Micro‐expression recognition by two‐stream difference network
Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, ca...
Saved in:
Published in | IET computer vision Vol. 15; no. 6; pp. 440 - 448 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Stevenage
John Wiley & Sons, Inc
01.09.2021
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1751-9632 1751-9640 |
DOI | 10.1049/cvi2.12030 |
Cover
Loading…
Abstract | Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, called two‐stream difference network (TSDN). First, a two‐stream encoder‐decoder network is trained by a convolutional neural network, where the input of the micro‐expression stream is a micro‐expression image, and the identity stream is a facial identity image. The micro‐expression image is the apex image, and the identity image is the onset image in the micro‐expression sequence. The identity information and micro‐expression features are recorded in the intermediate layer of the micro‐expression stream, while the intermediate layer of the identity stream contains only the identity information of a subject. Then, the identity information is removed by the difference network, but micro‐expression features are stored in the intermediate layer of the micro‐expression stream. Given the sequence of the micro‐expressions, the TSDN model of de‐identity information learns the difference that stores in the expression stream. Two public spontaneous facial micro‐expression data sets (SMIC and CASME II) are employed in our experiments. The experiment results show that our model can achieve a superior performance in micro‐expression recognition. |
---|---|
AbstractList | Abstract Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, called two‐stream difference network (TSDN). First, a two‐stream encoder‐decoder network is trained by a convolutional neural network, where the input of the micro‐expression stream is a micro‐expression image, and the identity stream is a facial identity image. The micro‐expression image is the apex image, and the identity image is the onset image in the micro‐expression sequence. The identity information and micro‐expression features are recorded in the intermediate layer of the micro‐expression stream, while the intermediate layer of the identity stream contains only the identity information of a subject. Then, the identity information is removed by the difference network, but micro‐expression features are stored in the intermediate layer of the micro‐expression stream. Given the sequence of the micro‐expressions, the TSDN model of de‐identity information learns the difference that stores in the expression stream. Two public spontaneous facial micro‐expression data sets (SMIC and CASME II) are employed in our experiments. The experiment results show that our model can achieve a superior performance in micro‐expression recognition. Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, called two‐stream difference network (TSDN). First, a two‐stream encoder‐decoder network is trained by a convolutional neural network, where the input of the micro‐expression stream is a micro‐expression image, and the identity stream is a facial identity image. The micro‐expression image is the apex image, and the identity image is the onset image in the micro‐expression sequence. The identity information and micro‐expression features are recorded in the intermediate layer of the micro‐expression stream, while the intermediate layer of the identity stream contains only the identity information of a subject. Then, the identity information is removed by the difference network, but micro‐expression features are stored in the intermediate layer of the micro‐expression stream. Given the sequence of the micro‐expressions, the TSDN model of de‐identity information learns the difference that stores in the expression stream. Two public spontaneous facial micro‐expression data sets (SMIC and CASME II) are employed in our experiments. The experiment results show that our model can achieve a superior performance in micro‐expression recognition. |
Author | Lv, Zeping Li, Juan Wang, Zhiliang Xie, Lun Pan, Hang |
Author_xml | – sequence: 1 givenname: Hang surname: Pan fullname: Pan, Hang organization: University of Science and Technology Beijing – sequence: 2 givenname: Lun surname: Xie fullname: Xie, Lun email: xielun@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 3 givenname: Juan surname: Li fullname: Li, Juan organization: Chinese Academy of Sciences – sequence: 4 givenname: Zeping surname: Lv fullname: Lv, Zeping organization: Affiliated Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids – sequence: 5 givenname: Zhiliang surname: Wang fullname: Wang, Zhiliang organization: University of Science and Technology Beijing |
BookMark | eNp9kM1KAzEUhYMoaKsbn2DAndCan_lpllL8KVTcqNtwJ7kpqe2kJqO1Ox_BZ_RJnOmoCxFX93LvOYfD1yO7la-QkGNGh4ym8ky_OD5knAq6Qw5YkbGBzFO6-7MLvk96Mc4pzXIp0wNyfuN08B9v7_i6Chij81USUPtZ5ep2LzdJvW7_sQ4Iy8Q4azFgpTGpsPmEx0OyZ2ER8ehr9sn95cXd-Howvb2ajM-nA502dQbaQKZHGqWVbFQIYZDRMmMjaYXko1xkhWbaaJCCMquzoiwFFwZobiAXDKzok0mXazzM1Sq4JYSN8uDU9uDDTEGonV6goqUtZQEcZMpSgByw4NQUPDWaouSmyTrpslbBPz1jrNXcP4eqqa8ElZxLzhpWfUI7VUMoxoBWaVdDi6UO4BaKUdVCVy10tYXeWE5_Wb6L_ilmnXjtFrj5R6nGDxPeeT4BMImV1g |
CitedBy_id | crossref_primary_10_1007_s00521_024_10262_7 crossref_primary_10_1007_s11063_022_11123_x crossref_primary_10_1109_TAFFC_2023_3341918 crossref_primary_10_1016_j_bspc_2023_105037 |
Cites_doi | 10.1109/TAFFC.2015.2485205 10.1016/j.image.2017.11.006 10.1016/j.neucom.2017.08.043 10.1109/TIT.1980.1056144 10.1109/IPTA.2018.8608119 10.1109/ACPR.2015.7486586 10.1016/j.neucom.2017.08.067 10.1016/j.eswa.2013.11.041 10.1109/ICCVW.2011.6130343 10.1109/TAFFC.2018.2854166 10.1049/iet-cvi.2017.0340 10.1109/ICCSP.2014.6949900 10.1109/ICCV.2015.341 10.1109/TPAMI.2007.1110 10.1049/iet-cvi.2017.0422 10.1109/CVPR.2011.5995345 10.1007/s11042-018-6857-9 10.1371/journal.pone.0086041 10.1016/j.neucom.2015.10.096 10.1145/2964284.2967247 10.1007/s10979-008-9166-4 10.1016/j.image.2019.02.005 10.1109/CVPR.2018.00231 10.1109/TGRS.2014.2307354 10.1109/ICASSP.2019.8682295 10.1348/014466505X90866 10.1109/ICCVW.2015.10 10.1145/3345336.3345343 10.1037/h0030377 10.1049/iet-cvi.2018.5281 10.1109/TMM.2019.2931351 10.1109/TMM.2018.2820321 10.21629/JSEE.2017.04.18 10.1007/s12110-005-1013-4 10.1109/TAFFC.2016.2523996 10.1007/s11042-019-7434-6 10.1109/ISPACS.2014.7024448 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W DOA |
DOI | 10.1049/cvi2.12030 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9640 |
EndPage | 448 |
ExternalDocumentID | oai_doaj_org_article_0bfb97a2a9414aa6ae720d724dc0e92d 10_1049_cvi2_12030 CVI212030 |
Genre | article |
GrantInformation_xml | – fundername: Advanced Innovation Centre for Intelligent Robots and Systems Open Research Project funderid: 2018IRS01 – fundername: National Key R&D Programme of China funderid: 2018YFC 2001700 – fundername: National Natural Science Foundation of China funderid: 61672093 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 3V. 5GY 6IK 8FE 8FG 8VB AAHHS AAHJG AAJGR ABJCF ABQXS ABUWG ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU CS3 DU5 DWQXO EBS EJD ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC J9A JAVBF K1G K6V K7- L6V LAI LXU M0N M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PQQKQ PROAC PTHSS QWB RIE RNS RUI S0W UNMZH ZL0 ~ZZ AAYXX CITATION IDLOA PHGZM PHGZT 7XB 8AL 8FK JQ2 PKEHL PQEST PQGLB PQUKI PRINS Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c4030-cda5c8ce9f918733de10b5189f39286357c1cdca9301fc57bb323da06da631af3 |
IEDL.DBID | DOA |
ISSN | 1751-9632 |
IngestDate | Wed Aug 27 01:24:45 EDT 2025 Wed Aug 13 04:55:22 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Tue Jul 01 05:17:24 EDT 2025 Wed Jan 22 16:28:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4030-cda5c8ce9f918733de10b5189f39286357c1cdca9301fc57bb323da06da631af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/0bfb97a2a9414aa6ae720d724dc0e92d |
PQID | 3092292196 |
PQPubID | 1936354 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0bfb97a2a9414aa6ae720d724dc0e92d proquest_journals_3092292196 crossref_citationtrail_10_1049_cvi2_12030 crossref_primary_10_1049_cvi2_12030 wiley_primary_10_1049_cvi2_12030_CVI212030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Stevenage |
PublicationPlace_xml | – name: Stevenage |
PublicationTitle | IET computer vision |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1980; 26 2012 2011 2019; 74 2017; 28 2019; 78 2017; 273 2018; 62 2014; 41 2018; 20 2015; 7 2009; 33 2007; 29 2018; 275 1971; 17 2006; 45 2017; 12 2019 2018 2017 2016 2015 2014 2020; 22 2018; 12 2014; 52 2014; 9 2005; 16 2016; 175 2016; 8 2018; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Wang S. (e_1_2_7_31_1) 2014 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_44_1 e_1_2_7_11_1 Han J. (e_1_2_7_20_1) 2019 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Kim Y. (e_1_2_7_23_1) 2017 Zhu X. (e_1_2_7_42_1) 2012 Liu Y. (e_1_2_7_33_1) 2018 Wang Y. (e_1_2_7_30_1) 2014 Minaee S. (e_1_2_7_12_1) 2019 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 Minaee S. (e_1_2_7_14_1) 2019 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Yuan Z. (e_1_2_7_15_1) 2019 |
References_xml | – volume: 26 start-page: 26 issue: 1 year: 1980 end-page: 37 article-title: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross‐entropy publication-title: IEEE Trans. Inf. Theor. – volume: 33 start-page: 530 issue: 6 year: 2009 article-title: Police lie detection accuracy: the effect of lie scenario publication-title: Law Hum. Behav. – volume: 29 start-page: 915 issue: 6 year: 2007 end-page: 928 article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 22 start-page: 626 issue: 3 year: 2020 end-page: 640 article-title: Spatiotemporal recurrent convolutional networks for recognising spontaneous micro‐expressions publication-title: IEEE Trans. Multimed. – volume: 275 start-page: 711 issue: 1 year: 2018 end-page: 724 article-title: Exponential elastic preserving projections for facial expression recognition publication-title: Neurocomputing – volume: 17 start-page: 124 issue: 2 year: 1971 end-page: 129 article-title: Constants across cultures in the face and emotion publication-title: J Pers. Soc. Psychol. – start-page: 525 year: 2014 end-page: 537 – volume: 12 start-page: 458 issue: 4 year: 2017 end-page: 465 article-title: Facial expression recognition using intra‐class variation reduced features and manifold regularisation dictionary pair learning publication-title: IET Comput. Vis. – volume: 7 start-page: 299 issue: 4 year: 2015 end-page: 310 article-title: A main directional mean optical flow feature for spontaneous micro‐expression recognition publication-title: IEEE Trans. Affective Comput. – start-page: 325 year: 2014 end-page: 338 – volume: 20 start-page: 3160 issue: 11 year: 2018 end-page: 3172 article-title: Learning from hierarchical spatiotemporal descriptors for micro‐expression recognition publication-title: IEEE Trans. Multimed. – start-page: 354 year: 2019 end-page: 363 – start-page: 56 year: 2019 end-page: 60 – volume: 74 start-page: 129 year: 2019 end-page: 139 article-title: Off‐apexnet on micro‐expression recognition system publication-title: Signal Process. Image Commun. – start-page: 538 year: 2014 end-page: 541 – volume: 12 start-page: 603 issue: 5 year: 2018 end-page: 608 article-title: Angled local directional pattern for texture Analysis with an application to facial expression recognition publication-title: IET Comput. Vis. – volume: 62 start-page: 82 year: 2018 end-page: 92 article-title: Less is more: micro‐expression recognition from video using apex frame publication-title: Signal Process. Image Commun. – start-page: 382 year: 2016 end-page: 386 – start-page: 1 year: 2018 end-page: 6 – volume: 41 start-page: 3383 issue: 7 year: 2014 end-page: 3390 article-title: A neural‐AdaBoost based facial expression recognition system publication-title: Expert. Syst. Appl. – start-page: 2112 year: 2019 end-page: 2116 – volume: 28 start-page: 784 issue: 4 year: 2017 end-page: 792 article-title: Identity‐aware convolutional neural networks for facial expression recognition publication-title: J. Syst. Eng. Electron – volume: 13 start-page: 329 issue: 3 year: 2018 end-page: 337 article-title: Spontaneous facial expression database for academic emotion inference in online learning publication-title: IET Comput. Vis. – start-page: 2168 year: 2018 end-page: 2177 – volume: 52 start-page: 7086 issue: 11 year: 2014 end-page: 7098 article-title: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning publication-title: IEEE Trans. Geosci. Rem. Sens. – start-page: 2983 year: 2015 end-page: 2991 – volume: 8 start-page: 396 issue: 3 year: 2016 end-page: 411 article-title: Sparsity in dynamics of spontaneous subtle emotions: analysis and application publication-title: IEEE Trans. Affective Comput. – volume: 45 start-page: 579 issue: 4 year: 2006 end-page: 583 article-title: A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro‐expression training tool publication-title: Br. J Clin. Psychol. – volume: 16 start-page: 306 issue: 3 year: 2005 end-page: 321 article-title: Sex differences in negotiating with powerful males publication-title: Hum. Nat. – volume: 78 start-page: 21613 issue: 15 year: 2019 end-page: 21628 article-title: The implication of spatial temporal changes on facial micro‐expression analysis publication-title: Multimed Tool Appl. – start-page: 1 year: 2015 end-page: 9 – start-page: 1 year: 2018 end-page: 18 article-title: Sparse MDMO: learning a discriminative feature for spontaneous micro‐expression recognition publication-title: IEEE Trans. Affective Comput. – start-page: 665 year: 2015 end-page: 669 – volume: 273 start-page: 643 year: 2017 end-page: 649 article-title: Facial expression recognition via learning deep sparse autoencoders publication-title: Neurocomputing – start-page: 180 year: 2014 end-page: 184 – start-page: 1 year: 2019 end-page: 18 article-title: Personalised broad learning system for facial expression publication-title: Multimed. Tools Appl. – volume: 175 start-page: 564 year: 2016 end-page: 578 article-title: Spontaneous facial micro‐expression analysis using spatiotemporal completed local quantized patterns publication-title: Neurocomputing – volume: 9 start-page: 1 issue: 1 year: 2014 end-page: 8 article-title: CASME II: an improved spontaneous micro‐expression database and the baseline evaluation publication-title: PLOS One – start-page: 137 year: 2011 end-page: 144 – volume: 78 start-page: 29307 issue: 20 year: 2019 end-page: 29322 article-title: Facial micro‐expression recognition based on the fusion of deep learning and enhanced optical flow publication-title: Multimed. Tool Appl. – year: 2017 – year: 2019 – start-page: 868 year: 2011 end-page: 875 – start-page: 2879 year: 2012 end-page: 2886 – ident: e_1_2_7_19_1 doi: 10.1109/TAFFC.2015.2485205 – ident: e_1_2_7_37_1 doi: 10.1016/j.image.2017.11.006 – ident: e_1_2_7_11_1 doi: 10.1016/j.neucom.2017.08.043 – start-page: 525 volume-title: Asian Conference on Computer Vision year: 2014 ident: e_1_2_7_30_1 – ident: e_1_2_7_39_1 doi: 10.1109/TIT.1980.1056144 – ident: e_1_2_7_35_1 doi: 10.1109/IPTA.2018.8608119 – ident: e_1_2_7_43_1 doi: 10.1109/ACPR.2015.7486586 – ident: e_1_2_7_2_1 doi: 10.1016/j.neucom.2017.08.067 – ident: e_1_2_7_4_1 doi: 10.1016/j.eswa.2013.11.041 – ident: e_1_2_7_26_1 doi: 10.1109/ICCVW.2011.6130343 – start-page: 1 year: 2018 ident: e_1_2_7_33_1 article-title: Sparse MDMO: learning a discriminative feature for spontaneous micro‐expression recognition publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2018.2854166 – ident: e_1_2_7_13_1 doi: 10.1049/iet-cvi.2017.0340 – ident: e_1_2_7_3_1 doi: 10.1109/ICCSP.2014.6949900 – ident: e_1_2_7_10_1 doi: 10.1109/ICCV.2015.341 – ident: e_1_2_7_28_1 doi: 10.1109/TPAMI.2007.1110 – ident: e_1_2_7_25_1 doi: 10.1049/iet-cvi.2017.0422 – ident: e_1_2_7_27_1 doi: 10.1109/CVPR.2011.5995345 – ident: e_1_2_7_17_1 doi: 10.1007/s11042-018-6857-9 – ident: e_1_2_7_45_1 doi: 10.1371/journal.pone.0086041 – ident: e_1_2_7_29_1 doi: 10.1016/j.neucom.2015.10.096 – ident: e_1_2_7_44_1 doi: 10.1145/2964284.2967247 – volume-title: Biometric Recognition Using Deep Learning: A Survey year: 2019 ident: e_1_2_7_12_1 – start-page: 325 volume-title: European Conference on Computer Vision year: 2014 ident: e_1_2_7_31_1 – ident: e_1_2_7_9_1 doi: 10.1007/s10979-008-9166-4 – volume-title: Deep‐emotion: Facial Expression Recognition Using Attentional Convolutional Network year: 2019 ident: e_1_2_7_14_1 – start-page: 354 volume-title: ACM International Conference on Multimedia Retrieval year: 2019 ident: e_1_2_7_15_1 – start-page: 1 year: 2019 ident: e_1_2_7_20_1 article-title: Personalised broad learning system for facial expression publication-title: Multimed. Tools Appl. – ident: e_1_2_7_38_1 doi: 10.1016/j.image.2019.02.005 – start-page: 2879 volume-title: IEEE International Computer Vision and Pattern Recognition year: 2012 ident: e_1_2_7_42_1 – ident: e_1_2_7_24_1 doi: 10.1109/CVPR.2018.00231 – ident: e_1_2_7_34_1 doi: 10.1109/TGRS.2014.2307354 – ident: e_1_2_7_46_1 doi: 10.1109/ICASSP.2019.8682295 – ident: e_1_2_7_7_1 doi: 10.1348/014466505X90866 – ident: e_1_2_7_41_1 doi: 10.1109/ICCVW.2015.10 – ident: e_1_2_7_36_1 doi: 10.1145/3345336.3345343 – ident: e_1_2_7_6_1 doi: 10.1037/h0030377 – volume-title: Deep Generative‐contrastive Networks for Facial Expression Recognition year: 2017 ident: e_1_2_7_23_1 – ident: e_1_2_7_5_1 doi: 10.1049/iet-cvi.2018.5281 – ident: e_1_2_7_21_1 doi: 10.1109/TMM.2019.2931351 – ident: e_1_2_7_18_1 doi: 10.1109/TMM.2018.2820321 – ident: e_1_2_7_22_1 doi: 10.21629/JSEE.2017.04.18 – ident: e_1_2_7_8_1 doi: 10.1007/s12110-005-1013-4 – ident: e_1_2_7_32_1 doi: 10.1109/TAFFC.2016.2523996 – ident: e_1_2_7_16_1 doi: 10.1007/s11042-019-7434-6 – ident: e_1_2_7_40_1 doi: 10.1109/ISPACS.2014.7024448 |
SSID | ssj0056994 |
Score | 2.2400374 |
Snippet | Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information... Abstract Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 440 |
SubjectTerms | Artificial neural networks convolutional neural nets Ethnicity face recognition Feature recognition Gender Identity image coding image sequences Neural networks |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxUxFG4UNm58G68CmUQ3mlT6nJmuCBAImkCMEcOuOT1t2ehc5F6j7vgJ_EZ_CW1v5woJYdfMnDTN6Xl8ab-eQ8hbFgFi7JDq2AmqVOgpoBYUeNB9aL3XkN8OHx61B8fq04k-qQdus0qrHGNiCdR-ivmMfFMyI4RJ_tVunf2kuWtUvl2tLTTuk9UUgvtk4as7e0efv4yxWLemtEJMOZLTZGpiLFCqzGaaVnzgovCfr6WkUrn_Bty8DlpL1tl_TB5WuNhsL_b3CbkXhqfkUYWOTXXM2TOyfZiJdf8uLsOfymwdmiU3KI3d32b-O__Pb0PgRzP2RcHQDAsi-HNyvL_3dfeA1u4IFFVaNEUPGnsMJhred1L6wJnTvDcxQZ4-l5lDjh7BJBeOqDvnpJAeWOuhlRyifEFWhukQXpImg8KgMXqmnJIpQYFEl3AcC7xzKNoJeTcqyGItHZ47WHy35QpbGZuVaYsyJ-TNUvZsUTDjVqmdrOelRC5yXT5Mz09t9RnLXHSmAwFGcQXQQugE851QHlkwwk_I2rhLtnrezP63kwl5X3bujmXY3W8fRRm9unuu1-SByGSWQi5bIyvz819hPaGRuduoJncFAeHf5g priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSx0xFA7Wbty0tlV6q5YB3bQwmufMBNxcLxUVFBe1uAsnJ0kRdBS9vnb9Cf2N_SVNMjO3FaTQXZg5gXAeOR8z53yHkA0aAEKosVSh5qWUvikBFS-BedX4yjkFqXf48KjaO5EHp-p0jmwPvTAdP8Tsg1uKjHxfpwAH200hiaA2GhHvzvgm49FJX5CXqbc2eTmXx8M9rCqdxyDG_MjK6GZ8ICeVeuvP3ifpKLP2P4GafwPWnHF2F8mrHioW4862b8icb9-S1z1sLPqgvHlHxoepqO7Xj5_-oa9qbYtZXVBc28diep_ep74QuCiGmSjoi7YrAl8iJ7tfvk72yn4yQokyHrpEBwob9Dpo1tRCOM-oVazRIcKdJlHMIUOHoGP4BlS1tYILB7RyUAkGQSyT-fay9e9JkQChVxgclVaKmJxAoI0YjnpWW-TViHwaFGSwpw1P0yvOTf59LbVJyjRZmSOyPpO96sgynpXaSXqeSSSC6_zg8vq76ePFUBusroGDlkwCVOBrTl3NpUPqNXcjsjpYyfRRd2ME1ZzreAfHU3_OlvvHMczk2z7Pqw__I7xCFngqa8llZqtkfnp969ciLpnaj9n9fgNxPN8d priority: 102 providerName: Wiley-Blackwell |
Title | Micro‐expression recognition by two‐stream difference network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcvi2.12030 https://www.proquest.com/docview/3092292196 https://doaj.org/article/0bfb97a2a9414aa6ae720d724dc0e92d |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKe-EC5UtsKatI9AJSqD-T-Litui2VWlWIrSou1nhsS5UgrdqFlhs_ob-RX4LtJKuthODCJbESH0YzHs-L8vyGkC0aAEKosVSh5qWUvikBFS-BedX4yjkF6ezw0XF1MJOHZ-psqdVX4oR18sCd47apDVbXwEFLJgEq8DWnrubSIfWau7T7xpo3fEx1e7CqdG6BGGsjK-MS44MwqdTb-P2cv2c8856XSlFW7L8HM5fBaq4203XyqIeJxaQz7wlZ8e1T8riHjEWfkNfPyOQoEep-_bzztz2jtS0WnKA4tj-K-U16n86EwNdi6IeCvmg7AvhzMpvufdo9KPuuCCXKaHSJDhQ26HXQrKmFcJ5Rq1ijQ4Q6TZKXQ4YOQcfUDahqawUXDmjloBIMgnhBVtuL1r8kRQKDXmFwVFopYmECgTbiN-pZbZFXI_J2cJDBXjI8da74YvKva6lNcqbJzhyRN4u5l51Qxh9n7SQ_L2Ykcev8IIbc9CE3_wr5iGwOUTJ9xl0bQTXnOu6_0ep3OXJ_McPsnn7gebTxPwx6RR7yRHXJ1LNNsjq_-uZfR6wyt2PygMuTeG2m-2OyNjmdfZ7F-87e8cnHcV6yvwHUbuzP |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LThRBFL1BXOhGxUcYROhEXWhSUs_uroUxgI4zwrACw66oJxvpQWYMsvMT-BI-yi-xqqZ7xMSwY1fprlS6b52693TXqXsBXuGgdQiVRSJUFHHua6StoEgTL2pfOid0Ojs82isHB_zLoThcgKvuLEySVXY-MTtqN7bpH_kGw5JSGddX-eH0O0pVo9LualdCYwaLHX9xHj_ZJu-HH-P8vqa0_2l_e4DaqgLI8ohoZJ0WtrZeBknqijHnCTaC1DJEqlCn9GyWWGe1jNAPVlTGMMqcxqXTJSM6sDjuHbjLGZNJQlj3P3eeX5QyF16MEZmgCGzapUPlciO-BH1HaFZbXwuAuU7AP-T2OkXOMa7_CB605LTYnKFpCRZ88xgetkS1aN3A5AlsjpKM7_evS_-z1dE2xVyJFNvmopiep_vpJIo-KboqLNYXzUx2_hQObsVqz2CxGTd-GYpEQb2wwWFuOIvhUDNrImvEnlTG0rIHbzoDKdsmKk_1Mr6pvGHOpUrGVNmYPXg573s6S8_x315byc7zHimldr4wPjtW7QpV2AQjK0215IRrXWpfUewqyp3FXlLXg9VullS7zifqLyp78DbP3A2Poba_Dmlurdw81jrcG-yPdtXucG_nOdynSUaTZW2rsDg9--FfRB40NWsZfAUc3Tba_wAK5Btf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRUJsoLzEQAuRgAVIZvxM4gVCpWXoUFqxoKg71082kCmdQW13_QS-h8_hS7A9zlAk1F13VmJZyfW9vifx8T0AT3HQOoTGIhEaijj3LdJWUKSJF62vnRM6nR3e2a239vj7fbG_BL_6szCJVtmviXmhdhOb_pEPGZaUyhhf9TAUWsTHzdHrw-8oKUilndZeTmPuItv-9Dh-vk1fjTfjXD-jdPT208YWKgoDyPLo3cg6LWxrvQyStA1jzhNsBGlliLChTaXaLLHOahnDIFjRGMMocxrXTteM6MDiuFfgasNanNQT2tG7PguIWmYRxpidCYpOTvvSqFwO4wvRl4Rm5vW5ZJg1A_4Buufhcs53oxW4UYBqtT73rFuw5LvbcLOA1qosCdM7sL6TKH2_z376k8Kp7aoFKym2zWk1O07306kU_a3qFVmsr7o5Bf0u7F2K1e7Bcjfp_H2oEhz1wgaHueEspkbNrIkIEnvSGEvrATzvDaRsKVqetDO-qrx5zqVKxlTZmAN4suh7OC_V8d9eb5KdFz1See18YXL0RZVoVdgEIxtNteSEa11r31DsGsqdxV5SN4DVfpZUifmp-uuhA3iRZ-6Cx1Abn8c0tx5cPNZjuBb9XH0Y724_hOs0MWoyw20VlmdHP_xahEQz8yj7XgUHl-3sfwDzlB-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%90expression+recognition+by+two%E2%80%90stream+difference+network&rft.jtitle=IET+computer+vision&rft.au=Hang+Pan&rft.au=Lun+Xie&rft.au=Juan+Li&rft.au=Zeping+Lv&rft.date=2021-09-01&rft.pub=Wiley&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=15&rft.issue=6&rft.spage=440&rft.epage=448&rft_id=info:doi/10.1049%2Fcvi2.12030&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0bfb97a2a9414aa6ae720d724dc0e92d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon |