A Multi‐Model Perspective for Stochastic Inverse Modeling of Diclofenac Dynamics in Porous Media

We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmac...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 61; no. 7
Main Authors Ceresa, Laura, Riva, Monica, Guadagnini, Alberto
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.07.2025
Wiley
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
DOI10.1029/2024WR039684

Cover

Loading…
Abstract We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) $(a)$ understand dominant processes (and parameters) driving system dynamics and (b) $(b)$ effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface. Key Points We develop a set of reactive transport models to assess the fate of the pharmaceutical diclofenac in a laboratory‐scale soil‐water system Stochastic model calibration is performed through maximum likelihood assisted by global sensitivity analysis in a multi‐model context The relative skill of each model to interpret available data is appraised in a multi‐model context together with predictive uncertainty
AbstractList We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to understand dominant processes (and parameters) driving system dynamics and effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface. We develop a set of reactive transport models to assess the fate of the pharmaceutical diclofenac in a laboratory‐scale soil‐water system Stochastic model calibration is performed through maximum likelihood assisted by global sensitivity analysis in a multi‐model context The relative skill of each model to interpret available data is appraised in a multi‐model context together with predictive uncertainty
We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) $(a)$ understand dominant processes (and parameters) driving system dynamics and (b) $(b)$ effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface.
We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) $(a)$ understand dominant processes (and parameters) driving system dynamics and (b) $(b)$ effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface. Key Points We develop a set of reactive transport models to assess the fate of the pharmaceutical diclofenac in a laboratory‐scale soil‐water system Stochastic model calibration is performed through maximum likelihood assisted by global sensitivity analysis in a multi‐model context The relative skill of each model to interpret available data is appraised in a multi‐model context together with predictive uncertainty
Abstract We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a soil‐water environment mimicked through a laboratory‐scale column hosting a redox zonation and subject to injection of a solution rich in the pharmaceutical diclofenac. Experimental evidences suggest that sorption is a key driver to diclofenac fate, while dissolution‐precipitation and biotic redox reactions control the evolution of speciation patterns in pore water. Resting on these evidences, we develop an original reactive transport model to interpret dynamics of diclofenac in the considered scenario. Our model formulation is characterized by a high parameterization degree. We frame the analysis in a stochastic context and perform model calibration against available data through a maximum likelihood approach driven by global sensitivity analysis. We further develop a set of reduced‐complexity models to explore the potential of diverse formulations to (a) understand dominant processes (and parameters) driving system dynamics and (b) effectively assist stochastic model calibration and ensuing uncertainty quantification. We assess the relative skill of each model to data interpretation through the Kashyap discrimination criterion. We then quantify predictive uncertainty emanating from model inputs to outputs. Our results reveal that the original system model is generally outperformed by its reduced‐complexity counterparts. Our findings also demonstrate that relying on a modeling framework yielding a robust uncertainty quantification associated with estimates of geochemical heterogeneity patterns is key to provide a sound description of the fate of emerging contaminants such as diclofenac as they migrate through the subsurface.
Author Ceresa, Laura
Riva, Monica
Guadagnini, Alberto
Author_xml – sequence: 1
  givenname: Laura
  orcidid: 0000-0002-0156-9552
  surname: Ceresa
  fullname: Ceresa, Laura
  organization: Politecnico di Milano
– sequence: 2
  givenname: Monica
  orcidid: 0000-0002-7304-4114
  surname: Riva
  fullname: Riva, Monica
  email: monica.riva@polimi.it
  organization: Politecnico di Milano
– sequence: 3
  givenname: Alberto
  orcidid: 0000-0003-3959-9690
  surname: Guadagnini
  fullname: Guadagnini, Alberto
  organization: Politecnico di Milano
BookMark eNp9kcuOEzEQRS00SGQCOz7AEhsWNJQfHbeXowyPSBMxCqBZWm67PDjqtIPdGZQdn8A38iWYCUKIBauSqo6uzlWdk7MxjUjIUwYvGXD9igOXNxsQetHJB2TGtJSN0kqckRmAFA0TWj0i56VsAZhsF2pG-gu6PgxT_PHt-zp5HOg15rJHN8U7pCFl-mFK7rMtU3R0Nd7VI9J7MI63NAV6Gd2QAo7W0cvjaHfRFRpHep1yOhS6Rh_tY_Iw2KHgk99zTj69ef1x-a65ev92tby4apwEwZpO886h9UHZaqZQhGCxWnZKKN052be9W2hQCKCEcwC-tQKl62VgnqEVc7I65fpkt2af487mo0k2mvtFyrfG5tpjQOP7ynvVt6g76bXSGtFL8MLyoJjGmvX8lLXP6csBy2R2sTgcBjtiLWYElxy6VlS5OXn2D7pNhzzWppUSEhZCcl2pFyfK5VRKxvBHkIH59Tzz9_MqLk741zjg8b-sudksNwo4MPETXB2dgg
Cites_doi 10.1016/j.watres.2016.09.034
10.1029/2011WR010480
10.2166/wst.2009.764
10.1201/9781439833544
10.1016/S0378‐4754(00)00270‐6
10.1016/j.watres.2021.117466
10.1029/2022wr033183
10.5281/zenodo.14333765
10.1016/j.ecolind.2020.106424
10.1080/00986445.2020.1839434
10.1016/j.cherd.2023.02.022
10.1016/j.cej.2013.11.094
10.1016/j.petrol.2018.12.079
10.1080/17538947.2011.596580
10.1016/j.scitotenv.2018.06.120
10.1016/j.aquatox.2005.09.009
10.1016/S0022‐1694(03)00190‐2
10.1016/j.jclepro.2018.01.138
10.1029/2022wr033387
10.1111/j.1462‐2920.2011.02587.x
10.1016/j.chemosphere.2005.01.032
10.1109/TPAMI.1982.4767213
10.1029/2023WR036096
10.1016/j.jenvman.2023.118466
10.1016/j.cpc.2009.09.018
10.1016/S0378‐4754(98)00096‐2
10.1016/j.watres.2019.115192
10.1016/0016‐7037(95)00251‐T
10.1029/WR022i002p00199
10.1007/s11356‐009‐0129‐1
10.1016/j.jhydrol.2024.130903
10.5194/hess‐21‐6219‐2017
10.2136/sssaj2012.0010
10.1016/j.watres.2012.01.028
10.1029/2008WR006803
10.1016/j.jiec.2015.05.018
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2024WR039684
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Civil Engineering Abstracts
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dbea3d7b5e984d9799eed40d3a2f719e
10_1029_2024WR039684
WRCR70201
Genre researchArticle
GrantInformation_xml – fundername: RETURN—multi‐Risk sciEnce for resilienT commUnities undeR a changiNg climate
  funderid: PE0000005
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-c4031-8928ceadf7a5677e3ffae145873798c4b5bc6907e0073cc00d5a3e4cb4f1d1ea3
IEDL.DBID DOA
ISSN 0043-1397
IngestDate Wed Aug 27 01:24:16 EDT 2025
Fri Aug 22 20:18:13 EDT 2025
Fri Aug 01 05:21:45 EDT 2025
Thu Jul 31 00:06:56 EDT 2025
Tue Jul 29 10:40:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4031-8928ceadf7a5677e3ffae145873798c4b5bc6907e0073cc00d5a3e4cb4f1d1ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7304-4114
0000-0002-0156-9552
0000-0003-3959-9690
OpenAccessLink https://doaj.org/article/dbea3d7b5e984d9799eed40d3a2f719e
PQID 3234063429
PQPubID 105507
PageCount 34
ParticipantIDs doaj_primary_oai_doaj_org_article_dbea3d7b5e984d9799eed40d3a2f719e
proquest_miscellaneous_3242085387
proquest_journals_3234063429
crossref_primary_10_1029_2024WR039684
wiley_primary_10_1029_2024WR039684_WRCR70201
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
20250701
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 181
2023; 59
2006; 76
1995; 59
2023; 344
2021; 204
2017; 21
2015; 30
2018; 642
2011; 13
2004
2016; 105
2025
2005; 60
2020; 168
2010; 181
2011; 4
1993; 1
2013; 6
2012; 76
1998; 47
2023; 192
2024b; 60
2021
1986; 22
2020
2024a; 632
2020; 115
2003; 281
2016
2015
1982
2008; 44
2022; 209
2011; 47
2001; 55
2012; 46
2014; 240
2009; 16
2009; 59
2019; 175
Silver M. (e_1_2_11_36_1) 2016
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
Sobol I. M. (e_1_2_11_39_1) 1993; 1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Parkhurst D. L. (e_1_2_11_27_1) 2013; 6
Doherty J. (e_1_2_11_15_1) 2015
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
Silver M. (e_1_2_11_37_1) 2020
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_38_1
e_1_2_11_19_1
References_xml – volume: 115
  year: 2020
  article-title: Probabilistic indicators for soil and groundwater contamination risk assessment
  publication-title: Ecological Indicators
– start-page: 99
  issue: 2
  year: 1982
  end-page: 104
  article-title: Optimal choice of ar and ma parts in autoregressive moving average models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 281
  start-page: 251
  issue: 4
  year: 2003
  end-page: 264
  article-title: Geostatistical inversion of coupled problems: Dealing with computational burden and different types of data
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 434
  issue: 5
  year: 2011
  end-page: 443
  article-title: European Digital Archive on Soil Maps (EUDASM): Preserving important soil data for public free access
  publication-title: International Journal of Digital Earth
– volume: 175
  start-page: 785
  year: 2019
  end-page: 803
  article-title: A review of reactive transport modeling in wellbore integrity problems
  publication-title: Journal of Petroleum Science and Engineering
– volume: 13
  start-page: 3275
  issue: 12
  year: 2011
  end-page: 3288
  article-title: Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction
  publication-title: Environmental Microbiology
– volume: 21
  start-page: 6219
  issue: 12
  year: 2017
  end-page: 6234
  article-title: Moment‐based metrics for global sensitivity analysis of hydrological systems
  publication-title: Hydrology and Earth System Sciences
– volume: 60
  issue: 2
  year: 2024b
  article-title: Comparative assessment of two global sensitivity approaches considering model and parameter uncertainty
  publication-title: Water Resources Research
– volume: 30
  start-page: 167
  year: 2015
  end-page: 173
  article-title: Hybrid materials in the removal of diclofenac sodium from aqueous solutions: Batch and column studies
  publication-title: Journal of Industrial and Engineering Chemistry
– volume: 632
  year: 2024a
  article-title: A two‐step bayesian network‐based process sensitivity analysis for complex nitrogen reactive transport modeling
  publication-title: Journal of Hydrology
– year: 2021
– volume: 181
  start-page: 145
  year: 2018
  end-page: 154
  article-title: Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed‐bed column: Isotherms, thermodynamic study and breakthrough curves modeling
  publication-title: Journal of Cleaner Production
– volume: 76
  start-page: 1229
  issue: 4
  year: 2012
  end-page: 1245
  article-title: Estimation of single‐metal and competitive sorption isotherms through maximum likelihood and model quality criteria
  publication-title: Soil Science Society of America Journal
– volume: 46
  start-page: 2131
  issue: 7
  year: 2012
  end-page: 2139
  article-title: Evidence for the microbially mediated abiotic formation of reversible and non‐reversible sulfamethoxazole transformation products during denitrification
  publication-title: Water Research
– year: 2016
– volume: 204
  year: 2021
  article-title: Formulation and probabilistic assessment of reversible biodegradation pathway of diclofenac in groundwater
  publication-title: Water Research
– volume: 44
  issue: 3
  year: 2008
  article-title: On model selection criteria in multimodel analysis
  publication-title: Water Resources Research
– volume: 6
  issue: A43
  year: 2013
  article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations
  publication-title: US geological survey techniques and methods
– volume: 209
  start-page: 96
  issue: 1
  year: 2022
  end-page: 107
  article-title: Synthesis and kinetic modeling of manganese carbonate precipitated from manganese sulfate solution
  publication-title: Chemical Engineering Communications
– volume: 192
  start-page: 606
  year: 2023
  end-page: 621
  article-title: Experiments and models for contaminant transport in unsaturated and saturated porous media–a review
  publication-title: Chemical Engineering Research and Design
– volume: 181
  start-page: 259
  issue: 2
  year: 2010
  end-page: 270
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Computer Physics Communications
– volume: 642
  start-page: 914
  year: 2018
  end-page: 924
  article-title: Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge
  publication-title: Science of the Total Environment
– volume: 168
  year: 2020
  article-title: Modeling the fate of UV filters in subsurface: Co‐Metabolic degradation and the role of biomass in sorption processes
  publication-title: Water Research
– volume: 59
  start-page: 39
  issue: 1
  year: 2009
  end-page: 46
  article-title: Development of a common priority list of pharmaceuticals relevant for the water cycle
  publication-title: Water Science and Technology
– volume: 60
  start-page: 1034
  issue: 8
  year: 2005
  end-page: 1044
  article-title: Fate and mobility of pharmaceuticals in solid matrices
  publication-title: Chemosphere
– volume: 1
  start-page: 407
  year: 1993
  end-page: 414
  article-title: Sensitivity analysis for non‐linear mathematical models
  publication-title: Mathematical Modelling in Civil Engineering
– year: 2025
– year: 2004
– volume: 47
  issue: 7
  year: 2011
  article-title: Role of model selection criteria in geostatistical inverse estimation of statistical data‐and model‐parameters
  publication-title: Water Resources Research
– year: 2020
– volume: 59
  issue: 1
  year: 2023
  article-title: On multi‐model assessment of complex degradation paths: The fate of diclofenac and its transformation products
  publication-title: Water Resources Research
– volume: 344
  year: 2023
  article-title: Probabilistic assessment of failure of infiltration structures under model and parametric uncertainty
  publication-title: Journal of Environmental Management
– volume: 105
  start-page: 540
  year: 2016
  end-page: 550
  article-title: Fate of sulfamethoxazole in groundwater: Conceptualizing and modeling metabolite formation under different redox conditions
  publication-title: Water Research
– volume: 55
  start-page: 271
  issue: 1–3
  year: 2001
  end-page: 280
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Mathematics and Computers in Simulation
– volume: 59
  start-page: 4367
  issue: 21
  year: 1995
  end-page: 4379
  article-title: Kinetics of Fes precipitation: Part 1. Competing reaction mechanisms
  publication-title: Geochimica et Cosmochimica Acta
– volume: 59
  issue: 6
  year: 2023
  article-title: Posterior assessment of parameters in a time domain random walk model of partitioning tracer tests in two‐phase flow scenarios
  publication-title: Water Resources Research
– volume: 76
  start-page: 122
  issue: 2
  year: 2006
  end-page: 159
  article-title: Ecotoxicology of human pharmaceuticals
  publication-title: Aquatic Toxicology
– volume: 16
  start-page: 132
  issue: S1
  year: 2009
  end-page: 135
  article-title: Norman—Network of reference laboratories, research centres and related organisations for monitoring of emerging substances
  publication-title: Environmental Science and Pollution Research
– volume: 47
  start-page: 103
  issue: 2–5
  year: 1998
  end-page: 112
  article-title: On quasi‐Monte Carlo integrations
  publication-title: Mathematics and Computers in Simulation
– volume: 22
  start-page: 199
  issue: 2
  year: 1986
  end-page: 210
  article-title: Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information
  publication-title: Water Resources Research
– year: 2015
– volume: 240
  start-page: 443
  year: 2014
  end-page: 453
  article-title: Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon
  publication-title: Chemical engineering journal
– ident: e_1_2_11_32_1
  doi: 10.1016/j.watres.2016.09.034
– ident: e_1_2_11_31_1
  doi: 10.1029/2011WR010480
– ident: e_1_2_11_14_1
  doi: 10.2166/wst.2009.764
– ident: e_1_2_11_4_1
  doi: 10.1201/9781439833544
– volume: 6
  issue: 43
  year: 2013
  ident: e_1_2_11_27_1
  article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations
  publication-title: US geological survey techniques and methods
– ident: e_1_2_11_41_1
  doi: 10.1016/S0378‐4754(00)00270‐6
– ident: e_1_2_11_7_1
  doi: 10.1016/j.watres.2021.117466
– ident: e_1_2_11_8_1
  doi: 10.1029/2022wr033183
– ident: e_1_2_11_6_1
  doi: 10.5281/zenodo.14333765
– ident: e_1_2_11_22_1
  doi: 10.1016/j.ecolind.2020.106424
– ident: e_1_2_11_3_1
  doi: 10.1080/00986445.2020.1839434
– ident: e_1_2_11_35_1
  doi: 10.1016/j.cherd.2023.02.022
– ident: e_1_2_11_42_1
  doi: 10.1016/j.cej.2013.11.094
– ident: e_1_2_11_2_1
  doi: 10.1016/j.petrol.2018.12.079
– ident: e_1_2_11_26_1
  doi: 10.1080/17538947.2011.596580
– ident: e_1_2_11_38_1
  doi: 10.1016/j.scitotenv.2018.06.120
– ident: e_1_2_11_18_1
  doi: 10.1016/j.aquatox.2005.09.009
– ident: e_1_2_11_24_1
  doi: 10.1016/S0022‐1694(03)00190‐2
– ident: e_1_2_11_11_1
  doi: 10.1016/j.jclepro.2018.01.138
– ident: e_1_2_11_20_1
  doi: 10.1029/2022wr033387
– ident: e_1_2_11_23_1
  doi: 10.1111/j.1462‐2920.2011.02587.x
– ident: e_1_2_11_16_1
  doi: 10.1016/j.chemosphere.2005.01.032
– ident: e_1_2_11_21_1
  doi: 10.1109/TPAMI.1982.4767213
– volume-title: Calibration and uncertainty analysis for complex environmental models
  year: 2015
  ident: e_1_2_11_15_1
– volume-title: D14.3 in MARSOL demonstrating managed aquifer recharge as a solution to water scarcity and drought
  year: 2016
  ident: e_1_2_11_36_1
– ident: e_1_2_11_10_1
  doi: 10.1029/2023WR036096
– ident: e_1_2_11_12_1
  doi: 10.1016/j.jenvman.2023.118466
– ident: e_1_2_11_34_1
  doi: 10.1016/j.cpc.2009.09.018
– ident: e_1_2_11_40_1
  doi: 10.1016/S0378‐4754(98)00096‐2
– ident: e_1_2_11_33_1
  doi: 10.1016/j.watres.2019.115192
– ident: e_1_2_11_30_1
  doi: 10.1016/0016‐7037(95)00251‐T
– ident: e_1_2_11_29_1
– volume: 1
  start-page: 407
  year: 1993
  ident: e_1_2_11_39_1
  article-title: Sensitivity analysis for non‐linear mathematical models
  publication-title: Mathematical Modelling in Civil Engineering
– ident: e_1_2_11_5_1
  doi: 10.1029/WR022i002p00199
– ident: e_1_2_11_17_1
  doi: 10.1007/s11356‐009‐0129‐1
– ident: e_1_2_11_28_1
– ident: e_1_2_11_9_1
  doi: 10.1016/j.jhydrol.2024.130903
– ident: e_1_2_11_13_1
  doi: 10.5194/hess‐21‐6219‐2017
– ident: e_1_2_11_19_1
  doi: 10.2136/sssaj2012.0010
– ident: e_1_2_11_25_1
  doi: 10.1016/j.watres.2012.01.028
– volume-title: Water quality related to pharmaceutical and nitrogen compounds during infiltration of treated wastewater for managed aquifer recharge
  year: 2020
  ident: e_1_2_11_37_1
– ident: e_1_2_11_44_1
  doi: 10.1029/2008WR006803
– ident: e_1_2_11_43_1
  doi: 10.1016/j.jiec.2015.05.018
SSID ssj0014567
Score 2.4719343
Snippet We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a...
Abstract We analyze and model the dynamics of a complex hydro‐geochemical system associated with a variety of physico‐chemical processes. These take place in a...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Calibration
Chemical reactions
Complexity
Contaminants
Data interpretation
Diclofenac
Geochemistry
Heterogeneity
hydro‐geochemical modeling
Modelling
Moisture content
Nonsteroidal anti-inflammatory drugs
Oxidoreductions
Parameterization
Pore water
Porous media
reactive transport
Redox reactions
Sensitivity analysis
Soil water
sorption
Speciation
stochastic calibration
Stochastic models
stochastic processes
System dynamics
Uncertainty
uncertainty quantification
Zonation
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BOcAFlS8R2iIjwY2IJHbW8bHttlohgVYLq_Zm-ZNWQgnabA_c-An9jf0lnfFml90LErcosZNo7Jd59mTeALyXI18Zb2xeRhLVjqbIVSTRz0Ja5aJED0T7HV--jiZz8fmyvhw23CgXZqUPsdlwI2Sk7zUB3Nh-EBsgjUxctYuLWcHVqBEP4RFl19I8r8R0E0VAciDXEWZiOsOP79j_03bvHZeUlPt36OY2aU1e53wfng50kR2vxvcZPAjtc3i8zibu8XioYn71-wXYY5byae_-3FKJs59s-jeTkiE5Zd-WnbsypMzMSF9j0QeWGqL7Yl1kY3xGF0NrHBuvCtX37Lpl027R3fSMQjrmJczPz76fTvKhhkLuBOI1b1TVOJwtURo0hgw8RhPQMI3kUjVO2No6WiAHCtk5VxS-NjwIZ0UsfRkMfwV7bdeG18Col1cEehlx0RIbG8woGNIIi9aVdQYf1mbUv1ZSGTqFuCult82dwQnZeNOGBK7TiW7xQw940R5vzr20dVCN8BR7RGcuCs9NFWWpQgaH6xHSA-p6zSuO_ISji83g3eYy4oWCIKYNaCxNBBJpJm9kBh_TyP7zZfXF7HQmkVOXb_6v-QE8qahUcPqz9xD2loubcIT8ZWnfpkl6DyOf51o
  priority: 102
  providerName: Wiley-Blackwell
Title A Multi‐Model Perspective for Stochastic Inverse Modeling of Diclofenac Dynamics in Porous Media
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR039684
https://www.proquest.com/docview/3234063429
https://www.proquest.com/docview/3242085387
https://doaj.org/article/dbea3d7b5e984d9799eed40d3a2f719e
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BL3BBpYAILZUrwY2IJHbW8bG0VFUl0Gqham-WP1WkKkGb7aG3_oT-xv4SZpykbC9w6S1KHMV64_E8Z-w3AB_kzFfGG5uXkUS1oylyFUn0s5BWuSgxAtH_jm_fZ8en4uS8Pl8r9UV7wgZ54AG4z94Gw720dVCN8JSEwlldFJ6bKspSBZp9MeZNi6kxf4C0QE65ZeI445b3olK02hdni4KrWSMeBKOk2f-AaK7T1RRvjjbhxUgU2f7QwZfwJLRb8Gw6R9zj9Vi__OL6Fdh9lk7S3t3cUnGzSzb_e4aSIS1lP1aduzCkycxIWWPZB5YaYuBiXWSH-I0uhtY4djiUqO_Zr5bNu2V31TNK5pjXcHr09efBcT5WT8idQE_NG1U1DsdJlAbBkIHHaAIC00guVeOEra2jpXGgZJ1zReFrw4NwVsTSlwj6G9houza8BUZveUXuLiMuV2KDNpkFQ-pg0bqyzuDjBKP-PYhk6JTcrpRehzuDL4TxfRuStk430OB6NLj-n8Ez2JkspEd_6zWvODITjsE1g737x-gplP4wbUCwNFFHJJi8kRl8Spb9Z2f12eJgIZFNl-8eo9vb8Lyi0sFpp-8ObKyWV-E98pmV3YWnlZjvpgH8B_fi8U8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BOZRLxacIFDAS3IhIYieOj6WlWqCtVkur9mb5kyKhpNpsD9z4CfxGfgkz3uyyvSBxixI7icaZzLPH8x7Aa9n4ynhj8zISqXY0Ra4ikX4W0ioXJUYgWu84PmkmZ-LTRX0x6pxSLcySH2K94Eaekf7X5OC0ID2yDRBJJk7bxfms4KppxW24I5pKknZDJabrNAKiA7lKMRPUGXe-Y_93m71vxKRE3X8Db26i1hR2Du_BzogX2d5ygO_DrdA9gO1VOfGAx6OM-eWPh2D3WCqo_f3zF2mcfWfTv6WUDNEp-7Lo3aUhamZGBBvzIbDUEOMX6yM7wGf0MXTGsYOlUv3AvnVs2s_764FRTsc8grPDD6f7k3wUUcidQIfNW1W1Dj-XKA0aQwYeowlomFZyqVonbG0dzZAD5eycKwpfGx6EsyKWvgyGP4atru_CE2DUyyvyehlx1hJbG0wTDJGERevKOoM3KzPqqyVXhk457krpTXNn8J5svG5DDNfpRD__qkeH0R5vzr20dVCt8JR8xGguCs9NFWWpQga7qxHSo9sNmlccAQrHGJvBq_VldBjKgpguoLE0IUjEmbyVGbxNI_vPl9Xns_2ZRFBdPv2_5i9he3J6fKSPPp58fgZ3K9INTtt8d2FrMb8OzxHMLOyL9MH-AavQ6sY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaCXiqdIKWAkuBGRxM46PpYuq_KqVgtVe7P8pJWqpNpsD9z6E_iN_BJmvNlle0HiFiV2Eo09mc_-Mt8AvJYjXxlvbF5GEtWOpshVJNHPQlrlosQIRPsdX49Gh8fi02l9Omy4US7MUh9iveFGnpG-1-Tglz4OYgOkkYmrdnEyK7gaNeI23CG-j2Z4JaZrFgHBgVwxzIR0hh_fsf-7zd43QlJS7r8BNzdBa4o6k_uwM8BFtr8c3wdwK7QP4d4qm7jH46GK-dnPR2D3Wcqn_X39i0qcXbDp30xKhuCUfVt07syQMjMjfY15H1hqiOGLdZGN8RldDK1xbLwsVN-z85ZNu3l31TOidMxjOJ58-H5wmA81FHIn0F_zRlWNw9kSpUFjyMBjNAEN00guVeOEra2jBXIgys65ovC14UE4K2Lpy2D4E9hquzY8BUa9vCKnlxEXLbGxwYyCIY2waF1ZZ_BmZUZ9uZTK0InirpTeNHcG78nG6zYkcJ1OdPMfevAX7fHm3EtbB9UIT9wjBnNReG6qKEsVMthbjZAevK7XvOKITziG2AxerS-jvxAJYtqAxtIEIBFm8kZm8DaN7D9fVp_MDmYSMXW5-3_NX8Ld6Xiiv3w8-vwMtiuqGpx-8t2DrcX8KjxHKLOwL9J8_QNbQen4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi%E2%80%90Model+Perspective+for+Stochastic+Inverse+Modeling+of+Diclofenac+Dynamics+in+Porous+Media&rft.jtitle=Water+resources+research&rft.au=Laura+Ceresa&rft.au=Monica+Riva&rft.au=Alberto+Guadagnini&rft.date=2025-07-01&rft.pub=Wiley&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=61&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024WR039684&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dbea3d7b5e984d9799eed40d3a2f719e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon