Micro‐expression recognition by two‐stream difference network

Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, ca...

Full description

Saved in:
Bibliographic Details
Published inIET computer vision Vol. 15; no. 6; pp. 440 - 448
Main Authors Pan, Hang, Xie, Lun, Li, Juan, Lv, Zeping, Wang, Zhiliang
Format Journal Article
LanguageEnglish
Published Stevenage John Wiley & Sons, Inc 01.09.2021
Wiley
Subjects
Online AccessGet full text
ISSN1751-9632
1751-9640
DOI10.1049/cvi2.12030

Cover

Loading…
Abstract Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, called two‐stream difference network (TSDN). First, a two‐stream encoder‐decoder network is trained by a convolutional neural network, where the input of the micro‐expression stream is a micro‐expression image, and the identity stream is a facial identity image. The micro‐expression image is the apex image, and the identity image is the onset image in the micro‐expression sequence. The identity information and micro‐expression features are recorded in the intermediate layer of the micro‐expression stream, while the intermediate layer of the identity stream contains only the identity information of a subject. Then, the identity information is removed by the difference network, but micro‐expression features are stored in the intermediate layer of the micro‐expression stream. Given the sequence of the micro‐expressions, the TSDN model of de‐identity information learns the difference that stores in the expression stream. Two public spontaneous facial micro‐expression data sets (SMIC and CASME II) are employed in our experiments. The experiment results show that our model can achieve a superior performance in micro‐expression recognition.
AbstractList Abstract Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, called two‐stream difference network (TSDN). First, a two‐stream encoder‐decoder network is trained by a convolutional neural network, where the input of the micro‐expression stream is a micro‐expression image, and the identity stream is a facial identity image. The micro‐expression image is the apex image, and the identity image is the onset image in the micro‐expression sequence. The identity information and micro‐expression features are recorded in the intermediate layer of the micro‐expression stream, while the intermediate layer of the identity stream contains only the identity information of a subject. Then, the identity information is removed by the difference network, but micro‐expression features are stored in the intermediate layer of the micro‐expression stream. Given the sequence of the micro‐expressions, the TSDN model of de‐identity information learns the difference that stores in the expression stream. Two public spontaneous facial micro‐expression data sets (SMIC and CASME II) are employed in our experiments. The experiment results show that our model can achieve a superior performance in micro‐expression recognition.
Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information interference in micro‐expression recognition, this study proposes a new method for facial micro‐expression recognition by de‐identity information, called two‐stream difference network (TSDN). First, a two‐stream encoder‐decoder network is trained by a convolutional neural network, where the input of the micro‐expression stream is a micro‐expression image, and the identity stream is a facial identity image. The micro‐expression image is the apex image, and the identity image is the onset image in the micro‐expression sequence. The identity information and micro‐expression features are recorded in the intermediate layer of the micro‐expression stream, while the intermediate layer of the identity stream contains only the identity information of a subject. Then, the identity information is removed by the difference network, but micro‐expression features are stored in the intermediate layer of the micro‐expression stream. Given the sequence of the micro‐expressions, the TSDN model of de‐identity information learns the difference that stores in the expression stream. Two public spontaneous facial micro‐expression data sets (SMIC and CASME II) are employed in our experiments. The experiment results show that our model can achieve a superior performance in micro‐expression recognition.
Author Lv, Zeping
Li, Juan
Wang, Zhiliang
Xie, Lun
Pan, Hang
Author_xml – sequence: 1
  givenname: Hang
  surname: Pan
  fullname: Pan, Hang
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Lun
  surname: Xie
  fullname: Xie, Lun
  email: xielun@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Juan
  surname: Li
  fullname: Li, Juan
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Zeping
  surname: Lv
  fullname: Lv, Zeping
  organization: Affiliated Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids
– sequence: 5
  givenname: Zhiliang
  surname: Wang
  fullname: Wang, Zhiliang
  organization: University of Science and Technology Beijing
BookMark eNp9kM1KAzEUhYMoaKsbn2DAndCan_lpllL8KVTcqNtwJ7kpqe2kJqO1Ox_BZ_RJnOmoCxFX93LvOYfD1yO7la-QkGNGh4ym8ky_OD5knAq6Qw5YkbGBzFO6-7MLvk96Mc4pzXIp0wNyfuN08B9v7_i6Chij81USUPtZ5ep2LzdJvW7_sQ4Iy8Q4azFgpTGpsPmEx0OyZ2ER8ehr9sn95cXd-Howvb2ajM-nA502dQbaQKZHGqWVbFQIYZDRMmMjaYXko1xkhWbaaJCCMquzoiwFFwZobiAXDKzok0mXazzM1Sq4JYSN8uDU9uDDTEGonV6goqUtZQEcZMpSgByw4NQUPDWaouSmyTrpslbBPz1jrNXcP4eqqa8ElZxLzhpWfUI7VUMoxoBWaVdDi6UO4BaKUdVCVy10tYXeWE5_Wb6L_ilmnXjtFrj5R6nGDxPeeT4BMImV1g
CitedBy_id crossref_primary_10_1007_s00521_024_10262_7
crossref_primary_10_1007_s11063_022_11123_x
crossref_primary_10_1109_TAFFC_2023_3341918
crossref_primary_10_1016_j_bspc_2023_105037
Cites_doi 10.1109/TAFFC.2015.2485205
10.1016/j.image.2017.11.006
10.1016/j.neucom.2017.08.043
10.1109/TIT.1980.1056144
10.1109/IPTA.2018.8608119
10.1109/ACPR.2015.7486586
10.1016/j.neucom.2017.08.067
10.1016/j.eswa.2013.11.041
10.1109/ICCVW.2011.6130343
10.1109/TAFFC.2018.2854166
10.1049/iet-cvi.2017.0340
10.1109/ICCSP.2014.6949900
10.1109/ICCV.2015.341
10.1109/TPAMI.2007.1110
10.1049/iet-cvi.2017.0422
10.1109/CVPR.2011.5995345
10.1007/s11042-018-6857-9
10.1371/journal.pone.0086041
10.1016/j.neucom.2015.10.096
10.1145/2964284.2967247
10.1007/s10979-008-9166-4
10.1016/j.image.2019.02.005
10.1109/CVPR.2018.00231
10.1109/TGRS.2014.2307354
10.1109/ICASSP.2019.8682295
10.1348/014466505X90866
10.1109/ICCVW.2015.10
10.1145/3345336.3345343
10.1037/h0030377
10.1049/iet-cvi.2018.5281
10.1109/TMM.2019.2931351
10.1109/TMM.2018.2820321
10.21629/JSEE.2017.04.18
10.1007/s12110-005-1013-4
10.1109/TAFFC.2016.2523996
10.1007/s11042-019-7434-6
10.1109/ISPACS.2014.7024448
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOA
DOI 10.1049/cvi2.12030
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9640
EndPage 448
ExternalDocumentID oai_doaj_org_article_0bfb97a2a9414aa6ae720d724dc0e92d
10_1049_cvi2_12030
CVI212030
Genre article
GrantInformation_xml – fundername: Advanced Innovation Centre for Intelligent Robots and Systems Open Research Project
  funderid: 2018IRS01
– fundername: National Key R&D Programme of China
  funderid: 2018YFC 2001700
– fundername: National Natural Science Foundation of China
  funderid: 61672093
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
3V.
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ABUWG
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
J9A
JAVBF
K1G
K6V
K7-
L6V
LAI
LXU
M0N
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PQQKQ
PROAC
PTHSS
QWB
RIE
RNS
RUI
S0W
UNMZH
ZL0
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-c4030-cda5c8ce9f918733de10b5189f39286357c1cdca9301fc57bb323da06da631af3
IEDL.DBID DOA
ISSN 1751-9632
IngestDate Wed Aug 27 01:24:45 EDT 2025
Wed Aug 13 04:55:22 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Tue Jul 01 05:17:24 EDT 2025
Wed Jan 22 16:28:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4030-cda5c8ce9f918733de10b5189f39286357c1cdca9301fc57bb323da06da631af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/0bfb97a2a9414aa6ae720d724dc0e92d
PQID 3092292196
PQPubID 1936354
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_0bfb97a2a9414aa6ae720d724dc0e92d
proquest_journals_3092292196
crossref_citationtrail_10_1049_cvi2_12030
crossref_primary_10_1049_cvi2_12030
wiley_primary_10_1049_cvi2_12030_CVI212030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET computer vision
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1980; 26
2012
2011
2019; 74
2017; 28
2019; 78
2017; 273
2018; 62
2014; 41
2018; 20
2015; 7
2009; 33
2007; 29
2018; 275
1971; 17
2006; 45
2017; 12
2019
2018
2017
2016
2015
2014
2020; 22
2018; 12
2014; 52
2014; 9
2005; 16
2016; 175
2016; 8
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Wang S. (e_1_2_7_31_1) 2014
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_11_1
Han J. (e_1_2_7_20_1) 2019
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Kim Y. (e_1_2_7_23_1) 2017
Zhu X. (e_1_2_7_42_1) 2012
Liu Y. (e_1_2_7_33_1) 2018
Wang Y. (e_1_2_7_30_1) 2014
Minaee S. (e_1_2_7_12_1) 2019
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
Minaee S. (e_1_2_7_14_1) 2019
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Yuan Z. (e_1_2_7_15_1) 2019
References_xml – volume: 26
  start-page: 26
  issue: 1
  year: 1980
  end-page: 37
  article-title: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross‐entropy
  publication-title: IEEE Trans. Inf. Theor.
– volume: 33
  start-page: 530
  issue: 6
  year: 2009
  article-title: Police lie detection accuracy: the effect of lie scenario
  publication-title: Law Hum. Behav.
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  end-page: 928
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 626
  issue: 3
  year: 2020
  end-page: 640
  article-title: Spatiotemporal recurrent convolutional networks for recognising spontaneous micro‐expressions
  publication-title: IEEE Trans. Multimed.
– volume: 275
  start-page: 711
  issue: 1
  year: 2018
  end-page: 724
  article-title: Exponential elastic preserving projections for facial expression recognition
  publication-title: Neurocomputing
– volume: 17
  start-page: 124
  issue: 2
  year: 1971
  end-page: 129
  article-title: Constants across cultures in the face and emotion
  publication-title: J Pers. Soc. Psychol.
– start-page: 525
  year: 2014
  end-page: 537
– volume: 12
  start-page: 458
  issue: 4
  year: 2017
  end-page: 465
  article-title: Facial expression recognition using intra‐class variation reduced features and manifold regularisation dictionary pair learning
  publication-title: IET Comput. Vis.
– volume: 7
  start-page: 299
  issue: 4
  year: 2015
  end-page: 310
  article-title: A main directional mean optical flow feature for spontaneous micro‐expression recognition
  publication-title: IEEE Trans. Affective Comput.
– start-page: 325
  year: 2014
  end-page: 338
– volume: 20
  start-page: 3160
  issue: 11
  year: 2018
  end-page: 3172
  article-title: Learning from hierarchical spatiotemporal descriptors for micro‐expression recognition
  publication-title: IEEE Trans. Multimed.
– start-page: 354
  year: 2019
  end-page: 363
– start-page: 56
  year: 2019
  end-page: 60
– volume: 74
  start-page: 129
  year: 2019
  end-page: 139
  article-title: Off‐apexnet on micro‐expression recognition system
  publication-title: Signal Process. Image Commun.
– start-page: 538
  year: 2014
  end-page: 541
– volume: 12
  start-page: 603
  issue: 5
  year: 2018
  end-page: 608
  article-title: Angled local directional pattern for texture Analysis with an application to facial expression recognition
  publication-title: IET Comput. Vis.
– volume: 62
  start-page: 82
  year: 2018
  end-page: 92
  article-title: Less is more: micro‐expression recognition from video using apex frame
  publication-title: Signal Process. Image Commun.
– start-page: 382
  year: 2016
  end-page: 386
– start-page: 1
  year: 2018
  end-page: 6
– volume: 41
  start-page: 3383
  issue: 7
  year: 2014
  end-page: 3390
  article-title: A neural‐AdaBoost based facial expression recognition system
  publication-title: Expert. Syst. Appl.
– start-page: 2112
  year: 2019
  end-page: 2116
– volume: 28
  start-page: 784
  issue: 4
  year: 2017
  end-page: 792
  article-title: Identity‐aware convolutional neural networks for facial expression recognition
  publication-title: J. Syst. Eng. Electron
– volume: 13
  start-page: 329
  issue: 3
  year: 2018
  end-page: 337
  article-title: Spontaneous facial expression database for academic emotion inference in online learning
  publication-title: IET Comput. Vis.
– start-page: 2168
  year: 2018
  end-page: 2177
– volume: 52
  start-page: 7086
  issue: 11
  year: 2014
  end-page: 7098
  article-title: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– start-page: 2983
  year: 2015
  end-page: 2991
– volume: 8
  start-page: 396
  issue: 3
  year: 2016
  end-page: 411
  article-title: Sparsity in dynamics of spontaneous subtle emotions: analysis and application
  publication-title: IEEE Trans. Affective Comput.
– volume: 45
  start-page: 579
  issue: 4
  year: 2006
  end-page: 583
  article-title: A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro‐expression training tool
  publication-title: Br. J Clin. Psychol.
– volume: 16
  start-page: 306
  issue: 3
  year: 2005
  end-page: 321
  article-title: Sex differences in negotiating with powerful males
  publication-title: Hum. Nat.
– volume: 78
  start-page: 21613
  issue: 15
  year: 2019
  end-page: 21628
  article-title: The implication of spatial temporal changes on facial micro‐expression analysis
  publication-title: Multimed Tool Appl.
– start-page: 1
  year: 2015
  end-page: 9
– start-page: 1
  year: 2018
  end-page: 18
  article-title: Sparse MDMO: learning a discriminative feature for spontaneous micro‐expression recognition
  publication-title: IEEE Trans. Affective Comput.
– start-page: 665
  year: 2015
  end-page: 669
– volume: 273
  start-page: 643
  year: 2017
  end-page: 649
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
– start-page: 180
  year: 2014
  end-page: 184
– start-page: 1
  year: 2019
  end-page: 18
  article-title: Personalised broad learning system for facial expression
  publication-title: Multimed. Tools Appl.
– volume: 175
  start-page: 564
  year: 2016
  end-page: 578
  article-title: Spontaneous facial micro‐expression analysis using spatiotemporal completed local quantized patterns
  publication-title: Neurocomputing
– volume: 9
  start-page: 1
  issue: 1
  year: 2014
  end-page: 8
  article-title: CASME II: an improved spontaneous micro‐expression database and the baseline evaluation
  publication-title: PLOS One
– start-page: 137
  year: 2011
  end-page: 144
– volume: 78
  start-page: 29307
  issue: 20
  year: 2019
  end-page: 29322
  article-title: Facial micro‐expression recognition based on the fusion of deep learning and enhanced optical flow
  publication-title: Multimed. Tool Appl.
– year: 2017
– year: 2019
– start-page: 868
  year: 2011
  end-page: 875
– start-page: 2879
  year: 2012
  end-page: 2886
– ident: e_1_2_7_19_1
  doi: 10.1109/TAFFC.2015.2485205
– ident: e_1_2_7_37_1
  doi: 10.1016/j.image.2017.11.006
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neucom.2017.08.043
– start-page: 525
  volume-title: Asian Conference on Computer Vision
  year: 2014
  ident: e_1_2_7_30_1
– ident: e_1_2_7_39_1
  doi: 10.1109/TIT.1980.1056144
– ident: e_1_2_7_35_1
  doi: 10.1109/IPTA.2018.8608119
– ident: e_1_2_7_43_1
  doi: 10.1109/ACPR.2015.7486586
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neucom.2017.08.067
– ident: e_1_2_7_4_1
  doi: 10.1016/j.eswa.2013.11.041
– ident: e_1_2_7_26_1
  doi: 10.1109/ICCVW.2011.6130343
– start-page: 1
  year: 2018
  ident: e_1_2_7_33_1
  article-title: Sparse MDMO: learning a discriminative feature for spontaneous micro‐expression recognition
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2018.2854166
– ident: e_1_2_7_13_1
  doi: 10.1049/iet-cvi.2017.0340
– ident: e_1_2_7_3_1
  doi: 10.1109/ICCSP.2014.6949900
– ident: e_1_2_7_10_1
  doi: 10.1109/ICCV.2015.341
– ident: e_1_2_7_28_1
  doi: 10.1109/TPAMI.2007.1110
– ident: e_1_2_7_25_1
  doi: 10.1049/iet-cvi.2017.0422
– ident: e_1_2_7_27_1
  doi: 10.1109/CVPR.2011.5995345
– ident: e_1_2_7_17_1
  doi: 10.1007/s11042-018-6857-9
– ident: e_1_2_7_45_1
  doi: 10.1371/journal.pone.0086041
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neucom.2015.10.096
– ident: e_1_2_7_44_1
  doi: 10.1145/2964284.2967247
– volume-title: Biometric Recognition Using Deep Learning: A Survey
  year: 2019
  ident: e_1_2_7_12_1
– start-page: 325
  volume-title: European Conference on Computer Vision
  year: 2014
  ident: e_1_2_7_31_1
– ident: e_1_2_7_9_1
  doi: 10.1007/s10979-008-9166-4
– volume-title: Deep‐emotion: Facial Expression Recognition Using Attentional Convolutional Network
  year: 2019
  ident: e_1_2_7_14_1
– start-page: 354
  volume-title: ACM International Conference on Multimedia Retrieval
  year: 2019
  ident: e_1_2_7_15_1
– start-page: 1
  year: 2019
  ident: e_1_2_7_20_1
  article-title: Personalised broad learning system for facial expression
  publication-title: Multimed. Tools Appl.
– ident: e_1_2_7_38_1
  doi: 10.1016/j.image.2019.02.005
– start-page: 2879
  volume-title: IEEE International Computer Vision and Pattern Recognition
  year: 2012
  ident: e_1_2_7_42_1
– ident: e_1_2_7_24_1
  doi: 10.1109/CVPR.2018.00231
– ident: e_1_2_7_34_1
  doi: 10.1109/TGRS.2014.2307354
– ident: e_1_2_7_46_1
  doi: 10.1109/ICASSP.2019.8682295
– ident: e_1_2_7_7_1
  doi: 10.1348/014466505X90866
– ident: e_1_2_7_41_1
  doi: 10.1109/ICCVW.2015.10
– ident: e_1_2_7_36_1
  doi: 10.1145/3345336.3345343
– ident: e_1_2_7_6_1
  doi: 10.1037/h0030377
– volume-title: Deep Generative‐contrastive Networks for Facial Expression Recognition
  year: 2017
  ident: e_1_2_7_23_1
– ident: e_1_2_7_5_1
  doi: 10.1049/iet-cvi.2018.5281
– ident: e_1_2_7_21_1
  doi: 10.1109/TMM.2019.2931351
– ident: e_1_2_7_18_1
  doi: 10.1109/TMM.2018.2820321
– ident: e_1_2_7_22_1
  doi: 10.21629/JSEE.2017.04.18
– ident: e_1_2_7_8_1
  doi: 10.1007/s12110-005-1013-4
– ident: e_1_2_7_32_1
  doi: 10.1109/TAFFC.2016.2523996
– ident: e_1_2_7_16_1
  doi: 10.1007/s11042-019-7434-6
– ident: e_1_2_7_40_1
  doi: 10.1109/ISPACS.2014.7024448
SSID ssj0056994
Score 2.2400374
Snippet Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information...
Abstract Facial micro‐expression is a superposition of micro‐expression features and identity information of a subject. For the problem of identity information...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 440
SubjectTerms Artificial neural networks
convolutional neural nets
Ethnicity
face recognition
Feature recognition
Gender
Identity
image coding
image sequences
Neural networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxUxFG4UNm58G68CmUQ3mlT6nJmuCBAImkCMEcOuOT1t2ehc5F6j7vgJ_EZ_CW1v5woJYdfMnDTN6Xl8ab-eQ8hbFgFi7JDq2AmqVOgpoBYUeNB9aL3XkN8OHx61B8fq04k-qQdus0qrHGNiCdR-ivmMfFMyI4RJ_tVunf2kuWtUvl2tLTTuk9UUgvtk4as7e0efv4yxWLemtEJMOZLTZGpiLFCqzGaaVnzgovCfr6WkUrn_Bty8DlpL1tl_TB5WuNhsL_b3CbkXhqfkUYWOTXXM2TOyfZiJdf8uLsOfymwdmiU3KI3d32b-O__Pb0PgRzP2RcHQDAsi-HNyvL_3dfeA1u4IFFVaNEUPGnsMJhred1L6wJnTvDcxQZ4-l5lDjh7BJBeOqDvnpJAeWOuhlRyifEFWhukQXpImg8KgMXqmnJIpQYFEl3AcC7xzKNoJeTcqyGItHZ47WHy35QpbGZuVaYsyJ-TNUvZsUTDjVqmdrOelRC5yXT5Mz09t9RnLXHSmAwFGcQXQQugE851QHlkwwk_I2rhLtnrezP63kwl5X3bujmXY3W8fRRm9unuu1-SByGSWQi5bIyvz819hPaGRuduoJncFAeHf5g
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSx0xFA7Wbty0tlV6q5YB3bQwmufMBNxcLxUVFBe1uAsnJ0kRdBS9vnb9Cf2N_SVNMjO3FaTQXZg5gXAeOR8z53yHkA0aAEKosVSh5qWUvikBFS-BedX4yjkFqXf48KjaO5EHp-p0jmwPvTAdP8Tsg1uKjHxfpwAH200hiaA2GhHvzvgm49FJX5CXqbc2eTmXx8M9rCqdxyDG_MjK6GZ8ICeVeuvP3ifpKLP2P4GafwPWnHF2F8mrHioW4862b8icb9-S1z1sLPqgvHlHxoepqO7Xj5_-oa9qbYtZXVBc28diep_ep74QuCiGmSjoi7YrAl8iJ7tfvk72yn4yQokyHrpEBwob9Dpo1tRCOM-oVazRIcKdJlHMIUOHoGP4BlS1tYILB7RyUAkGQSyT-fay9e9JkQChVxgclVaKmJxAoI0YjnpWW-TViHwaFGSwpw1P0yvOTf59LbVJyjRZmSOyPpO96sgynpXaSXqeSSSC6_zg8vq76ePFUBusroGDlkwCVOBrTl3NpUPqNXcjsjpYyfRRd2ME1ZzreAfHU3_OlvvHMczk2z7Pqw__I7xCFngqa8llZqtkfnp969ciLpnaj9n9fgNxPN8d
  priority: 102
  providerName: Wiley-Blackwell
Title Micro‐expression recognition by two‐stream difference network
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcvi2.12030
https://www.proquest.com/docview/3092292196
https://doaj.org/article/0bfb97a2a9414aa6ae720d724dc0e92d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKe-EC5UtsKatI9AJSqD-T-Litui2VWlWIrSou1nhsS5UgrdqFlhs_ob-RX4LtJKuthODCJbESH0YzHs-L8vyGkC0aAEKosVSh5qWUvikBFS-BedX4yjkF6ezw0XF1MJOHZ-psqdVX4oR18sCd47apDVbXwEFLJgEq8DWnrubSIfWau7T7xpo3fEx1e7CqdG6BGGsjK-MS44MwqdTb-P2cv2c8856XSlFW7L8HM5fBaq4203XyqIeJxaQz7wlZ8e1T8riHjEWfkNfPyOQoEep-_bzztz2jtS0WnKA4tj-K-U16n86EwNdi6IeCvmg7AvhzMpvufdo9KPuuCCXKaHSJDhQ26HXQrKmFcJ5Rq1ijQ4Q6TZKXQ4YOQcfUDahqawUXDmjloBIMgnhBVtuL1r8kRQKDXmFwVFopYmECgTbiN-pZbZFXI_J2cJDBXjI8da74YvKva6lNcqbJzhyRN4u5l51Qxh9n7SQ_L2Ykcev8IIbc9CE3_wr5iGwOUTJ9xl0bQTXnOu6_0ep3OXJ_McPsnn7gebTxPwx6RR7yRHXJ1LNNsjq_-uZfR6wyt2PygMuTeG2m-2OyNjmdfZ7F-87e8cnHcV6yvwHUbuzP
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LThRBFL1BXOhGxUcYROhEXWhSUs_uroUxgI4zwrACw66oJxvpQWYMsvMT-BI-yi-xqqZ7xMSwY1fprlS6b52693TXqXsBXuGgdQiVRSJUFHHua6StoEgTL2pfOid0Ojs82isHB_zLoThcgKvuLEySVXY-MTtqN7bpH_kGw5JSGddX-eH0O0pVo9LualdCYwaLHX9xHj_ZJu-HH-P8vqa0_2l_e4DaqgLI8ohoZJ0WtrZeBknqijHnCTaC1DJEqlCn9GyWWGe1jNAPVlTGMMqcxqXTJSM6sDjuHbjLGZNJQlj3P3eeX5QyF16MEZmgCGzapUPlciO-BH1HaFZbXwuAuU7AP-T2OkXOMa7_CB605LTYnKFpCRZ88xgetkS1aN3A5AlsjpKM7_evS_-z1dE2xVyJFNvmopiep_vpJIo-KboqLNYXzUx2_hQObsVqz2CxGTd-GYpEQb2wwWFuOIvhUDNrImvEnlTG0rIHbzoDKdsmKk_1Mr6pvGHOpUrGVNmYPXg573s6S8_x315byc7zHimldr4wPjtW7QpV2AQjK0215IRrXWpfUewqyp3FXlLXg9VullS7zifqLyp78DbP3A2Poba_Dmlurdw81jrcG-yPdtXucG_nOdynSUaTZW2rsDg9--FfRB40NWsZfAUc3Tba_wAK5Btf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRUJsoLzEQAuRgAVIZvxM4gVCpWXoUFqxoKg71082kCmdQW13_QS-h8_hS7A9zlAk1F13VmJZyfW9vifx8T0AT3HQOoTGIhEaijj3LdJWUKSJF62vnRM6nR3e2a239vj7fbG_BL_6szCJVtmviXmhdhOb_pEPGZaUyhhf9TAUWsTHzdHrw-8oKUilndZeTmPuItv-9Dh-vk1fjTfjXD-jdPT208YWKgoDyPLo3cg6LWxrvQyStA1jzhNsBGlliLChTaXaLLHOahnDIFjRGMMocxrXTteM6MDiuFfgasNanNQT2tG7PguIWmYRxpidCYpOTvvSqFwO4wvRl4Rm5vW5ZJg1A_4Buufhcs53oxW4UYBqtT73rFuw5LvbcLOA1qosCdM7sL6TKH2_z376k8Kp7aoFKym2zWk1O07306kU_a3qFVmsr7o5Bf0u7F2K1e7Bcjfp_H2oEhz1wgaHueEspkbNrIkIEnvSGEvrATzvDaRsKVqetDO-qrx5zqVKxlTZmAN4suh7OC_V8d9eb5KdFz1See18YXL0RZVoVdgEIxtNteSEa11r31DsGsqdxV5SN4DVfpZUifmp-uuhA3iRZ-6Cx1Abn8c0tx5cPNZjuBb9XH0Y724_hOs0MWoyw20VlmdHP_xahEQz8yj7XgUHl-3sfwDzlB-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%90expression+recognition+by+two%E2%80%90stream+difference+network&rft.jtitle=IET+computer+vision&rft.au=Hang+Pan&rft.au=Lun+Xie&rft.au=Juan+Li&rft.au=Zeping+Lv&rft.date=2021-09-01&rft.pub=Wiley&rft.issn=1751-9632&rft.eissn=1751-9640&rft.volume=15&rft.issue=6&rft.spage=440&rft.epage=448&rft_id=info:doi/10.1049%2Fcvi2.12030&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0bfb97a2a9414aa6ae720d724dc0e92d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon