10_1021_acsami_3c00905
crossref_primary_10_1021_acsami_3c17412
crossref_primary_10_1002_anie_202309446
crossref_primary_10_1016_j_jcis_2023_07_063
crossref_primary_10_20517_energymater_2023_116
Cites_doi 10.1021/jacs.9b12436
10.1038/am.2016.82
10.1021/acsenergylett.0c00740
10.1021/jacs.7b04471
10.1002/macp.200900257
10.1016/j.nanoen.2019.05.059
10.1021/acsaem.8b01851
10.1038/s41467-018-04949-4
10.1021/acs.chemmater.8b01317
10.1021/acsami.6b01592
10.1002/adma.202106469
10.1016/j.jechem.2018.12.023
10.1038/s41560-018-0309-7
10.1021/ja104391g
10.1021/acs.chemrev.9b00628
10.1039/C9TA05252F
10.1039/C9SC03052B
10.1002/adma.202000338
10.1039/c1ee01598b
10.1021/acs.chemmater.0c02357
10.1002/anie.202008960
10.1002/adfm.201802564
10.1002/aenm.201400930
10.1016/j.ensm.2021.02.022
10.1002/advs.202000146
10.1039/C9TA08693E
10.1016/j.nanoen.2020.104523
10.1038/s41563-018-0215-1
10.1016/j.ensm.2020.08.027
10.1002/anie.201903941
10.1016/j.nanoen.2020.104766
10.1002/adfm.202010958
10.1016/j.jpowsour.2007.02.090
10.1002/anie.202117511
10.1016/j.cej.2021.131454
10.1002/aenm.201904199
10.1038/451652a
10.1038/nenergy.2016.39
10.1016/j.ensm.2018.01.009
10.1002/adma.201704682
10.1038/s41467-017-00467-x
10.1016/j.mser.2018.10.002
10.1002/adma.201900567
10.1073/pnas.2116775119
10.1002/adma.201901521
10.1002/aenm.202000477
10.1038/35104644
10.1021/acsnano.0c07041
10.1002/aenm.201903864
10.1021/acsenergylett.8b01426
10.1002/anie.202116289
10.1016/j.ensm.2020.10.019
10.1080/00268948508074859
10.1002/adfm.202002711
10.1039/c3ee40709h
10.1016/j.jallcom.2009.12.129
10.1039/D0DT04404K
10.1039/C9TA05053A
10.1016/j.ensm.2021.05.002
10.1002/chem.201902660
10.1002/cssc.201600702
10.1021/acsenergylett.0c00903
10.1002/anie.201700148
10.1039/C9EE02526J
10.1002/smll.201805061
10.1038/nmat4919
10.1002/anie.202000162
10.1039/C9EE00596J
10.1002/adfm.202200517
10.1002/anie.201916529
10.1002/adma.202103617
10.1002/batt.202200160
10.1039/D0EE02620D
10.1002/smtd.201800272
10.1016/j.ensm.2019.04.022
10.1038/s41586-020-2081-7
10.1016/j.nanoen.2019.05.042
10.1021/acs.nanolett.7b04889
10.2166/wst.2017.450
10.1021/acsami.9b20384
10.1002/anie.202017098
10.1016/j.electacta.2012.08.085
10.1002/adfm.201804560
10.1039/D0TA03947K
10.1021/acs.chemrev.6b00070
10.1021/ja503449w
10.1002/anie.201808886
10.1016/j.joule.2020.03.002
10.1126/sciadv.aao1761
10.1002/adfm.202010049
10.1039/D0EE01723J
10.1016/j.chempr.2018.09.005
10.1016/j.ensm.2019.07.030
10.1016/0378-7753(95)80024-B
10.1038/s41467-021-24701-9
10.1021/acsami.5b07966
10.1002/aenm.201703320
ContentType Journal Article
Copyright 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/inf2.12382
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ddbef3b3582e43109bd46ef3dd988167
10_1002_inf2_12382
INF212382
Genre reviewArticle
GrantInformation_xml – fundername: Open Research Found of Songshan Lake Materials Laboratory
  funderid: 2021SLABFN04
– fundername: National Natural Science Foundation of China
  funderid: 22109134
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2022A1515010920
– fundername: Science and Technology Foundation of Shenzhen
  funderid: JCYJ20190808153609561
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PIMPY
PTHSS
WIN
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4032-a9afb496349df2d0dc9863fa39b3d0f8739fc45a70292314fe0eddec2ff68ccd3
IEDL.DBID DOA
ISSN 2567-3165
IngestDate Wed Aug 27 01:32:03 EDT 2025
Wed Aug 13 04:37:26 EDT 2025
Tue Jul 01 01:33:44 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Jan 22 16:23:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4032-a9afb496349df2d0dc9863fa39b3d0f8739fc45a70292314fe0eddec2ff68ccd3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 22109134; Guangdong Basic and Applied Basic Research Foundation, Grant/Award Number: 2022A1515010920; Science and Technology Foundation of Shenzhen, Grant/Award Number: JCYJ20190808153609561; Open Research Found of Songshan Lake Materials Laboratory, Grant/Award Number: 2021SLABFN04
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8469-0162
0000-0003-1186-3234
OpenAccessLink https://doaj.org/article/ddbef3b3582e43109bd46ef3dd988167
PQID 2778409145
PQPubID 5068510
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_ddbef3b3582e43109bd46ef3dd988167
proquest_journals_2778409145
crossref_primary_10_1002_inf2_12382
crossref_citationtrail_10_1002_inf2_12382
wiley_primary_10_1002_inf2_12382_INF212382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 8
2020; 120
2019; 10
2019; 12
2019; 15
2019; 58
2020; 59
2020; 14
2019; 18
2020; 13
2020; 12
2020; 10
2013; 6
2014; 136
1985; 121
2020; 8
2020; 7
2018; 9
2020; 5
2018; 8
2021; 37
2018; 3
2020; 4
2021; 31
2019; 62
2021; 34
2018; 4
2021; 33
2019; 20
2007; 170
2017; 76
2019; 25
2020; 579
2018; 30
2016; 116
2022; 32
2021; 40
2001; 414
2019; 8
2019; 7
2018; 28
2019; 4
2015; 5
2019; 3
2019; 31
2019; 2
2020; 142
2021; 425
1995; 56
2019; 38
2009; 210
2020; 33
2020; 32
2011; 4
2022; 119
2021; 50
2015; 7
2017; 139
2018; 18
2016; 1
2021; 12
2020; 30
2022; 5
2022; 61
2020; 73
2017; 16
2020; 70
2017; 56
2010; 132
2019; 135
2010; 493
2020; 24
2009; 7
2021; 60
2008; 451
2016; 8
2016; 9
2012; 85
2018; 13
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
Koshika K (e_1_2_9_66_1) 2009; 7
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_92_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
Zhang M (e_1_2_9_54_1) 2019; 8
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 59
  start-page: 13180
  issue: 32
  year: 2020
  end-page: 13191
  article-title: Interfacial design of dendrite‐free zinc anodes for aqueous zinc‐ion batteries
  publication-title: Angew Chem Int Ed
– volume: 57
  start-page: 16359
  issue: 50
  year: 2018
  end-page: 16363
  article-title: A long‐cycle‐life self‐doped polyaniline cathode for rechargeable aqueous zinc batteries
  publication-title: Angew Chem Int Ed
– volume: 24
  start-page: 394
  year: 2020
  end-page: 401
  article-title: Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc‐ion battery
  publication-title: Energy Stor Mater
– volume: 7
  start-page: 23378
  issue: 41
  year: 2019
  end-page: 23415
  article-title: Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
  publication-title: J Mater Chem A
– volume: 210
  start-page: 1989
  issue: 22
  year: 2009
  end-page: 1995
  article-title: An aqueous, electrolyte‐type, rechargeable device utilizing a hydrophilic radical polymer‐cathode
  publication-title: Macromol Chem Phys
– volume: 62
  start-page: 550
  year: 2019
  end-page: 587
  article-title: Advanced rechargeable zinc‐based batteries: recent progress and future perspectives
  publication-title: Nano Energy
– volume: 37
  start-page: 378
  year: 2021
  end-page: 386
  article-title: High‐rate aqueous zinc‐organic battery achieved by lowering HOMO/LUMO of organic cathode
  publication-title: Energy Stor Mater
– volume: 8
  start-page: 53
  issue: 2
  year: 2019
  end-page: 65
  article-title: Tin dioxide/graphene composite for sodium‐ion‐based dual‐ion‐batteries
  publication-title: J Integr Technol
– volume: 9
  start-page: 2906
  issue: 1
  year: 2018
  article-title: Polyaniline‐intercalated manganese dioxide nanolayers as a high‐performance cathode material for an aqueous zinc‐ion battery
  publication-title: Nat Commun
– volume: 56
  start-page: 2909
  issue: 11
  year: 2017
  end-page: 2913
  article-title: Hydronium‐ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode
  publication-title: Angew Chem Int Ed
– volume: 7)
  start-page: 836
  year: 2009
  end-page: 838
  article-title: An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte
  publication-title: ChemComm
– volume: 4
  issue: 3
  year: 2018
  article-title: High‐capacity aqueous zinc batteries using sustainable quinone electrodes
  publication-title: Sci Adv
– volume: 33
  issue: 52
  year: 2021
  article-title: High‐performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers
  publication-title: Adv Mater
– volume: 12
  start-page: 1938
  issue: 6
  year: 2019
  end-page: 1949
  article-title: Long‐life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener‐inspired interphase
  publication-title: Energy Environ Sci
– volume: 12
  start-page: 5361
  issue: 5
  year: 2020
  end-page: 5380
  article-title: Organic electrode materials for metal ion batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 425
  year: 2021
  article-title: Flexible solid‐state Zn‐polymer batteries with practical functions
  publication-title: Chem Eng J
– volume: 59
  start-page: 4920
  issue: 12
  year: 2020
  end-page: 4924
  article-title: Proton insertion chemistry of a zinc‐organic battery
  publication-title: Angew Chem Int Ed
– volume: 62
  start-page: 275
  year: 2019
  end-page: 281
  article-title: Diethyl ether as self‐healing electrolyte additive enabled long‐life rechargeable aqueous zinc ion batteries
  publication-title: Nano Energy
– volume: 31
  issue: 29
  year: 2019
  article-title: Joint charge storage for high‐rate aqueous zinc‐manganese dioxide batteries
  publication-title: Adv Mater
– volume: 2
  start-page: 1288
  issue: 2
  year: 2019
  end-page: 1294
  article-title: An organic cathode based dual‐ion aqueous zinc battery enabled by a cellulose membrane
  publication-title: ACS Appl Energy Mater
– volume: 119
  issue: 6
  year: 2022
  article-title: A nitroaromatic cathode with an ultrahigh energy density based on six‐electron reaction per nitro group for lithium batteries
  publication-title: Proc Natl Acad Sci U S A
– volume: 451
  start-page: 652
  issue: 7179
  year: 2008
  end-page: 657
  article-title: Building better batteries
  publication-title: Nature
– volume: 32
  issue: 16
  year: 2020
  article-title: Binding zinc ions by carboxyl groups from adjacent molecules toward long‐life aqueous zinc‐organic batteries
  publication-title: Adv Mater
– volume: 7
  start-page: 26585
  issue: 48
  year: 2015
  end-page: 26594
  article-title: Quantification of the mass and viscoelasticity of interfacial films on tin anodes using EQCM‐D
  publication-title: ACS Appl Mater
– volume: 60
  start-page: 7056
  issue: 13
  year: 2021
  end-page: 7060
  article-title: Non‐metal ion Co‐insertion chemistry in aqueous Zn/MnO batteries
  publication-title: Angew Chem Int Ed
– volume: 7
  issue: 14
  year: 2020
  article-title: Building high rate capability and ultrastable dendrite‐free organic anode for rechargeable aqueous zinc batteries
  publication-title: Adv Sci
– volume: 8
  issue: 19
  year: 2018
  article-title: A review on the features and progress of dual‐ion batteries
  publication-title: Adv Energy Mater
– volume: 31
  issue: 20
  year: 2021
  article-title: A review of emerging dual‐ion batteries: fundamentals and recent advances
  publication-title: Adv Funct Mater
– volume: 56
  start-page: 133
  issue: 2
  year: 1995
  end-page: 136
  article-title: A comparative study of zinc‐polyaniline electrochemical cells having sulfate and chloride electrolytes
  publication-title: J Power Sources
– volume: 135
  start-page: 58
  year: 2019
  end-page: 84
  article-title: Zinc‐ion batteries: materials, mechanisms, and applications
  publication-title: Mater Sci Eng R Rep
– volume: 13
  start-page: 4625
  issue: 12
  year: 2020
  end-page: 4665
  article-title: Fundamentals and perspectives in developing zinc‐ion battery electrolytes: a comprehensive review
  publication-title: Energy Environ Sci
– volume: 132
  start-page: 13220
  issue: 38
  year: 2010
  end-page: 13222
  article-title: Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons
  publication-title: J Am Chem Soc
– volume: 61
  issue: 12
  year: 2022
  article-title: Orthoquinone‐based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc‐organic batteries
  publication-title: Angew Chem Int Ed
– volume: 50
  start-page: 4237
  issue: 12
  year: 2021
  end-page: 4243
  article-title: Naphthalene dianhydride organic anode for a 'rocking‐chair' zinc‐proton hybrid ion battery
  publication-title: Dalton Trans
– volume: 493
  start-page: 471
  issue: 1–2
  year: 2010
  end-page: 475
  article-title: Phase evolution from rod‐like ZnO to plate‐like zinc hydroxysulfate during electrochemical deposition
  publication-title: J Alloys Compd
– volume: 58
  start-page: 16358
  issue: 46
  year: 2019
  end-page: 16367
  article-title: Design strategies for vanadium‐based aqueous zinc‐ion batteries
  publication-title: Angew Chem Int Ed
– volume: 33
  issue: 39
  year: 2021
  article-title: Molecular engineering of covalent organic framework cathodes for enhanced zinc‐ion batteries
  publication-title: Adv Mater
– volume: 16
  start-page: 841
  issue: 8
  year: 2017
  end-page: 848
  article-title: Universal quinone electrodes for long cycle life aqueous rechargeable batteries
  publication-title: Nat Mater
– volume: 5
  start-page: 2376
  issue: 7
  year: 2020
  end-page: 2400
  article-title: Manganese and vanadium oxide cathodes for aqueous rechargeable zinc‐ion batteries: a focused view on performance, mechanism, and developments
  publication-title: ACS Energy Lett
– volume: 18
  start-page: 69
  issue: 1
  year: 2019
  article-title: Real‐time insight into the doping mechanism of redox‐active organic radical polymers
  publication-title: Nat Mater
– volume: 76
  start-page: 2733
  issue: 10
  year: 2017
  end-page: 2741
  article-title: Recovery of nutrients from digested sludge as struvite with a combination process of acid hydrolysis and Donnan dialysis
  publication-title: Water Sci Technol
– volume: 5
  issue: 2
  year: 2015
  article-title: Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system
  publication-title: Adv Energy Mater
– volume: 31
  issue: 16
  year: 2021
  article-title: Poly(2,5‐Dihydroxy‐1,4‐Benzoquinonyl sulfide) as an efficient cathode for high‐performance aqueous zinc‐organic batteries
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 168
  year: 2018
  end-page: 174
  article-title: Pilotaxitic Na V O nanoribbons/graphene as high‐performance sodium ion battery and aqueous zinc ion battery cathode
  publication-title: Energy Stor Mater
– volume: 7
  start-page: 23076
  issue: 40
  year: 2019
  end-page: 23083
  article-title: A high‐capacity aqueous Zn‐ion hybrid energy storage device using poly(4,40‐thiodiphenol)modified activated carbon as a cathode material
  publication-title: J Mater Chem A
– volume: 10
  issue: 25
  year: 2020
  article-title: Recent advances in vanadium‐based aqueous rechargeable zinc‐ion batteries
  publication-title: Adv Energy Mater
– volume: 28
  issue: 48
  year: 2018
  article-title: Hydrogel electrolytes for flexible aqueous energy storage devices
  publication-title: Adv Funct Mater
– volume: 6
  start-page: 2280
  issue: 8
  year: 2013
  end-page: 2301
  article-title: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
  publication-title: Energy Environ Sci
– volume: 14
  start-page: 16321
  issue: 12
  year: 2020
  end-page: 16347
  article-title: Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives
  publication-title: ACS Nano
– volume: 136
  start-page: 8722
  issue: 24
  year: 2014
  end-page: 8728
  article-title: Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 4424
  issue: 1
  year: 2021
  article-title: A high capacity small molecule quinone cathode for rechargeable aqueous zinc‐organic batteries
  publication-title: Nat Commun
– volume: 18
  start-page: 1758
  issue: 3
  year: 2018
  end-page: 1763
  article-title: Highly durable Na V O ·1.63H O nanowire cathode for aqueous zinc‐ion battery
  publication-title: Nano Lett
– volume: 579
  start-page: 224
  issue: 7798
  year: 2020
  article-title: In situ NMR metrology reveals reaction mechanisms in redox flow batteries
  publication-title: Nature
– volume: 4
  start-page: 123
  issue: 2
  year: 2019
  end-page: 130
  article-title: Diffusion‐free Grotthuss topochemistry for high‐rate and long‐life proton batteries
  publication-title: Nat Energy
– volume: 121
  start-page: 187
  issue: 1–4
  year: 1985
  end-page: 190
  article-title: Electrochemical characteristics of polyaniline cathodes and anodes in aqueous‐electrolytes
  publication-title: Mol Cryst Liq Cryst
– volume: 10
  start-page: 8889
  issue: 38
  year: 2019
  end-page: 8894
  article-title: Zinc ion interactions in a two‐dimensional covalent organic framework based aqueous zinc ion battery
  publication-title: Chem Sci
– volume: 34
  start-page: 545
  year: 2021
  end-page: 562
  article-title: Fundamentals and perspectives of electrolyte additives for aqueous zinc‐ion batteries
  publication-title: Energy Stor Mater
– volume: 8
  start-page: 405
  issue: 1
  year: 2017
  article-title: Rechargeable aqueous zinc‐manganese dioxide batteries with high energy and power densities
  publication-title: Nat Commun
– volume: 170
  start-page: 513
  issue: 2
  year: 2007
  end-page: 519
  article-title: Synthesis of polyaniline/graphite composite as a cathode of Zn‐polyaniline rechargeable battery
  publication-title: J Power Sources
– volume: 70
  year: 2020
  article-title: Recent advances in zinc anodes for high‐performance aqueous Zn‐ion batteries
  publication-title: Nano Energy
– volume: 30
  issue: 42
  year: 2018
  article-title: Recent progress in organic electrodes for Li and Na rechargeable batteries
  publication-title: Adv Mater
– volume: 40
  start-page: 31
  year: 2021
  end-page: 40
  article-title: A high‐performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine
  publication-title: Energy Stor Mater
– volume: 25
  start-page: 14480
  issue: 64
  year: 2019
  end-page: 14494
  article-title: Recent progress in the electrolytes of aqueous zinc‐ion batteries
  publication-title: Chem A Eur J
– volume: 15
  issue: 15
  year: 2019
  article-title: Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal‐ion rechargeable batteries with organic materials as promising electrodes
  publication-title: Small
– volume: 85
  start-page: 438
  year: 2012
  end-page: 443
  article-title: Growth of porous ZnO nanosheets by electrodeposition with Zn SO (OH) ·4H O as precursor
  publication-title: Electrochim Acta
– volume: 3
  start-page: 2480
  issue: 10
  year: 2018
  end-page: 2501
  article-title: Recent advances in aqueous zinc‐ion batteries
  publication-title: ACS Energy Lett
– volume: 30
  start-page: 3874
  issue: 11
  year: 2018
  end-page: 3881
  article-title: Organic cathode for aqueous Zn‐ion batteries: taming a unique phase evolution toward stable electrochemical cycling
  publication-title: Chem Mater
– volume: 1
  issue: 5
  year: 2016
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat Energy
– volume: 61
  issue: 37
  year: 2022
  article-title: Two‐dimensional organic supramolecule via hydrogen bonding and pi‐pi stacking for ultrahigh capacity and long‐life aqueous zinc‐organic batteries
  publication-title: Angew Chem Int Ed
– volume: 59
  start-page: 21293
  issue: 48
  year: 2020
  end-page: 21303
  article-title: Design strategies for high‐performance aqueous Zn/organic batteries
  publication-title: Angew Chem Int Ed
– volume: 3
  issue: 1
  year: 2019
  article-title: Recent progress of rechargeable batteries using mild aqueous electrolytes
  publication-title: Small Methods
– volume: 142
  start-page: 2541
  issue: 5
  year: 2020
  end-page: 2548
  article-title: Redox‐active phenanthrenequinone triangles in aqueous rechargeable zinc batteries
  publication-title: J Am Chem Soc
– volume: 13
  start-page: 2515
  issue: 8
  year: 2020
  end-page: 2523
  article-title: Aromatic organic molecular crystal with enhanced pi‐pi stacking interaction for ultrafast Zn‐ion storage
  publication-title: Energy Environ Sci
– volume: 8
  start-page: 12158
  issue: 19
  year: 2016
  end-page: 12164
  article-title: A prussian blue/zinc secondary battery with a bio‐ionic liquid‐water mixture as electrolyte
  publication-title: ACS Appl Mater Interfaces
– volume: 28
  issue: 41
  year: 2018
  article-title: Recent advances in Zn‐ion batteries
  publication-title: Adv Funct Mater
– volume: 120
  start-page: 7795
  issue: 15
  year: 2020
  end-page: 7866
  article-title: Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry
  publication-title: Chem Rev
– volume: 139
  start-page: 9775
  issue: 29
  year: 2017
  end-page: 9778
  article-title: Zn/MnO battery chemistry with H and Zn coinsertion
  publication-title: J Am Chem Soc
– volume: 20
  start-page: 410
  year: 2019
  end-page: 437
  publication-title: Energy Stor Mater
– volume: 38
  start-page: 20
  year: 2019
  end-page: 25
  article-title: Porous V O nanofibers as cathode materials for rechargeable aqueous zinc‐ion batteries
  publication-title: J Energy Chem
– volume: 4
  start-page: 3243
  issue: 9
  year: 2011
  end-page: 3262
  article-title: Challenges in the development of advanced Li‐ion batteries: a review
  publication-title: Energ Environ Sci
– volume: 4
  start-page: 771
  issue: 4
  year: 2020
  end-page: 799
  article-title: Scientific challenges for the implementation of Zn‐ion batteries
  publication-title: Joule
– volume: 4
  start-page: 2786
  issue: 12
  year: 2018
  end-page: 2813
  article-title: Design strategies toward enhancing the performance of organic electrode materials in metal‐ion batteries
  publication-title: Chem
– volume: 10
  issue: 19
  year: 2020
  article-title: Covalent‐organic frameworks: advanced organic electrode materials for rechargeable batteries
  publication-title: Adv Energy Mater
– volume: 32
  start-page: 6990
  issue: 16
  year: 2020
  end-page: 6997
  article-title: Effects of Zn and H association with naphthalene diimide electrodes for aqueous Zn‐ion batteries
  publication-title: Chem Mater
– volume: 31
  issue: 32
  year: 2019
  article-title: Activating C‐coordinated iron of iron hexacyanoferrate for Zn hybrid‐ion batteries with 10 000‐cycle lifespan and superior rate capability
  publication-title: Adv Mater
– volume: 414
  start-page: 359
  issue: 6861
  year: 2001
  end-page: 367
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
– volume: 8
  issue: 7
  year: 2016
  article-title: Aqueous zinc‐organic polymer battery with a high rate performance and long lifetime
  publication-title: NPG Asia Mater
– volume: 33
  start-page: 283
  year: 2020
  end-page: 289
  article-title: An irreversible electrolyte anion‐doping strategy toward a superior aqueous Zn‐organic battery
  publication-title: Energy Stor Mater
– volume: 12
  start-page: 3288
  issue: 11
  year: 2019
  end-page: 3304
  article-title: Issues and opportunities facing aqueous zinc‐ion batteries
  publication-title: Energy Environ Sci
– volume: 30
  issue: 30
  year: 2020
  article-title: Electrochemical activation of manganese‐based cathode in aqueous zinc‐ion electrolyte
  publication-title: Adv Funct Mater
– volume: 8
  start-page: 15479
  issue: 31
  year: 2020
  end-page: 15512
  article-title: The rise of aqueous rechargeable batteries with organic electrode materials
  publication-title: J Mater Chem A
– volume: 5
  issue: 7
  year: 2022
  article-title: Recent progress on organic electrode materials for multivalent (Zn, Al, Mg, Ca) secondary batteries
  publication-title: Batter Supercaps
– volume: 32
  issue: 27
  year: 2022
  article-title: Manipulating polymer configuration to accelerate cation intercalation kinetics for high‐performance aqueous zinc‐ion batteries
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 2948
  issue: 20
  year: 2016
  end-page: 2956
  article-title: Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries
  publication-title: ChemSusChem
– volume: 10
  issue: 12
  year: 2020
  article-title: Ni‐rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges
  publication-title: Adv Energy Mater
– volume: 116
  start-page: 9438
  issue: 16
  year: 2016
  end-page: 9484
  article-title: Polymer‐based organic batteries
  publication-title: Chem Rev
– volume: 5
  start-page: 2256
  issue: 7
  year: 2020
  end-page: 2264
  article-title: Phenanthroline covalent organic framework electrodes for high‐performance zinc‐ion supercapattery
  publication-title: ACS Energy Lett
– volume: 73
  year: 2020
  article-title: Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes
  publication-title: Nano Energy
– volume: 7
  start-page: 18209
  issue: 31
  year: 2019
  end-page: 18236
  article-title: A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn‐ion batteries
  publication-title: J Mater Chem A
– ident: e_1_2_9_71_1
  doi: 10.1021/jacs.9b12436
– ident: e_1_2_9_58_1
  doi: 10.1038/am.2016.82
– ident: e_1_2_9_34_1
  doi: 10.1021/acsenergylett.0c00740
– ident: e_1_2_9_27_1
  doi: 10.1021/jacs.7b04471
– ident: e_1_2_9_57_1
  doi: 10.1002/macp.200900257
– ident: e_1_2_9_8_1
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_9_60_1
  doi: 10.1021/acsaem.8b01851
– ident: e_1_2_9_74_1
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_9_38_1
  doi: 10.1021/acs.chemmater.8b01317
– ident: e_1_2_9_37_1
  doi: 10.1021/acsami.6b01592
– ident: e_1_2_9_72_1
  doi: 10.1002/adma.202106469
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jechem.2018.12.023
– ident: e_1_2_9_50_1
  doi: 10.1038/s41560-018-0309-7
– ident: e_1_2_9_98_1
  doi: 10.1021/ja104391g
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_9_43_1
  doi: 10.1039/C9TA05252F
– ident: e_1_2_9_61_1
  doi: 10.1039/C9SC03052B
– ident: e_1_2_9_68_1
  doi: 10.1002/adma.202000338
– ident: e_1_2_9_3_1
  doi: 10.1039/c1ee01598b
– ident: e_1_2_9_80_1
  doi: 10.1021/acs.chemmater.0c02357
– ident: e_1_2_9_24_1
  doi: 10.1002/anie.202008960
– ident: e_1_2_9_31_1
  doi: 10.1002/adfm.201802564
– volume: 7
  start-page: 836
  year: 2009
  ident: e_1_2_9_66_1
  article-title: An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte
  publication-title: ChemComm
– ident: e_1_2_9_35_1
  doi: 10.1002/aenm.201400930
– ident: e_1_2_9_84_1
  doi: 10.1016/j.ensm.2021.02.022
– ident: e_1_2_9_81_1
  doi: 10.1002/advs.202000146
– ident: e_1_2_9_86_1
  doi: 10.1039/C9TA08693E
– ident: e_1_2_9_14_1
  doi: 10.1016/j.nanoen.2020.104523
– ident: e_1_2_9_97_1
  doi: 10.1038/s41563-018-0215-1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ensm.2020.08.027
– ident: e_1_2_9_32_1
  doi: 10.1002/anie.201903941
– ident: e_1_2_9_69_1
  doi: 10.1016/j.nanoen.2020.104766
– ident: e_1_2_9_55_1
  doi: 10.1002/adfm.202010958
– ident: e_1_2_9_65_1
  doi: 10.1016/j.jpowsour.2007.02.090
– ident: e_1_2_9_70_1
  doi: 10.1002/anie.202117511
– ident: e_1_2_9_85_1
  doi: 10.1016/j.cej.2021.131454
– volume: 8
  start-page: 53
  issue: 2
  year: 2019
  ident: e_1_2_9_54_1
  article-title: Tin dioxide/graphene composite for sodium‐ion‐based dual‐ion‐batteries
  publication-title: J Integr Technol
– ident: e_1_2_9_67_1
  doi: 10.1002/aenm.201904199
– ident: e_1_2_9_2_1
  doi: 10.1038/451652a
– ident: e_1_2_9_77_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ensm.2018.01.009
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.201704682
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_9_9_1
  doi: 10.1016/j.mser.2018.10.002
– ident: e_1_2_9_78_1
  doi: 10.1002/adma.201900567
– ident: e_1_2_9_89_1
  doi: 10.1073/pnas.2116775119
– ident: e_1_2_9_36_1
  doi: 10.1002/adma.201901521
– ident: e_1_2_9_33_1
  doi: 10.1002/aenm.202000477
– ident: e_1_2_9_5_1
  doi: 10.1038/35104644
– ident: e_1_2_9_13_1
  doi: 10.1021/acsnano.0c07041
– ident: e_1_2_9_4_1
  doi: 10.1002/aenm.201903864
– ident: e_1_2_9_6_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_9_63_1
  doi: 10.1002/anie.202116289
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ensm.2020.10.019
– ident: e_1_2_9_56_1
  doi: 10.1080/00268948508074859
– ident: e_1_2_9_29_1
  doi: 10.1002/adfm.202002711
– ident: e_1_2_9_39_1
  doi: 10.1039/c3ee40709h
– ident: e_1_2_9_94_1
  doi: 10.1016/j.jallcom.2009.12.129
– ident: e_1_2_9_91_1
  doi: 10.1039/D0DT04404K
– ident: e_1_2_9_26_1
  doi: 10.1039/C9TA05053A
– ident: e_1_2_9_82_1
  doi: 10.1016/j.ensm.2021.05.002
– ident: e_1_2_9_19_1
  doi: 10.1002/chem.201902660
– ident: e_1_2_9_93_1
  doi: 10.1002/cssc.201600702
– ident: e_1_2_9_76_1
  doi: 10.1021/acsenergylett.0c00903
– ident: e_1_2_9_90_1
  doi: 10.1002/anie.201700148
– ident: e_1_2_9_18_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_9_47_1
  doi: 10.1002/smll.201805061
– ident: e_1_2_9_73_1
  doi: 10.1038/nmat4919
– ident: e_1_2_9_12_1
  doi: 10.1002/anie.202000162
– ident: e_1_2_9_11_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_9_87_1
  doi: 10.1002/adfm.202200517
– ident: e_1_2_9_62_1
  doi: 10.1002/anie.201916529
– ident: e_1_2_9_88_1
  doi: 10.1002/adma.202103617
– ident: e_1_2_9_45_1
  doi: 10.1002/batt.202200160
– ident: e_1_2_9_22_1
  doi: 10.1039/D0EE02620D
– ident: e_1_2_9_48_1
  doi: 10.1002/smtd.201800272
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ensm.2019.04.022
– ident: e_1_2_9_95_1
  doi: 10.1038/s41586-020-2081-7
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nanoen.2019.05.042
– ident: e_1_2_9_25_1
  doi: 10.1021/acs.nanolett.7b04889
– ident: e_1_2_9_75_1
  doi: 10.2166/wst.2017.450
– ident: e_1_2_9_40_1
  doi: 10.1021/acsami.9b20384
– ident: e_1_2_9_51_1
  doi: 10.1002/anie.202017098
– ident: e_1_2_9_92_1
  doi: 10.1016/j.electacta.2012.08.085
– ident: e_1_2_9_23_1
  doi: 10.1002/adfm.201804560
– ident: e_1_2_9_44_1
  doi: 10.1039/D0TA03947K
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.chemrev.6b00070
– ident: e_1_2_9_99_1
  doi: 10.1021/ja503449w
– ident: e_1_2_9_96_1
  doi: 10.1002/anie.201808886
– ident: e_1_2_9_7_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_9_59_1
  doi: 10.1126/sciadv.aao1761
– ident: e_1_2_9_49_1
  doi: 10.1002/adfm.202010049
– ident: e_1_2_9_83_1
  doi: 10.1039/D0EE01723J
– ident: e_1_2_9_41_1
  doi: 10.1016/j.chempr.2018.09.005
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ensm.2019.07.030
– ident: e_1_2_9_64_1
  doi: 10.1016/0378-7753(95)80024-B
– ident: e_1_2_9_79_1
  doi: 10.1038/s41467-021-24701-9
– ident: e_1_2_9_100_1
  doi: 10.1021/acsami.5b07966
– ident: e_1_2_9_53_1
  doi: 10.1002/aenm.201703320
SSID ssj0002504251
Score 2.4840703
SecondaryResourceType review_article
Snippet Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as attractive...
Abstract Benefiting from the advantageous features of structural diversity and resource renewability, organic electroactive compounds are considered as...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms aqueous zinc‐ion batteries
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Energy storage
H+/Zn2+ co‐storage
organic electrode materials
Organic materials
Polymers
proton storage chemistry
Protons
Rechargeable batteries
Zinc
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA4uFz2IK44bAb0oRNMknZl4kboUFSxFLPQWJhsUZFq3i7_el0xaFcTbEEII7yUv38u8fB9CR62igFSWa2K400QwTYnm0hDmAMlxQ2kVqyofevntQNwP28N04faWyiqnMTEGajs24Y78jBVFyEVaon0xeSFBNSr8XU0SGvNoEUJwCcnX4uVNr_84u2UJBF1wgs94SdkZ-I2dQrgu2a-TKBL2_0KZP7FqPGy6q2gloUTcady6huZcvY6Wf3AHbqDr_usYcBsO1Y0QE7CZKrfhUY0rGB1Sevw5qg1phJsM1pFKEzLjc9zBzZOVTTTo3jxd3ZIkiUCMoJyRSlZeC9g0QlrPLLVGljn3FZeaW-rLgktvRLsqKAvITXhHHQQww7zPS2Ms30IL9bh22wizwuVOVlVL55Aet6mWzHFtuA9yPE7TDB1PzaNM4gsPshXPqmE6ZiqYUkVTZuhw1nfSsGT82esyWHnWIzBbxwawg0obRVmrnec6POB1ItCWaityaLFWlmUrLzK0N_WRStvtTX0vjgydRL_9Mw111-uy-LXz_1i7aCmIyzc12nto4f31w-0DBHnXB2mdfQFhbtrR
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsUwEA2iG12IT7x6lYBuFKq5SfqIuLmKFxUUFwruQp4gSBUfG1d-gt_olziT9lYFEdyVMi1lpjM5EzLnELI1KEtoZYXNnAg2k9yyzArlMh4AyQnHmEmnKs8vipNreXaT30yQg_EsTMMP0W24YWakeo0JbuzT3hdpKASA70LdraAAT-FsLTLnc3nZ7bAgORdP-ouwrONmXJF3_KR87-vxHytSIu7_gTa_Y9a06IzmyGyLFumwCe88mQj1Apn5xiG4SEaXj_eA3yiecoTaQN1YwY3e1tTA26G1p6-3tft4e28knBy1iVQTeuR9OqTN8MoSuR4dXx2dZK04QuYkEzwzykQrIX2k8pF75p2qChGNUFZ4FqtSqOhkbkrGEcPJGFiAUuZ4jEXlnBfLZLK-r8MKobwMRVDGDGwBjXLOrOJBWCciCvMEy3pke-wg7VrmcBSwuNMN5zHX6EydnNkjm53tQ8OX8avVIfq5s0CO63QD_KDblNHe2xCFxVHeIJHA1HpZwB3vVVUNirJH-uMo6TbxnjQvS2xZBzLvkZ0UuT8-Q59ejHi6Wv2P8RqZRtH55ux2n0w-P76EdYAmz3Yj_YGfvXPdnw
  priority: 102
  providerName: Wiley-Blackwell
Title Proton storage chemistry in aqueous zinc‐organic batteries: A review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12382
https://www.proquest.com/docview/2778409145
https://doaj.org/article/ddbef3b3582e43109bd46ef3dd988167
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50vehBfOLqugT0olDNJtm28aZifYDLIgreQvMCQar4uHjyJ_gb_SVO0u6ygujFSykhlDDTzHwDM98HsN3LMixluU4MdzoRTNNEc2kS5hDJcUNpGbsqLwfp2Y24uO3fTkh9hZ6wmh64Nty-tdp5rsNApxOBxlJbkeKKtTLPe2mcI8ecN1FMhRgciLkwc4_5SNk--ovtYZjO2bcMFIn6v6HLSYwak0yxAPMNOiSH9akWYcpVSzA3wRm4DMXw6QHxGgldjRgLiBkptpG7ipT4dSzlydtdZT7fP2rJJkN0JNHEmviAHJJ6WGUFboqT6-OzpBFDSIygnCWlLL0WeF2EtJ5Zao3MU-5LLjW31OcZl96IfplRFjCb8I46DF2GeZ_mxli-Cq3qoXJrQFjmUifLsqdTLIz7VEvmuDbcByEep2kbdkYGUqZhCg-CFfeq5jhmKhhTRWO2YWu897Hmx_hx11Gw83hH4LSOC2gH1Xha_eXpNnRGXlLNRXtWLMtCidoT_TbsRs_9cgx1PihYfFv_jwNtwGwQn697uDvQenl6dZsIUV50F6aZGOIzL067MHN0MhhedeMf-gXbyOeS
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB5qfVAfxJ94tmpAfVCIzSW53Y0gUq3nnW0PH1roW7r5BQXZa3ston-Uf6Mz2d2zBelb35YQQphMJt9kJ98H8GpYlpjKKse9io5r6QR3ynguIyI55YWoc1Xl7qyY7OtvB6ODFfjTv4Whsso-JuZAHeae7sg3ZFlSLjLUo4_HJ5xUo-jvai-h0brFdvz1E1O2xYfpFq7vaynHX_Y-T3inKsC9Fkry2tTJafQ7bUKSQQRvqkKlWhmngkhVqUzyelSXQhL40SmKiDHAy5SKyvugcNwbcFMrZWhHVeOvyzsdogNDvLBkQZUb6CXyHR4Olbx07mV5gEuY9iIyzkfb-B7c7TAp22yd6D6sxOYB3LnAVPgQtr6fzhElMqqlxAjEfK8Tx44aVuPo8_MF-33UeN7KRHnmMnEn5uHv2SZrH8g8gv1rMdVjWG3mTXwCTJaxiKauh67AZHwknJFROa8Sif9EJwbwpjeP9R07OYlk_LAtr7K0ZEqbTTmAl8u-xy0nx397fSIrL3sQj3ZuQDvYblvaEFxMytFz4aiJJNUFXWBLCKaqhkU5gPV-jWy3uRf2nysO4G1etyumYaezscxfT68e6wXcmuzt7tid6Wx7DW6TrH1bHb4Oq2en5_EZgp8z9zx7HIPD63bxv1p4F6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3ULRR9ELWKq1UD2geFuNkkO5kIIq3bpWvrsoiFvsXJFxRktnZbRH-av86bzMzagvStb0MIYbg5Sc6duTkH4NVQKUxlhaVOBEslt4xaoR3lAZmccIxVuary86zYP5KfjkfHa_CnuwuTyiq7PTFv1H7h0jfyAVcq5SJDORrEtixiPp58OP1Bk4NU-tPa2Wk0EDkIv35i-rZ8Px3jXG9zPtn7-nGftg4D1EkmOK10Fa1EDErtI_fMO10WIlZCW-FZLJXQ0clRpRhPREjGwALuB47HWJTOeYHj3oJ1hVkR68H67t5s_mX1hSeJgyF7WGmi8gFihr_Fo6LkV07BbBZwheFe5sn5oJvcg7stQyU7DaTuw1qoH8CdS7qFmzCeny2QM5JUWYn7EXGdaxw5qUmFoy8uluT3Se1oYxrliM0ynpiVvyM7pLku8xCObiRYj6BXL-rwGAhXoQi6qoa2wNR8xKzmQVgnYrICCpb14XUXHuNarfJkmfHdNCrL3KRQmhzKPrxc9T1tFDr-22s3RXnVI6lq5waMg2kXqfHehihsujwcZJJMtV4W2OK9Lsthofqw1c2RaZf60vwDZh_e5Hm75jXMdDbh-enJ9WO9gA2Etzmczg6ewu3kcd-Uim9B7_zsIjxDJnRun7eQI_DtplH-F9m8HTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+storage+chemistry+in+aqueous+zinc%E2%80%90organic+batteries%3A+A+review&rft.jtitle=InfoMat&rft.au=Xianming+Deng&rft.au=James+Kumankuma+Sarpong&rft.au=Guobin+Zhang&rft.au=Jing+Hao&rft.date=2023-02-01&rft.pub=Wiley&rft.eissn=2567-3165&rft.volume=5&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Finf2.12382&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ddbef3b3582e43109bd46ef3dd988167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon