Face illumination processing via dense feature maps and multiple receptive fields

Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 57; no. 16; pp. 627 - 629
Main Authors Ling, Shenggui, Fu, Keren, Lin, Ye, You, Di, Cheng, Peng
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.08.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐designed architecture based on convolutional neural network and generative adversarial networks for processing face illumination is presented. A novel dense feature maps loss that computes loss by using the varisized feature maps extracted from different convolutional layers of pre‐trained feature network is put forward. Moreover, multiple‐receptive‐fields‐based generator that uses multiple encoders during encoding phase is also proposed, and these encoders have the same structure with different kernel size. A variety of experimental results demonstrate that the method is superior to the state‐of‐the‐art methods under various illumination challenges. Code will be available soon at https://github.com/ling20cn/IP‐GAN
AbstractList Abstract Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐designed architecture based on convolutional neural network and generative adversarial networks for processing face illumination is presented. A novel dense feature maps loss that computes loss by using the varisized feature maps extracted from different convolutional layers of pre‐trained feature network is put forward. Moreover, multiple‐receptive‐fields‐based generator that uses multiple encoders during encoding phase is also proposed, and these encoders have the same structure with different kernel size. A variety of experimental results demonstrate that the method is superior to the state‐of‐the‐art methods under various illumination challenges. Code will be available soon at https://github.com/ling20cn/IP‐GAN
Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so satisfactory and the recognition accuracy is low when the face image under extreme illumination conditions. For these reasons, an elaborately‐designed architecture based on convolutional neural network and generative adversarial networks for processing face illumination is presented. A novel dense feature maps loss that computes loss by using the varisized feature maps extracted from different convolutional layers of pre‐trained feature network is put forward. Moreover, multiple‐receptive‐fields‐based generator that uses multiple encoders during encoding phase is also proposed, and these encoders have the same structure with different kernel size. A variety of experimental results demonstrate that the method is superior to the state‐of‐the‐art methods under various illumination challenges. Code will be available soon at https://github.com/ling20cn/IP‐GAN
Author Lin, Ye
Ling, Shenggui
You, Di
Cheng, Peng
Fu, Keren
Author_xml – sequence: 1
  givenname: Shenggui
  orcidid: 0000-0002-4667-6431
  surname: Ling
  fullname: Ling, Shenggui
  organization: Neijiang Vocational&Technical College
– sequence: 2
  givenname: Keren
  orcidid: 0000-0002-3195-2077
  surname: Fu
  fullname: Fu, Keren
  organization: Sichuan University
– sequence: 3
  givenname: Ye
  orcidid: 0000-0003-3247-7084
  surname: Lin
  fullname: Lin, Ye
  organization: Sichuan University
– sequence: 4
  givenname: Di
  orcidid: 0000-0003-2479-9323
  surname: You
  fullname: You, Di
  organization: Sichuan University
– sequence: 5
  givenname: Peng
  orcidid: 0000-0002-9632-0636
  surname: Cheng
  fullname: Cheng, Peng
  email: chengpeng_scu@163.com
  organization: Sichuan University
BookMark eNp9kE9r5DAMxc3ShZ22e9lPYOitkFnLdibxsZTpHxgohTn0ZpRYKR48SdZOWvrt6zalxz0JiZ-ent4pO-mHnhj7A2INQpu_FIJcg4QafrAVqFIUBuDphK2EAFWUYPQvdprSIbfSmGrFHm-wJe5DmI--x8kPPR_j0FJKvn_mLx65oz4R7winORI_4pg49o4f5zD5MRCP1NI4-ZfMeAounbOfHYZEv7_qGdvfbPfXd8Xu4fb--mpXtFooKEoJKBuj2tpBtZFdK7JTpZVooCsbp40Tm6rUtVZYlY4UaG1KgUahqpsO1Rm7X2TdgAc7Rn_E-GYH9PZzMMRni3HybSCruk1jCIEkVlmEaqElNlhJKRtQwmWti0Urv_5vpjTZwzDHPru3ShiZeajKTF0uVBuHlCJ131dB2I_07Uf69jP9DMMCv_pAb_8h7Xa3k8vOOx8FhzI
CitedBy_id crossref_primary_10_3390_electronics13122265
Cites_doi 10.1109/TMM.2019.2945197
10.1109/TIP.2011.2109730
10.1109/CVPR.2018.00068
10.3390/s20174869
10.1049/el.2010.1495
10.1109/TIFS.2018.2833032
10.1109/CVPR.2017.632
10.1016/j.jvcir.2019.02.007
10.1109/CVPR.2016.90
10.1109/TPAMI.2017.2699184
10.1109/TIP.2003.819861
10.1007/978-3-030-03338-5_13
10.1109/ICPR.2018.8545434
10.1117/12.2573135
10.1049/el.2018.7871
10.1109/ICCV.2017.244
10.1109/TIFS.2015.2446438
10.1007/978-3-319-46475-6_43
10.1109/5.726791
10.1109/CVPR.2014.81
10.1109/LSP.2020.3005039
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1049/ell2.12181
DatabaseName Wiley Open Access
Wiley Online Library Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 629
ExternalDocumentID oai_doaj_org_article_3f6b9ea1e2a7495e8042aba7222b130d
10_1049_ell2_12181
ELL212181
Genre article
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  funderid: U1833128
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
ESX
F20
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
IFIPE
IPLJI
JAVBF
K1G
K7-
L6V
LAI
LXO
LXU
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P0-
P2P
P62
PTHSS
QWB
R4Z
RIE
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
WIN
ZL0
~ZZ
AAYXX
CITATION
ITC
AZQEC
DWQXO
GNUQQ
JQ2
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4031-521a2b93c8d1762fc09113430b1f5bd49d06754843a75de3144950a93a38bfa3
IEDL.DBID DOA
ISSN 0013-5194
IngestDate Tue Oct 22 15:13:11 EDT 2024
Thu Oct 10 22:17:23 EDT 2024
Thu Sep 26 19:33:31 EDT 2024
Sat Aug 24 01:03:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4031-521a2b93c8d1762fc09113430b1f5bd49d06754843a75de3144950a93a38bfa3
ORCID 0000-0003-2479-9323
0000-0003-3247-7084
0000-0002-9632-0636
0000-0002-3195-2077
0000-0002-4667-6431
OpenAccessLink https://doaj.org/article/3f6b9ea1e2a7495e8042aba7222b130d
PQID 3092804175
PQPubID 1936364
PageCount 3
ParticipantIDs doaj_primary_oai_doaj_org_article_3f6b9ea1e2a7495e8042aba7222b130d
proquest_journals_3092804175
crossref_primary_10_1049_ell2_12181
wiley_primary_10_1049_ell2_12181_ELL212181
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle Electronics letters
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 46
2020; 20
2012
2019; 55
2019; 22
2020
2019; 59
2004; 13
2015; 10
2014; 27
2011; 20
2019
2020; 27
2018
2017
2016
2018; 40
2014
2003
2013
1998; 86
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Goodfellow I.J. (e_1_2_7_9_1) 2014; 27
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 22
  start-page: 1619
  issue: 6
  year: 2019
  end-page: 1633
  article-title: Asymmetric joint gans for normalizing face illumination from a single image
  publication-title: IEEE Trans. Multimedia
– start-page: 2558
  year: 2018
  end-page: 2563
  article-title: Face image illumination processing based on generative adversarial nets
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– start-page: 1398
  year: 2003
  end-page: 1402
  article-title: Multi‐scale structural similarity for image quality assessment
– start-page: 5967
  year: 2017
  end-page: 5976
  article-title: Image‐to‐image translation with conditional adversarial networks
– volume: 20
  start-page: 2378
  year: 2011
  end-page: 2386
  article-title: Fsim: A feature similarity index for image quality assessment
  publication-title: IEEE Trans. Image Process.
– start-page: 586
  year: 2018
  end-page: 595
  article-title: The unreasonable effectiveness of deep features as a perceptual metric
– year: 2016
– year: 2018
– volume: 27
  start-page: 1095
  year: 2020
  end-page: 1099
  article-title: An identity‐preserved model for face sketch‐photo synthesis
  publication-title: IEEE Signal Process Lett.
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– start-page: 1419
  year: 2012
  end-page: 1426
  article-title: Deep Lambertian networks
– year: 2014
– start-page: 1097
  year: 2013
  end-page: 1105
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 10
  start-page: 2108
  year: 2015
  end-page: 2118
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 2242
  year: 2017
  end-page: 2251
  article-title: Unpaired image‐to‐image translation using cycle‐consistent adversarial networks
– volume: 55
  start-page: 184
  issue: 4
  year: 2019
  end-page: 186
  article-title: Fer‐net: Facial expression recognition using densely connected convolutional network
  publication-title: Electron. Lett.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 20
  start-page: 4869
  issue: 17
  year: 2020
  article-title: A high‐performance face illumination processing method via multi‐stage feature maps
  publication-title: Sensors
– start-page: 580
  year: 2014
  end-page: 587
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– start-page: 150
  year: 2018
  end-page: 161
  article-title: Face image illumination processing based on gan with dual triplet loss
– volume: 59
  start-page: 501
  year: 2019
  end-page: 513
  article-title: Il‐gan: Illumination‐invariant representation learning for single sample face recognition
  publication-title: J. Visual Commun. Image Represent.
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  end-page: 848
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 13
  start-page: 2884
  issue: 11
  year: 2018
  end-page: 2896
  article-title: A light cnn for deep face representation with noisy labels
  publication-title: IEEE Trans. Inf. Forensics Secur
– year: 2019
– start-page: 11519
  year: 2020
  end-page: 11557
  article-title: Illumination normalization of face image
– start-page: 694
  year: 2016
  end-page: 711
  article-title: Perceptual losses for real‐time style transfer and super‐resolution
– volume: 46
  start-page: 1060
  issue: 15
  year: 2010
  end-page: 1061
  article-title: Illumination normalisation for face recognition in transformed domain
  publication-title: Electron. Lett.
– ident: e_1_2_7_12_1
  doi: 10.1109/TMM.2019.2945197
– ident: e_1_2_7_25_1
  doi: 10.1109/TIP.2011.2109730
– ident: e_1_2_7_28_1
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_7_15_1
  doi: 10.3390/s20174869
– ident: e_1_2_7_3_1
– ident: e_1_2_7_2_1
  doi: 10.1049/el.2010.1495
– ident: e_1_2_7_21_1
  doi: 10.1109/TIFS.2018.2833032
– ident: e_1_2_7_18_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jvcir.2019.02.007
– ident: e_1_2_7_22_1
– ident: e_1_2_7_20_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_17_1
– ident: e_1_2_7_30_1
  doi: 10.1109/TPAMI.2017.2699184
– ident: e_1_2_7_7_1
– ident: e_1_2_7_23_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_7_11_1
  doi: 10.1007/978-3-030-03338-5_13
– volume: 27
  start-page: 2672
  year: 2014
  ident: e_1_2_7_9_1
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Goodfellow I.J.
– ident: e_1_2_7_10_1
  doi: 10.1109/ICPR.2018.8545434
– ident: e_1_2_7_14_1
  doi: 10.1117/12.2573135
– ident: e_1_2_7_24_1
– ident: e_1_2_7_4_1
  doi: 10.1049/el.2018.7871
– ident: e_1_2_7_16_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_7_27_1
  doi: 10.1109/TIFS.2015.2446438
– ident: e_1_2_7_6_1
– ident: e_1_2_7_29_1
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_7_5_1
  doi: 10.1109/5.726791
– ident: e_1_2_7_8_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_7_26_1
– ident: e_1_2_7_19_1
  doi: 10.1109/LSP.2020.3005039
SSID ssj0012997
Score 2.3970904
Snippet Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is not so...
Abstract Recently, illumination processing of facial image based on generative adversarial networks has made favourable progress. However, the image quality is...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 627
SubjectTerms Accuracy
Artificial neural networks
Coders
Computer vision and image processing techniques
Feature maps
Generative adversarial networks
Identification
Illumination
Image and video coding
Image quality
Image recognition
Methods
Neural nets
Performance evaluation
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XvQgPjFaZUFPQmiT3Tz2JCqNRaogVOht2VekUNPa1P5-ZzdJbS-9hWQJy8zOzDc7wzcI3QnJFCABsDSIr5Cg6MCXyhV5qUkTomLhLtze3uP-J30dRaP6wq2s2yobn-gctZ4qe0feIV0WWq6cJHqY_fh2apStrtYjNHbRXhAmiU2-0uxlVUUAV5s0EwwAqdCGnpSyjplMQsuskAYbAcnx9m-AzXXI6mJOdoQOa7CIHyvtHqMdU5yggzUKwVP0kQll8NjOKx5XF3t4VvX-w2e8HAsMjqU0ODeOwRN_i1mJRaFx00mIweXZzpYlrLHdbOUZGma94XPfr8ck-IqCSUIqGYhQMqJSHYBryxVAgIBQ0pVBHklNmbZZAU0pAblrQyCFYlFXMCJIKnNBzlGrmBbmAmFqIsWSXEHWJygoTypAfyrWKlKpgGDuodtGVHxWkWFwV8SmjFuBcidQDz1ZKa5WWAJr92I6_-K1PXCSx5IZEZhQJLAdA6oNhRQJwBUJYVV7qN3ogNdWVfL_M-Che6eXLdvgvcEgdE-X2_91hfZD26jiuvraqLWY_5prQBoLeeOO0x8CWs6F
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lXvQgPrFaJaAnodjdZB8BLyotRaooVOgtTB4rhbot3drf7yS7W9uL4G3ZzUKYycx8k0y-IeQGlNCIBNDSML5igmKCjtL-kJfbNGE6Br_h9vIaDz748zgaN8h9fRem5IdYb7g5y_D-2hk4qLILCYJap8TpNHTcCO7e9Y6jjHHM-SF_W58hoKNN6v4FiFN4TU7Kxd3vv1vhyLP2b0HNTcDqI07_gOxXUJE-lLo9JA2bH5G9DQLBY_LeB23pxHUrnpTbenReVv7jZ7qaAEW3UliaWc_fSb9gXlDIDa3rCCk6PFfXssIxrpatOCGjfm_0NOhUTRI6mqNBYiIZQKgE06kJ0LFlGgFAwDjrqiCLlOHCuJyAp5yh1I1lmECJqAuCAUtVBuyUNPNZbs8I5TbSIsk05nzAUXVKI_bTsdGRTgFDeYtc16KS85IKQ_ojbC6kE6j0Am2RRyfF9QhHX-1fzBafsrIGybJYCQuBDSHB6dgUXQcoSBCsKAyqpkXatQ5kZVOFZF0ROrakJGqRW6-XP6Yhe8Nh6J_O_zP4guyGrmjFV_i1SXO5-LaXiDqW6sovrh-_oM8w
  priority: 102
  providerName: Wiley-Blackwell
Title Face illumination processing via dense feature maps and multiple receptive fields
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.12181
https://www.proquest.com/docview/3092804175
https://doaj.org/article/3f6b9ea1e2a7495e8042aba7222b130d
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5RvOjB-DOiSJroyYTA1u5Hj2CYxCBBA4Z4adquS0gQiSB_v6_dZuCiFy_bsu3QvNe-9732y_cAbqXiGpEArjTMr1igpF5DaXfIy0wcUR1Kt-H2NAh7Y_Y4CSYbrb4sJyyXB84N16RZqLiRnvFlhGDexDjLpJIR5jWF8Td10bfFy2KqOD_AIBuVvQsQo7BSmJTxppnNfKupEHtbqcgp9m_BzE2w6rJNcgSHBUwk7Xx4x7Bj5idwsCEeeArPidSGTG2n4mm-pUcWOesfP5P1VBIMKUtDMuO0O8m7XCyJnKek5BASDHaW07LGfyyPbXkGo6Q7uu81igYJDc1wMWIR6Ulfcarj1MOglmlM_h5ltKW8LFAp46mtB1jMKFo8NRSLJx60JKeSxiqT9Bwq84-5uQDCTKB5lGms9yRDtymNuE-HqQ50LDGNV-GmNJVY5DIYwh1fMy6sQYUzaBU61oo_f1jpavcCHSoKh4q_HFqFWukDUaynpaAt7lulpCiowp3zyy_DEN1-33dPl_8xoCvY9y2RxbH-alBZfX6Za0QiK1WHXZ8N8RonD3XYa7-O38Z473QHw5e6m5Df8PHcEw
link.rule.ids 315,783,787,867,2109,11574,12777,21400,27936,27937,33385,33756,43612,43817,46064,46488,50826,50935,74363,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60HtSD-MT6XNCTUGyymyZ7EpWWqrGoVOht2VekUNvaVH-_s5tE68VbSJawzOzMfLMzfANwLhXXiATQ0jC-YoJigobSvsjLbBJT3ZL-wu2x1-q-svtBNCgv3PKyrbLyid5Rm4l2d-SXtMlDx5UTR1fTj4abGuWqq-UIjWVYcVRVmHyt3LR7Ty8_dQR0tnE1wwCxCqsIShm_tKNR6LgVkuBPSPLM_X_g5iJo9VGnswkbJVwk14V-t2DJjrdhfYFEcAeeO1JbMnQTi4fF1R6ZFt3_-Jl8DSVB15JbklnP4Une5TQncmxI1UtI0Om53pYvXOP62fJd6Hfa_dtuoxyU0NAMjRKTyUCGilOdmACdW6YRBASU0aYKskgZxo3LC1jCKEreWIpJFI-aklNJE5VJuge18WRs94EwG2keZxrzPslQfUoj_tMtoyOdSAzndTirRCWmBR2G8GVsxoUTqPACrcONk-LPCkdh7V9MZm-itAhBs5biVgY2lDFux6JyQ6lkjIBFYWA1dTiqdCBKu8rF7ymow4XXyz_bEO00Df3Twf__OoXVbv8xFeld7-EQ1kLXtuJ7_I6gNp992mPEHXN1Uh6ub2ga0tY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSwMxEB60guiDeGK1akCfhNLuJnvkSTxaPGpRUfAt5Fop1La62t_vJM16vPi27IZlmcnMfJP5dgbgSCquEQmgpWF8xQTFRE2lfZGX2TyjOpX-wO22n14-sevn5Dnwn8pAq6x8onfUZqzdGXmLtnnseuVkSasItIi7i-7J5K3pJki5SmsYpzEPCxlLabsGC2ed_t3Dd00BHW9WzTNA3MKqZqWMt-xwGLs-C3n0Jzz5Lv5_oOdvAOsjUHcVVgJ0JKczXa_BnB2tw_KvhoIbcN-V2pKBm148mB3zkcnsTwB8TKYDSdDNlJYU1vfzJK9yUhI5MqTiFRJ0gI7nMsU1jttWbsJjt_N4ftkMQxOamqGBYmIZyVhxqnMToaMrNAKCiDLaVlGRKMO4cTkCyxlFLRhLMaHiSVtyKmmuCkm3oDYaj-w2EGYTzbNCYw4oGapSacSCOjU60bnE0F6Hw0pUYjJrjSF8SZtx4QQqvEDrcOak-L3CtbP2N8bvLyJYh6BFqriVkY1lhp9jUdGxVDJD8KIwyJo6NCodiGBjpfjZEXU49nr55zNEp9eL_dXO_-86gEXcV6J31b_ZhaXYMVg83a8BtY_3T7uHEORD7Ye99QVGrdcE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+illumination+processing+via+dense+feature+maps+and+multiple+receptive+fields&rft.jtitle=Electronics+letters&rft.au=Shenggui+Ling&rft.au=Keren+Fu&rft.au=Ye+Lin&rft.au=Di+You&rft.date=2021-08-01&rft.pub=Wiley&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=57&rft.issue=16&rft.spage=627&rft.epage=629&rft_id=info:doi/10.1049%2Fell2.12181&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3f6b9ea1e2a7495e8042aba7222b130d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon