A Multi‐Model Perspective for Stochastic Inverse Modeling of Diclofenac Dynamics in Porous Media
We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmac...
Saved in:
Published in | Water resources research Vol. 61; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.07.2025
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0043-1397 1944-7973 |
DOI | 10.1029/2024WR039684 |
Cover
Loading…
Abstract | We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) $(a)$ understand dominant processes (and parameters) driving system dynamics and (b) $(b)$ effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface.
Key Points
We develop a set of reactive transport models to assess the fate of the pharmaceutical diclofenac in a laboratory‐scale soil‐water system
Stochastic model calibration is performed through maximum likelihood assisted by global sensitivity analysis in a multi‐model context
The relative skill of each model to interpret available data is appraised in a multi‐model context together with predictive uncertainty |
---|---|
AbstractList | We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to understand dominant processes (and parameters) driving system dynamics and effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface.
We develop a set of reactive transport models to assess the fate of the pharmaceutical diclofenac in a laboratory‐scale soil‐water system Stochastic model calibration is performed through maximum likelihood assisted by global sensitivity analysis in a multi‐model context The relative skill of each model to interpret available data is appraised in a multi‐model context together with predictive uncertainty We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) $(a)$ understand dominant processes (and parameters) driving system dynamics and (b) $(b)$ effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface. We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) $(a)$ understand dominant processes (and parameters) driving system dynamics and (b) $(b)$ effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface. Key Points We develop a set of reactive transport models to assess the fate of the pharmaceutical diclofenac in a laboratory‐scale soil‐water system Stochastic model calibration is performed through maximum likelihood assisted by global sensitivity analysis in a multi‐model context The relative skill of each model to interpret available data is appraised in a multi‐model context together with predictive uncertainty Abstract We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) understand dominant processes (and parameters) driving system dynamics and (b) effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface. |
Author | Ceresa, Laura Riva, Monica Guadagnini, Alberto |
Author_xml | – sequence: 1 givenname: Laura orcidid: 0000-0002-0156-9552 surname: Ceresa fullname: Ceresa, Laura organization: Politecnico di Milano – sequence: 2 givenname: Monica orcidid: 0000-0002-7304-4114 surname: Riva fullname: Riva, Monica email: monica.riva@polimi.it organization: Politecnico di Milano – sequence: 3 givenname: Alberto orcidid: 0000-0003-3959-9690 surname: Guadagnini fullname: Guadagnini, Alberto organization: Politecnico di Milano |
BookMark | eNp9kcuOEzEQRS00SGQCOz7AEhsWNJQfHbeXowyPSBMxCqBZWm67PDjqtIPdGZQdn8A38iWYCUKIBauSqo6uzlWdk7MxjUjIUwYvGXD9igOXNxsQetHJB2TGtJSN0kqckRmAFA0TWj0i56VsAZhsF2pG-gu6PgxT_PHt-zp5HOg15rJHN8U7pCFl-mFK7rMtU3R0Nd7VI9J7MI63NAV6Gd2QAo7W0cvjaHfRFRpHep1yOhS6Rh_tY_Iw2KHgk99zTj69ef1x-a65ev92tby4apwEwZpO886h9UHZaqZQhGCxWnZKKN052be9W2hQCKCEcwC-tQKl62VgnqEVc7I65fpkt2af487mo0k2mvtFyrfG5tpjQOP7ynvVt6g76bXSGtFL8MLyoJjGmvX8lLXP6csBy2R2sTgcBjtiLWYElxy6VlS5OXn2D7pNhzzWppUSEhZCcl2pFyfK5VRKxvBHkIH59Tzz9_MqLk741zjg8b-sudksNwo4MPETXB2dgg |
Cites_doi | 10.1016/j.watres.2016.09.034 10.1029/2011WR010480 10.2166/wst.2009.764 10.1201/9781439833544 10.1016/S0378‐4754(00)00270‐6 10.1016/j.watres.2021.117466 10.1029/2022wr033183 10.5281/zenodo.14333765 10.1016/j.ecolind.2020.106424 10.1080/00986445.2020.1839434 10.1016/j.cherd.2023.02.022 10.1016/j.cej.2013.11.094 10.1016/j.petrol.2018.12.079 10.1080/17538947.2011.596580 10.1016/j.scitotenv.2018.06.120 10.1016/j.aquatox.2005.09.009 10.1016/S0022‐1694(03)00190‐2 10.1016/j.jclepro.2018.01.138 10.1029/2022wr033387 10.1111/j.1462‐2920.2011.02587.x 10.1016/j.chemosphere.2005.01.032 10.1109/TPAMI.1982.4767213 10.1029/2023WR036096 10.1016/j.jenvman.2023.118466 10.1016/j.cpc.2009.09.018 10.1016/S0378‐4754(98)00096‐2 10.1016/j.watres.2019.115192 10.1016/0016‐7037(95)00251‐T 10.1029/WR022i002p00199 10.1007/s11356‐009‐0129‐1 10.1016/j.jhydrol.2024.130903 10.5194/hess‐21‐6219‐2017 10.2136/sssaj2012.0010 10.1016/j.watres.2012.01.028 10.1029/2008WR006803 10.1016/j.jiec.2015.05.018 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
DOI | 10.1029/2024WR039684 |
DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_dbea3d7b5e984d9799eed40d3a2f719e 10_1029_2024WR039684 WRCR70201 |
Genre | researchArticle |
GrantInformation_xml | – fundername: RETURN—multi‐Risk sciEnce for resilienT commUnities undeR a changiNg climate funderid: PE0000005 |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WIN WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
ID | FETCH-LOGICAL-c4031-8928ceadf7a5677e3ffae145873798c4b5bc6907e0073cc00d5a3e4cb4f1d1ea3 |
IEDL.DBID | DOA |
ISSN | 0043-1397 |
IngestDate | Wed Aug 27 01:24:16 EDT 2025 Fri Aug 22 20:18:13 EDT 2025 Fri Aug 01 05:21:45 EDT 2025 Thu Jul 31 00:06:56 EDT 2025 Tue Jul 29 10:40:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4031-8928ceadf7a5677e3ffae145873798c4b5bc6907e0073cc00d5a3e4cb4f1d1ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7304-4114 0000-0002-0156-9552 0000-0003-3959-9690 |
OpenAccessLink | https://doaj.org/article/dbea3d7b5e984d9799eed40d3a2f719e |
PQID | 3234063429 |
PQPubID | 105507 |
PageCount | 34 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dbea3d7b5e984d9799eed40d3a2f719e proquest_miscellaneous_3242085387 proquest_journals_3234063429 crossref_primary_10_1029_2024WR039684 wiley_primary_10_1029_2024WR039684_WRCR70201 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 20250701 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Water resources research |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2018; 181 2023; 59 2006; 76 1995; 59 2023; 344 2021; 204 2017; 21 2015; 30 2018; 642 2011; 13 2004 2016; 105 2025 2005; 60 2020; 168 2010; 181 2011; 4 1993; 1 2013; 6 2012; 76 1998; 47 2023; 192 2024b; 60 2021 1986; 22 2020 2024a; 632 2020; 115 2003; 281 2016 2015 1982 2008; 44 2022; 209 2011; 47 2001; 55 2012; 46 2014; 240 2009; 16 2009; 59 2019; 175 Silver M. (e_1_2_11_36_1) 2016 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 Sobol I. M. (e_1_2_11_39_1) 1993; 1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Parkhurst D. L. (e_1_2_11_27_1) 2013; 6 Doherty J. (e_1_2_11_15_1) 2015 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 Silver M. (e_1_2_11_37_1) 2020 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_38_1 e_1_2_11_19_1 |
References_xml | – volume: 115 year: 2020 article-title: Probabilistic indicators for soil and groundwater contamination risk assessment publication-title: Ecological Indicators – start-page: 99 issue: 2 year: 1982 end-page: 104 article-title: Optimal choice of ar and ma parts in autoregressive moving average models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 281 start-page: 251 issue: 4 year: 2003 end-page: 264 article-title: Geostatistical inversion of coupled problems: Dealing with computational burden and different types of data publication-title: Journal of Hydrology – volume: 4 start-page: 434 issue: 5 year: 2011 end-page: 443 article-title: European Digital Archive on Soil Maps (EUDASM): Preserving important soil data for public free access publication-title: International Journal of Digital Earth – volume: 175 start-page: 785 year: 2019 end-page: 803 article-title: A review of reactive transport modeling in wellbore integrity problems publication-title: Journal of Petroleum Science and Engineering – volume: 13 start-page: 3275 issue: 12 year: 2011 end-page: 3288 article-title: Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction publication-title: Environmental Microbiology – volume: 21 start-page: 6219 issue: 12 year: 2017 end-page: 6234 article-title: Moment‐based metrics for global sensitivity analysis of hydrological systems publication-title: Hydrology and Earth System Sciences – volume: 60 issue: 2 year: 2024b article-title: Comparative assessment of two global sensitivity approaches considering model and parameter uncertainty publication-title: Water Resources Research – volume: 30 start-page: 167 year: 2015 end-page: 173 article-title: Hybrid materials in the removal of diclofenac sodium from aqueous solutions: Batch and column studies publication-title: Journal of Industrial and Engineering Chemistry – volume: 632 year: 2024a article-title: A two‐step bayesian network‐based process sensitivity analysis for complex nitrogen reactive transport modeling publication-title: Journal of Hydrology – year: 2021 – volume: 181 start-page: 145 year: 2018 end-page: 154 article-title: Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed‐bed column: Isotherms, thermodynamic study and breakthrough curves modeling publication-title: Journal of Cleaner Production – volume: 76 start-page: 1229 issue: 4 year: 2012 end-page: 1245 article-title: Estimation of single‐metal and competitive sorption isotherms through maximum likelihood and model quality criteria publication-title: Soil Science Society of America Journal – volume: 46 start-page: 2131 issue: 7 year: 2012 end-page: 2139 article-title: Evidence for the microbially mediated abiotic formation of reversible and non‐reversible sulfamethoxazole transformation products during denitrification publication-title: Water Research – year: 2016 – volume: 204 year: 2021 article-title: Formulation and probabilistic assessment of reversible biodegradation pathway of diclofenac in groundwater publication-title: Water Research – volume: 44 issue: 3 year: 2008 article-title: On model selection criteria in multimodel analysis publication-title: Water Resources Research – volume: 6 issue: A43 year: 2013 article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations publication-title: US geological survey techniques and methods – volume: 209 start-page: 96 issue: 1 year: 2022 end-page: 107 article-title: Synthesis and kinetic modeling of manganese carbonate precipitated from manganese sulfate solution publication-title: Chemical Engineering Communications – volume: 192 start-page: 606 year: 2023 end-page: 621 article-title: Experiments and models for contaminant transport in unsaturated and saturated porous media–a review publication-title: Chemical Engineering Research and Design – volume: 181 start-page: 259 issue: 2 year: 2010 end-page: 270 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Computer Physics Communications – volume: 642 start-page: 914 year: 2018 end-page: 924 article-title: Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge publication-title: Science of the Total Environment – volume: 168 year: 2020 article-title: Modeling the fate of UV filters in subsurface: Co‐Metabolic degradation and the role of biomass in sorption processes publication-title: Water Research – volume: 59 start-page: 39 issue: 1 year: 2009 end-page: 46 article-title: Development of a common priority list of pharmaceuticals relevant for the water cycle publication-title: Water Science and Technology – volume: 60 start-page: 1034 issue: 8 year: 2005 end-page: 1044 article-title: Fate and mobility of pharmaceuticals in solid matrices publication-title: Chemosphere – volume: 1 start-page: 407 year: 1993 end-page: 414 article-title: Sensitivity analysis for non‐linear mathematical models publication-title: Mathematical Modelling in Civil Engineering – year: 2025 – year: 2004 – volume: 47 issue: 7 year: 2011 article-title: Role of model selection criteria in geostatistical inverse estimation of statistical data‐and model‐parameters publication-title: Water Resources Research – year: 2020 – volume: 59 issue: 1 year: 2023 article-title: On multi‐model assessment of complex degradation paths: The fate of diclofenac and its transformation products publication-title: Water Resources Research – volume: 344 year: 2023 article-title: Probabilistic assessment of failure of infiltration structures under model and parametric uncertainty publication-title: Journal of Environmental Management – volume: 105 start-page: 540 year: 2016 end-page: 550 article-title: Fate of sulfamethoxazole in groundwater: Conceptualizing and modeling metabolite formation under different redox conditions publication-title: Water Research – volume: 55 start-page: 271 issue: 1–3 year: 2001 end-page: 280 article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates publication-title: Mathematics and Computers in Simulation – volume: 59 start-page: 4367 issue: 21 year: 1995 end-page: 4379 article-title: Kinetics of Fes precipitation: Part 1. Competing reaction mechanisms publication-title: Geochimica et Cosmochimica Acta – volume: 59 issue: 6 year: 2023 article-title: Posterior assessment of parameters in a time domain random walk model of partitioning tracer tests in two‐phase flow scenarios publication-title: Water Resources Research – volume: 76 start-page: 122 issue: 2 year: 2006 end-page: 159 article-title: Ecotoxicology of human pharmaceuticals publication-title: Aquatic Toxicology – volume: 16 start-page: 132 issue: S1 year: 2009 end-page: 135 article-title: Norman—Network of reference laboratories, research centres and related organisations for monitoring of emerging substances publication-title: Environmental Science and Pollution Research – volume: 47 start-page: 103 issue: 2–5 year: 1998 end-page: 112 article-title: On quasi‐Monte Carlo integrations publication-title: Mathematics and Computers in Simulation – volume: 22 start-page: 199 issue: 2 year: 1986 end-page: 210 article-title: Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information publication-title: Water Resources Research – year: 2015 – volume: 240 start-page: 443 year: 2014 end-page: 453 article-title: Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon publication-title: Chemical engineering journal – ident: e_1_2_11_32_1 doi: 10.1016/j.watres.2016.09.034 – ident: e_1_2_11_31_1 doi: 10.1029/2011WR010480 – ident: e_1_2_11_14_1 doi: 10.2166/wst.2009.764 – ident: e_1_2_11_4_1 doi: 10.1201/9781439833544 – volume: 6 issue: 43 year: 2013 ident: e_1_2_11_27_1 article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations publication-title: US geological survey techniques and methods – ident: e_1_2_11_41_1 doi: 10.1016/S0378‐4754(00)00270‐6 – ident: e_1_2_11_7_1 doi: 10.1016/j.watres.2021.117466 – ident: e_1_2_11_8_1 doi: 10.1029/2022wr033183 – ident: e_1_2_11_6_1 doi: 10.5281/zenodo.14333765 – ident: e_1_2_11_22_1 doi: 10.1016/j.ecolind.2020.106424 – ident: e_1_2_11_3_1 doi: 10.1080/00986445.2020.1839434 – ident: e_1_2_11_35_1 doi: 10.1016/j.cherd.2023.02.022 – ident: e_1_2_11_42_1 doi: 10.1016/j.cej.2013.11.094 – ident: e_1_2_11_2_1 doi: 10.1016/j.petrol.2018.12.079 – ident: e_1_2_11_26_1 doi: 10.1080/17538947.2011.596580 – ident: e_1_2_11_38_1 doi: 10.1016/j.scitotenv.2018.06.120 – ident: e_1_2_11_18_1 doi: 10.1016/j.aquatox.2005.09.009 – ident: e_1_2_11_24_1 doi: 10.1016/S0022‐1694(03)00190‐2 – ident: e_1_2_11_11_1 doi: 10.1016/j.jclepro.2018.01.138 – ident: e_1_2_11_20_1 doi: 10.1029/2022wr033387 – ident: e_1_2_11_23_1 doi: 10.1111/j.1462‐2920.2011.02587.x – ident: e_1_2_11_16_1 doi: 10.1016/j.chemosphere.2005.01.032 – ident: e_1_2_11_21_1 doi: 10.1109/TPAMI.1982.4767213 – volume-title: Calibration and uncertainty analysis for complex environmental models year: 2015 ident: e_1_2_11_15_1 – volume-title: D14.3 in MARSOL demonstrating managed aquifer recharge as a solution to water scarcity and drought year: 2016 ident: e_1_2_11_36_1 – ident: e_1_2_11_10_1 doi: 10.1029/2023WR036096 – ident: e_1_2_11_12_1 doi: 10.1016/j.jenvman.2023.118466 – ident: e_1_2_11_34_1 doi: 10.1016/j.cpc.2009.09.018 – ident: e_1_2_11_40_1 doi: 10.1016/S0378‐4754(98)00096‐2 – ident: e_1_2_11_33_1 doi: 10.1016/j.watres.2019.115192 – ident: e_1_2_11_30_1 doi: 10.1016/0016‐7037(95)00251‐T – ident: e_1_2_11_29_1 – volume: 1 start-page: 407 year: 1993 ident: e_1_2_11_39_1 article-title: Sensitivity analysis for non‐linear mathematical models publication-title: Mathematical Modelling in Civil Engineering – ident: e_1_2_11_5_1 doi: 10.1029/WR022i002p00199 – ident: e_1_2_11_17_1 doi: 10.1007/s11356‐009‐0129‐1 – ident: e_1_2_11_28_1 – ident: e_1_2_11_9_1 doi: 10.1016/j.jhydrol.2024.130903 – ident: e_1_2_11_13_1 doi: 10.5194/hess‐21‐6219‐2017 – ident: e_1_2_11_19_1 doi: 10.2136/sssaj2012.0010 – ident: e_1_2_11_25_1 doi: 10.1016/j.watres.2012.01.028 – volume-title: Water quality related to pharmaceutical and nitrogen compounds during infiltration of treated wastewater for managed aquifer recharge year: 2020 ident: e_1_2_11_37_1 – ident: e_1_2_11_44_1 doi: 10.1029/2008WR006803 – ident: e_1_2_11_43_1 doi: 10.1016/j.jiec.2015.05.018 |
SSID | ssj0014567 |
Score | 2.4719343 |
Snippet | We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a... Abstract We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Calibration Chemical reactions Complexity Contaminants Data interpretation Diclofenac Geochemistry Heterogeneity hydro‐geochemical modeling Modelling Moisture content Nonsteroidal anti-inflammatory drugs Oxidoreductions Parameterization Pore water Porous media reactive transport Redox reactions Sensitivity analysis Soil water sorption Speciation stochastic calibration Stochastic models stochastic processes System dynamics Uncertainty uncertainty quantification Zonation |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BOcAFlS8R2iIjwY2IJHbW8bHttlohgVYLq_Zm-ZNWQgnabA_c-An9jf0lnfFml90LErcosZNo7Jd59mTeALyXI18Zb2xeRhLVjqbIVSTRz0Ja5aJED0T7HV--jiZz8fmyvhw23CgXZqUPsdlwI2Sk7zUB3Nh-EBsgjUxctYuLWcHVqBEP4RFl19I8r8R0E0VAciDXEWZiOsOP79j_03bvHZeUlPt36OY2aU1e53wfng50kR2vxvcZPAjtc3i8zibu8XioYn71-wXYY5byae_-3FKJs59s-jeTkiE5Zd-WnbsypMzMSF9j0QeWGqL7Yl1kY3xGF0NrHBuvCtX37Lpl027R3fSMQjrmJczPz76fTvKhhkLuBOI1b1TVOJwtURo0hgw8RhPQMI3kUjVO2No6WiAHCtk5VxS-NjwIZ0UsfRkMfwV7bdeG18Col1cEehlx0RIbG8woGNIIi9aVdQYf1mbUv1ZSGTqFuCult82dwQnZeNOGBK7TiW7xQw940R5vzr20dVCN8BR7RGcuCs9NFWWpQgaH6xHSA-p6zSuO_ISji83g3eYy4oWCIKYNaCxNBBJpJm9kBh_TyP7zZfXF7HQmkVOXb_6v-QE8qahUcPqz9xD2loubcIT8ZWnfpkl6DyOf51o priority: 102 providerName: Wiley-Blackwell |
Title | A Multi‐Model Perspective for Stochastic Inverse Modeling of Diclofenac Dynamics in Porous Media |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR039684 https://www.proquest.com/docview/3234063429 https://www.proquest.com/docview/3242085387 https://doaj.org/article/dbea3d7b5e984d9799eed40d3a2f719e |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BL3BBpYAILZUrwY2IJHbW8bG0VFUl0Gqham-WP1WkKkGb7aG3_oT-xv4SZpykbC9w6S1KHMV64_E8Z-w3AB_kzFfGG5uXkUS1oylyFUn0s5BWuSgxAtH_jm_fZ8en4uS8Pl8r9UV7wgZ54AG4z94Gw720dVCN8JSEwlldFJ6bKspSBZp9MeZNi6kxf4C0QE65ZeI445b3olK02hdni4KrWSMeBKOk2f-AaK7T1RRvjjbhxUgU2f7QwZfwJLRb8Gw6R9zj9Vi__OL6Fdh9lk7S3t3cUnGzSzb_e4aSIS1lP1aduzCkycxIWWPZB5YaYuBiXWSH-I0uhtY4djiUqO_Zr5bNu2V31TNK5pjXcHr09efBcT5WT8idQE_NG1U1DsdJlAbBkIHHaAIC00guVeOEra2jpXGgZJ1zReFrw4NwVsTSlwj6G9houza8BUZveUXuLiMuV2KDNpkFQ-pg0bqyzuDjBKP-PYhk6JTcrpRehzuDL4TxfRuStk430OB6NLj-n8Ez2JkspEd_6zWvODITjsE1g737x-gplP4wbUCwNFFHJJi8kRl8Spb9Z2f12eJgIZFNl-8eo9vb8Lyi0sFpp-8ObKyWV-E98pmV3YWnlZjvpgH8B_fi8U8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BOZRLxacIFDAS3IhIYieOj6WlWqCtVkur9mb5kyKhpNpsD9z4CfxGfgkz3uyyvSBxixI7icaZzLPH8x7Aa9n4ynhj8zISqXY0Ra4ikX4W0ioXJUYgWu84PmkmZ-LTRX0x6pxSLcySH2K94Eaekf7X5OC0ID2yDRBJJk7bxfms4KppxW24I5pKknZDJabrNAKiA7lKMRPUGXe-Y_93m71vxKRE3X8Db26i1hR2Du_BzogX2d5ygO_DrdA9gO1VOfGAx6OM-eWPh2D3WCqo_f3zF2mcfWfTv6WUDNEp-7Lo3aUhamZGBBvzIbDUEOMX6yM7wGf0MXTGsYOlUv3AvnVs2s_764FRTsc8grPDD6f7k3wUUcidQIfNW1W1Dj-XKA0aQwYeowlomFZyqVonbG0dzZAD5eycKwpfGx6EsyKWvgyGP4atru_CE2DUyyvyehlx1hJbG0wTDJGERevKOoM3KzPqqyVXhk457krpTXNn8J5svG5DDNfpRD__qkeH0R5vzr20dVCt8JR8xGguCs9NFWWpQga7qxHSo9sNmlccAQrHGJvBq_VldBjKgpguoLE0IUjEmbyVGbxNI_vPl9Xns_2ZRFBdPv2_5i9he3J6fKSPPp58fgZ3K9INTtt8d2FrMb8OzxHMLOyL9MH-AavQ6sY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaCXiqdIKWAkuBGRxM46PpYuq_KqVgtVe7P8pJWqpNpsD9z6E_iN_BJmvNlle0HiFiV2Eo09mc_-Mt8AvJYjXxlvbF5GEtWOpshVJNHPQlrlosQIRPsdX49Gh8fi02l9Omy4US7MUh9iveFGnpG-1-Tglz4OYgOkkYmrdnEyK7gaNeI23CG-j2Z4JaZrFgHBgVwxzIR0hh_fsf-7zd43QlJS7r8BNzdBa4o6k_uwM8BFtr8c3wdwK7QP4d4qm7jH46GK-dnPR2D3Wcqn_X39i0qcXbDp30xKhuCUfVt07syQMjMjfY15H1hqiOGLdZGN8RldDK1xbLwsVN-z85ZNu3l31TOidMxjOJ58-H5wmA81FHIn0F_zRlWNw9kSpUFjyMBjNAEN00guVeOEra2jBXIgys65ovC14UE4K2Lpy2D4E9hquzY8BUa9vCKnlxEXLbGxwYyCIY2waF1ZZ_BmZUZ9uZTK0InirpTeNHcG78nG6zYkcJ1OdPMfevAX7fHm3EtbB9UIT9wjBnNReG6qKEsVMthbjZAevK7XvOKITziG2AxerS-jvxAJYtqAxtIEIBFm8kZm8DaN7D9fVp_MDmYSMXW5-3_NX8Ld6Xiiv3w8-vwMtiuqGpx-8t2DrcX8KjxHKLOwL9J8_QNbQen4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi%E2%80%90Model+Perspective+for+Stochastic+Inverse+Modeling+of+Diclofenac+Dynamics+in+Porous+Media&rft.jtitle=Water+resources+research&rft.au=Laura+Ceresa&rft.au=Monica+Riva&rft.au=Alberto+Guadagnini&rft.date=2025-07-01&rft.pub=Wiley&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=61&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024WR039684&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dbea3d7b5e984d9799eed40d3a2f719e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |