Face illumination processing via dense feature maps and multiple receptive fields
Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐...
Saved in:
Published in | Electronics letters Vol. 57; no. 16; pp. 627 - 629 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Stevenage
John Wiley & Sons, Inc
01.08.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐designed architecture based on convolutional neural network and generative adversarial networks for processing face illumination is presented. A novel dense feature maps loss that computes loss by using the varisized feature maps extracted from different convolutional layers of pre‐trained feature network is put forward. Moreover, multiple‐receptive‐fields‐based generator that uses multiple encoders during encoding phase is also proposed, and these encoders have the same structure with different kernel size. A variety of experimental results demonstrate that the method is superior to the state‐of‐the‐art methods under various illumination challenges. Code will be available soon at https://github.com/ling20cn/IP‐GAN |
---|---|
AbstractList | Abstract Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐designed architecture based on convolutional neural network and generative adversarial networks for processing face illumination is presented. A novel dense feature maps loss that computes loss by using the varisized feature maps extracted from different convolutional layers of pre‐trained feature network is put forward. Moreover, multiple‐receptive‐fields‐based generator that uses multiple encoders during encoding phase is also proposed, and these encoders have the same structure with different kernel size. A variety of experimental results demonstrate that the method is superior to the state‐of‐the‐art methods under various illumination challenges. Code will be available soon at https://github.com/ling20cn/IP‐GAN Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐designed architecture based on convolutional neural network and generative adversarial networks for processing face illumination is presented. A novel dense feature maps loss that computes loss by using the varisized feature maps extracted from different convolutional layers of pre‐trained feature network is put forward. Moreover, multiple‐receptive‐fields‐based generator that uses multiple encoders during encoding phase is also proposed, and these encoders have the same structure with different kernel size. A variety of experimental results demonstrate that the method is superior to the state‐of‐the‐art methods under various illumination challenges. Code will be available soon at https://github.com/ling20cn/IP‐GAN |
Author | Lin, Ye Ling, Shenggui You, Di Cheng, Peng Fu, Keren |
Author_xml | – sequence: 1 givenname: Shenggui orcidid: 0000-0002-4667-6431 surname: Ling fullname: Ling, Shenggui organization: Neijiang Vocational&Technical College – sequence: 2 givenname: Keren orcidid: 0000-0002-3195-2077 surname: Fu fullname: Fu, Keren organization: Sichuan University – sequence: 3 givenname: Ye orcidid: 0000-0003-3247-7084 surname: Lin fullname: Lin, Ye organization: Sichuan University – sequence: 4 givenname: Di orcidid: 0000-0003-2479-9323 surname: You fullname: You, Di organization: Sichuan University – sequence: 5 givenname: Peng orcidid: 0000-0002-9632-0636 surname: Cheng fullname: Cheng, Peng email: chengpeng_scu@163.com organization: Sichuan University |
BookMark | eNp9kE9r5DAMxc3ShZ22e9lPYOitkFnLdibxsZTpHxgohTn0ZpRYKR48SdZOWvrt6zalxz0JiZ-ent4pO-mHnhj7A2INQpu_FIJcg4QafrAVqFIUBuDphK2EAFWUYPQvdprSIbfSmGrFHm-wJe5DmI--x8kPPR_j0FJKvn_mLx65oz4R7winORI_4pg49o4f5zD5MRCP1NI4-ZfMeAounbOfHYZEv7_qGdvfbPfXd8Xu4fb--mpXtFooKEoJKBuj2tpBtZFdK7JTpZVooCsbp40Tm6rUtVZYlY4UaG1KgUahqpsO1Rm7X2TdgAc7Rn_E-GYH9PZzMMRni3HybSCruk1jCIEkVlmEaqElNlhJKRtQwmWti0Urv_5vpjTZwzDHPru3ShiZeajKTF0uVBuHlCJ131dB2I_07Uf69jP9DMMCv_pAb_8h7Xa3k8vOOx8FhzI |
CitedBy_id | crossref_primary_10_3390_electronics13122265 |
Cites_doi | 10.1109/TMM.2019.2945197 10.1109/TIP.2011.2109730 10.1109/CVPR.2018.00068 10.3390/s20174869 10.1049/el.2010.1495 10.1109/TIFS.2018.2833032 10.1109/CVPR.2017.632 10.1016/j.jvcir.2019.02.007 10.1109/CVPR.2016.90 10.1109/TPAMI.2017.2699184 10.1109/TIP.2003.819861 10.1007/978-3-030-03338-5_13 10.1109/ICPR.2018.8545434 10.1117/12.2573135 10.1049/el.2018.7871 10.1109/ICCV.2017.244 10.1109/TIFS.2015.2446438 10.1007/978-3-319-46475-6_43 10.1109/5.726791 10.1109/CVPR.2014.81 10.1109/LSP.2020.3005039 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1049/ell2.12181 |
DatabaseName | Wiley Open Access Wiley Online Library Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1350-911X |
EndPage | 629 |
ExternalDocumentID | oai_doaj_org_article_3f6b9ea1e2a7495e8042aba7222b130d 10_1049_ell2_12181 ELL212181 |
Genre | article |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China funderid: U1833128 |
GroupedDBID | -4A -~X .DC 0R~ 0ZK 1OC 24P 29G 2QL 3EH 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ELQJU ESX F20 F5P F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX IFIPE IPLJI JAVBF K1G K7- L6V LAI LXO LXU M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P0- P2P P62 PTHSS QWB R4Z RIE RIG RNS RUI TN5 U5U UNMZH VH1 WH7 WIN ZL0 ~ZZ AAYXX CITATION ITC AZQEC DWQXO GNUQQ JQ2 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c4031-521a2b93c8d1762fc09113430b1f5bd49d06754843a75de3144950a93a38bfa3 |
IEDL.DBID | DOA |
ISSN | 0013-5194 |
IngestDate | Tue Oct 22 15:13:11 EDT 2024 Thu Oct 10 22:17:23 EDT 2024 Thu Sep 26 19:33:31 EDT 2024 Sat Aug 24 01:03:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4031-521a2b93c8d1762fc09113430b1f5bd49d06754843a75de3144950a93a38bfa3 |
ORCID | 0000-0003-2479-9323 0000-0003-3247-7084 0000-0002-9632-0636 0000-0002-3195-2077 0000-0002-4667-6431 |
OpenAccessLink | https://doaj.org/article/3f6b9ea1e2a7495e8042aba7222b130d |
PQID | 3092804175 |
PQPubID | 1936364 |
PageCount | 3 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3f6b9ea1e2a7495e8042aba7222b130d proquest_journals_3092804175 crossref_primary_10_1049_ell2_12181 wiley_primary_10_1049_ell2_12181_ELL212181 |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Stevenage |
PublicationPlace_xml | – name: Stevenage |
PublicationTitle | Electronics letters |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2010; 46 2020; 20 2012 2019; 55 2019; 22 2020 2019; 59 2004; 13 2015; 10 2014; 27 2011; 20 2019 2020; 27 2018 2017 2016 2018; 40 2014 2003 2013 1998; 86 2018; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Goodfellow I.J. (e_1_2_7_9_1) 2014; 27 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 22 start-page: 1619 issue: 6 year: 2019 end-page: 1633 article-title: Asymmetric joint gans for normalizing face illumination from a single image publication-title: IEEE Trans. Multimedia – start-page: 2558 year: 2018 end-page: 2563 article-title: Face image illumination processing based on generative adversarial nets – volume: 13 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – start-page: 1398 year: 2003 end-page: 1402 article-title: Multi‐scale structural similarity for image quality assessment – start-page: 5967 year: 2017 end-page: 5976 article-title: Image‐to‐image translation with conditional adversarial networks – volume: 20 start-page: 2378 year: 2011 end-page: 2386 article-title: Fsim: A feature similarity index for image quality assessment publication-title: IEEE Trans. Image Process. – start-page: 586 year: 2018 end-page: 595 article-title: The unreasonable effectiveness of deep features as a perceptual metric – year: 2016 – year: 2018 – volume: 27 start-page: 1095 year: 2020 end-page: 1099 article-title: An identity‐preserved model for face sketch‐photo synthesis publication-title: IEEE Signal Process Lett. – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – start-page: 1419 year: 2012 end-page: 1426 article-title: Deep Lambertian networks – year: 2014 – start-page: 1097 year: 2013 end-page: 1105 article-title: Imagenet classification with deep convolutional neural networks – volume: 10 start-page: 2108 year: 2015 end-page: 2118 article-title: Single sample face recognition via learning deep supervised autoencoders publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 2242 year: 2017 end-page: 2251 article-title: Unpaired image‐to‐image translation using cycle‐consistent adversarial networks – volume: 55 start-page: 184 issue: 4 year: 2019 end-page: 186 article-title: Fer‐net: Facial expression recognition using densely connected convolutional network publication-title: Electron. Lett. – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc. IEEE – volume: 20 start-page: 4869 issue: 17 year: 2020 article-title: A high‐performance face illumination processing method via multi‐stage feature maps publication-title: Sensors – start-page: 580 year: 2014 end-page: 587 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – volume: 27 start-page: 2672 year: 2014 end-page: 2680 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – start-page: 150 year: 2018 end-page: 161 article-title: Face image illumination processing based on gan with dual triplet loss – volume: 59 start-page: 501 year: 2019 end-page: 513 article-title: Il‐gan: Illumination‐invariant representation learning for single sample face recognition publication-title: J. Visual Commun. Image Represent. – volume: 40 start-page: 834 issue: 4 year: 2018 end-page: 848 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS publication-title: IEEE Trans. Pattern Anal. Mach. Intell – volume: 13 start-page: 2884 issue: 11 year: 2018 end-page: 2896 article-title: A light cnn for deep face representation with noisy labels publication-title: IEEE Trans. Inf. Forensics Secur – year: 2019 – start-page: 11519 year: 2020 end-page: 11557 article-title: Illumination normalization of face image – start-page: 694 year: 2016 end-page: 711 article-title: Perceptual losses for real‐time style transfer and super‐resolution – volume: 46 start-page: 1060 issue: 15 year: 2010 end-page: 1061 article-title: Illumination normalisation for face recognition in transformed domain publication-title: Electron. Lett. – ident: e_1_2_7_12_1 doi: 10.1109/TMM.2019.2945197 – ident: e_1_2_7_25_1 doi: 10.1109/TIP.2011.2109730 – ident: e_1_2_7_28_1 doi: 10.1109/CVPR.2018.00068 – ident: e_1_2_7_15_1 doi: 10.3390/s20174869 – ident: e_1_2_7_3_1 – ident: e_1_2_7_2_1 doi: 10.1049/el.2010.1495 – ident: e_1_2_7_21_1 doi: 10.1109/TIFS.2018.2833032 – ident: e_1_2_7_18_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_7_13_1 doi: 10.1016/j.jvcir.2019.02.007 – ident: e_1_2_7_22_1 – ident: e_1_2_7_20_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_17_1 – ident: e_1_2_7_30_1 doi: 10.1109/TPAMI.2017.2699184 – ident: e_1_2_7_7_1 – ident: e_1_2_7_23_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_7_11_1 doi: 10.1007/978-3-030-03338-5_13 – volume: 27 start-page: 2672 year: 2014 ident: e_1_2_7_9_1 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems contributor: fullname: Goodfellow I.J. – ident: e_1_2_7_10_1 doi: 10.1109/ICPR.2018.8545434 – ident: e_1_2_7_14_1 doi: 10.1117/12.2573135 – ident: e_1_2_7_24_1 – ident: e_1_2_7_4_1 doi: 10.1049/el.2018.7871 – ident: e_1_2_7_16_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_7_27_1 doi: 10.1109/TIFS.2015.2446438 – ident: e_1_2_7_6_1 – ident: e_1_2_7_29_1 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_7_5_1 doi: 10.1109/5.726791 – ident: e_1_2_7_8_1 doi: 10.1109/CVPR.2014.81 – ident: e_1_2_7_26_1 – ident: e_1_2_7_19_1 doi: 10.1109/LSP.2020.3005039 |
SSID | ssj0012997 |
Score | 2.3970904 |
Snippet | Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so... Abstract Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 627 |
SubjectTerms | Accuracy Artificial neural networks Coders Computer vision and image processing techniques Feature maps Generative adversarial networks Identification Illumination Image and video coding Image quality Image recognition Methods Neural nets Performance evaluation |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XvQgPjFaZUFPQmiT3Tz2JCqNRaogVOht2VekUNPa1P5-ZzdJbS-9hWQJy8zOzDc7wzcI3QnJFCABsDSIr5Cg6MCXyhV5qUkTomLhLtze3uP-J30dRaP6wq2s2yobn-gctZ4qe0feIV0WWq6cJHqY_fh2apStrtYjNHbRXhAmiU2-0uxlVUUAV5s0EwwAqdCGnpSyjplMQsuskAYbAcnx9m-AzXXI6mJOdoQOa7CIHyvtHqMdU5yggzUKwVP0kQll8NjOKx5XF3t4VvX-w2e8HAsMjqU0ODeOwRN_i1mJRaFx00mIweXZzpYlrLHdbOUZGma94XPfr8ck-IqCSUIqGYhQMqJSHYBryxVAgIBQ0pVBHklNmbZZAU0pAblrQyCFYlFXMCJIKnNBzlGrmBbmAmFqIsWSXEHWJygoTypAfyrWKlKpgGDuodtGVHxWkWFwV8SmjFuBcidQDz1ZKa5WWAJr92I6_-K1PXCSx5IZEZhQJLAdA6oNhRQJwBUJYVV7qN3ogNdWVfL_M-Che6eXLdvgvcEgdE-X2_91hfZD26jiuvraqLWY_5prQBoLeeOO0x8CWs6F priority: 102 providerName: ProQuest – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lXvQgPrFaJaAnodjdZB8BLyotRaooVOgtTB4rhbot3drf7yS7W9uL4G3ZzUKYycx8k0y-IeQGlNCIBNDSML5igmKCjtL-kJfbNGE6Br_h9vIaDz748zgaN8h9fRem5IdYb7g5y_D-2hk4qLILCYJap8TpNHTcCO7e9Y6jjHHM-SF_W58hoKNN6v4FiFN4TU7Kxd3vv1vhyLP2b0HNTcDqI07_gOxXUJE-lLo9JA2bH5G9DQLBY_LeB23pxHUrnpTbenReVv7jZ7qaAEW3UliaWc_fSb9gXlDIDa3rCCk6PFfXssIxrpatOCGjfm_0NOhUTRI6mqNBYiIZQKgE06kJ0LFlGgFAwDjrqiCLlOHCuJyAp5yh1I1lmECJqAuCAUtVBuyUNPNZbs8I5TbSIsk05nzAUXVKI_bTsdGRTgFDeYtc16KS85IKQ_ojbC6kE6j0Am2RRyfF9QhHX-1fzBafsrIGybJYCQuBDSHB6dgUXQcoSBCsKAyqpkXatQ5kZVOFZF0ROrakJGqRW6-XP6Yhe8Nh6J_O_zP4guyGrmjFV_i1SXO5-LaXiDqW6sovrh-_oM8w priority: 102 providerName: Wiley-Blackwell |
Title | Face illumination processing via dense feature maps and multiple receptive fields |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12181 https://www.proquest.com/docview/3092804175 https://doaj.org/article/3f6b9ea1e2a7495e8042aba7222b130d |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5RvOjB-DOiSJroyYTA1u5Hj2CYxCBBA4Z4adquS0gQiSB_v6_dZuCiFy_bsu3QvNe-9732y_cAbqXiGpEArjTMr1igpF5DaXfIy0wcUR1Kt-H2NAh7Y_Y4CSYbrb4sJyyXB84N16RZqLiRnvFlhGDexDjLpJIR5jWF8Td10bfFy2KqOD_AIBuVvQsQo7BSmJTxppnNfKupEHtbqcgp9m_BzE2w6rJNcgSHBUwk7Xx4x7Bj5idwsCEeeArPidSGTG2n4mm-pUcWOesfP5P1VBIMKUtDMuO0O8m7XCyJnKek5BASDHaW07LGfyyPbXkGo6Q7uu81igYJDc1wMWIR6Ulfcarj1MOglmlM_h5ltKW8LFAp46mtB1jMKFo8NRSLJx60JKeSxiqT9Bwq84-5uQDCTKB5lGms9yRDtymNuE-HqQ50LDGNV-GmNJVY5DIYwh1fMy6sQYUzaBU61oo_f1jpavcCHSoKh4q_HFqFWukDUaynpaAt7lulpCiowp3zyy_DEN1-33dPl_8xoCvY9y2RxbH-alBZfX6Za0QiK1WHXZ8N8RonD3XYa7-O38Z473QHw5e6m5Df8PHcEw |
link.rule.ids | 315,783,787,867,2109,11574,12777,21400,27936,27937,33385,33756,43612,43817,46064,46488,50826,50935,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60HtSD-MT6XNCTUGyymyZ7EpWWqrGoVOht2VekUNvaVH-_s5tE68VbSJawzOzMfLMzfANwLhXXiATQ0jC-YoJigobSvsjLbBJT3ZL-wu2x1-q-svtBNCgv3PKyrbLyid5Rm4l2d-SXtMlDx5UTR1fTj4abGuWqq-UIjWVYcVRVmHyt3LR7Ty8_dQR0tnE1wwCxCqsIShm_tKNR6LgVkuBPSPLM_X_g5iJo9VGnswkbJVwk14V-t2DJjrdhfYFEcAeeO1JbMnQTi4fF1R6ZFt3_-Jl8DSVB15JbklnP4Une5TQncmxI1UtI0Om53pYvXOP62fJd6Hfa_dtuoxyU0NAMjRKTyUCGilOdmACdW6YRBASU0aYKskgZxo3LC1jCKEreWIpJFI-aklNJE5VJuge18WRs94EwG2keZxrzPslQfUoj_tMtoyOdSAzndTirRCWmBR2G8GVsxoUTqPACrcONk-LPCkdh7V9MZm-itAhBs5biVgY2lDFux6JyQ6lkjIBFYWA1dTiqdCBKu8rF7ymow4XXyz_bEO00Df3Twf__OoXVbv8xFeld7-EQ1kLXtuJ7_I6gNp992mPEHXN1Uh6ub2ga0tY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSwMxEB60guiDeGK1akCfhNLuJnvkSTxaPGpRUfAt5Fop1La62t_vJM16vPi27IZlmcnMfJP5dgbgSCquEQmgpWF8xQTFRE2lfZGX2TyjOpX-wO22n14-sevn5Dnwn8pAq6x8onfUZqzdGXmLtnnseuVkSasItIi7i-7J5K3pJki5SmsYpzEPCxlLabsGC2ed_t3Dd00BHW9WzTNA3MKqZqWMt-xwGLs-C3n0Jzz5Lv5_oOdvAOsjUHcVVgJ0JKczXa_BnB2tw_KvhoIbcN-V2pKBm148mB3zkcnsTwB8TKYDSdDNlJYU1vfzJK9yUhI5MqTiFRJ0gI7nMsU1jttWbsJjt_N4ftkMQxOamqGBYmIZyVhxqnMToaMrNAKCiDLaVlGRKMO4cTkCyxlFLRhLMaHiSVtyKmmuCkm3oDYaj-w2EGYTzbNCYw4oGapSacSCOjU60bnE0F6Hw0pUYjJrjSF8SZtx4QQqvEDrcOak-L3CtbP2N8bvLyJYh6BFqriVkY1lhp9jUdGxVDJD8KIwyJo6NCodiGBjpfjZEXU49nr55zNEp9eL_dXO_-86gEXcV6J31b_ZhaXYMVg83a8BtY_3T7uHEORD7Ye99QVGrdcE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+illumination+processing+via+dense+feature+maps+and+multiple+receptive+fields&rft.jtitle=Electronics+letters&rft.au=Shenggui+Ling&rft.au=Keren+Fu&rft.au=Ye+Lin&rft.au=Di+You&rft.date=2021-08-01&rft.pub=Wiley&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=57&rft.issue=16&rft.spage=627&rft.epage=629&rft_id=info:doi/10.1049%2Fell2.12181&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3f6b9ea1e2a7495e8042aba7222b130d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |