Recent advances of non‐fullerene organic solar cells: From materials and morphology to devices and applications
The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from I...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 5; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization.
Non‐fullerene organic solar cells (NFA‐OSCs) have seen massive progress in power conversion efficiencies surpassing 19%, benefiting from material innovation and device engineering. Moreover, NFA‐OSCs show great potential for promising applications, such as semitransparent and flexible photovoltaic technology. This review outlines the latest progress of NFA‐OSCs, with a focus on Y‐series, NFAs covering from material and morphology to devices and applications. |
---|---|
AbstractList | The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. image Abstract The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. Non‐fullerene organic solar cells (NFA‐OSCs) have seen massive progress in power conversion efficiencies surpassing 19%, benefiting from material innovation and device engineering. Moreover, NFA‐OSCs show great potential for promising applications, such as semitransparent and flexible photovoltaic technology. This review outlines the latest progress of NFA‐OSCs, with a focus on Y‐series, NFAs covering from material and morphology to devices and applications. |
Author | Li, Gang Zhang, Ying Lang, Yongwen |
Author_xml | – sequence: 1 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University – sequence: 2 givenname: Yongwen surname: Lang fullname: Lang, Yongwen organization: Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University – sequence: 3 givenname: Gang orcidid: 0000-0001-8399-7771 surname: Li fullname: Li, Gang email: gang.w.li@polyu.edu.hk organization: Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University |
BookMark | eNp9kd9qFTEQxhdpwVp74xMEvBNOzf_d9U5KWwuVgtTrMCazNYdssk32VM6dj9Bn7JM056yIiHiVIfm-32Tme9UcxBSxad4wesoo5e8xjfyUcd6xF80RV7pdCdaKgz_ql81JKWtaxYpKLtlRc_8FLcaZgHuAaLGQNJCKffr5OGxCwIwRScp3EL0lJQXIxGII5QO5yGkkI8yYPYRCIDoypjx9TyHdbcmciMMHvwPuXmCagrcw-xTL6-ZwqA48-XUeN18vzm_PPq2uby6vzj5er6ykgq06QSlYpB3tWqjjOd0JJalSyKnVg2hbKhn2FoVAp5FjL3onsGOSOQnciePmauG6BGszZT9C3poE3uwv6lAG8uxtQANWaSG10INuJR0ApKC6t98cUMErt7LeLqwpp_sNltms0ybH-n3DW6WE7FQvqurdorI5lZJx-N2VUbNLyOwSMvuEqpj-JbZ-3m9ozuDDvy1ssfzwAbf_gZvzm8988TwDIYekyw |
CitedBy_id | crossref_primary_10_1002_solr_202400730 crossref_primary_10_1021_acs_jpca_4c04756 crossref_primary_10_3390_en16165868 crossref_primary_10_1021_acs_energyfuels_5c00379 crossref_primary_10_1142_S0218625X25300096 crossref_primary_10_1002_adma_202312311 crossref_primary_10_3390_molecules29225370 crossref_primary_10_1088_2058_8585_ad7ece crossref_primary_10_1016_j_jssc_2024_125152 crossref_primary_10_1039_D3CS00492A crossref_primary_10_1002_inf2_12530 crossref_primary_10_1002_aenm_202302273 crossref_primary_10_3390_ma17081875 crossref_primary_10_1002_adom_202203129 crossref_primary_10_1002_solr_202400567 crossref_primary_10_1002_cplu_202400267 crossref_primary_10_1039_D3TC01180A crossref_primary_10_1016_j_fmre_2023_03_010 crossref_primary_10_1002_ajoc_202300377 crossref_primary_10_1016_j_jiec_2025_02_022 crossref_primary_10_1002_adfm_202302520 crossref_primary_10_1016_j_mtener_2024_101591 crossref_primary_10_1002_adfm_202408960 crossref_primary_10_3390_polym17010115 crossref_primary_10_1016_j_orgel_2025_107226 crossref_primary_10_1142_S2737416523420097 crossref_primary_10_1007_s10008_024_06054_7 crossref_primary_10_1016_j_joule_2023_12_009 crossref_primary_10_1016_j_jsamd_2023_100614 crossref_primary_10_1002_adma_202302005 crossref_primary_10_3390_polym15081875 crossref_primary_10_1016_j_orgel_2023_106864 crossref_primary_10_1021_acsaem_4c02155 crossref_primary_10_1002_slct_202401831 crossref_primary_10_1039_D3EE02527F crossref_primary_10_1016_j_solener_2024_112617 crossref_primary_10_1002_solr_202300751 crossref_primary_10_1002_aenm_202402920 crossref_primary_10_1002_cey2_579 crossref_primary_10_1002_smll_202412230 crossref_primary_10_1002_adma_202301231 crossref_primary_10_3390_molecules28196968 crossref_primary_10_1002_solr_202400864 crossref_primary_10_1002_adma_202409212 crossref_primary_10_1002_aenm_202301965 crossref_primary_10_1039_D3TC04516A crossref_primary_10_1039_D3RA06817J crossref_primary_10_1039_D4EE06027J crossref_primary_10_3390_polym16111496 crossref_primary_10_1002_adma_202407271 crossref_primary_10_1002_ejoc_202400211 crossref_primary_10_1080_25740881_2024_2391379 crossref_primary_10_1002_jccs_202300326 crossref_primary_10_1016_j_orgel_2024_107060 crossref_primary_10_1002_advs_202413051 crossref_primary_10_1007_s00894_024_06120_x crossref_primary_10_1002_adfm_202406200 crossref_primary_10_2174_0115734137268768230919170012 crossref_primary_10_1002_adma_202302452 crossref_primary_10_1002_adma_202406949 crossref_primary_10_1002_adma_202413270 crossref_primary_10_1134_S0018143924700644 |
Cites_doi | 10.1002/aenm.201900376 10.1016/j.joule.2022.06.009 10.1002/adma.201302563 10.1002/aenm.202200453 10.1002/adma.201700254 10.1038/s41467‐020‐17867‐1 10.1002/adma.202005386 10.1039/D1EE01957K 10.1038/s41467‐021‐25718‐w 10.1021/jacs.0c08557 10.1039/C9MH00379G 10.1038/nmat4797 10.1002/eom2.12061 10.1021/acs.chemrev.7b00535 10.1002/adma.200901819 10.1021/jacs.0c07083 10.1002/adfm.201804479 10.1016/j.joule.2021.06.020 10.1016/S0379‐6779(97)80097‐5 10.1016/j.joule.2018.02.010 10.1088/0957‐4484/20/16/165202 10.1002/ente.201402192 10.1002/adma.201205337 10.1016/j.joule.2019.01.004 10.1002/advs.201903259 10.1002/adma.201908205 10.1002/adma.202103017 10.1039/D0EE04012F 10.1002/agt2.58 10.1038/ncomms6293 10.1002/adma.201908478 10.1002/adma.200701101 10.1021/acsenergylett.0c00537 10.1038/s41467‐019‐10098‐z 10.1021/cr400353v 10.1016/j.joule.2020.07.028 10.1038/natrevmats.2017.43 10.1039/D1QM00060H 10.1038/nmat1500 10.1002/adma.201502827 10.1016/j.solmat.2004.02.030 10.1016/j.joule.2020.03.023 10.1016/j.joule.2019.09.009 10.1016/j.chempr.2016.07.010 10.1002/adma.201704837 10.1002/adfm.202010172 10.1016/j.joule.2018.06.006 10.1021/nn3029327 10.1063/1.96937 10.1021/jacs.2c01503 10.1038/s41566‐018‐0104‐9 10.1038/s41467‐021‐25148‐8 10.1002/aenm.201601094 10.1038/s41467‐019‐08386‐9 10.1002/adma.202105114 10.1021/jacs.6b12755 10.31635/ccschem.021.202100956 10.1002/anie.202009666 10.1088/1674‐4926/42/8/080301 10.1021/acsenergylett.9b00528 10.1002/adfm.200400016 10.1038/ncomms8083 10.1016/j.joule.2021.02.002 10.1146/annurev.matsci.35.102103.090513 10.1016/j.solmat.2014.05.049 10.1021/jacs.5b00305 10.1021/jacs.7b02677 10.1038/s41563‐022‐01244‐y 10.1002/inf2.12270 10.1039/C8EE01564C 10.1002/aenm.202002653 10.1016/j.mattod.2022.04.005 10.1038/nenergy.2016.118 10.1002/adfm.201200608 10.1016/j.joule.2018.04.005 10.1016/j.joule.2018.11.006 10.1002/solr.202000638 10.1002/adma.201305645 10.1038/s41560‐021‐00820‐x 10.1016/j.scib.2019.09.016 10.1093/nsr/nwab121 10.1038/s41563‐017‐0005‐1 10.1038/nphoton.2012.11 10.1039/C5CS00593K 10.1002/adfm.201002290 10.1039/C8EE01150H 10.1002/adma.201805089 10.1002/aenm.202100378 10.1007/s11426‐019‐9599‐1 10.1002/adma.202106732 10.1002/adma.200903528 10.1021/ma0618732 10.1002/adma.202005348 10.1002/adma.201602642 10.1063/1.3211850 10.1038/s41467‐021‐25638‐9 10.1126/science.270.5243.1789 10.1039/C9TA07417A 10.1002/adma.202105301 10.1016/j.nanoen.2020.104718 10.1038/s41560‐020‐00732‐2 10.1063/5.0027948 10.1038/nenergy.2015.27 10.1038/natrevmats.2018.3 10.1002/adma.201502110 10.1002/cjoc.202000696 10.1002/anie.202116111 10.1002/adma.202007231 10.1126/science.258.5087.1474 10.1016/j.joule.2018.09.001 10.1002/adma.202105943 10.1002/aenm.202003576 10.1002/adfm.202201142 10.1002/aenm.201800002 10.1016/j.solmat.2012.07.004 10.1002/adma.201701308 10.1021/accountsmr.0c00033 10.1016/j.orgel.2022.106436 10.1002/anie.201707678 10.31635/ccschem.022.202201963 10.1002/nano.202000012 10.1002/adma.200501717 10.1002/adma.201800613 10.1038/nphoton.2013.207 10.1016/j.joule.2021.04.007 10.1002/adma.201903441 10.1103/RevModPhys.75.949 10.1002/adfm.201910466 10.1038/s41578‐019‐0093‐4 10.1002/adma.201600281 10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N 10.1038/s41467‐018‐07017‐z 10.1002/aenm.202001076 10.1039/D1TA01135A 10.1038/s41560‐018‐0181‐5 10.1002/adfm.200600624 10.1002/anie.202016265 10.1039/D0EE01896A 10.1002/adma.202003891 10.1038/nature02498 10.1021/jacsau.1c00064 10.1016/j.joule.2019.03.020 10.1002/adma.201602776 10.1021/jacs.5b03449 10.1002/adma.202102420 10.1039/C9EE03710A 10.1002/aenm.201700084 10.1002/aenm.201402020 10.20517/energymater.2021.08 10.1038/nmat5063 10.1016/j.joule.2020.03.019 10.1021/jacs.6b02004 10.1038/s41563‐018‐0128‐z 10.1002/solr.201900385 10.1002/aenm.201703147 10.1117/1.JPE.9.045502 10.1038/s41467‐020‐16621‐x 10.1063/1.2212270 10.1021/acsenergylett.0c01927 10.1039/c3ee40860d 10.1002/aenm.201904234 10.1038/nphoton.2015.9 10.1039/C0CP01178A 10.1021/cr900182s 10.1038/ncomms14541 10.1016/j.joule.2020.02.012 10.1038/ncomms7013 10.1038/s41563‐020‐00872‐6 10.1016/j.mtadv.2021.100154 10.1002/adma.201902899 10.1038/s41560‐021‐00923‐5 10.1039/D1TC03655F 10.1002/adma.201703906 10.1016/j.nanoen.2019.01.082 10.1088/0957‐4484/25/29/295401 10.1021/jacs.6b00853 10.1038/nphoton.2009.192 10.1002/adma.202107476 10.1002/adma.201908305 10.1016/j.joule.2020.02.004 10.1002/adma.201304187 10.1021/cr3001109 10.1002/adfm.200500211 10.1002/adma.202107659 10.1038/nmat2399 10.1016/j.joule.2018.11.023 10.1038/s41467‐019‐13292‐1 10.1002/adma.202001621 10.1016/j.joule.2020.01.014 10.1016/j.scib.2020.01.001 10.1063/1.3567516 10.1021/acs.chemrev.6b00176 10.1002/adma.201404317 10.1016/j.joule.2022.02.006 10.1021/nl202320r 10.1002/aenm.201700770 10.1002/adfm.200701459 10.1039/C9TA09961A |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1002/eom2.12281 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database (subscripiton) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ac5634636f6740faa43069cbda032939 10_1002_eom2_12281 EOM212281 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Hong Kong Polytechnic University – fundername: Shenzhen Science and Technology Innovation Commission funderid: JCYJ 20200109105003940 – fundername: Sir Sze‐yuen Chung Endowed Professorship Fund funderid: 8‐8480 – fundername: Research Grants Council of Hong Kong funderid: C5037‐18G; 15221320 – fundername: Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and Devices funderid: 2019B121205001 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4031-8300ace08087a100d68354055e20c6f377041e9ce33ed6e2e939d3e8141d4a2d3 |
IEDL.DBID | BENPR |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:11:10 EDT 2025 Wed Aug 13 06:15:48 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Tue Jul 01 02:50:13 EDT 2025 Wed Jan 22 16:25:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4031-8300ace08087a100d68354055e20c6f377041e9ce33ed6e2e939d3e8141d4a2d3 |
Notes | Funding information Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and Devices, Grant/Award Number: 2019B121205001; Hong Kong Polytechnic University; Sir Sze‐yuen Chung Endowed Professorship Fund, Grant/Award Number: 8‐8480; Shenzhen Science and Technology Innovation Commission, Grant/Award Number: JCYJ 20200109105003940; Research Grants Council of Hong Kong, Grant/Award Numbers: C5037‐18G, 15221320 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8399-7771 |
OpenAccessLink | https://www.proquest.com/docview/2755348593?pq-origsite=%requestingapplication% |
PQID | 2755348593 |
PQPubID | 5066170 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac5634636f6740faa43069cbda032939 proquest_journals_2755348593 crossref_primary_10_1002_eom2_12281 crossref_citationtrail_10_1002_eom2_12281 wiley_primary_10_1002_eom2_12281_EOM212281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2002; 14 2019; 10 2014; 26 2014; 25 2020; 13 2022; 21 2020; 11 2020; 10 2013; 7 2014; 130 2013; 6 2010; 22 2018; 9 2018; 8 2018; 3 2018; 2 2015; 137 2022; 34 2018; 30 2022; 32 2008; 20 2007; 1 2012; 22 2016; 45 2019; 7 2019; 9 2018; 28 2019; 4 2019; 3 2021; 42 2019; 6 2019; 31 2004; 49 2020; 142 2020; 32 2012; 107 1995; 270 2017; 139 2021; 58 2016; 6 2018; 17 2016; 1 2012; 112 2022; 4 2020; 30 2018; 118 2022; 6 1992; 258 2017; 56 2022; 12 2005; 4 2018; 12 2005; 15 2016; 28 2018; 11 2021; 60 2009; 109 2022; 102 2009; 106 2017; 7 2017; 8 2013; 25 2017; 2 2021; 20 1997; 87 2019; 58 2011; 11 2011; 98 2011; 13 2020; 8 2020; 7 2020; 5 2014; 5 2020; 4 2021; 31 2020; 2 2021; 34 2021; 33 2020; 1 2019; 63 2021; 39 1986; 48 2011; 21 2016; 116 2005; 35 2021; 9 2021; 8 2021; 6 2015; 6 2021; 5 2004; 83 2015; 5 2021; 3 2009; 20 2015; 3 2008; 18 2006; 18 2017; 29 2021; 1 2015; 9 2014; 114 2003; 75 2021; 14 2022; 144 2015; 27 2021; 12 2021; 11 2022 2021 2022; 61 2006; 88 2020; 72 2017; 16 2009; 8 2016; 138 2007; 40 2020; 65 2022; 55 2012; 6 2009; 3 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 29 issue: 47 year: 2017 article-title: All‐polymer solar cells based on a conjugated polymer containing siloxane‐functionalized side chains with efficiency over 10 publication-title: Adv Mater – volume: 83 start-page: 273 issue: 2–3 year: 2004 end-page: 292 article-title: Organic photovoltaics: technology and market publication-title: Sol Energy Mater Sol Cells – volume: 1 issue: 2 year: 2016 article-title: Efficient organic solar cells processed from hydrocarbon solvents publication-title: Nat Energy – volume: 16 start-page: 363 issue: 3 year: 2017 end-page: 369 article-title: Reducing the efficiency‐stability‐cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells publication-title: Nat Mater – volume: 11 issue: 13 year: 2021 article-title: Sequential deposition of donor and acceptor provides high‐performance semitransparent organic photovoltaics having a pseudo p–i–n active layer structure publication-title: Adv Energy Mater – volume: 8 issue: 1 year: 2017 article-title: Abnormal strong burn‐in degradation of highly efficient polymer solar cells caused by spinodal donor‐acceptor demixing publication-title: Nat Commun – volume: 49 start-page: 911 issue: 6986 year: 2004 end-page: 918 article-title: The path to ubiquitous and low‐cost organic electronic appliances on plastic publication-title: Nature – volume: 25 start-page: 6642 issue: 46 year: 2013 end-page: 6671 article-title: 25th anniversary article: a decade of organic/polymeric photovoltaic research publication-title: Adv Mater – volume: 17 start-page: 703 issue: 8 year: 2018 end-page: 709 article-title: Design rules for minimizing voltage losses in high‐efficiency organic solar cells publication-title: Nat Mater – volume: 11 issue: 1 year: 2020 article-title: Delocalization of exciton and electron wavefunction in non‐fullerene acceptor molecules enables efficient organic solar cells publication-title: Nat Commun – volume: 28 start-page: 9423 issue: 42 year: 2016 end-page: 9429 article-title: Energy‐level modulation of small‐molecule electron acceptors to achieve over 12% efficiency in polymer solar cells publication-title: Adv Mater – volume: 4 issue: 3 year: 2019 article-title: Polymer pre‐aggregation enables optimal morphology and high‐performance in all‐polymer solar cells publication-title: Solar RRL – volume: 144 start-page: 8658 issue: 19 year: 2022 end-page: 8668 article-title: Realizing 17.5% efficiency flexible organic solar cells via atomic‐level chemical welding of silver nanowire electrodes publication-title: J Am Chem Soc – volume: 15 start-page: 1617 issue: 10 year: 2005 end-page: 1622 article-title: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology publication-title: Adv Funct Mater – volume: 13 start-page: 1970 issue: 6 year: 2011 end-page: 1983 article-title: Fullerene derivative acceptors for high performance polymer solar cells publication-title: Phys Chem Chem Phys – volume: 3 start-page: 373 issue: 4 year: 2015 end-page: 384 article-title: Guidelines for closing the efficiency gap between hero solar cells and roll‐to‐roll printed modules publication-title: Energy Technol – volume: 10 issue: 1 year: 2019 article-title: Simple non‐fused electron acceptors for efficient and stable organic solar cells publication-title: Nat Commun – volume: 8 start-page: 281 issue: 4 year: 2009 end-page: 290 article-title: Near‐edge X‐ray absorption fine‐structure microscopy of organic and magnetic materials publication-title: Nat Mater – volume: 88 issue: 25 year: 2006 article-title: Efficient inverted polymer solar cells publication-title: Appl Phys Lett – volume: 25 start-page: 4296 issue: 31 year: 2013 end-page: 4301 article-title: Package‐free flexible organic solar cells with graphene top electrodes publication-title: Adv Mater – volume: 65 start-page: 131 issue: 2 year: 2020 end-page: 137 article-title: Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance publication-title: Sci Bull – volume: 11 start-page: 3392 issue: 12 year: 2018 end-page: 3399 article-title: Ternary non‐fullerene polymer solar cells with 13.51% efficiency and a record‐high fill factor of 78.13% publication-title: Energy Environ Sci – volume: 5 start-page: 3637 issue: 11 year: 2020 end-page: 3646 article-title: Vertical composition distribution and crystallinity regulations enable high‐performance polymer solar cells with >17% efficiency publication-title: ACS Energy Lett – volume: 4 start-page: 1070 issue: 5 year: 2020 end-page: 1086 article-title: Controlling molecular mass of low‐band‐gap polymer acceptors for high‐performance all‐polymer solar cells publication-title: Joule – volume: 17 start-page: 253 issue: 3 year: 2018 end-page: 260 article-title: Quantitative relations between interaction parameter, miscibility and function in organic solar cells publication-title: Nat Mater – volume: 60 start-page: 4422 issue: 9 year: 2021 end-page: 4433 article-title: Polymerized small‐molecule acceptors for high‐performance all‐polymer solar cells publication-title: Angew Chem Int Ed – volume: 7 issue: 18 year: 2017 article-title: Quantitative morphology–performance correlations in organic solar cells: insights from soft X‐ray scattering publication-title: Adv Energy Mater – volume: 258 start-page: 1474 issue: 5087 year: 1992 end-page: 1476 article-title: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene publication-title: Science – volume: 4 start-page: 864 issue: 11 year: 2005 end-page: 868 article-title: High‐efficiency solution processable polymer photovoltaic cells by self‐organization of polymer blends publication-title: Nat Mater – volume: 9 issue: 20 year: 2019 article-title: Rational strategy to stabilize an unstable high‐efficiency binary nonfullerene organic solar cells with a third component publication-title: Adv Energy Mater – volume: 107 start-page: 329 year: 2012 end-page: 336 article-title: All solution processing of ITO‐free organic solar cell modules directly on barrier foil publication-title: Sol Energy Mater Sol Cells – volume: 11 start-page: 2225 issue: 8 year: 2018 end-page: 2234 article-title: P3HT: non‐fullerene acceptor based large area, semi‐transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods publication-title: Energy Environ Sci – volume: 28 issue: 45 year: 2018 article-title: Dynamic agitation‐induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance publication-title: Adv Funct Mater – volume: 40 start-page: 1353 issue: 5 year: 2007 end-page: 1362 article-title: Toward high‐performance polymer solar cells: the importance of morphology control publication-title: Macromolecules – volume: 4 start-page: 688 issue: 3 year: 2020 end-page: 700 article-title: Trifluoromethylation enables a 3D interpenetrated low‐band‐gap acceptor for efficient organic solar cells publication-title: Joule – volume: 106 issue: 5 year: 2009 article-title: Area‐scaling of organic solar cells publication-title: J Appl Phys – volume: 118 start-page: 3447 issue: 7 year: 2018 end-page: 3507 article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells publication-title: Chem Rev – volume: 20 issue: 16 year: 2009 article-title: High efficiency polymer solar cells with vertically modulated nanoscale morphology publication-title: Nanotechnology – volume: 6 start-page: 1438 issue: 7 year: 2019 end-page: 1443 article-title: Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO for nonfullerene organic solar cells publication-title: Mater Horiz – start-page: 1 year: 2022 end-page: 15 article-title: Near‐infrared all‐fused‐ring nonfullerene acceptors achieving an optimal efficiency‐cost‐stability balance in organic solar cells publication-title: CCS Chem – volume: 11 year: 2021 article-title: Molecular packing of non‐fullerene acceptors for organic solar cells: distinctive local morphology in Y6 vs. ITIC derivatives publication-title: Mater Today Adv – volume: 18 start-page: 1783 issue: 12 year: 2008 end-page: 1789 article-title: Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells publication-title: Adv Funct Mater – volume: 5 start-page: 3257 issue: 8 year: 2021 end-page: 3280 article-title: Recent advances in PM6:Y6‐based organic solar cells publication-title: Mater Chem Front – volume: 8 issue: 28 year: 2018 article-title: Morphology control in organic solar cells publication-title: Adv Energy Mater – volume: 58 issue: 3 year: 2021 article-title: All‐polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives publication-title: Aggregate – volume: 72 year: 2020 article-title: 14.4% efficiency all‐polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor publication-title: Nano Energy – volume: 270 start-page: 1789 issue: 5243 year: 1995 end-page: 1791 article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions publication-title: Science – volume: 22 start-page: 478 issue: 4 year: 2010 end-page: 482 article-title: High‐mobility ambipolar transistors and high‐gain inverters from a donor‐acceptor copolymer semiconductor publication-title: Adv Mater – volume: 12 issue: 1 year: 2021 article-title: Graded bulk‐heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating publication-title: Nat Commun – volume: 33 year: 2021 article-title: Volatilizable solid additive‐assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80% publication-title: Adv Mater – volume: 137 start-page: 3886 issue: 11 year: 2015 end-page: 3893 article-title: A series of simple oligomer‐like small molecules based on oligothiophenes for solution‐processed solar cells with high efficiency publication-title: J Am Chem Soc – volume: 102 year: 2022 article-title: The history and development of Y6 publication-title: Org Electron – volume: 8 issue: 8 year: 2021 article-title: Y6 and its derivatives: molecular design and physical mechanism publication-title: Natl Sci Rev – volume: 98 issue: 11 year: 2011 article-title: Transparent, near‐infrared organic photovoltaic solar cells for window and energy‐scavenging applications publication-title: Appl Phys Lett – volume: 1 start-page: 158 issue: 2 year: 2020 end-page: 171 article-title: Functional third components in nonfullerene acceptor‐based ternary organic solar cells publication-title: Acc Mater Res – volume: 6 start-page: 7185 issue: 8 year: 2012 end-page: 7190 article-title: Visibly transparent polymer solar cells produced by solution processing publication-title: ACS Nano – volume: 32 issue: 49 year: 2020 article-title: The role of demixing and crystallization kinetics on the stability of non‐fullerene organic solar cells publication-title: Adv Mater – volume: 61 issue: 19 year: 2022 article-title: Design of near‐infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high‐performance semitransparent ternary organic solar cells publication-title: Angew Chem Int Ed Engl – volume: 5 issue: 1 year: 2021 article-title: Visible light–induced degradation of inverted polymer: nonfullerene acceptor solar cells: initiated by the light absorption of ZnO layer publication-title: Sol RRL – volume: 32 issue: 14 year: 2020 article-title: Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a "welding" flexible transparent electrode publication-title: Adv Mater – volume: 14 start-page: 662 issue: 9 year: 2002 end-page: 665 article-title: Polymer photovoltaic cells with conducting polymer anodes publication-title: Adv Mater – volume: 33 issue: 12 year: 2021 article-title: Layer‐by‐layer processed ternary organic photovoltaics with efficiency over 18 publication-title: Adv Mater – volume: 3 start-page: 1328 issue: 5 year: 2019 end-page: 1348 article-title: Delineation of thermodynamic and kinetic factors that control stability in non‐fullerene organic solar cells publication-title: Joule – volume: 1 start-page: 612 issue: 5 year: 2021 end-page: 622 article-title: High‐molecular‐weight electroactive polymer additives for simultaneous enhancement of photovoltaic efficiency and mechanical robustness in high‐performance polymer solar cells publication-title: J Am Chem Soc Au – volume: 33 issue: 41 year: 2021 article-title: Single‐junction organic photovoltaic cell with 19% efficiency publication-title: Adv Mater – volume: 32 issue: 16 year: 2020 article-title: Unraveling the microstructure‐related device stability for polymer solar cells based on nonfullerene small‐molecular acceptors publication-title: Adv Mater – volume: 4 start-page: 658 issue: 3 year: 2020 end-page: 672 article-title: Mechanically robust all‐polymer solar cells from narrow band gap acceptors with hetero‐bridging atoms publication-title: Joule – volume: 4 start-page: 1236 issue: 6 year: 2020 end-page: 1247 article-title: Fine‐tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17% publication-title: Joule – volume: 130 start-page: 20 year: 2014 end-page: 26 article-title: The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy publication-title: Sol Energy Mater Sol Cells – volume: 34 issue: 10 year: 2022 article-title: Novel oligomer enables green solvent processed 17.5% ternary organic solar cells: synergistic energy loss reduction and morphology fine‐tuning publication-title: Adv Mater – volume: 9 issue: 4 year: 2019 article-title: Investigation of low‐bandgap nonfullerene acceptor‐based polymer solar cells with very low photovoltage loss publication-title: J Photonics Energy – volume: 33 issue: 49 year: 2021 article-title: Thermoplastic elastomer tunes phase structure and promotes stretchability of high‐efficiency organic solar cells publication-title: Adv Mater – volume: 21 start-page: 656 issue: 6 year: 2022 end-page: 663 article-title: Single‐junction organic solar cells with over 19% efficiency enabled by a refined double‐fibril network morphology publication-title: Nat Mater – volume: 31 issue: 45 year: 2019 article-title: Large‐area organic solar cells: material requirements, modular designs, and printing methods publication-title: Adv Mater – volume: 45 start-page: 2544 issue: 9 year: 2016 end-page: 2582 article-title: Stability of organic solar cells: challenges and strategies publication-title: Chem Soc Rev – volume: 20 start-page: 415 issue: 3 year: 2008 end-page: 419 article-title: A semi‐transparent plastic solar cell fabricated by a lamination process publication-title: Adv Mater – volume: 32 issue: 49 year: 2020 article-title: Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells publication-title: Adv Mater – volume: 7 start-page: 825 issue: 10 year: 2013 end-page: 833 article-title: Polymer solar cells with enhanced fill factors publication-title: Nat Photonics – volume: 7 start-page: 25088 issue: 43 year: 2019 end-page: 25101 article-title: Suppressing photo‐oxidation of non‐fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers publication-title: J Mater Chem A – volume: 137 start-page: 8176 issue: 25 year: 2015 end-page: 8183 article-title: Conjugated polymer‐small molecule alloy leads to high efficient ternary organic solar cells publication-title: J Am Chem Soc – volume: 2 start-page: 1816 issue: 9 year: 2018 end-page: 1826 article-title: Heat‐insulating multifunctional semitransparent polymer solar cells publication-title: Joule – volume: 1 start-page: 1636 issue: 10 year: 2007 end-page: 1644 article-title: Solvent annealing” effect in polymer solar cells based on poly(3‐hexylthiophene) and methanofullerenes publication-title: Adv Funct Mater – volume: 10 issue: 1 year: 2019 article-title: All‐small‐molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies publication-title: Nat Commun – volume: 139 start-page: 1336 issue: 3 year: 2017 end-page: 1343 article-title: Fused nonacyclic electron acceptors for efficient polymer solar cells publication-title: J Am Chem Soc – volume: 3 start-page: 3034 issue: 12 year: 2019 end-page: 3047 article-title: All‐small‐molecule organic solar cells with an ordered liquid crystalline donor publication-title: Joule – volume: 4 start-page: 2004 issue: 9 year: 2020 end-page: 2016 article-title: Single‐component non‐halogen solvent‐processed high‐performance organic solar cell module with efficiency over 14% publication-title: Joule – volume: 116 start-page: 7397 issue: 12 year: 2016 end-page: 7457 article-title: Molecular design of benzodithiophene‐based organic photovoltaic materials publication-title: Chem Rev – volume: 6 issue: 1 year: 2015 article-title: A molecular nematic liquid crystalline material for high‐performance organic photovoltaics publication-title: Nat Commun – volume: 87 start-page: 53 issue: 1 year: 1997 end-page: 59 article-title: Stability of n‐type doped conducting polymers and consequences for polymeric microelectronic devices publication-title: Synth Met – volume: 12 issue: 1 year: 2021 article-title: Polymerized small molecular acceptor based all‐polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design publication-title: Nat Commun – volume: 4 issue: 4 year: 2022 article-title: Morphology control in high‐efficiency all‐polymer solar cells publication-title: InfoMat – volume: 27 start-page: 4655 issue: 31 year: 2015 end-page: 4660 article-title: A large‐bandgap conjugated polymer for versatile photovoltaic applications with high performance publication-title: Adv Mater – volume: 29 issue: 21 year: 2017 article-title: Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open‐circuit voltage publication-title: Adv Mater – volume: 3 start-page: 649 issue: 11 year: 2009 end-page: 653 article-title: Polymer solar cells with enhanced open‐circuit voltage and efficiency publication-title: Nat Photonics – volume: 26 start-page: 3142 issue: 19 year: 2014 end-page: 3147 article-title: Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole‐based narrow bandgap polymer solar cells publication-title: Adv Mater – volume: 75 start-page: 949 issue: 3 year: 2003 end-page: 983 article-title: Advances in atomic force microscopy publication-title: Rev Mod Phys – volume: 3 start-page: 1070 issue: 6 year: 2021 end-page: 1080 article-title: Design of all‐fused‐ring electron acceptors with high thermal, chemical, and photochemical stability for organic photovoltaics publication-title: CCS Chem – volume: 34 issue: 7 year: 2021 article-title: Kinetics manipulation enables high‐performance thick ternary organic solar cells via R2R compatible slot‐die coating publication-title: Adv Mater – volume: 28 start-page: 4734 issue: 23 year: 2016 end-page: 4739 article-title: Fullerene‐free polymer solar cells with over 11% efficiency and excellent thermal stability publication-title: Adv Mater – volume: 112 start-page: 5488 issue: 10 year: 2012 end-page: 5519 article-title: Quantitative determination of organic semiconductor microstructure from the molecular to device scale publication-title: Chem Rev – year: 2021 article-title: Ternary blend organic solar cells: understanding the morphology from recent progress publication-title: Adv Mater – volume: 13 start-page: 635 issue: 2 year: 2020 end-page: 645 article-title: Over 17% efficiency ternary organic solar cells enabled by two non‐fullerene acceptors working in alloy‐like model publication-title: Energy Environ Sci – volume: 4 start-page: 1241 issue: 6 year: 2019 end-page: 1250 article-title: Nonfullerene all‐small‐molecule organic solar cells publication-title: ACS Energy Lett – volume: 139 start-page: 7148 issue: 21 year: 2017 end-page: 7151 article-title: Molecular optimization enables over 13% efficiency in organic solar cells publication-title: J Am Chem Soc – volume: 35 start-page: 539 issue: 1 year: 2005 end-page: 569 article-title: Materials characterization in the aberration‐corrected scanning transmission electron microscope publication-title: Annu Rev Mater – volume: 14 start-page: 3044 issue: 5 year: 2021 end-page: 3052 article-title: Additive‐induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells publication-title: Energy Environ Sci – volume: 7 issue: 11 year: 2020 article-title: Progress in stability of organic solar cells publication-title: Adv Sci – volume: 5 start-page: 914 issue: 4 year: 2021 end-page: 930 article-title: 16% efficiency all‐polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend publication-title: Joule – volume: 5 start-page: 2408 issue: 9 year: 2021 end-page: 2419 article-title: Reduced non‐radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency publication-title: Joule – volume: 1 issue: 9 year: 2016 article-title: Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77% publication-title: Nat Energy – volume: 27 start-page: 1170 issue: 7 year: 2015 end-page: 1174 article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells publication-title: Adv Mater – volume: 5 issue: 1 year: 2014 article-title: Aggregation and morphology control enables multiple cases of high‐efficiency polymer solar cells publication-title: Nat Commun – volume: 32 issue: 24 year: 2022 article-title: Achieving 16% efficiency for polythiophene organic solar cells with a cyano‐substituted polythiophene publication-title: Adv Funct Mater – volume: 31 issue: 16 year: 2021 article-title: Stretchable ITO‐free organic solar cells with intrinsic anti‐reflection substrate for high‐efficiency outdoor and indoor energy harvesting publication-title: Adv Funct Mater – volume: 63 start-page: 265 issue: 2 year: 2019 end-page: 271 article-title: Rationally pairing photoactive materials for high‐performance polymer solar cells with efficiency of 16.53% publication-title: Sci China Chem – volume: 6 start-page: 1045 issue: 11 year: 2021 end-page: 1053 article-title: A guest‐assisted molecular‐organization approach for >17% efficiency organic solar cells using environmentally friendly solvents publication-title: Nat Energy – volume: 29 issue: 31 year: 2017 article-title: Fused hexacyclic nonfullerene acceptor with strong near‐infrared absorption for semitransparent organic solar cells with 9.77% efficiency publication-title: Adv Mater – volume: 1 start-page: 30 issue: 1 year: 2020 end-page: 58 article-title: Recent advances in morphology optimizations towards highly efficient ternary organic solar cells publication-title: Nano Select – volume: 12 issue: 1 year: 2021 article-title: Non‐fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years publication-title: Nat Commun – volume: 6 start-page: 1918 issue: 8 year: 2022 end-page: 1930 article-title: Aperiodic band‐pass electrode enables record‐performance transparent organic photovoltaics publication-title: Joule – volume: 5 issue: 11 year: 2015 article-title: Sequential processing for organic photovoltaics: design rules for morphology control by tailored semi‐orthogonal solvent blends publication-title: Adv Energy Mater – volume: 5 start-page: 1554 issue: 5 year: 2020 end-page: 1567 article-title: New phase for organic solar cell research: emergence of Y‐series electron acceptors and their perspectives publication-title: ACS Energy Lett – volume: 30 issue: 4 year: 2018 article-title: Environmentally friendly solvent‐processed organic solar cells that are highly efficient and adaptable for the blade‐coating method publication-title: Adv Mater – volume: 21 start-page: 1076 issue: 6 year: 2011 end-page: 1081 article-title: Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells publication-title: Adv Funct Mater – volume: 32 issue: 39 year: 2020 article-title: Transparent hole‐transporting frameworks: a unique strategy to design high‐performance semitransparent organic photovoltaics publication-title: Adv Mater – volume: 4 start-page: 1021 issue: 5 year: 2020 end-page: 1034 article-title: Flexible organic solar cells over 15% efficiency with polyimide‐integrated graphene electrodes publication-title: Joule – volume: 3 issue: 3 year: 2018 article-title: Non‐fullerene acceptors for organic solar cells publication-title: Nat Rev Mater – volume: 8 issue: 12 year: 2020 article-title: Recent advances in high‐efficiency organic solar cells fabricated by eco‐compatible solvents at relatively large‐area scale publication-title: APL Mater – volume: 32 issue: 19 year: 2020 article-title: Single‐junction organic photovoltaic cells with approaching 18% efficiency publication-title: Adv Mater – volume: 13 start-page: 3679 issue: 10 year: 2020 end-page: 3692 article-title: The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non‐fullerene acceptor organic solar cells publication-title: Energy Environ Sci – volume: 138 start-page: 4955 issue: 14 year: 2016 end-page: 4961 article-title: High‐performance electron acceptor with thienyl side chains for organic photovoltaics publication-title: J Am Chem Soc – volume: 28 start-page: 8283 issue: 37 year: 2016 end-page: 8287 article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells publication-title: Adv Mater – volume: 2 start-page: 1039 issue: 6 year: 2018 end-page: 1054 article-title: Transparent polymer photovoltaics for solar energy harvesting and beyond publication-title: Joule – volume: 5 start-page: 947 issue: 12 year: 2020 end-page: 949 article-title: It's time to focus on organic solar cell stability publication-title: Nat Energy – volume: 8 issue: 21 year: 2018 article-title: Nonfullerene acceptors for semitransparent organic solar cells publication-title: Adv Energy Mater – volume: 1 issue: 1 year: 2021 article-title: Non‐fused ring acceptors for organic solar cells publication-title: Energy Mater – volume: 55 start-page: 46 year: 2022 end-page: 55 article-title: Self‐assembly enables simple structure organic photovoltaics via green‐solvent and open‐air‐printing: closing the lab‐to‐fab gap publication-title: Mater Today – volume: 7 issue: 19 year: 2017 article-title: Burn‐in free nonfullerene‐based organic solar cells publication-title: Adv Energy Mater – volume: 3 start-page: 819 issue: 3 year: 2019 end-page: 833 article-title: Molecular order control of non‐fullerene acceptors for high‐efficiency polymer solar cells publication-title: Joule – volume: 10 issue: 8 year: 2020 article-title: Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties publication-title: Adv Energy Mater – volume: 31 issue: 39 year: 2019 article-title: Eco‐compatible solvent‐processed organic photovoltaic cells with over 16% efficiency publication-title: Adv Mater – volume: 6 start-page: 647 issue: 3 year: 2022 end-page: 661 article-title: Polythiophenes for organic solar cells with efficiency surpassing 17% publication-title: Joule – volume: 10 issue: 27 year: 2020 article-title: Delicate morphology control triggers 14.7% efficiency all‐small‐molecule organic solar cells publication-title: Adv Energy Mater – volume: 9 issue: 1 year: 2018 article-title: Design and application of volatilizable solid additives in non‐fullerene organic solar cells publication-title: Nat Commun – volume: 11 start-page: 3163 issue: 8 year: 2011 end-page: 3168 article-title: Sequential processing: control of nanomorphology in bulk heterojunction solar cells publication-title: Nano Lett – volume: 10 issue: 1 year: 2019 article-title: Enabling low voltage losses and high photocurrent in fullerene‐free organic photovoltaics publication-title: Nat Commun – volume: 39 start-page: 2315 issue: 8 year: 2021 end-page: 2329 article-title: Solution‐processed silver nanowire as flexible transparent electrodes in organic solar cells publication-title: Chin J Chem – volume: 17 start-page: 119 issue: 2 year: 2018 end-page: 128 article-title: Organic solar cells based on non‐fullerene acceptors publication-title: Nat Mater – volume: 9 start-page: 13972 issue: 39 year: 2021 end-page: 13980 article-title: Revealing the photo‐degradation mechanism of PM6:Y6 based high‐efficiency organic solar cells publication-title: J Mater Chem C – volume: 6 start-page: 153 issue: 3 year: 2012 end-page: 161 article-title: Polymer solar cells publication-title: Nat Photonics – volume: 42 issue: 8 year: 2021 article-title: All‐polymer solar cells publication-title: J Semicond – volume: 30 issue: 28 year: 2018 article-title: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small‐molecule acceptors publication-title: Adv Mater – volume: 6 issue: 21 year: 2016 article-title: Reliability of small molecule organic photovoltaics with electron‐filtering compound buffer layers publication-title: Adv Energy Mater – volume: 9 start-page: 6797 issue: 11 year: 2021 end-page: 6804 article-title: Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance publication-title: J Mater Chem A – volume: 3 start-page: 215 issue: 1 year: 2019 end-page: 226 article-title: Efficient polymer solar cells based on non‐fullerene acceptors with potential device lifetime approaching 10 years publication-title: Joule – volume: 3 start-page: 1140 issue: 4 year: 2019 end-page: 1151 article-title: Single‐junction organic solar cell with over 15% efficiency using fused‐ring acceptor with electron‐deficient core publication-title: Joule – volume: 4 start-page: 229 issue: 4 year: 2019 end-page: 242 article-title: The role of the third component in ternary organic solar cells publication-title: Nat Rev Mater – volume: 6 start-page: 605 issue: 6 year: 2021 end-page: 613 article-title: Non‐fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells publication-title: Nat Energy – volume: 33 issue: 39 year: 2021 article-title: 54 cm large‐area flexible organic solar modules with efficiency above 13 publication-title: Adv Mater – volume: 15 start-page: 203 issue: 2 year: 2005 end-page: 208 article-title: High‐conductivity poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices publication-title: Adv Funct Mater – volume: 22 start-page: 135 issue: 20 year: 2010 end-page: 138 article-title: For the bright future‐bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% publication-title: Adv Mater – volume: 12 issue: 20 year: 2022 article-title: Semitransparent organic solar cells with efficiency surpassing 15% publication-title: Adv Energy Mater – volume: 2 issue: 4 year: 2020 article-title: Reducing V loss via structure compatible and high lowest unoccupied molecular orbital nonfullerene acceptors for over 17%‐efficiency ternary organic photovoltaics publication-title: EcoMat – volume: 30 issue: 27 year: 2020 article-title: A novel wide‐bandgap polymer with deep ionization potential enables exceeding 16% efficiency in ternary nonfullerene polymer solar cells publication-title: Adv Funct Mater – volume: 11 issue: 21 year: 2021 article-title: Large‐area blade‐coated solar cells: advances and perspectives publication-title: Adv Energy Mater – volume: 56 start-page: 13503 issue: 43 year: 2017 end-page: 13507 article-title: Constructing a strongly absorbing low‐bandgap polymer acceptor for high‐performance all‐polymer solar cells publication-title: Angew Chem Int Ed – volume: 114 start-page: 7006 issue: 14 year: 2014 end-page: 7043 article-title: Bulk heterojunction solar cells: morphology and performance relationships publication-title: Chem Rev – volume: 18 start-page: 789 issue: 6 year: 2006 end-page: 794 article-title: Design rules for donors in bulk‐heterojunction solar cells—towards 10% energy‐conversion efficiency publication-title: Adv Mater – volume: 7 start-page: 25830 issue: 45 year: 2019 end-page: 25837 article-title: Intrinsic photo‐degradation and mechanism of polymer solar cells: the crucial role of non‐fullerene acceptors publication-title: J Mater Chem A – volume: 6 start-page: 2714 issue: 9 year: 2013 end-page: 2720 article-title: High‐performance semi‐transparent polymer solar cells possessing tandem structures publication-title: Energ Environ Sci – volume: 6 issue: 1 year: 2015 article-title: Competition between recombination and extraction of free charges determines the fill factor of organic solar cells publication-title: Nat Commun – volume: 26 start-page: 7692 issue: 46 year: 2014 end-page: 7709 article-title: The active layer morphology of organic solar cells probed with grazing incidence scattering techniques publication-title: Adv Mater – volume: 3 start-page: 443 issue: 2 year: 2019 end-page: 458 article-title: Quenching to the percolation threshold in organic solar cells publication-title: Joule – volume: 11 issue: 1 year: 2020 article-title: Organic solar cells—the path to commercial success publication-title: Adv Energy Mater – volume: 60 start-page: 8813 issue: 16 year: 2021 end-page: 8817 article-title: A facile synthesized polymer featuring B‐N covalent bond and small singlet‐triplet gap for high‐performance organic solar cells publication-title: Angew Chem Int Ed – volume: 2 start-page: 621 issue: 4 year: 2018 end-page: 641 article-title: Miscibility‐driven optimization of nanostructures in ternary organic solar cells using non‐fullerene acceptors publication-title: Joule – volume: 12 start-page: 131 issue: 3 year: 2018 end-page: 142 article-title: Next‐generation organic photovoltaics based on non‐fullerene acceptors publication-title: Nat Photonics – volume: 9 start-page: 190 issue: 3 year: 2015 end-page: 198 article-title: High‐performance multiple‐donor bulk heterojunction solar cells publication-title: Nat Photonics – volume: 109 start-page: 5868 issue: 11 year: 2009 end-page: 5923 article-title: Synthesis of conjugated polymers for organic solar cell applications publication-title: Chem Rev – volume: 48 start-page: 183 issue: 2 year: 1986 end-page: 185 article-title: Two‐layer organic photovoltaic cell publication-title: Appl Phys Lett – volume: 22 start-page: 3480 issue: 16 year: 2012 end-page: 3490 article-title: Quantification of quantum efficiency and energy losses in low bandgap polymer: fullerene solar cells with high open‐circuit voltage publication-title: Adv Funct Mater – volume: 20 start-page: 525 issue: 4 year: 2021 end-page: 532 article-title: A molecular interaction‐diffusion framework for predicting organic solar cell stability publication-title: Nat Mater – volume: 11 issue: 1 year: 2020 article-title: Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells publication-title: Nat Commun – volume: 3 start-page: 720 issue: 9 year: 2018 end-page: 731 article-title: Material insights and challenges for non‐fullerene organic solar cells based on small molecular acceptors publication-title: Nat Energy – volume: 65 start-page: 272 issue: 4 year: 2020 end-page: 275 article-title: 18% efficiency organic solar cells publication-title: Sci Bull – volume: 32 issue: 32 year: 2020 article-title: High‐performance semitransparent organic solar cells with excellent infrared reflection and see‐through functions publication-title: Adv Mater – volume: 138 start-page: 2973 issue: 9 year: 2016 end-page: 2976 article-title: A facile planar fused‐ring electron acceptor for as‐cast polymer solar cells with 8.71% efficiency publication-title: J Am Chem Soc – volume: 5 start-page: 1548 issue: 6 year: 2021 end-page: 1565 article-title: Achieving over 17% efficiency of ternary all‐polymer solar cells with two well‐compatible polymer acceptors publication-title: Joule – volume: 14 start-page: 5530 issue: 10 year: 2021 end-page: 5540 article-title: A donor polymer based on 3‐cyanothiophene with superior batch‐to‐batch reproducibility for high‐efficiency organic solar cells publication-title: Energy Environ Sci – volume: 2 issue: 8 year: 2017 article-title: Low‐bandgap conjugated polymers enabling solution‐processable tandem solar cells publication-title: Nat Rev Mater – volume: 34 issue: 6 year: 2021 article-title: Resolving atomic‐scale interactions in non‐fullerene acceptor organic solar cells with solid‐state NMR spectroscopy, crystallographic modelling, and molecular dynamics simulations publication-title: Adv Mater – volume: 58 start-page: 724 year: 2019 end-page: 731 article-title: Improving the efficiency and stability of non‐fullerene polymer solar cells by using N2200 as the additive publication-title: Nano Energy – volume: 31 issue: 41 year: 2019 article-title: Aggregation‐induced multilength scaled morphology enabling 11.76% efficiency in all‐polymer solar cells using printing fabrication publication-title: Adv Mater – volume: 142 start-page: 18741 issue: 44 year: 2020 end-page: 18745 article-title: Selenium heterocyclic electron acceptor with small urbach energy for as‐cast high‐performance organic solar cells publication-title: J Am Chem Soc – volume: 1 start-page: 197 issue: 2 year: 2016 end-page: 219 article-title: Printable solar cells from advanced solution‐processible materials publication-title: Chem – volume: 25 issue: 29 year: 2014 article-title: Immiscible solvents enabled nanostructure formation for efficient polymer photovoltaic cells publication-title: Nanotechnology – volume: 27 start-page: 6983 issue: 43 year: 2015 end-page: 6969 article-title: Toward highly efficient large‐area ITO‐free organic solar cells with a conductance‐gradient transparent electrode publication-title: Adv Mater – volume: 142 start-page: 15246 issue: 36 year: 2020 end-page: 15251 article-title: A non‐fullerene acceptor with enhanced intermolecular pi‐core interaction for high‐performance organic solar cells publication-title: J Am Chem Soc – ident: e_1_2_9_154_1 doi: 10.1002/aenm.201900376 – ident: e_1_2_9_196_1 doi: 10.1016/j.joule.2022.06.009 – ident: e_1_2_9_15_1 doi: 10.1002/adma.201302563 – ident: e_1_2_9_195_1 doi: 10.1002/aenm.202200453 – ident: e_1_2_9_54_1 doi: 10.1002/adma.201700254 – ident: e_1_2_9_105_1 doi: 10.1038/s41467‐020‐17867‐1 – ident: e_1_2_9_115_1 doi: 10.1002/adma.202005386 – ident: e_1_2_9_85_1 doi: 10.1039/D1EE01957K – ident: e_1_2_9_145_1 doi: 10.1038/s41467‐021‐25718‐w – ident: e_1_2_9_63_1 doi: 10.1021/jacs.0c08557 – ident: e_1_2_9_143_1 doi: 10.1039/C9MH00379G – ident: e_1_2_9_136_1 doi: 10.1038/nmat4797 – ident: e_1_2_9_20_1 doi: 10.1002/eom2.12061 – ident: e_1_2_9_30_1 doi: 10.1021/acs.chemrev.7b00535 – ident: e_1_2_9_16_1 doi: 10.1002/adma.200901819 – ident: e_1_2_9_104_1 doi: 10.1021/jacs.0c07083 – ident: e_1_2_9_169_1 doi: 10.1002/adfm.201804479 – ident: e_1_2_9_118_1 doi: 10.1016/j.joule.2021.06.020 – ident: e_1_2_9_147_1 doi: 10.1016/S0379‐6779(97)80097‐5 – ident: e_1_2_9_111_1 doi: 10.1016/j.joule.2018.02.010 – ident: e_1_2_9_124_1 doi: 10.1088/0957‐4484/20/16/165202 – ident: e_1_2_9_157_1 doi: 10.1002/ente.201402192 – ident: e_1_2_9_172_1 doi: 10.1002/adma.201205337 – ident: e_1_2_9_45_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_9_137_1 doi: 10.1002/advs.201903259 – ident: e_1_2_9_107_1 doi: 10.1002/adma.201908205 – ident: e_1_2_9_182_1 doi: 10.1002/adma.202103017 – ident: e_1_2_9_96_1 doi: 10.1039/D0EE04012F – ident: e_1_2_9_178_1 doi: 10.1002/agt2.58 – ident: e_1_2_9_27_1 doi: 10.1038/ncomms6293 – ident: e_1_2_9_177_1 doi: 10.1002/adma.201908478 – ident: e_1_2_9_3_1 doi: 10.1002/adma.200701101 – ident: e_1_2_9_64_1 doi: 10.1021/acsenergylett.0c00537 – ident: e_1_2_9_199_1 doi: 10.1038/s41467‐019‐10098‐z – ident: e_1_2_9_37_1 doi: 10.1021/cr400353v – ident: e_1_2_9_156_1 doi: 10.1016/j.joule.2020.07.028 – ident: e_1_2_9_17_1 doi: 10.1038/natrevmats.2017.43 – ident: e_1_2_9_47_1 doi: 10.1039/D1QM00060H – ident: e_1_2_9_38_1 doi: 10.1038/nmat1500 – ident: e_1_2_9_166_1 doi: 10.1002/adma.201502827 – ident: e_1_2_9_134_1 doi: 10.1016/j.solmat.2004.02.030 – ident: e_1_2_9_80_1 doi: 10.1016/j.joule.2020.03.023 – ident: e_1_2_9_69_1 doi: 10.1016/j.joule.2019.09.009 – ident: e_1_2_9_6_1 doi: 10.1016/j.chempr.2016.07.010 – ident: e_1_2_9_162_1 doi: 10.1002/adma.201704837 – ident: e_1_2_9_173_1 doi: 10.1002/adfm.202010172 – ident: e_1_2_9_184_1 doi: 10.1016/j.joule.2018.06.006 – ident: e_1_2_9_170_1 doi: 10.1021/nn3029327 – ident: e_1_2_9_9_1 doi: 10.1063/1.96937 – ident: e_1_2_9_175_1 doi: 10.1021/jacs.2c01503 – ident: e_1_2_9_4_1 doi: 10.1038/s41566‐018‐0104‐9 – ident: e_1_2_9_93_1 doi: 10.1038/s41467‐021‐25148‐8 – ident: e_1_2_9_155_1 doi: 10.1002/aenm.201601094 – ident: e_1_2_9_60_1 doi: 10.1038/s41467‐019‐08386‐9 – ident: e_1_2_9_43_1 doi: 10.1002/adma.202105114 – ident: e_1_2_9_56_1 doi: 10.1021/jacs.6b12755 – ident: e_1_2_9_141_1 doi: 10.31635/ccschem.021.202100956 – ident: e_1_2_9_73_1 doi: 10.1002/anie.202009666 – ident: e_1_2_9_50_1 doi: 10.1088/1674‐4926/42/8/080301 – ident: e_1_2_9_48_1 doi: 10.1021/acsenergylett.9b00528 – ident: e_1_2_9_168_1 doi: 10.1002/adfm.200400016 – ident: e_1_2_9_22_1 doi: 10.1038/ncomms8083 – ident: e_1_2_9_78_1 doi: 10.1016/j.joule.2021.02.002 – ident: e_1_2_9_130_1 doi: 10.1146/annurev.matsci.35.102103.090513 – ident: e_1_2_9_92_1 doi: 10.1016/j.solmat.2014.05.049 – ident: e_1_2_9_28_1 doi: 10.1021/jacs.5b00305 – ident: e_1_2_9_58_1 doi: 10.1021/jacs.7b02677 – ident: e_1_2_9_13_1 doi: 10.1038/s41563‐022‐01244‐y – ident: e_1_2_9_81_1 doi: 10.1002/inf2.12270 – ident: e_1_2_9_41_1 doi: 10.1039/C8EE01564C – ident: e_1_2_9_165_1 doi: 10.1002/aenm.202002653 – ident: e_1_2_9_113_1 doi: 10.1016/j.mattod.2022.04.005 – ident: e_1_2_9_23_1 doi: 10.1038/nenergy.2016.118 – ident: e_1_2_9_55_1 doi: 10.1002/adfm.201200608 – ident: e_1_2_9_185_1 doi: 10.1016/j.joule.2018.04.005 – ident: e_1_2_9_114_1 doi: 10.1016/j.joule.2018.11.006 – ident: e_1_2_9_144_1 doi: 10.1002/solr.202000638 – ident: e_1_2_9_91_1 doi: 10.1002/adma.201305645 – ident: e_1_2_9_14_1 doi: 10.1038/s41560‐021‐00820‐x – ident: e_1_2_9_189_1 doi: 10.1016/j.scib.2019.09.016 – ident: e_1_2_9_46_1 doi: 10.1093/nsr/nwab121 – ident: e_1_2_9_109_1 doi: 10.1038/s41563‐017‐0005‐1 – ident: e_1_2_9_2_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_9_32_1 doi: 10.1039/C5CS00593K – ident: e_1_2_9_174_1 doi: 10.1002/adfm.201002290 – ident: e_1_2_9_160_1 doi: 10.1039/C8EE01150H – ident: e_1_2_9_164_1 doi: 10.1002/adma.201805089 – ident: e_1_2_9_158_1 doi: 10.1002/aenm.202100378 – ident: e_1_2_9_68_1 doi: 10.1007/s11426‐019‐9599‐1 – ident: e_1_2_9_181_1 doi: 10.1002/adma.202106732 – ident: e_1_2_9_26_1 doi: 10.1002/adma.200903528 – ident: e_1_2_9_131_1 doi: 10.1021/ma0618732 – ident: e_1_2_9_150_1 doi: 10.1002/adma.202005348 – ident: e_1_2_9_36_1 doi: 10.1002/adma.201602642 – ident: e_1_2_9_159_1 doi: 10.1063/1.3211850 – ident: e_1_2_9_77_1 doi: 10.1038/s41467‐021‐25638‐9 – ident: e_1_2_9_11_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_9_138_1 doi: 10.1039/C9TA07417A – ident: e_1_2_9_120_1 doi: 10.1002/adma.202105301 – ident: e_1_2_9_75_1 doi: 10.1016/j.nanoen.2020.104718 – ident: e_1_2_9_151_1 doi: 10.1038/s41560‐020‐00732‐2 – ident: e_1_2_9_161_1 doi: 10.1063/5.0027948 – ident: e_1_2_9_94_1 doi: 10.1038/nenergy.2015.27 – ident: e_1_2_9_33_1 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_9_66_1 doi: 10.1002/adma.201502110 – ident: e_1_2_9_176_1 doi: 10.1002/cjoc.202000696 – ident: e_1_2_9_194_1 doi: 10.1002/anie.202116111 – ident: e_1_2_9_123_1 doi: 10.1002/adma.202007231 – ident: e_1_2_9_10_1 doi: 10.1126/science.258.5087.1474 – ident: e_1_2_9_148_1 doi: 10.1016/j.joule.2018.09.001 – ident: e_1_2_9_98_1 doi: 10.1002/adma.202105943 – ident: e_1_2_9_191_1 doi: 10.1002/aenm.202003576 – ident: e_1_2_9_86_1 doi: 10.1002/adfm.202201142 – ident: e_1_2_9_188_1 doi: 10.1002/aenm.201800002 – ident: e_1_2_9_163_1 doi: 10.1016/j.solmat.2012.07.004 – ident: e_1_2_9_187_1 doi: 10.1002/adma.201701308 – ident: e_1_2_9_70_1 doi: 10.1021/accountsmr.0c00033 – ident: e_1_2_9_61_1 doi: 10.1016/j.orgel.2022.106436 – ident: e_1_2_9_74_1 doi: 10.1002/anie.201707678 – ident: e_1_2_9_142_1 doi: 10.31635/ccschem.022.202201963 – ident: e_1_2_9_110_1 doi: 10.1002/nano.202000012 – ident: e_1_2_9_18_1 doi: 10.1002/adma.200501717 – ident: e_1_2_9_59_1 doi: 10.1002/adma.201800613 – ident: e_1_2_9_21_1 doi: 10.1038/nphoton.2013.207 – ident: e_1_2_9_79_1 doi: 10.1016/j.joule.2021.04.007 – ident: e_1_2_9_106_1 doi: 10.1002/adma.201903441 – ident: e_1_2_9_129_1 doi: 10.1103/RevModPhys.75.949 – ident: e_1_2_9_100_1 doi: 10.1002/adfm.201910466 – ident: e_1_2_9_146_1 doi: 10.1038/s41578‐019‐0093‐4 – ident: e_1_2_9_52_1 doi: 10.1002/adma.201600281 – ident: e_1_2_9_167_1 doi: 10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N – ident: e_1_2_9_119_1 doi: 10.1038/s41467‐018‐07017‐z – ident: e_1_2_9_116_1 doi: 10.1002/aenm.202001076 – ident: e_1_2_9_190_1 doi: 10.1039/D1TA01135A – ident: e_1_2_9_34_1 doi: 10.1038/s41560‐018‐0181‐5 – ident: e_1_2_9_89_1 doi: 10.1002/adfm.200600624 – ident: e_1_2_9_84_1 doi: 10.1002/anie.202016265 – ident: e_1_2_9_90_1 doi: 10.1039/D0EE01896A – ident: e_1_2_9_186_1 doi: 10.1002/adma.202003891 – ident: e_1_2_9_8_1 doi: 10.1038/nature02498 – ident: e_1_2_9_180_1 doi: 10.1021/jacsau.1c00064 – ident: e_1_2_9_149_1 doi: 10.1016/j.joule.2019.03.020 – ident: e_1_2_9_35_1 doi: 10.1002/adma.201602776 – ident: e_1_2_9_40_1 doi: 10.1021/jacs.5b03449 – ident: e_1_2_9_12_1 doi: 10.1002/adma.202102420 – ident: e_1_2_9_117_1 doi: 10.1039/C9EE03710A – ident: e_1_2_9_99_1 doi: 10.1002/aenm.201700084 – ident: e_1_2_9_122_1 doi: 10.1002/aenm.201402020 – ident: e_1_2_9_49_1 doi: 10.20517/energymater.2021.08 – ident: e_1_2_9_53_1 doi: 10.1038/nmat5063 – ident: e_1_2_9_76_1 doi: 10.1016/j.joule.2020.03.019 – ident: e_1_2_9_57_1 doi: 10.1021/jacs.6b02004 – ident: e_1_2_9_197_1 doi: 10.1038/s41563‐018‐0128‐z – ident: e_1_2_9_82_1 doi: 10.1002/solr.201900385 – ident: e_1_2_9_88_1 doi: 10.1002/aenm.201703147 – ident: e_1_2_9_19_1 doi: 10.1117/1.JPE.9.045502 – ident: e_1_2_9_133_1 doi: 10.1038/s41467‐020‐16621‐x – ident: e_1_2_9_5_1 doi: 10.1063/1.2212270 – ident: e_1_2_9_132_1 doi: 10.1021/acsenergylett.0c01927 – ident: e_1_2_9_193_1 doi: 10.1039/c3ee40860d – ident: e_1_2_9_102_1 doi: 10.1002/aenm.201904234 – ident: e_1_2_9_25_1 doi: 10.1038/nphoton.2015.9 – ident: e_1_2_9_31_1 doi: 10.1039/C0CP01178A – ident: e_1_2_9_7_1 doi: 10.1021/cr900182s – ident: e_1_2_9_135_1 doi: 10.1038/ncomms14541 – ident: e_1_2_9_171_1 doi: 10.1016/j.joule.2020.02.012 – ident: e_1_2_9_29_1 doi: 10.1038/ncomms7013 – ident: e_1_2_9_153_1 doi: 10.1038/s41563‐020‐00872‐6 – ident: e_1_2_9_103_1 doi: 10.1016/j.mtadv.2021.100154 – ident: e_1_2_9_121_1 doi: 10.1002/adma.201902899 – ident: e_1_2_9_108_1 doi: 10.1038/s41560‐021‐00923‐5 – ident: e_1_2_9_140_1 doi: 10.1039/D1TC03655F – ident: e_1_2_9_71_1 doi: 10.1002/adma.201703906 – ident: e_1_2_9_72_1 doi: 10.1016/j.nanoen.2019.01.082 – ident: e_1_2_9_125_1 doi: 10.1088/0957‐4484/25/29/295401 – ident: e_1_2_9_51_1 doi: 10.1021/jacs.6b00853 – ident: e_1_2_9_24_1 doi: 10.1038/nphoton.2009.192 – ident: e_1_2_9_112_1 doi: 10.1002/adma.202107476 – ident: e_1_2_9_152_1 doi: 10.1002/adma.201908305 – ident: e_1_2_9_101_1 doi: 10.1016/j.joule.2020.02.004 – ident: e_1_2_9_97_1 doi: 10.1002/adma.201304187 – ident: e_1_2_9_42_1 doi: 10.1021/cr3001109 – ident: e_1_2_9_39_1 doi: 10.1002/adfm.200500211 – ident: e_1_2_9_83_1 doi: 10.1002/adma.202107659 – ident: e_1_2_9_128_1 doi: 10.1038/nmat2399 – ident: e_1_2_9_62_1 doi: 10.1016/j.joule.2018.11.023 – ident: e_1_2_9_127_1 doi: 10.1038/s41467‐019‐13292‐1 – ident: e_1_2_9_192_1 doi: 10.1002/adma.202001621 – ident: e_1_2_9_179_1 doi: 10.1016/j.joule.2020.01.014 – ident: e_1_2_9_67_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_9_183_1 doi: 10.1063/1.3567516 – ident: e_1_2_9_65_1 doi: 10.1021/acs.chemrev.6b00176 – ident: e_1_2_9_44_1 doi: 10.1002/adma.201404317 – ident: e_1_2_9_87_1 doi: 10.1016/j.joule.2022.02.006 – ident: e_1_2_9_126_1 doi: 10.1021/nl202320r – ident: e_1_2_9_198_1 doi: 10.1002/aenm.201700770 – ident: e_1_2_9_95_1 doi: 10.1002/adfm.200701459 – ident: e_1_2_9_139_1 doi: 10.1039/C9TA09961A |
SSID | ssj0002504241 |
Score | 2.4798799 |
SecondaryResourceType | review_article |
Snippet | The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%,... Abstract The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | applications Commercialization Cytology Efficiency Energy Energy conversion efficiency Fullerenes material chemistry Morphology non‐fullerene organic solar cells Optimization Photovoltaic cells Photovoltaics Polymers Semiconductors Solar cells stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkCVYQApN_JmwAWpVIRUWKnWzXNuZaANN2fkJ_EZ-CWcnrVIJwcIWJR4u57Pv3Tl5D6ELQrNc0NxGRlooUHiSRmkmTCQzK8kk4YaG1sDwUQxG7GHMxw2pL_9NWEUPXDmuqw0X1LNa5UKyONeaAcjNzMTqmEKqCr_uQc5rFFN-D_bEXJCbVnykpOuKKblOCEmTtQwUiPrX0GUTo4Yk099B2zU6xLeVVbtow8320FaDM3AfvQHQg0SB68P7Ehc5hhL-6-PTd9KD1gmupJoMLn3din1vvrzB_XkxxYBPq5DDembxtAAvh746XhTYurBrhCfNc-0DNOr3nu8HUa2bEBkGazRKaRxr4wALplLDy1sRujucOxIbkVMpY5a4zDhKnRWOOHCjpS5NWGKZJpYeohYY7o4QZpTAAqae9D5mJvPSVhRAW54ZqLNSG7fR5dKXytSk4l7b4kVVdMhEeb-r4Pc2Ol-Nfa2oNH4cdeenZDXC01-HG-A6VQeF-iso2qiznFBVr8lSEck5ZZ7frY2uwiT_YobqPQ1JuDr-D4NO0KbXqa96Nx3UWszf3SmgmcXkLATuN5ie7xI priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXQcikHBLQVWz5kCS6tlG7iceIYcaGIFUKi7aEr7c3y2s6JJZQsd34Cv5FfwoyTDYtUVeIWJRPJGXvsN8_xG8aOBeiqgMonTnlMUPKsTEpduERpr8Qsyx1EauD6Z3E5kVfTfLrGTpdnYVp9iJ5wo8iI8zUFuJ01o1fR0FDPxfdMCDp3vU5na-mHPiF_9wwLiXOJWLoSl3Ui4xT0-qRi9Pr6mxUpCve_QZurmDUuOuMtttmhRX7Wdu82Wwu3O2xjRUPwI_uLwA8XDt5t5je8rjim9M-PT8Ssx9onvC3d5HhDeSwnrr454eP7es4Rr7ZDkNtbz-c1ej3y7HxRcx_iLBKfrO5zf2KT8cWf88ukq6OQOIkxm5SQptYFxIalsvjxvohsT54HkbqiAqVSmQXtAkDwRRBBg_YQykxmXlrh4TMbYMPDLuMSBAY0kAh-Kp2mUleAIK7SDvOu0qdD9nXpS-M6kXGqdXFjWnlkYcjvJvp9yI5627tWWuOfVj-oS3oLksOON9B1posuY11eAEmfVYWSaWWtxExIu5m3KSCe0UO2v-xQ08VoY4TKc5Ck9zZk32In_6cZ5uLXtYhXX95jvMc-UH36lrPZZ4PF_UM4QBSzmB3GwfoC2Gvpvg priority: 102 providerName: Wiley-Blackwell |
Title | Recent advances of non‐fullerene organic solar cells: From materials and morphology to devices and applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12281 https://www.proquest.com/docview/2755348593 https://doaj.org/article/ac5634636f6740faa43069cbda032939 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vehBfOL6WAJ6Uai2SdomXkRlVxF8IAreQjdJT-5W7Xr3J_gb_SVO0uy6gngppQ2lnclMvvlSvgHYo0yWGStNpHODBUqaiEjITEe5NDntJ6lmnhq4vskuH_nVU_oUCLc6_FY5zok-UZtKO478iOZpyrhT5zp5eY1c1yi3uxpaaMzCHKZgIVowd9a9ubufsCxOoAvXqIkuKT2y1YAeJpSK5NdK5AX7f6HMaazqF5veEiwGlEhOG7cuw4wdrsDClHbgKrwi4MMFg4RN_JpUJcFS_uvj0zHqvucJaVo2aVK7-pU4jr4-Jr23akAQpzZTjxRDQwYVWtvz62RUEWN99vB3pve31-Cx1304v4xC_4RIc4zVSLA4LrRFTCjyAj_eZJ7lSVNLY52VLM9jnlipLWPWZJZayaRhViQ8Mbyghq1DC1_cbgDhjGIgMyd-H3MtXYsrhuCtlBrrLWHiNuyPbal0EBd3PS6eVSOLTJWzu_J2b8PuZOxLI6nx56gz55LJCCeD7S-g6VSIKlXoNGNO8qzMch6XRcGxApK6b4qYIY6RbdgeO1SF2KzVz0xqw4F38j-vobq319Sfbf7_rC2Yd53oG3ZmG1qjt3e7g3hl1O_ALOV3eBS9i06YoB1f-38Db3jrbA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROLQ9VKU_6gKllkoPrZTieJwfV6oqStkuP0svIHFzs7Zz6m6AbFX1xiPwJDwUT9Kxk2wXCXHjFiWWFc2MZ74Z298AbAhUZYqljUxmKUFJ4jzKVWqiTNlMjOLEYCgNDA_TwbHcO0lOFuCquwvjj1V2PjE4alsZXyPfFFmSoPTsXF9OzyLfNcrvrnYtNBqz2Hd__1DKVn_e_Ub6fSdEf-doexC1XQUiI8mCoxw5L4wjpJRnRcy5TUPtI0mc4CYtMcu4jJ0yDtHZ1AmnUFl0eSxjKwthkeZ9AEsSKZL7m-n977OajqcDo4g4Y0EVm64ai4-xEHl8I-6F9gA3MO08Mg6hrf8UnrSYlG01RrQMC27yDB7PMRU-hzOClxSeWHtkoGZVySbV5Pri0tfvQ4cV1jSIMqz22TLzOwL1J9Y_r8aMUHFj6KyYWDauSLehms-mFbMu-KrwZX43_QUc34tcX8Ii_bh7BUyiILeBnmqfS6N8Qy0kqFgqQ9ldbnkP3ney1KalMvcdNX7phoRZaC93HeTeg7ezsacNgceto756lcxGeNLt8IJEp9s1rAuTpOgJ1so0k7wsCkn5ljIjW3Ak1KR6sNYpVLeeoNb_7bYHH4KS7_gNvfNjKMLTyt1zvYGHg6PhgT7YPdxfhUeCkFdTF1qDxen5b_eakNJ0tB7Mk8HP-14P_wBTMiHh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTgUJU_sbSAJeAAUljHdn6MhBClu2opXSpEpd7crO2c2E3bLELceIQ-Tx-nT8KMkyxbCfXWW5RYljUznvlm7HwD8FJIXaaydJHNHCYoSZxHuU5tlGmXiUmcWBlKA_vjdOdQfT5KjlbgovsXhq5Vdj4xOGpXWaqRD0SWJFIRO9egbK9FHGyPPpycRtRBik5au3YajYns-d-_MH2r3-9uo65fCTEafv-0E7UdBiKr0JqjXHJeWI-oKc-KmHOXhjpIknjBbVrKLOMq9tp6Kb1LvfBaaid9HqvYqUI4ifPegtWMsqIerG4NxwffFhUeIgfD-LjgRBUDX03F21iIPL4SBUOzgCsIdxknh0A3Woe1FqGyj41J3YMVP7sPd5d4Cx_AKYJNDFasvUBQs6pks2p2-eechBb6rbCmXZRlNeXOjM4H6ndsdFZNGWLkxuxZMXNsWqGmQ22fzSvmfPBc4cvy2fpDOLwRyT6CHi7cPwampEAnIol4nyurqb2WROBYaou5Xu54H153sjS2JTan_ho_TEPJLAzJ3QS59-HFYuxJQ-fx31FbpJLFCKLgDi9QdKbd0aawSSqJbq1MUf9lUSjMvrSduIJLxFC6D5udQk3rF2rzz4r78CYo-ZplmOHXfRGenlw_13O4jXvBfNkd723AHYEwrCkSbUJvfvbTP0XYNJ88a-2TwfFNb4m_xOMncw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+of+non%E2%80%90fullerene+organic+solar+cells%3A+From+materials+and+morphology+to+devices+and+applications&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Zhang%2C+Ying&rft.au=Lang%2C+Yongwen&rft.au=Li%2C+Gang&rft.date=2023-01-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |