Recent advances of non‐fullerene organic solar cells: From materials and morphology to devices and applications

The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from I...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 5; no. 1
Main Authors Zhang, Ying, Lang, Yongwen, Li, Gang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. Non‐fullerene organic solar cells (NFA‐OSCs) have seen massive progress in power conversion efficiencies surpassing 19%, benefiting from material innovation and device engineering. Moreover, NFA‐OSCs show great potential for promising applications, such as semitransparent and flexible photovoltaic technology. This review outlines the latest progress of NFA‐OSCs, with a focus on Y‐series, NFAs covering from material and morphology to devices and applications.
AbstractList The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization.
The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. image
Abstract The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization.
The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%, endowing OSCs with great potential toward real‐world application. In this critical review, we outline the recent advances of NFA‐based OSCs ‐ from ITIC‐ to Y6‐family, to exemplify the structure–performance correlations, and cover from material chemistry to nanomorphology controlling. In addition, we point out the possible degradation mechanisms behind the NFA‐based devices and strategies for mitigating the stability issues. With OSC efficiencies approaching 20% benchmark, increasing attention has been built‐up toward the technology's applications. Therefore, we describe the opportunities and challenges in the promising applications, mainly on semitransparent and flexible OSCs for commercial photovoltaics. Finally, we provide a summary and perspective to point out the primary challenges the OSC technology is facing toward commercialization. Non‐fullerene organic solar cells (NFA‐OSCs) have seen massive progress in power conversion efficiencies surpassing 19%, benefiting from material innovation and device engineering. Moreover, NFA‐OSCs show great potential for promising applications, such as semitransparent and flexible photovoltaic technology. This review outlines the latest progress of NFA‐OSCs, with a focus on Y‐series, NFAs covering from material and morphology to devices and applications.
Author Li, Gang
Zhang, Ying
Lang, Yongwen
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University
– sequence: 2
  givenname: Yongwen
  surname: Lang
  fullname: Lang, Yongwen
  organization: Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University
– sequence: 3
  givenname: Gang
  orcidid: 0000-0001-8399-7771
  surname: Li
  fullname: Li, Gang
  email: gang.w.li@polyu.edu.hk
  organization: Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University
BookMark eNp9kd9qFTEQxhdpwVp74xMEvBNOzf_d9U5KWwuVgtTrMCazNYdssk32VM6dj9Bn7JM056yIiHiVIfm-32Tme9UcxBSxad4wesoo5e8xjfyUcd6xF80RV7pdCdaKgz_ql81JKWtaxYpKLtlRc_8FLcaZgHuAaLGQNJCKffr5OGxCwIwRScp3EL0lJQXIxGII5QO5yGkkI8yYPYRCIDoypjx9TyHdbcmciMMHvwPuXmCagrcw-xTL6-ZwqA48-XUeN18vzm_PPq2uby6vzj5er6ykgq06QSlYpB3tWqjjOd0JJalSyKnVg2hbKhn2FoVAp5FjL3onsGOSOQnciePmauG6BGszZT9C3poE3uwv6lAG8uxtQANWaSG10INuJR0ApKC6t98cUMErt7LeLqwpp_sNltms0ybH-n3DW6WE7FQvqurdorI5lZJx-N2VUbNLyOwSMvuEqpj-JbZ-3m9ozuDDvy1ssfzwAbf_gZvzm8988TwDIYekyw
CitedBy_id crossref_primary_10_1002_solr_202400730
crossref_primary_10_1021_acs_jpca_4c04756
crossref_primary_10_3390_en16165868
crossref_primary_10_1021_acs_energyfuels_5c00379
crossref_primary_10_1142_S0218625X25300096
crossref_primary_10_1002_adma_202312311
crossref_primary_10_3390_molecules29225370
crossref_primary_10_1088_2058_8585_ad7ece
crossref_primary_10_1016_j_jssc_2024_125152
crossref_primary_10_1039_D3CS00492A
crossref_primary_10_1002_inf2_12530
crossref_primary_10_1002_aenm_202302273
crossref_primary_10_3390_ma17081875
crossref_primary_10_1002_adom_202203129
crossref_primary_10_1002_solr_202400567
crossref_primary_10_1002_cplu_202400267
crossref_primary_10_1039_D3TC01180A
crossref_primary_10_1016_j_fmre_2023_03_010
crossref_primary_10_1002_ajoc_202300377
crossref_primary_10_1016_j_jiec_2025_02_022
crossref_primary_10_1002_adfm_202302520
crossref_primary_10_1016_j_mtener_2024_101591
crossref_primary_10_1002_adfm_202408960
crossref_primary_10_3390_polym17010115
crossref_primary_10_1016_j_orgel_2025_107226
crossref_primary_10_1142_S2737416523420097
crossref_primary_10_1007_s10008_024_06054_7
crossref_primary_10_1016_j_joule_2023_12_009
crossref_primary_10_1016_j_jsamd_2023_100614
crossref_primary_10_1002_adma_202302005
crossref_primary_10_3390_polym15081875
crossref_primary_10_1016_j_orgel_2023_106864
crossref_primary_10_1021_acsaem_4c02155
crossref_primary_10_1002_slct_202401831
crossref_primary_10_1039_D3EE02527F
crossref_primary_10_1016_j_solener_2024_112617
crossref_primary_10_1002_solr_202300751
crossref_primary_10_1002_aenm_202402920
crossref_primary_10_1002_cey2_579
crossref_primary_10_1002_smll_202412230
crossref_primary_10_1002_adma_202301231
crossref_primary_10_3390_molecules28196968
crossref_primary_10_1002_solr_202400864
crossref_primary_10_1002_adma_202409212
crossref_primary_10_1002_aenm_202301965
crossref_primary_10_1039_D3TC04516A
crossref_primary_10_1039_D3RA06817J
crossref_primary_10_1039_D4EE06027J
crossref_primary_10_3390_polym16111496
crossref_primary_10_1002_adma_202407271
crossref_primary_10_1002_ejoc_202400211
crossref_primary_10_1080_25740881_2024_2391379
crossref_primary_10_1002_jccs_202300326
crossref_primary_10_1016_j_orgel_2024_107060
crossref_primary_10_1002_advs_202413051
crossref_primary_10_1007_s00894_024_06120_x
crossref_primary_10_1002_adfm_202406200
crossref_primary_10_2174_0115734137268768230919170012
crossref_primary_10_1002_adma_202302452
crossref_primary_10_1002_adma_202406949
crossref_primary_10_1002_adma_202413270
crossref_primary_10_1134_S0018143924700644
Cites_doi 10.1002/aenm.201900376
10.1016/j.joule.2022.06.009
10.1002/adma.201302563
10.1002/aenm.202200453
10.1002/adma.201700254
10.1038/s41467‐020‐17867‐1
10.1002/adma.202005386
10.1039/D1EE01957K
10.1038/s41467‐021‐25718‐w
10.1021/jacs.0c08557
10.1039/C9MH00379G
10.1038/nmat4797
10.1002/eom2.12061
10.1021/acs.chemrev.7b00535
10.1002/adma.200901819
10.1021/jacs.0c07083
10.1002/adfm.201804479
10.1016/j.joule.2021.06.020
10.1016/S0379‐6779(97)80097‐5
10.1016/j.joule.2018.02.010
10.1088/0957‐4484/20/16/165202
10.1002/ente.201402192
10.1002/adma.201205337
10.1016/j.joule.2019.01.004
10.1002/advs.201903259
10.1002/adma.201908205
10.1002/adma.202103017
10.1039/D0EE04012F
10.1002/agt2.58
10.1038/ncomms6293
10.1002/adma.201908478
10.1002/adma.200701101
10.1021/acsenergylett.0c00537
10.1038/s41467‐019‐10098‐z
10.1021/cr400353v
10.1016/j.joule.2020.07.028
10.1038/natrevmats.2017.43
10.1039/D1QM00060H
10.1038/nmat1500
10.1002/adma.201502827
10.1016/j.solmat.2004.02.030
10.1016/j.joule.2020.03.023
10.1016/j.joule.2019.09.009
10.1016/j.chempr.2016.07.010
10.1002/adma.201704837
10.1002/adfm.202010172
10.1016/j.joule.2018.06.006
10.1021/nn3029327
10.1063/1.96937
10.1021/jacs.2c01503
10.1038/s41566‐018‐0104‐9
10.1038/s41467‐021‐25148‐8
10.1002/aenm.201601094
10.1038/s41467‐019‐08386‐9
10.1002/adma.202105114
10.1021/jacs.6b12755
10.31635/ccschem.021.202100956
10.1002/anie.202009666
10.1088/1674‐4926/42/8/080301
10.1021/acsenergylett.9b00528
10.1002/adfm.200400016
10.1038/ncomms8083
10.1016/j.joule.2021.02.002
10.1146/annurev.matsci.35.102103.090513
10.1016/j.solmat.2014.05.049
10.1021/jacs.5b00305
10.1021/jacs.7b02677
10.1038/s41563‐022‐01244‐y
10.1002/inf2.12270
10.1039/C8EE01564C
10.1002/aenm.202002653
10.1016/j.mattod.2022.04.005
10.1038/nenergy.2016.118
10.1002/adfm.201200608
10.1016/j.joule.2018.04.005
10.1016/j.joule.2018.11.006
10.1002/solr.202000638
10.1002/adma.201305645
10.1038/s41560‐021‐00820‐x
10.1016/j.scib.2019.09.016
10.1093/nsr/nwab121
10.1038/s41563‐017‐0005‐1
10.1038/nphoton.2012.11
10.1039/C5CS00593K
10.1002/adfm.201002290
10.1039/C8EE01150H
10.1002/adma.201805089
10.1002/aenm.202100378
10.1007/s11426‐019‐9599‐1
10.1002/adma.202106732
10.1002/adma.200903528
10.1021/ma0618732
10.1002/adma.202005348
10.1002/adma.201602642
10.1063/1.3211850
10.1038/s41467‐021‐25638‐9
10.1126/science.270.5243.1789
10.1039/C9TA07417A
10.1002/adma.202105301
10.1016/j.nanoen.2020.104718
10.1038/s41560‐020‐00732‐2
10.1063/5.0027948
10.1038/nenergy.2015.27
10.1038/natrevmats.2018.3
10.1002/adma.201502110
10.1002/cjoc.202000696
10.1002/anie.202116111
10.1002/adma.202007231
10.1126/science.258.5087.1474
10.1016/j.joule.2018.09.001
10.1002/adma.202105943
10.1002/aenm.202003576
10.1002/adfm.202201142
10.1002/aenm.201800002
10.1016/j.solmat.2012.07.004
10.1002/adma.201701308
10.1021/accountsmr.0c00033
10.1016/j.orgel.2022.106436
10.1002/anie.201707678
10.31635/ccschem.022.202201963
10.1002/nano.202000012
10.1002/adma.200501717
10.1002/adma.201800613
10.1038/nphoton.2013.207
10.1016/j.joule.2021.04.007
10.1002/adma.201903441
10.1103/RevModPhys.75.949
10.1002/adfm.201910466
10.1038/s41578‐019‐0093‐4
10.1002/adma.201600281
10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N
10.1038/s41467‐018‐07017‐z
10.1002/aenm.202001076
10.1039/D1TA01135A
10.1038/s41560‐018‐0181‐5
10.1002/adfm.200600624
10.1002/anie.202016265
10.1039/D0EE01896A
10.1002/adma.202003891
10.1038/nature02498
10.1021/jacsau.1c00064
10.1016/j.joule.2019.03.020
10.1002/adma.201602776
10.1021/jacs.5b03449
10.1002/adma.202102420
10.1039/C9EE03710A
10.1002/aenm.201700084
10.1002/aenm.201402020
10.20517/energymater.2021.08
10.1038/nmat5063
10.1016/j.joule.2020.03.019
10.1021/jacs.6b02004
10.1038/s41563‐018‐0128‐z
10.1002/solr.201900385
10.1002/aenm.201703147
10.1117/1.JPE.9.045502
10.1038/s41467‐020‐16621‐x
10.1063/1.2212270
10.1021/acsenergylett.0c01927
10.1039/c3ee40860d
10.1002/aenm.201904234
10.1038/nphoton.2015.9
10.1039/C0CP01178A
10.1021/cr900182s
10.1038/ncomms14541
10.1016/j.joule.2020.02.012
10.1038/ncomms7013
10.1038/s41563‐020‐00872‐6
10.1016/j.mtadv.2021.100154
10.1002/adma.201902899
10.1038/s41560‐021‐00923‐5
10.1039/D1TC03655F
10.1002/adma.201703906
10.1016/j.nanoen.2019.01.082
10.1088/0957‐4484/25/29/295401
10.1021/jacs.6b00853
10.1038/nphoton.2009.192
10.1002/adma.202107476
10.1002/adma.201908305
10.1016/j.joule.2020.02.004
10.1002/adma.201304187
10.1021/cr3001109
10.1002/adfm.200500211
10.1002/adma.202107659
10.1038/nmat2399
10.1016/j.joule.2018.11.023
10.1038/s41467‐019‐13292‐1
10.1002/adma.202001621
10.1016/j.joule.2020.01.014
10.1016/j.scib.2020.01.001
10.1063/1.3567516
10.1021/acs.chemrev.6b00176
10.1002/adma.201404317
10.1016/j.joule.2022.02.006
10.1021/nl202320r
10.1002/aenm.201700770
10.1002/adfm.200701459
10.1039/C9TA09961A
ContentType Journal Article
Copyright 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1002/eom2.12281
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ac5634636f6740faa43069cbda032939
10_1002_eom2_12281
EOM212281
Genre reviewArticle
GrantInformation_xml – fundername: Hong Kong Polytechnic University
– fundername: Shenzhen Science and Technology Innovation Commission
  funderid: JCYJ 20200109105003940
– fundername: Sir Sze‐yuen Chung Endowed Professorship Fund
  funderid: 8‐8480
– fundername: Research Grants Council of Hong Kong
  funderid: C5037‐18G; 15221320
– fundername: Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and Devices
  funderid: 2019B121205001
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4031-8300ace08087a100d68354055e20c6f377041e9ce33ed6e2e939d3e8141d4a2d3
IEDL.DBID BENPR
ISSN 2567-3173
IngestDate Wed Aug 27 01:11:10 EDT 2025
Wed Aug 13 06:15:48 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Tue Jul 01 02:50:13 EDT 2025
Wed Jan 22 16:25:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4031-8300ace08087a100d68354055e20c6f377041e9ce33ed6e2e939d3e8141d4a2d3
Notes Funding information
Guangdong‐Hong Kong‐Macao Joint Laboratory for Photonic‐Thermal‐Electrical Energy Materials and Devices, Grant/Award Number: 2019B121205001; Hong Kong Polytechnic University; Sir Sze‐yuen Chung Endowed Professorship Fund, Grant/Award Number: 8‐8480; Shenzhen Science and Technology Innovation Commission, Grant/Award Number: JCYJ 20200109105003940; Research Grants Council of Hong Kong, Grant/Award Numbers: C5037‐18G, 15221320
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8399-7771
OpenAccessLink https://www.proquest.com/docview/2755348593?pq-origsite=%requestingapplication%
PQID 2755348593
PQPubID 5066170
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_ac5634636f6740faa43069cbda032939
proquest_journals_2755348593
crossref_primary_10_1002_eom2_12281
crossref_citationtrail_10_1002_eom2_12281
wiley_primary_10_1002_eom2_12281_EOM212281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Beijing
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2002; 14
2019; 10
2014; 26
2014; 25
2020; 13
2022; 21
2020; 11
2020; 10
2013; 7
2014; 130
2013; 6
2010; 22
2018; 9
2018; 8
2018; 3
2018; 2
2015; 137
2022; 34
2018; 30
2022; 32
2008; 20
2007; 1
2012; 22
2016; 45
2019; 7
2019; 9
2018; 28
2019; 4
2019; 3
2021; 42
2019; 6
2019; 31
2004; 49
2020; 142
2020; 32
2012; 107
1995; 270
2017; 139
2021; 58
2016; 6
2018; 17
2016; 1
2012; 112
2022; 4
2020; 30
2018; 118
2022; 6
1992; 258
2017; 56
2022; 12
2005; 4
2018; 12
2005; 15
2016; 28
2018; 11
2021; 60
2009; 109
2022; 102
2009; 106
2017; 7
2017; 8
2013; 25
2017; 2
2021; 20
1997; 87
2019; 58
2011; 11
2011; 98
2011; 13
2020; 8
2020; 7
2020; 5
2014; 5
2020; 4
2021; 31
2020; 2
2021; 34
2021; 33
2020; 1
2019; 63
2021; 39
1986; 48
2011; 21
2016; 116
2005; 35
2021; 9
2021; 8
2021; 6
2015; 6
2021; 5
2004; 83
2015; 5
2021; 3
2009; 20
2015; 3
2008; 18
2006; 18
2017; 29
2021; 1
2015; 9
2014; 114
2003; 75
2021; 14
2022; 144
2015; 27
2021; 12
2021; 11
2022
2021
2022; 61
2006; 88
2020; 72
2017; 16
2009; 8
2016; 138
2007; 40
2020; 65
2022; 55
2012; 6
2009; 3
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 29
  issue: 47
  year: 2017
  article-title: All‐polymer solar cells based on a conjugated polymer containing siloxane‐functionalized side chains with efficiency over 10
  publication-title: Adv Mater
– volume: 83
  start-page: 273
  issue: 2–3
  year: 2004
  end-page: 292
  article-title: Organic photovoltaics: technology and market
  publication-title: Sol Energy Mater Sol Cells
– volume: 1
  issue: 2
  year: 2016
  article-title: Efficient organic solar cells processed from hydrocarbon solvents
  publication-title: Nat Energy
– volume: 16
  start-page: 363
  issue: 3
  year: 2017
  end-page: 369
  article-title: Reducing the efficiency‐stability‐cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells
  publication-title: Nat Mater
– volume: 11
  issue: 13
  year: 2021
  article-title: Sequential deposition of donor and acceptor provides high‐performance semitransparent organic photovoltaics having a pseudo p–i–n active layer structure
  publication-title: Adv Energy Mater
– volume: 8
  issue: 1
  year: 2017
  article-title: Abnormal strong burn‐in degradation of highly efficient polymer solar cells caused by spinodal donor‐acceptor demixing
  publication-title: Nat Commun
– volume: 49
  start-page: 911
  issue: 6986
  year: 2004
  end-page: 918
  article-title: The path to ubiquitous and low‐cost organic electronic appliances on plastic
  publication-title: Nature
– volume: 25
  start-page: 6642
  issue: 46
  year: 2013
  end-page: 6671
  article-title: 25th anniversary article: a decade of organic/polymeric photovoltaic research
  publication-title: Adv Mater
– volume: 17
  start-page: 703
  issue: 8
  year: 2018
  end-page: 709
  article-title: Design rules for minimizing voltage losses in high‐efficiency organic solar cells
  publication-title: Nat Mater
– volume: 11
  issue: 1
  year: 2020
  article-title: Delocalization of exciton and electron wavefunction in non‐fullerene acceptor molecules enables efficient organic solar cells
  publication-title: Nat Commun
– volume: 28
  start-page: 9423
  issue: 42
  year: 2016
  end-page: 9429
  article-title: Energy‐level modulation of small‐molecule electron acceptors to achieve over 12% efficiency in polymer solar cells
  publication-title: Adv Mater
– volume: 4
  issue: 3
  year: 2019
  article-title: Polymer pre‐aggregation enables optimal morphology and high‐performance in all‐polymer solar cells
  publication-title: Solar RRL
– volume: 144
  start-page: 8658
  issue: 19
  year: 2022
  end-page: 8668
  article-title: Realizing 17.5% efficiency flexible organic solar cells via atomic‐level chemical welding of silver nanowire electrodes
  publication-title: J Am Chem Soc
– volume: 15
  start-page: 1617
  issue: 10
  year: 2005
  end-page: 1622
  article-title: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 1970
  issue: 6
  year: 2011
  end-page: 1983
  article-title: Fullerene derivative acceptors for high performance polymer solar cells
  publication-title: Phys Chem Chem Phys
– volume: 3
  start-page: 373
  issue: 4
  year: 2015
  end-page: 384
  article-title: Guidelines for closing the efficiency gap between hero solar cells and roll‐to‐roll printed modules
  publication-title: Energy Technol
– volume: 10
  issue: 1
  year: 2019
  article-title: Simple non‐fused electron acceptors for efficient and stable organic solar cells
  publication-title: Nat Commun
– volume: 8
  start-page: 281
  issue: 4
  year: 2009
  end-page: 290
  article-title: Near‐edge X‐ray absorption fine‐structure microscopy of organic and magnetic materials
  publication-title: Nat Mater
– volume: 88
  issue: 25
  year: 2006
  article-title: Efficient inverted polymer solar cells
  publication-title: Appl Phys Lett
– volume: 25
  start-page: 4296
  issue: 31
  year: 2013
  end-page: 4301
  article-title: Package‐free flexible organic solar cells with graphene top electrodes
  publication-title: Adv Mater
– volume: 65
  start-page: 131
  issue: 2
  year: 2020
  end-page: 137
  article-title: Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance
  publication-title: Sci Bull
– volume: 11
  start-page: 3392
  issue: 12
  year: 2018
  end-page: 3399
  article-title: Ternary non‐fullerene polymer solar cells with 13.51% efficiency and a record‐high fill factor of 78.13%
  publication-title: Energy Environ Sci
– volume: 5
  start-page: 3637
  issue: 11
  year: 2020
  end-page: 3646
  article-title: Vertical composition distribution and crystallinity regulations enable high‐performance polymer solar cells with >17% efficiency
  publication-title: ACS Energy Lett
– volume: 4
  start-page: 1070
  issue: 5
  year: 2020
  end-page: 1086
  article-title: Controlling molecular mass of low‐band‐gap polymer acceptors for high‐performance all‐polymer solar cells
  publication-title: Joule
– volume: 17
  start-page: 253
  issue: 3
  year: 2018
  end-page: 260
  article-title: Quantitative relations between interaction parameter, miscibility and function in organic solar cells
  publication-title: Nat Mater
– volume: 60
  start-page: 4422
  issue: 9
  year: 2021
  end-page: 4433
  article-title: Polymerized small‐molecule acceptors for high‐performance all‐polymer solar cells
  publication-title: Angew Chem Int Ed
– volume: 7
  issue: 18
  year: 2017
  article-title: Quantitative morphology–performance correlations in organic solar cells: insights from soft X‐ray scattering
  publication-title: Adv Energy Mater
– volume: 258
  start-page: 1474
  issue: 5087
  year: 1992
  end-page: 1476
  article-title: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene
  publication-title: Science
– volume: 4
  start-page: 864
  issue: 11
  year: 2005
  end-page: 868
  article-title: High‐efficiency solution processable polymer photovoltaic cells by self‐organization of polymer blends
  publication-title: Nat Mater
– volume: 9
  issue: 20
  year: 2019
  article-title: Rational strategy to stabilize an unstable high‐efficiency binary nonfullerene organic solar cells with a third component
  publication-title: Adv Energy Mater
– volume: 107
  start-page: 329
  year: 2012
  end-page: 336
  article-title: All solution processing of ITO‐free organic solar cell modules directly on barrier foil
  publication-title: Sol Energy Mater Sol Cells
– volume: 11
  start-page: 2225
  issue: 8
  year: 2018
  end-page: 2234
  article-title: P3HT: non‐fullerene acceptor based large area, semi‐transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods
  publication-title: Energy Environ Sci
– volume: 28
  issue: 45
  year: 2018
  article-title: Dynamic agitation‐induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance
  publication-title: Adv Funct Mater
– volume: 40
  start-page: 1353
  issue: 5
  year: 2007
  end-page: 1362
  article-title: Toward high‐performance polymer solar cells: the importance of morphology control
  publication-title: Macromolecules
– volume: 4
  start-page: 688
  issue: 3
  year: 2020
  end-page: 700
  article-title: Trifluoromethylation enables a 3D interpenetrated low‐band‐gap acceptor for efficient organic solar cells
  publication-title: Joule
– volume: 106
  issue: 5
  year: 2009
  article-title: Area‐scaling of organic solar cells
  publication-title: J Appl Phys
– volume: 118
  start-page: 3447
  issue: 7
  year: 2018
  end-page: 3507
  article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells
  publication-title: Chem Rev
– volume: 20
  issue: 16
  year: 2009
  article-title: High efficiency polymer solar cells with vertically modulated nanoscale morphology
  publication-title: Nanotechnology
– volume: 6
  start-page: 1438
  issue: 7
  year: 2019
  end-page: 1443
  article-title: Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO for nonfullerene organic solar cells
  publication-title: Mater Horiz
– start-page: 1
  year: 2022
  end-page: 15
  article-title: Near‐infrared all‐fused‐ring nonfullerene acceptors achieving an optimal efficiency‐cost‐stability balance in organic solar cells
  publication-title: CCS Chem
– volume: 11
  year: 2021
  article-title: Molecular packing of non‐fullerene acceptors for organic solar cells: distinctive local morphology in Y6 vs. ITIC derivatives
  publication-title: Mater Today Adv
– volume: 18
  start-page: 1783
  issue: 12
  year: 2008
  end-page: 1789
  article-title: Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells
  publication-title: Adv Funct Mater
– volume: 5
  start-page: 3257
  issue: 8
  year: 2021
  end-page: 3280
  article-title: Recent advances in PM6:Y6‐based organic solar cells
  publication-title: Mater Chem Front
– volume: 8
  issue: 28
  year: 2018
  article-title: Morphology control in organic solar cells
  publication-title: Adv Energy Mater
– volume: 58
  issue: 3
  year: 2021
  article-title: All‐polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives
  publication-title: Aggregate
– volume: 72
  year: 2020
  article-title: 14.4% efficiency all‐polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor
  publication-title: Nano Energy
– volume: 270
  start-page: 1789
  issue: 5243
  year: 1995
  end-page: 1791
  article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions
  publication-title: Science
– volume: 22
  start-page: 478
  issue: 4
  year: 2010
  end-page: 482
  article-title: High‐mobility ambipolar transistors and high‐gain inverters from a donor‐acceptor copolymer semiconductor
  publication-title: Adv Mater
– volume: 12
  issue: 1
  year: 2021
  article-title: Graded bulk‐heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating
  publication-title: Nat Commun
– volume: 33
  year: 2021
  article-title: Volatilizable solid additive‐assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%
  publication-title: Adv Mater
– volume: 137
  start-page: 3886
  issue: 11
  year: 2015
  end-page: 3893
  article-title: A series of simple oligomer‐like small molecules based on oligothiophenes for solution‐processed solar cells with high efficiency
  publication-title: J Am Chem Soc
– volume: 102
  year: 2022
  article-title: The history and development of Y6
  publication-title: Org Electron
– volume: 8
  issue: 8
  year: 2021
  article-title: Y6 and its derivatives: molecular design and physical mechanism
  publication-title: Natl Sci Rev
– volume: 98
  issue: 11
  year: 2011
  article-title: Transparent, near‐infrared organic photovoltaic solar cells for window and energy‐scavenging applications
  publication-title: Appl Phys Lett
– volume: 1
  start-page: 158
  issue: 2
  year: 2020
  end-page: 171
  article-title: Functional third components in nonfullerene acceptor‐based ternary organic solar cells
  publication-title: Acc Mater Res
– volume: 6
  start-page: 7185
  issue: 8
  year: 2012
  end-page: 7190
  article-title: Visibly transparent polymer solar cells produced by solution processing
  publication-title: ACS Nano
– volume: 32
  issue: 49
  year: 2020
  article-title: The role of demixing and crystallization kinetics on the stability of non‐fullerene organic solar cells
  publication-title: Adv Mater
– volume: 61
  issue: 19
  year: 2022
  article-title: Design of near‐infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high‐performance semitransparent ternary organic solar cells
  publication-title: Angew Chem Int Ed Engl
– volume: 5
  issue: 1
  year: 2021
  article-title: Visible light–induced degradation of inverted polymer: nonfullerene acceptor solar cells: initiated by the light absorption of ZnO layer
  publication-title: Sol RRL
– volume: 32
  issue: 14
  year: 2020
  article-title: Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a "welding" flexible transparent electrode
  publication-title: Adv Mater
– volume: 14
  start-page: 662
  issue: 9
  year: 2002
  end-page: 665
  article-title: Polymer photovoltaic cells with conducting polymer anodes
  publication-title: Adv Mater
– volume: 33
  issue: 12
  year: 2021
  article-title: Layer‐by‐layer processed ternary organic photovoltaics with efficiency over 18
  publication-title: Adv Mater
– volume: 3
  start-page: 1328
  issue: 5
  year: 2019
  end-page: 1348
  article-title: Delineation of thermodynamic and kinetic factors that control stability in non‐fullerene organic solar cells
  publication-title: Joule
– volume: 1
  start-page: 612
  issue: 5
  year: 2021
  end-page: 622
  article-title: High‐molecular‐weight electroactive polymer additives for simultaneous enhancement of photovoltaic efficiency and mechanical robustness in high‐performance polymer solar cells
  publication-title: J Am Chem Soc Au
– volume: 33
  issue: 41
  year: 2021
  article-title: Single‐junction organic photovoltaic cell with 19% efficiency
  publication-title: Adv Mater
– volume: 32
  issue: 16
  year: 2020
  article-title: Unraveling the microstructure‐related device stability for polymer solar cells based on nonfullerene small‐molecular acceptors
  publication-title: Adv Mater
– volume: 4
  start-page: 658
  issue: 3
  year: 2020
  end-page: 672
  article-title: Mechanically robust all‐polymer solar cells from narrow band gap acceptors with hetero‐bridging atoms
  publication-title: Joule
– volume: 4
  start-page: 1236
  issue: 6
  year: 2020
  end-page: 1247
  article-title: Fine‐tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%
  publication-title: Joule
– volume: 130
  start-page: 20
  year: 2014
  end-page: 26
  article-title: The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy
  publication-title: Sol Energy Mater Sol Cells
– volume: 34
  issue: 10
  year: 2022
  article-title: Novel oligomer enables green solvent processed 17.5% ternary organic solar cells: synergistic energy loss reduction and morphology fine‐tuning
  publication-title: Adv Mater
– volume: 9
  issue: 4
  year: 2019
  article-title: Investigation of low‐bandgap nonfullerene acceptor‐based polymer solar cells with very low photovoltage loss
  publication-title: J Photonics Energy
– volume: 33
  issue: 49
  year: 2021
  article-title: Thermoplastic elastomer tunes phase structure and promotes stretchability of high‐efficiency organic solar cells
  publication-title: Adv Mater
– volume: 21
  start-page: 656
  issue: 6
  year: 2022
  end-page: 663
  article-title: Single‐junction organic solar cells with over 19% efficiency enabled by a refined double‐fibril network morphology
  publication-title: Nat Mater
– volume: 31
  issue: 45
  year: 2019
  article-title: Large‐area organic solar cells: material requirements, modular designs, and printing methods
  publication-title: Adv Mater
– volume: 45
  start-page: 2544
  issue: 9
  year: 2016
  end-page: 2582
  article-title: Stability of organic solar cells: challenges and strategies
  publication-title: Chem Soc Rev
– volume: 20
  start-page: 415
  issue: 3
  year: 2008
  end-page: 419
  article-title: A semi‐transparent plastic solar cell fabricated by a lamination process
  publication-title: Adv Mater
– volume: 32
  issue: 49
  year: 2020
  article-title: Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells
  publication-title: Adv Mater
– volume: 7
  start-page: 825
  issue: 10
  year: 2013
  end-page: 833
  article-title: Polymer solar cells with enhanced fill factors
  publication-title: Nat Photonics
– volume: 7
  start-page: 25088
  issue: 43
  year: 2019
  end-page: 25101
  article-title: Suppressing photo‐oxidation of non‐fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers
  publication-title: J Mater Chem A
– volume: 137
  start-page: 8176
  issue: 25
  year: 2015
  end-page: 8183
  article-title: Conjugated polymer‐small molecule alloy leads to high efficient ternary organic solar cells
  publication-title: J Am Chem Soc
– volume: 2
  start-page: 1816
  issue: 9
  year: 2018
  end-page: 1826
  article-title: Heat‐insulating multifunctional semitransparent polymer solar cells
  publication-title: Joule
– volume: 1
  start-page: 1636
  issue: 10
  year: 2007
  end-page: 1644
  article-title: Solvent annealing” effect in polymer solar cells based on poly(3‐hexylthiophene) and methanofullerenes
  publication-title: Adv Funct Mater
– volume: 10
  issue: 1
  year: 2019
  article-title: All‐small‐molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies
  publication-title: Nat Commun
– volume: 139
  start-page: 1336
  issue: 3
  year: 2017
  end-page: 1343
  article-title: Fused nonacyclic electron acceptors for efficient polymer solar cells
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 3034
  issue: 12
  year: 2019
  end-page: 3047
  article-title: All‐small‐molecule organic solar cells with an ordered liquid crystalline donor
  publication-title: Joule
– volume: 4
  start-page: 2004
  issue: 9
  year: 2020
  end-page: 2016
  article-title: Single‐component non‐halogen solvent‐processed high‐performance organic solar cell module with efficiency over 14%
  publication-title: Joule
– volume: 116
  start-page: 7397
  issue: 12
  year: 2016
  end-page: 7457
  article-title: Molecular design of benzodithiophene‐based organic photovoltaic materials
  publication-title: Chem Rev
– volume: 6
  issue: 1
  year: 2015
  article-title: A molecular nematic liquid crystalline material for high‐performance organic photovoltaics
  publication-title: Nat Commun
– volume: 87
  start-page: 53
  issue: 1
  year: 1997
  end-page: 59
  article-title: Stability of n‐type doped conducting polymers and consequences for polymeric microelectronic devices
  publication-title: Synth Met
– volume: 12
  issue: 1
  year: 2021
  article-title: Polymerized small molecular acceptor based all‐polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design
  publication-title: Nat Commun
– volume: 4
  issue: 4
  year: 2022
  article-title: Morphology control in high‐efficiency all‐polymer solar cells
  publication-title: InfoMat
– volume: 27
  start-page: 4655
  issue: 31
  year: 2015
  end-page: 4660
  article-title: A large‐bandgap conjugated polymer for versatile photovoltaic applications with high performance
  publication-title: Adv Mater
– volume: 29
  issue: 21
  year: 2017
  article-title: Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open‐circuit voltage
  publication-title: Adv Mater
– volume: 3
  start-page: 649
  issue: 11
  year: 2009
  end-page: 653
  article-title: Polymer solar cells with enhanced open‐circuit voltage and efficiency
  publication-title: Nat Photonics
– volume: 26
  start-page: 3142
  issue: 19
  year: 2014
  end-page: 3147
  article-title: Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole‐based narrow bandgap polymer solar cells
  publication-title: Adv Mater
– volume: 75
  start-page: 949
  issue: 3
  year: 2003
  end-page: 983
  article-title: Advances in atomic force microscopy
  publication-title: Rev Mod Phys
– volume: 3
  start-page: 1070
  issue: 6
  year: 2021
  end-page: 1080
  article-title: Design of all‐fused‐ring electron acceptors with high thermal, chemical, and photochemical stability for organic photovoltaics
  publication-title: CCS Chem
– volume: 34
  issue: 7
  year: 2021
  article-title: Kinetics manipulation enables high‐performance thick ternary organic solar cells via R2R compatible slot‐die coating
  publication-title: Adv Mater
– volume: 28
  start-page: 4734
  issue: 23
  year: 2016
  end-page: 4739
  article-title: Fullerene‐free polymer solar cells with over 11% efficiency and excellent thermal stability
  publication-title: Adv Mater
– volume: 112
  start-page: 5488
  issue: 10
  year: 2012
  end-page: 5519
  article-title: Quantitative determination of organic semiconductor microstructure from the molecular to device scale
  publication-title: Chem Rev
– year: 2021
  article-title: Ternary blend organic solar cells: understanding the morphology from recent progress
  publication-title: Adv Mater
– volume: 13
  start-page: 635
  issue: 2
  year: 2020
  end-page: 645
  article-title: Over 17% efficiency ternary organic solar cells enabled by two non‐fullerene acceptors working in alloy‐like model
  publication-title: Energy Environ Sci
– volume: 4
  start-page: 1241
  issue: 6
  year: 2019
  end-page: 1250
  article-title: Nonfullerene all‐small‐molecule organic solar cells
  publication-title: ACS Energy Lett
– volume: 139
  start-page: 7148
  issue: 21
  year: 2017
  end-page: 7151
  article-title: Molecular optimization enables over 13% efficiency in organic solar cells
  publication-title: J Am Chem Soc
– volume: 35
  start-page: 539
  issue: 1
  year: 2005
  end-page: 569
  article-title: Materials characterization in the aberration‐corrected scanning transmission electron microscope
  publication-title: Annu Rev Mater
– volume: 14
  start-page: 3044
  issue: 5
  year: 2021
  end-page: 3052
  article-title: Additive‐induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells
  publication-title: Energy Environ Sci
– volume: 7
  issue: 11
  year: 2020
  article-title: Progress in stability of organic solar cells
  publication-title: Adv Sci
– volume: 5
  start-page: 914
  issue: 4
  year: 2021
  end-page: 930
  article-title: 16% efficiency all‐polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend
  publication-title: Joule
– volume: 5
  start-page: 2408
  issue: 9
  year: 2021
  end-page: 2419
  article-title: Reduced non‐radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency
  publication-title: Joule
– volume: 1
  issue: 9
  year: 2016
  article-title: Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%
  publication-title: Nat Energy
– volume: 27
  start-page: 1170
  issue: 7
  year: 2015
  end-page: 1174
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv Mater
– volume: 5
  issue: 1
  year: 2014
  article-title: Aggregation and morphology control enables multiple cases of high‐efficiency polymer solar cells
  publication-title: Nat Commun
– volume: 32
  issue: 24
  year: 2022
  article-title: Achieving 16% efficiency for polythiophene organic solar cells with a cyano‐substituted polythiophene
  publication-title: Adv Funct Mater
– volume: 31
  issue: 16
  year: 2021
  article-title: Stretchable ITO‐free organic solar cells with intrinsic anti‐reflection substrate for high‐efficiency outdoor and indoor energy harvesting
  publication-title: Adv Funct Mater
– volume: 63
  start-page: 265
  issue: 2
  year: 2019
  end-page: 271
  article-title: Rationally pairing photoactive materials for high‐performance polymer solar cells with efficiency of 16.53%
  publication-title: Sci China Chem
– volume: 6
  start-page: 1045
  issue: 11
  year: 2021
  end-page: 1053
  article-title: A guest‐assisted molecular‐organization approach for >17% efficiency organic solar cells using environmentally friendly solvents
  publication-title: Nat Energy
– volume: 29
  issue: 31
  year: 2017
  article-title: Fused hexacyclic nonfullerene acceptor with strong near‐infrared absorption for semitransparent organic solar cells with 9.77% efficiency
  publication-title: Adv Mater
– volume: 1
  start-page: 30
  issue: 1
  year: 2020
  end-page: 58
  article-title: Recent advances in morphology optimizations towards highly efficient ternary organic solar cells
  publication-title: Nano Select
– volume: 12
  issue: 1
  year: 2021
  article-title: Non‐fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years
  publication-title: Nat Commun
– volume: 6
  start-page: 1918
  issue: 8
  year: 2022
  end-page: 1930
  article-title: Aperiodic band‐pass electrode enables record‐performance transparent organic photovoltaics
  publication-title: Joule
– volume: 5
  issue: 11
  year: 2015
  article-title: Sequential processing for organic photovoltaics: design rules for morphology control by tailored semi‐orthogonal solvent blends
  publication-title: Adv Energy Mater
– volume: 5
  start-page: 1554
  issue: 5
  year: 2020
  end-page: 1567
  article-title: New phase for organic solar cell research: emergence of Y‐series electron acceptors and their perspectives
  publication-title: ACS Energy Lett
– volume: 30
  issue: 4
  year: 2018
  article-title: Environmentally friendly solvent‐processed organic solar cells that are highly efficient and adaptable for the blade‐coating method
  publication-title: Adv Mater
– volume: 21
  start-page: 1076
  issue: 6
  year: 2011
  end-page: 1081
  article-title: Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells
  publication-title: Adv Funct Mater
– volume: 32
  issue: 39
  year: 2020
  article-title: Transparent hole‐transporting frameworks: a unique strategy to design high‐performance semitransparent organic photovoltaics
  publication-title: Adv Mater
– volume: 4
  start-page: 1021
  issue: 5
  year: 2020
  end-page: 1034
  article-title: Flexible organic solar cells over 15% efficiency with polyimide‐integrated graphene electrodes
  publication-title: Joule
– volume: 3
  issue: 3
  year: 2018
  article-title: Non‐fullerene acceptors for organic solar cells
  publication-title: Nat Rev Mater
– volume: 8
  issue: 12
  year: 2020
  article-title: Recent advances in high‐efficiency organic solar cells fabricated by eco‐compatible solvents at relatively large‐area scale
  publication-title: APL Mater
– volume: 32
  issue: 19
  year: 2020
  article-title: Single‐junction organic photovoltaic cells with approaching 18% efficiency
  publication-title: Adv Mater
– volume: 13
  start-page: 3679
  issue: 10
  year: 2020
  end-page: 3692
  article-title: The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non‐fullerene acceptor organic solar cells
  publication-title: Energy Environ Sci
– volume: 138
  start-page: 4955
  issue: 14
  year: 2016
  end-page: 4961
  article-title: High‐performance electron acceptor with thienyl side chains for organic photovoltaics
  publication-title: J Am Chem Soc
– volume: 28
  start-page: 8283
  issue: 37
  year: 2016
  end-page: 8287
  article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells
  publication-title: Adv Mater
– volume: 2
  start-page: 1039
  issue: 6
  year: 2018
  end-page: 1054
  article-title: Transparent polymer photovoltaics for solar energy harvesting and beyond
  publication-title: Joule
– volume: 5
  start-page: 947
  issue: 12
  year: 2020
  end-page: 949
  article-title: It's time to focus on organic solar cell stability
  publication-title: Nat Energy
– volume: 8
  issue: 21
  year: 2018
  article-title: Nonfullerene acceptors for semitransparent organic solar cells
  publication-title: Adv Energy Mater
– volume: 1
  issue: 1
  year: 2021
  article-title: Non‐fused ring acceptors for organic solar cells
  publication-title: Energy Mater
– volume: 55
  start-page: 46
  year: 2022
  end-page: 55
  article-title: Self‐assembly enables simple structure organic photovoltaics via green‐solvent and open‐air‐printing: closing the lab‐to‐fab gap
  publication-title: Mater Today
– volume: 7
  issue: 19
  year: 2017
  article-title: Burn‐in free nonfullerene‐based organic solar cells
  publication-title: Adv Energy Mater
– volume: 3
  start-page: 819
  issue: 3
  year: 2019
  end-page: 833
  article-title: Molecular order control of non‐fullerene acceptors for high‐efficiency polymer solar cells
  publication-title: Joule
– volume: 10
  issue: 8
  year: 2020
  article-title: Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties
  publication-title: Adv Energy Mater
– volume: 31
  issue: 39
  year: 2019
  article-title: Eco‐compatible solvent‐processed organic photovoltaic cells with over 16% efficiency
  publication-title: Adv Mater
– volume: 6
  start-page: 647
  issue: 3
  year: 2022
  end-page: 661
  article-title: Polythiophenes for organic solar cells with efficiency surpassing 17%
  publication-title: Joule
– volume: 10
  issue: 27
  year: 2020
  article-title: Delicate morphology control triggers 14.7% efficiency all‐small‐molecule organic solar cells
  publication-title: Adv Energy Mater
– volume: 9
  issue: 1
  year: 2018
  article-title: Design and application of volatilizable solid additives in non‐fullerene organic solar cells
  publication-title: Nat Commun
– volume: 11
  start-page: 3163
  issue: 8
  year: 2011
  end-page: 3168
  article-title: Sequential processing: control of nanomorphology in bulk heterojunction solar cells
  publication-title: Nano Lett
– volume: 10
  issue: 1
  year: 2019
  article-title: Enabling low voltage losses and high photocurrent in fullerene‐free organic photovoltaics
  publication-title: Nat Commun
– volume: 39
  start-page: 2315
  issue: 8
  year: 2021
  end-page: 2329
  article-title: Solution‐processed silver nanowire as flexible transparent electrodes in organic solar cells
  publication-title: Chin J Chem
– volume: 17
  start-page: 119
  issue: 2
  year: 2018
  end-page: 128
  article-title: Organic solar cells based on non‐fullerene acceptors
  publication-title: Nat Mater
– volume: 9
  start-page: 13972
  issue: 39
  year: 2021
  end-page: 13980
  article-title: Revealing the photo‐degradation mechanism of PM6:Y6 based high‐efficiency organic solar cells
  publication-title: J Mater Chem C
– volume: 6
  start-page: 153
  issue: 3
  year: 2012
  end-page: 161
  article-title: Polymer solar cells
  publication-title: Nat Photonics
– volume: 42
  issue: 8
  year: 2021
  article-title: All‐polymer solar cells
  publication-title: J Semicond
– volume: 30
  issue: 28
  year: 2018
  article-title: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small‐molecule acceptors
  publication-title: Adv Mater
– volume: 6
  issue: 21
  year: 2016
  article-title: Reliability of small molecule organic photovoltaics with electron‐filtering compound buffer layers
  publication-title: Adv Energy Mater
– volume: 9
  start-page: 6797
  issue: 11
  year: 2021
  end-page: 6804
  article-title: Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance
  publication-title: J Mater Chem A
– volume: 3
  start-page: 215
  issue: 1
  year: 2019
  end-page: 226
  article-title: Efficient polymer solar cells based on non‐fullerene acceptors with potential device lifetime approaching 10 years
  publication-title: Joule
– volume: 3
  start-page: 1140
  issue: 4
  year: 2019
  end-page: 1151
  article-title: Single‐junction organic solar cell with over 15% efficiency using fused‐ring acceptor with electron‐deficient core
  publication-title: Joule
– volume: 4
  start-page: 229
  issue: 4
  year: 2019
  end-page: 242
  article-title: The role of the third component in ternary organic solar cells
  publication-title: Nat Rev Mater
– volume: 6
  start-page: 605
  issue: 6
  year: 2021
  end-page: 613
  article-title: Non‐fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells
  publication-title: Nat Energy
– volume: 33
  issue: 39
  year: 2021
  article-title: 54 cm large‐area flexible organic solar modules with efficiency above 13
  publication-title: Adv Mater
– volume: 15
  start-page: 203
  issue: 2
  year: 2005
  end-page: 208
  article-title: High‐conductivity poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices
  publication-title: Adv Funct Mater
– volume: 22
  start-page: 135
  issue: 20
  year: 2010
  end-page: 138
  article-title: For the bright future‐bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%
  publication-title: Adv Mater
– volume: 12
  issue: 20
  year: 2022
  article-title: Semitransparent organic solar cells with efficiency surpassing 15%
  publication-title: Adv Energy Mater
– volume: 2
  issue: 4
  year: 2020
  article-title: Reducing V loss via structure compatible and high lowest unoccupied molecular orbital nonfullerene acceptors for over 17%‐efficiency ternary organic photovoltaics
  publication-title: EcoMat
– volume: 30
  issue: 27
  year: 2020
  article-title: A novel wide‐bandgap polymer with deep ionization potential enables exceeding 16% efficiency in ternary nonfullerene polymer solar cells
  publication-title: Adv Funct Mater
– volume: 11
  issue: 21
  year: 2021
  article-title: Large‐area blade‐coated solar cells: advances and perspectives
  publication-title: Adv Energy Mater
– volume: 56
  start-page: 13503
  issue: 43
  year: 2017
  end-page: 13507
  article-title: Constructing a strongly absorbing low‐bandgap polymer acceptor for high‐performance all‐polymer solar cells
  publication-title: Angew Chem Int Ed
– volume: 114
  start-page: 7006
  issue: 14
  year: 2014
  end-page: 7043
  article-title: Bulk heterojunction solar cells: morphology and performance relationships
  publication-title: Chem Rev
– volume: 18
  start-page: 789
  issue: 6
  year: 2006
  end-page: 794
  article-title: Design rules for donors in bulk‐heterojunction solar cells—towards 10% energy‐conversion efficiency
  publication-title: Adv Mater
– volume: 7
  start-page: 25830
  issue: 45
  year: 2019
  end-page: 25837
  article-title: Intrinsic photo‐degradation and mechanism of polymer solar cells: the crucial role of non‐fullerene acceptors
  publication-title: J Mater Chem A
– volume: 6
  start-page: 2714
  issue: 9
  year: 2013
  end-page: 2720
  article-title: High‐performance semi‐transparent polymer solar cells possessing tandem structures
  publication-title: Energ Environ Sci
– volume: 6
  issue: 1
  year: 2015
  article-title: Competition between recombination and extraction of free charges determines the fill factor of organic solar cells
  publication-title: Nat Commun
– volume: 26
  start-page: 7692
  issue: 46
  year: 2014
  end-page: 7709
  article-title: The active layer morphology of organic solar cells probed with grazing incidence scattering techniques
  publication-title: Adv Mater
– volume: 3
  start-page: 443
  issue: 2
  year: 2019
  end-page: 458
  article-title: Quenching to the percolation threshold in organic solar cells
  publication-title: Joule
– volume: 11
  issue: 1
  year: 2020
  article-title: Organic solar cells—the path to commercial success
  publication-title: Adv Energy Mater
– volume: 60
  start-page: 8813
  issue: 16
  year: 2021
  end-page: 8817
  article-title: A facile synthesized polymer featuring B‐N covalent bond and small singlet‐triplet gap for high‐performance organic solar cells
  publication-title: Angew Chem Int Ed
– volume: 2
  start-page: 621
  issue: 4
  year: 2018
  end-page: 641
  article-title: Miscibility‐driven optimization of nanostructures in ternary organic solar cells using non‐fullerene acceptors
  publication-title: Joule
– volume: 12
  start-page: 131
  issue: 3
  year: 2018
  end-page: 142
  article-title: Next‐generation organic photovoltaics based on non‐fullerene acceptors
  publication-title: Nat Photonics
– volume: 9
  start-page: 190
  issue: 3
  year: 2015
  end-page: 198
  article-title: High‐performance multiple‐donor bulk heterojunction solar cells
  publication-title: Nat Photonics
– volume: 109
  start-page: 5868
  issue: 11
  year: 2009
  end-page: 5923
  article-title: Synthesis of conjugated polymers for organic solar cell applications
  publication-title: Chem Rev
– volume: 48
  start-page: 183
  issue: 2
  year: 1986
  end-page: 185
  article-title: Two‐layer organic photovoltaic cell
  publication-title: Appl Phys Lett
– volume: 22
  start-page: 3480
  issue: 16
  year: 2012
  end-page: 3490
  article-title: Quantification of quantum efficiency and energy losses in low bandgap polymer: fullerene solar cells with high open‐circuit voltage
  publication-title: Adv Funct Mater
– volume: 20
  start-page: 525
  issue: 4
  year: 2021
  end-page: 532
  article-title: A molecular interaction‐diffusion framework for predicting organic solar cell stability
  publication-title: Nat Mater
– volume: 11
  issue: 1
  year: 2020
  article-title: Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells
  publication-title: Nat Commun
– volume: 3
  start-page: 720
  issue: 9
  year: 2018
  end-page: 731
  article-title: Material insights and challenges for non‐fullerene organic solar cells based on small molecular acceptors
  publication-title: Nat Energy
– volume: 65
  start-page: 272
  issue: 4
  year: 2020
  end-page: 275
  article-title: 18% efficiency organic solar cells
  publication-title: Sci Bull
– volume: 32
  issue: 32
  year: 2020
  article-title: High‐performance semitransparent organic solar cells with excellent infrared reflection and see‐through functions
  publication-title: Adv Mater
– volume: 138
  start-page: 2973
  issue: 9
  year: 2016
  end-page: 2976
  article-title: A facile planar fused‐ring electron acceptor for as‐cast polymer solar cells with 8.71% efficiency
  publication-title: J Am Chem Soc
– volume: 5
  start-page: 1548
  issue: 6
  year: 2021
  end-page: 1565
  article-title: Achieving over 17% efficiency of ternary all‐polymer solar cells with two well‐compatible polymer acceptors
  publication-title: Joule
– volume: 14
  start-page: 5530
  issue: 10
  year: 2021
  end-page: 5540
  article-title: A donor polymer based on 3‐cyanothiophene with superior batch‐to‐batch reproducibility for high‐efficiency organic solar cells
  publication-title: Energy Environ Sci
– volume: 2
  issue: 8
  year: 2017
  article-title: Low‐bandgap conjugated polymers enabling solution‐processable tandem solar cells
  publication-title: Nat Rev Mater
– volume: 34
  issue: 6
  year: 2021
  article-title: Resolving atomic‐scale interactions in non‐fullerene acceptor organic solar cells with solid‐state NMR spectroscopy, crystallographic modelling, and molecular dynamics simulations
  publication-title: Adv Mater
– volume: 58
  start-page: 724
  year: 2019
  end-page: 731
  article-title: Improving the efficiency and stability of non‐fullerene polymer solar cells by using N2200 as the additive
  publication-title: Nano Energy
– volume: 31
  issue: 41
  year: 2019
  article-title: Aggregation‐induced multilength scaled morphology enabling 11.76% efficiency in all‐polymer solar cells using printing fabrication
  publication-title: Adv Mater
– volume: 142
  start-page: 18741
  issue: 44
  year: 2020
  end-page: 18745
  article-title: Selenium heterocyclic electron acceptor with small urbach energy for as‐cast high‐performance organic solar cells
  publication-title: J Am Chem Soc
– volume: 1
  start-page: 197
  issue: 2
  year: 2016
  end-page: 219
  article-title: Printable solar cells from advanced solution‐processible materials
  publication-title: Chem
– volume: 25
  issue: 29
  year: 2014
  article-title: Immiscible solvents enabled nanostructure formation for efficient polymer photovoltaic cells
  publication-title: Nanotechnology
– volume: 27
  start-page: 6983
  issue: 43
  year: 2015
  end-page: 6969
  article-title: Toward highly efficient large‐area ITO‐free organic solar cells with a conductance‐gradient transparent electrode
  publication-title: Adv Mater
– volume: 142
  start-page: 15246
  issue: 36
  year: 2020
  end-page: 15251
  article-title: A non‐fullerene acceptor with enhanced intermolecular pi‐core interaction for high‐performance organic solar cells
  publication-title: J Am Chem Soc
– ident: e_1_2_9_154_1
  doi: 10.1002/aenm.201900376
– ident: e_1_2_9_196_1
  doi: 10.1016/j.joule.2022.06.009
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.201302563
– ident: e_1_2_9_195_1
  doi: 10.1002/aenm.202200453
– ident: e_1_2_9_54_1
  doi: 10.1002/adma.201700254
– ident: e_1_2_9_105_1
  doi: 10.1038/s41467‐020‐17867‐1
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.202005386
– ident: e_1_2_9_85_1
  doi: 10.1039/D1EE01957K
– ident: e_1_2_9_145_1
  doi: 10.1038/s41467‐021‐25718‐w
– ident: e_1_2_9_63_1
  doi: 10.1021/jacs.0c08557
– ident: e_1_2_9_143_1
  doi: 10.1039/C9MH00379G
– ident: e_1_2_9_136_1
  doi: 10.1038/nmat4797
– ident: e_1_2_9_20_1
  doi: 10.1002/eom2.12061
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.chemrev.7b00535
– ident: e_1_2_9_16_1
  doi: 10.1002/adma.200901819
– ident: e_1_2_9_104_1
  doi: 10.1021/jacs.0c07083
– ident: e_1_2_9_169_1
  doi: 10.1002/adfm.201804479
– ident: e_1_2_9_118_1
  doi: 10.1016/j.joule.2021.06.020
– ident: e_1_2_9_147_1
  doi: 10.1016/S0379‐6779(97)80097‐5
– ident: e_1_2_9_111_1
  doi: 10.1016/j.joule.2018.02.010
– ident: e_1_2_9_124_1
  doi: 10.1088/0957‐4484/20/16/165202
– ident: e_1_2_9_157_1
  doi: 10.1002/ente.201402192
– ident: e_1_2_9_172_1
  doi: 10.1002/adma.201205337
– ident: e_1_2_9_45_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_9_137_1
  doi: 10.1002/advs.201903259
– ident: e_1_2_9_107_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_9_182_1
  doi: 10.1002/adma.202103017
– ident: e_1_2_9_96_1
  doi: 10.1039/D0EE04012F
– ident: e_1_2_9_178_1
  doi: 10.1002/agt2.58
– ident: e_1_2_9_27_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_9_177_1
  doi: 10.1002/adma.201908478
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.200701101
– ident: e_1_2_9_64_1
  doi: 10.1021/acsenergylett.0c00537
– ident: e_1_2_9_199_1
  doi: 10.1038/s41467‐019‐10098‐z
– ident: e_1_2_9_37_1
  doi: 10.1021/cr400353v
– ident: e_1_2_9_156_1
  doi: 10.1016/j.joule.2020.07.028
– ident: e_1_2_9_17_1
  doi: 10.1038/natrevmats.2017.43
– ident: e_1_2_9_47_1
  doi: 10.1039/D1QM00060H
– ident: e_1_2_9_38_1
  doi: 10.1038/nmat1500
– ident: e_1_2_9_166_1
  doi: 10.1002/adma.201502827
– ident: e_1_2_9_134_1
  doi: 10.1016/j.solmat.2004.02.030
– ident: e_1_2_9_80_1
  doi: 10.1016/j.joule.2020.03.023
– ident: e_1_2_9_69_1
  doi: 10.1016/j.joule.2019.09.009
– ident: e_1_2_9_6_1
  doi: 10.1016/j.chempr.2016.07.010
– ident: e_1_2_9_162_1
  doi: 10.1002/adma.201704837
– ident: e_1_2_9_173_1
  doi: 10.1002/adfm.202010172
– ident: e_1_2_9_184_1
  doi: 10.1016/j.joule.2018.06.006
– ident: e_1_2_9_170_1
  doi: 10.1021/nn3029327
– ident: e_1_2_9_9_1
  doi: 10.1063/1.96937
– ident: e_1_2_9_175_1
  doi: 10.1021/jacs.2c01503
– ident: e_1_2_9_4_1
  doi: 10.1038/s41566‐018‐0104‐9
– ident: e_1_2_9_93_1
  doi: 10.1038/s41467‐021‐25148‐8
– ident: e_1_2_9_155_1
  doi: 10.1002/aenm.201601094
– ident: e_1_2_9_60_1
  doi: 10.1038/s41467‐019‐08386‐9
– ident: e_1_2_9_43_1
  doi: 10.1002/adma.202105114
– ident: e_1_2_9_56_1
  doi: 10.1021/jacs.6b12755
– ident: e_1_2_9_141_1
  doi: 10.31635/ccschem.021.202100956
– ident: e_1_2_9_73_1
  doi: 10.1002/anie.202009666
– ident: e_1_2_9_50_1
  doi: 10.1088/1674‐4926/42/8/080301
– ident: e_1_2_9_48_1
  doi: 10.1021/acsenergylett.9b00528
– ident: e_1_2_9_168_1
  doi: 10.1002/adfm.200400016
– ident: e_1_2_9_22_1
  doi: 10.1038/ncomms8083
– ident: e_1_2_9_78_1
  doi: 10.1016/j.joule.2021.02.002
– ident: e_1_2_9_130_1
  doi: 10.1146/annurev.matsci.35.102103.090513
– ident: e_1_2_9_92_1
  doi: 10.1016/j.solmat.2014.05.049
– ident: e_1_2_9_28_1
  doi: 10.1021/jacs.5b00305
– ident: e_1_2_9_58_1
  doi: 10.1021/jacs.7b02677
– ident: e_1_2_9_13_1
  doi: 10.1038/s41563‐022‐01244‐y
– ident: e_1_2_9_81_1
  doi: 10.1002/inf2.12270
– ident: e_1_2_9_41_1
  doi: 10.1039/C8EE01564C
– ident: e_1_2_9_165_1
  doi: 10.1002/aenm.202002653
– ident: e_1_2_9_113_1
  doi: 10.1016/j.mattod.2022.04.005
– ident: e_1_2_9_23_1
  doi: 10.1038/nenergy.2016.118
– ident: e_1_2_9_55_1
  doi: 10.1002/adfm.201200608
– ident: e_1_2_9_185_1
  doi: 10.1016/j.joule.2018.04.005
– ident: e_1_2_9_114_1
  doi: 10.1016/j.joule.2018.11.006
– ident: e_1_2_9_144_1
  doi: 10.1002/solr.202000638
– ident: e_1_2_9_91_1
  doi: 10.1002/adma.201305645
– ident: e_1_2_9_14_1
  doi: 10.1038/s41560‐021‐00820‐x
– ident: e_1_2_9_189_1
  doi: 10.1016/j.scib.2019.09.016
– ident: e_1_2_9_46_1
  doi: 10.1093/nsr/nwab121
– ident: e_1_2_9_109_1
  doi: 10.1038/s41563‐017‐0005‐1
– ident: e_1_2_9_2_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_9_32_1
  doi: 10.1039/C5CS00593K
– ident: e_1_2_9_174_1
  doi: 10.1002/adfm.201002290
– ident: e_1_2_9_160_1
  doi: 10.1039/C8EE01150H
– ident: e_1_2_9_164_1
  doi: 10.1002/adma.201805089
– ident: e_1_2_9_158_1
  doi: 10.1002/aenm.202100378
– ident: e_1_2_9_68_1
  doi: 10.1007/s11426‐019‐9599‐1
– ident: e_1_2_9_181_1
  doi: 10.1002/adma.202106732
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.200903528
– ident: e_1_2_9_131_1
  doi: 10.1021/ma0618732
– ident: e_1_2_9_150_1
  doi: 10.1002/adma.202005348
– ident: e_1_2_9_36_1
  doi: 10.1002/adma.201602642
– ident: e_1_2_9_159_1
  doi: 10.1063/1.3211850
– ident: e_1_2_9_77_1
  doi: 10.1038/s41467‐021‐25638‐9
– ident: e_1_2_9_11_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_9_138_1
  doi: 10.1039/C9TA07417A
– ident: e_1_2_9_120_1
  doi: 10.1002/adma.202105301
– ident: e_1_2_9_75_1
  doi: 10.1016/j.nanoen.2020.104718
– ident: e_1_2_9_151_1
  doi: 10.1038/s41560‐020‐00732‐2
– ident: e_1_2_9_161_1
  doi: 10.1063/5.0027948
– ident: e_1_2_9_94_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_9_33_1
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_9_66_1
  doi: 10.1002/adma.201502110
– ident: e_1_2_9_176_1
  doi: 10.1002/cjoc.202000696
– ident: e_1_2_9_194_1
  doi: 10.1002/anie.202116111
– ident: e_1_2_9_123_1
  doi: 10.1002/adma.202007231
– ident: e_1_2_9_10_1
  doi: 10.1126/science.258.5087.1474
– ident: e_1_2_9_148_1
  doi: 10.1016/j.joule.2018.09.001
– ident: e_1_2_9_98_1
  doi: 10.1002/adma.202105943
– ident: e_1_2_9_191_1
  doi: 10.1002/aenm.202003576
– ident: e_1_2_9_86_1
  doi: 10.1002/adfm.202201142
– ident: e_1_2_9_188_1
  doi: 10.1002/aenm.201800002
– ident: e_1_2_9_163_1
  doi: 10.1016/j.solmat.2012.07.004
– ident: e_1_2_9_187_1
  doi: 10.1002/adma.201701308
– ident: e_1_2_9_70_1
  doi: 10.1021/accountsmr.0c00033
– ident: e_1_2_9_61_1
  doi: 10.1016/j.orgel.2022.106436
– ident: e_1_2_9_74_1
  doi: 10.1002/anie.201707678
– ident: e_1_2_9_142_1
  doi: 10.31635/ccschem.022.202201963
– ident: e_1_2_9_110_1
  doi: 10.1002/nano.202000012
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.200501717
– ident: e_1_2_9_59_1
  doi: 10.1002/adma.201800613
– ident: e_1_2_9_21_1
  doi: 10.1038/nphoton.2013.207
– ident: e_1_2_9_79_1
  doi: 10.1016/j.joule.2021.04.007
– ident: e_1_2_9_106_1
  doi: 10.1002/adma.201903441
– ident: e_1_2_9_129_1
  doi: 10.1103/RevModPhys.75.949
– ident: e_1_2_9_100_1
  doi: 10.1002/adfm.201910466
– ident: e_1_2_9_146_1
  doi: 10.1038/s41578‐019‐0093‐4
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_9_167_1
  doi: 10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N
– ident: e_1_2_9_119_1
  doi: 10.1038/s41467‐018‐07017‐z
– ident: e_1_2_9_116_1
  doi: 10.1002/aenm.202001076
– ident: e_1_2_9_190_1
  doi: 10.1039/D1TA01135A
– ident: e_1_2_9_34_1
  doi: 10.1038/s41560‐018‐0181‐5
– ident: e_1_2_9_89_1
  doi: 10.1002/adfm.200600624
– ident: e_1_2_9_84_1
  doi: 10.1002/anie.202016265
– ident: e_1_2_9_90_1
  doi: 10.1039/D0EE01896A
– ident: e_1_2_9_186_1
  doi: 10.1002/adma.202003891
– ident: e_1_2_9_8_1
  doi: 10.1038/nature02498
– ident: e_1_2_9_180_1
  doi: 10.1021/jacsau.1c00064
– ident: e_1_2_9_149_1
  doi: 10.1016/j.joule.2019.03.020
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_9_40_1
  doi: 10.1021/jacs.5b03449
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.202102420
– ident: e_1_2_9_117_1
  doi: 10.1039/C9EE03710A
– ident: e_1_2_9_99_1
  doi: 10.1002/aenm.201700084
– ident: e_1_2_9_122_1
  doi: 10.1002/aenm.201402020
– ident: e_1_2_9_49_1
  doi: 10.20517/energymater.2021.08
– ident: e_1_2_9_53_1
  doi: 10.1038/nmat5063
– ident: e_1_2_9_76_1
  doi: 10.1016/j.joule.2020.03.019
– ident: e_1_2_9_57_1
  doi: 10.1021/jacs.6b02004
– ident: e_1_2_9_197_1
  doi: 10.1038/s41563‐018‐0128‐z
– ident: e_1_2_9_82_1
  doi: 10.1002/solr.201900385
– ident: e_1_2_9_88_1
  doi: 10.1002/aenm.201703147
– ident: e_1_2_9_19_1
  doi: 10.1117/1.JPE.9.045502
– ident: e_1_2_9_133_1
  doi: 10.1038/s41467‐020‐16621‐x
– ident: e_1_2_9_5_1
  doi: 10.1063/1.2212270
– ident: e_1_2_9_132_1
  doi: 10.1021/acsenergylett.0c01927
– ident: e_1_2_9_193_1
  doi: 10.1039/c3ee40860d
– ident: e_1_2_9_102_1
  doi: 10.1002/aenm.201904234
– ident: e_1_2_9_25_1
  doi: 10.1038/nphoton.2015.9
– ident: e_1_2_9_31_1
  doi: 10.1039/C0CP01178A
– ident: e_1_2_9_7_1
  doi: 10.1021/cr900182s
– ident: e_1_2_9_135_1
  doi: 10.1038/ncomms14541
– ident: e_1_2_9_171_1
  doi: 10.1016/j.joule.2020.02.012
– ident: e_1_2_9_29_1
  doi: 10.1038/ncomms7013
– ident: e_1_2_9_153_1
  doi: 10.1038/s41563‐020‐00872‐6
– ident: e_1_2_9_103_1
  doi: 10.1016/j.mtadv.2021.100154
– ident: e_1_2_9_121_1
  doi: 10.1002/adma.201902899
– ident: e_1_2_9_108_1
  doi: 10.1038/s41560‐021‐00923‐5
– ident: e_1_2_9_140_1
  doi: 10.1039/D1TC03655F
– ident: e_1_2_9_71_1
  doi: 10.1002/adma.201703906
– ident: e_1_2_9_72_1
  doi: 10.1016/j.nanoen.2019.01.082
– ident: e_1_2_9_125_1
  doi: 10.1088/0957‐4484/25/29/295401
– ident: e_1_2_9_51_1
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_9_24_1
  doi: 10.1038/nphoton.2009.192
– ident: e_1_2_9_112_1
  doi: 10.1002/adma.202107476
– ident: e_1_2_9_152_1
  doi: 10.1002/adma.201908305
– ident: e_1_2_9_101_1
  doi: 10.1016/j.joule.2020.02.004
– ident: e_1_2_9_97_1
  doi: 10.1002/adma.201304187
– ident: e_1_2_9_42_1
  doi: 10.1021/cr3001109
– ident: e_1_2_9_39_1
  doi: 10.1002/adfm.200500211
– ident: e_1_2_9_83_1
  doi: 10.1002/adma.202107659
– ident: e_1_2_9_128_1
  doi: 10.1038/nmat2399
– ident: e_1_2_9_62_1
  doi: 10.1016/j.joule.2018.11.023
– ident: e_1_2_9_127_1
  doi: 10.1038/s41467‐019‐13292‐1
– ident: e_1_2_9_192_1
  doi: 10.1002/adma.202001621
– ident: e_1_2_9_179_1
  doi: 10.1016/j.joule.2020.01.014
– ident: e_1_2_9_67_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_9_183_1
  doi: 10.1063/1.3567516
– ident: e_1_2_9_65_1
  doi: 10.1021/acs.chemrev.6b00176
– ident: e_1_2_9_44_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_9_87_1
  doi: 10.1016/j.joule.2022.02.006
– ident: e_1_2_9_126_1
  doi: 10.1021/nl202320r
– ident: e_1_2_9_198_1
  doi: 10.1002/aenm.201700770
– ident: e_1_2_9_95_1
  doi: 10.1002/adfm.200701459
– ident: e_1_2_9_139_1
  doi: 10.1039/C9TA09961A
SSID ssj0002504241
Score 2.4798799
SecondaryResourceType review_article
Snippet The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over 19%,...
Abstract The innovation of non‐fullerene acceptors (NFAs) enables the rapid progress of organic solar cells (OSCs) in power conversion efficiencies to over...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms applications
Commercialization
Cytology
Efficiency
Energy
Energy conversion efficiency
Fullerenes
material chemistry
Morphology
non‐fullerene organic solar cells
Optimization
Photovoltaic cells
Photovoltaics
Polymers
Semiconductors
Solar cells
stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkCVYQApN_JmwAWpVIRUWKnWzXNuZaANN2fkJ_EZ-CWcnrVIJwcIWJR4u57Pv3Tl5D6ELQrNc0NxGRlooUHiSRmkmTCQzK8kk4YaG1sDwUQxG7GHMxw2pL_9NWEUPXDmuqw0X1LNa5UKyONeaAcjNzMTqmEKqCr_uQc5rFFN-D_bEXJCbVnykpOuKKblOCEmTtQwUiPrX0GUTo4Yk099B2zU6xLeVVbtow8320FaDM3AfvQHQg0SB68P7Ehc5hhL-6-PTd9KD1gmupJoMLn3din1vvrzB_XkxxYBPq5DDembxtAAvh746XhTYurBrhCfNc-0DNOr3nu8HUa2bEBkGazRKaRxr4wALplLDy1sRujucOxIbkVMpY5a4zDhKnRWOOHCjpS5NWGKZJpYeohYY7o4QZpTAAqae9D5mJvPSVhRAW54ZqLNSG7fR5dKXytSk4l7b4kVVdMhEeb-r4Pc2Ol-Nfa2oNH4cdeenZDXC01-HG-A6VQeF-iso2qiznFBVr8lSEck5ZZ7frY2uwiT_YobqPQ1JuDr-D4NO0KbXqa96Nx3UWszf3SmgmcXkLATuN5ie7xI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXQcikHBLQVWz5kCS6tlG7iceIYcaGIFUKi7aEr7c3y2s6JJZQsd34Cv5FfwoyTDYtUVeIWJRPJGXvsN8_xG8aOBeiqgMonTnlMUPKsTEpduERpr8Qsyx1EauD6Z3E5kVfTfLrGTpdnYVp9iJ5wo8iI8zUFuJ01o1fR0FDPxfdMCDp3vU5na-mHPiF_9wwLiXOJWLoSl3Ui4xT0-qRi9Pr6mxUpCve_QZurmDUuOuMtttmhRX7Wdu82Wwu3O2xjRUPwI_uLwA8XDt5t5je8rjim9M-PT8Ssx9onvC3d5HhDeSwnrr454eP7es4Rr7ZDkNtbz-c1ej3y7HxRcx_iLBKfrO5zf2KT8cWf88ukq6OQOIkxm5SQptYFxIalsvjxvohsT54HkbqiAqVSmQXtAkDwRRBBg_YQykxmXlrh4TMbYMPDLuMSBAY0kAh-Kp2mUleAIK7SDvOu0qdD9nXpS-M6kXGqdXFjWnlkYcjvJvp9yI5627tWWuOfVj-oS3oLksOON9B1posuY11eAEmfVYWSaWWtxExIu5m3KSCe0UO2v-xQ08VoY4TKc5Ck9zZk32In_6cZ5uLXtYhXX95jvMc-UH36lrPZZ4PF_UM4QBSzmB3GwfoC2Gvpvg
  priority: 102
  providerName: Wiley-Blackwell
Title Recent advances of non‐fullerene organic solar cells: From materials and morphology to devices and applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12281
https://www.proquest.com/docview/2755348593
https://doaj.org/article/ac5634636f6740faa43069cbda032939
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vehBfOL6WAJ6Uai2SdomXkRlVxF8IAreQjdJT-5W7Xr3J_gb_SVO0uy6gngppQ2lnclMvvlSvgHYo0yWGStNpHODBUqaiEjITEe5NDntJ6lmnhq4vskuH_nVU_oUCLc6_FY5zok-UZtKO478iOZpyrhT5zp5eY1c1yi3uxpaaMzCHKZgIVowd9a9ubufsCxOoAvXqIkuKT2y1YAeJpSK5NdK5AX7f6HMaazqF5veEiwGlEhOG7cuw4wdrsDClHbgKrwi4MMFg4RN_JpUJcFS_uvj0zHqvucJaVo2aVK7-pU4jr4-Jr23akAQpzZTjxRDQwYVWtvz62RUEWN99vB3pve31-Cx1304v4xC_4RIc4zVSLA4LrRFTCjyAj_eZJ7lSVNLY52VLM9jnlipLWPWZJZayaRhViQ8Mbyghq1DC1_cbgDhjGIgMyd-H3MtXYsrhuCtlBrrLWHiNuyPbal0EBd3PS6eVSOLTJWzu_J2b8PuZOxLI6nx56gz55LJCCeD7S-g6VSIKlXoNGNO8qzMch6XRcGxApK6b4qYIY6RbdgeO1SF2KzVz0xqw4F38j-vobq319Sfbf7_rC2Yd53oG3ZmG1qjt3e7g3hl1O_ALOV3eBS9i06YoB1f-38Db3jrbA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROLQ9VKU_6gKllkoPrZTieJwfV6oqStkuP0svIHFzs7Zz6m6AbFX1xiPwJDwUT9Kxk2wXCXHjFiWWFc2MZ74Z298AbAhUZYqljUxmKUFJ4jzKVWqiTNlMjOLEYCgNDA_TwbHcO0lOFuCquwvjj1V2PjE4alsZXyPfFFmSoPTsXF9OzyLfNcrvrnYtNBqz2Hd__1DKVn_e_Ub6fSdEf-doexC1XQUiI8mCoxw5L4wjpJRnRcy5TUPtI0mc4CYtMcu4jJ0yDtHZ1AmnUFl0eSxjKwthkeZ9AEsSKZL7m-n977OajqcDo4g4Y0EVm64ai4-xEHl8I-6F9gA3MO08Mg6hrf8UnrSYlG01RrQMC27yDB7PMRU-hzOClxSeWHtkoGZVySbV5Pri0tfvQ4cV1jSIMqz22TLzOwL1J9Y_r8aMUHFj6KyYWDauSLehms-mFbMu-KrwZX43_QUc34tcX8Ii_bh7BUyiILeBnmqfS6N8Qy0kqFgqQ9ldbnkP3ney1KalMvcdNX7phoRZaC93HeTeg7ezsacNgceto756lcxGeNLt8IJEp9s1rAuTpOgJ1so0k7wsCkn5ljIjW3Ak1KR6sNYpVLeeoNb_7bYHH4KS7_gNvfNjKMLTyt1zvYGHg6PhgT7YPdxfhUeCkFdTF1qDxen5b_eakNJ0tB7Mk8HP-14P_wBTMiHh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTgUJU_sbSAJeAAUljHdn6MhBClu2opXSpEpd7crO2c2E3bLELceIQ-Tx-nT8KMkyxbCfXWW5RYljUznvlm7HwD8FJIXaaydJHNHCYoSZxHuU5tlGmXiUmcWBlKA_vjdOdQfT5KjlbgovsXhq5Vdj4xOGpXWaqRD0SWJFIRO9egbK9FHGyPPpycRtRBik5au3YajYns-d-_MH2r3-9uo65fCTEafv-0E7UdBiKr0JqjXHJeWI-oKc-KmHOXhjpIknjBbVrKLOMq9tp6Kb1LvfBaaid9HqvYqUI4ifPegtWMsqIerG4NxwffFhUeIgfD-LjgRBUDX03F21iIPL4SBUOzgCsIdxknh0A3Woe1FqGyj41J3YMVP7sPd5d4Cx_AKYJNDFasvUBQs6pks2p2-eechBb6rbCmXZRlNeXOjM4H6ndsdFZNGWLkxuxZMXNsWqGmQ22fzSvmfPBc4cvy2fpDOLwRyT6CHi7cPwampEAnIol4nyurqb2WROBYaou5Xu54H153sjS2JTan_ho_TEPJLAzJ3QS59-HFYuxJQ-fx31FbpJLFCKLgDi9QdKbd0aawSSqJbq1MUf9lUSjMvrSduIJLxFC6D5udQk3rF2rzz4r78CYo-ZplmOHXfRGenlw_13O4jXvBfNkd723AHYEwrCkSbUJvfvbTP0XYNJ88a-2TwfFNb4m_xOMncw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+of+non%E2%80%90fullerene+organic+solar+cells%3A+From+materials+and+morphology+to+devices+and+applications&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Zhang%2C+Ying&rft.au=Lang%2C+Yongwen&rft.au=Li%2C+Gang&rft.date=2023-01-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon