High‐efficiency stretchable organic light‐emitting diodes based on ultra‐flexible printed embedded metal composite electrodes

Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 5; no. 5
Main Authors Yao, Lan‐Qian, Qin, Yue, Li, Xiang‐Chun, Xue, Qian, Liu, Fang, Cheng, Tao, Li, Guan‐Jun, Zhang, Xinwen, Lai, Wen‐Yong
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.05.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. An effective and robust printed embedded metal composite electrode strategy has been proposed and developed to manufacture high‐performance ultra‐flexible transparent composite electrodes based on embedded Ag‐mesh with PEDOT:PSS by an integrated printing process combining blade‐coating, inkjet printing and transfer printing, showing great promise for use in a variety of flexible/stretchable electronics.
AbstractList Abstract Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics.
Stretchable organic light-emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra-thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag-mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra-flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics.
Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. An effective and robust printed embedded metal composite electrode strategy has been proposed and developed to manufacture high‐performance ultra‐flexible transparent composite electrodes based on embedded Ag‐mesh with PEDOT:PSS by an integrated printing process combining blade‐coating, inkjet printing and transfer printing, showing great promise for use in a variety of flexible/stretchable electronics.
Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A −1 and a maximum luminance of 34 787 cd m −2 . The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. image
Author Yao, Lan‐Qian
Qin, Yue
Xue, Qian
Li, Guan‐Jun
Zhang, Xinwen
Lai, Wen‐Yong
Cheng, Tao
Li, Xiang‐Chun
Liu, Fang
Author_xml – sequence: 1
  givenname: Lan‐Qian
  surname: Yao
  fullname: Yao, Lan‐Qian
  organization: Nanjing University of Posts & Telecommunications
– sequence: 2
  givenname: Yue
  surname: Qin
  fullname: Qin, Yue
  organization: Nanjing University of Posts & Telecommunications
– sequence: 3
  givenname: Xiang‐Chun
  surname: Li
  fullname: Li, Xiang‐Chun
  organization: Nanjing University of Posts & Telecommunications
– sequence: 4
  givenname: Qian
  surname: Xue
  fullname: Xue, Qian
  organization: Nanjing University of Posts & Telecommunications
– sequence: 5
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  organization: Nanjing University of Posts & Telecommunications
– sequence: 6
  givenname: Tao
  surname: Cheng
  fullname: Cheng, Tao
  organization: Nanjing University of Posts & Telecommunications
– sequence: 7
  givenname: Guan‐Jun
  surname: Li
  fullname: Li, Guan‐Jun
  organization: Nanjing University of Posts & Telecommunications
– sequence: 8
  givenname: Xinwen
  surname: Zhang
  fullname: Zhang, Xinwen
  organization: Nanjing University of Posts & Telecommunications
– sequence: 9
  givenname: Wen‐Yong
  orcidid: 0000-0003-2381-1570
  surname: Lai
  fullname: Lai, Wen‐Yong
  email: iamwylai@njupt.edu.cn
  organization: Northwestern Polytechnical University
BookMark eNp9kd9qFDEYxYdSobX2xicY8E7YmmQn_y6lWLtQ9KZeh0zyZZslk6xJFt07wRfwGX0SMx0FEelVPpLfOZwv53l3GlOErnuJ0RVGiLzx0ZErTAaMTrpzQhlfrTGjp3_NZ91lKTvUYIoGQvF59_3Wbx9-fvsBznnjIZpjX2qGah70GKBPeaujN31oVJ2xydfq47a3Plko_agL2D7F_hBq1g1wAb76WbnPPtb2BtMI1rZhgqpDb9K0T8VX6CGAqXl2edE9czoUuPx9XnSfbt7dX9-u7j6-31y_vVuZAa3RSkvkRoIF03IUmoITzgmDgLPRcLQ2o-aOU-oGwNKMwyBHCUJYYgfCjOV0fdFtFl-b9E61gJPOR5W0V48XbVelc_UmgBKcGgZOa0nZQK0UjGo-cMaE47wlaF6vFq99Tp8PUKrapUOOLb4iAkuJKZO8UWihTE6lZHDK-KqrT7H9lg8KIzU3p-bm1GNzTfL6H8mfoP-F8QJ_8QGOT5Bq8-GGLJpf4v-vzw
CitedBy_id crossref_primary_10_1038_s41528_024_00303_5
crossref_primary_10_1021_acsami_3c03378
crossref_primary_10_1021_acs_chemmater_3c01784
crossref_primary_10_1002_admi_202300652
crossref_primary_10_1002_lpor_202400358
crossref_primary_10_1016_j_orgel_2025_107216
crossref_primary_10_1063_5_0220555
crossref_primary_10_1039_D3NR03670G
crossref_primary_10_1021_acsomega_3c04601
crossref_primary_10_1021_acsami_4c15774
crossref_primary_10_1109_JSTQE_2023_3311637
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1002_smll_202409621
crossref_primary_10_1016_j_compositesb_2024_111934
crossref_primary_10_1002_aelm_202400510
crossref_primary_10_1021_acsaelm_3c01164
crossref_primary_10_1007_s12274_024_6718_y
crossref_primary_10_1002_admi_202500051
crossref_primary_10_1364_OE_499932
crossref_primary_10_1002_adma_202420008
crossref_primary_10_1002_smtd_202301803
crossref_primary_10_1002_adfm_202316550
crossref_primary_10_1002_aelm_202300763
crossref_primary_10_1039_D4TA00328D
crossref_primary_10_34133_cbsystems_0172
crossref_primary_10_56767_jfpe_2024_3_2_163
crossref_primary_10_1002_admt_202301810
crossref_primary_10_1039_D4TC00332B
crossref_primary_10_1039_D3MA00365E
crossref_primary_10_1038_s41528_024_00332_0
crossref_primary_10_1364_OE_521825
crossref_primary_10_1016_j_mser_2025_100943
crossref_primary_10_1016_j_saa_2024_125110
crossref_primary_10_1002_smll_202304716
crossref_primary_10_1002_adom_202402019
Cites_doi 10.1002/adfm.201500677
10.1038/s41928-019-0315-1
10.1002/adma.201300923
10.1002/adfm.202010155
10.1016/j.nanoen.2020.104649
10.1016/j.nanoen.2021.106384
10.1002/adma.201001631
10.1038/nphoton.2011.318
10.1002/adma.202110276
10.1002/adma.202003422
10.1039/C6TA05319J
10.1002/advs.202105331
10.1021/nn506034g
10.1038/nature21004
10.1038/ncomms11573
10.1002/smll.201702567
10.1002/adma.201800075
10.1126/sciadv.abg9180
10.1038/nphoton.2013.242
10.3390/polym11020384
10.1002/adfm.201101775
10.1002/adma.201101986
10.1039/D1TC01157J
10.1126/science.aba5132
10.31635/ccschem.020.202000402
10.1038/s41565-018-0331-8
10.1039/C5CS00174A
10.1038/ncomms3651
10.1038/s41586-022-04400-1
10.1126/science.aah4496
10.1002/aelm.202001121
10.1038/s41586-018-0390-x
10.1002/adma.201807516
10.1021/acsami.6b10328
10.1002/advs.202004092
10.1126/science.aac5082
10.1002/adom.201900985
10.1038/nmat2459
10.1038/s41467-020-17084-w
10.1126/sciadv.1700159
10.1002/adma.202007772
10.1038/s41586-018-0536-x
10.1126/sciadv.abd9715
10.1021/nn901903b
10.1038/s41586-021-04053-6
10.1002/adma.201902479
10.1126/sciadv.1501856
10.1002/adma.201800323
10.1038/s41467-021-22558-6
10.1002/adfm.202107484
10.1038/nphoton.2013.188
10.1038/ncomms7503
10.1038/ncomms11791
10.1002/adfm.201606842
10.1021/acsnano.7b01714
10.1038/nphoton.2015.194
ContentType Journal Article
Copyright 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/inf2.12410
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_875c6efaa95645d9865a747668f7786a
10_1002_inf2_12410
INF212410
Genre article
GrantInformation_xml – fundername: Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions
  funderid: TJ217038
– fundername: Leading Talent of Technological Innovation of National Ten‐Thousands Talents Program of China
– fundername: NUPT Scientific Foundation
  funderid: NY220152
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
– fundername: National Natural Science Foundation of China
  funderid: 21835003; 21422402; 21674050; 62005126
– fundername: National Key Basic Research Program of China
  funderid: 2014CB648300; 2017YFB0404501
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BE2019120; BK20140060
– fundername: Program for Jiangsu Specially‐Appointed Professor
  funderid: RK030STP15001
– fundername: 333 Project of Jiangsu Province
  funderid: BRA2017402
– fundername: Six Talent Peaks Project of Jiangsu Province
  funderid: TD‐XCL‐009
GroupedDBID 0R~
1OC
24P
AAMMB
ABJCF
ACCMX
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4030-a90fb2186a9b8a5ef8ff8c0e76bc703cba7f755f4e19cb449b9e88d2d426cd753
IEDL.DBID BENPR
ISSN 2567-3165
IngestDate Wed Aug 27 01:31:42 EDT 2025
Wed Aug 13 06:45:17 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Tue Jul 01 01:33:44 EDT 2025
Wed Aug 20 07:26:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4030-a90fb2186a9b8a5ef8ff8c0e76bc703cba7f755f4e19cb449b9e88d2d426cd753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2381-1570
OpenAccessLink https://www.proquest.com/docview/2819915697?pq-origsite=%requestingapplication%
PQID 2819915697
PQPubID 5068510
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_875c6efaa95645d9865a747668f7786a
proquest_journals_2819915697
crossref_citationtrail_10_1002_inf2_12410
crossref_primary_10_1002_inf2_12410
wiley_primary_10_1002_inf2_12410_INF212410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 560
2018; 561
2013; 4
2013; 25
2017; 3
2019; 11
2021; 600
2019; 14
2016; 540
2020; 11
2013; 7
2017; 355
2010; 22
2021; 31
2021; 33
2020; 370
2015; 44
2022; 34
2018; 30
2011; 23
2022; 603
2014; 8
2010; 4
2012; 22
2016; 351
2021; 9
2021; 8
2019; 7
2021; 7
2015; 6
2021; 89
2021; 3
2019; 31
2019; 2
2017; 27
2020; 32
2015; 9
2016; 4
2016; 7
2015; 25
2021; 12
2016; 2
2020; 71
2017; 11
2022; 9
2009; 8
2012; 6
2016; 8
2018; 14
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 31
  issue: 50
  year: 2021
  article-title: 3D wearable fabric‐based micro‐supercapacitors with ultra‐high areal capacitance
  publication-title: Adv Funct Mater
– volume: 32
  issue: 38
  year: 2020
  article-title: Embedded nickel‐mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source
  publication-title: Adv Mater
– volume: 2
  start-page: 513
  issue: 11
  year: 2019
  end-page: 520
  article-title: Flexible organic photovoltaics based on water‐processed silver nanowire electrodes
  publication-title: Nat Electron
– volume: 355
  start-page: 59
  issue: 6320
  year: 2017
  end-page: 64
  article-title: Highly stretchable polymer semiconductor films through the nanoconfinement effect
  publication-title: Science
– volume: 11
  start-page: 3362
  issue: 1
  year: 2020
  article-title: Fully stretchable active‐matrix organic light‐emitting electrochemical cell array
  publication-title: Nat Commun
– volume: 8
  start-page: 31166
  issue: 45
  year: 2016
  end-page: 31171
  article-title: Two‐dimensional stretchable organic light‐emitting devices with high efficiency
  publication-title: ACS Appl Mater Interfaces
– volume: 31
  issue: 32
  year: 2019
  article-title: Fabrication of high‐performance silver mesh for transparent glass heaters electric‐field‐driven microscale 3D printing and UV‐assisted microtransfer
  publication-title: Adv Mater
– volume: 560
  start-page: 214
  issue: 7717
  year: 2018
  end-page: 218
  article-title: Diode fibres for fabric‐based optical communications
  publication-title: Nature
– volume: 6
  start-page: 105
  issue: 2
  year: 2012
  end-page: 110
  article-title: Extremely efficient flexible organic light‐emitting diodes with modified graphene anode
  publication-title: Nat Photon
– volume: 4
  start-page: 13754
  issue: 36
  year: 2016
  end-page: 13763
  article-title: Inkjet‐printed flexible, transparent and aesthetic energy storage devices based on PEDOT: PSS/Ag grid electrodes
  publication-title: J Mater Chem A
– volume: 6
  start-page: 6503
  issue: 1
  year: 2015
  article-title: Polymer‐metal hybrid transparent electrodes for flexible electronics
  publication-title: Nat Commun
– volume: 561
  start-page: 516
  issue: 7724
  year: 2018
  end-page: 521
  article-title: Self‐powered ultra‐flexible electronics nano‐grating‐patterned organic photovoltaics
  publication-title: Nature
– volume: 8
  start-page: 12796
  issue: 12
  year: 2014
  end-page: 12805
  article-title: High‐performance flexible organic light‐emitting diodes using embedded silver network transparent electrodes
  publication-title: ACS Nano
– volume: 34
  issue: 17
  year: 2022
  article-title: 12.42% monolithic 25.42 cm flexible organic solar cells enabled by an amorphous ITO‐modified metal grid electrode
  publication-title: Adv Mater
– volume: 603
  start-page: 624
  issue: 7902
  year: 2022
  end-page: 630
  article-title: High‐brightness all‐polymer stretchable LED with charge‐trapping dilution
  publication-title: Nature
– volume: 351
  start-page: 1071
  issue: 6277
  year: 2016
  end-page: 1074
  article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing
  publication-title: Science
– volume: 9
  issue: 14
  year: 2022
  article-title: Directly printed embedded metal mesh for flexible transparent electrode liquid substrate electric‐field‐driven jet
  publication-title: Adv Sci
– volume: 7
  start-page: 817
  issue: 10
  year: 2013
  end-page: 824
  article-title: Elastomeric polymer light‐emitting devices and displays
  publication-title: Nat Photon
– volume: 27
  issue: 22
  year: 2017
  article-title: Role of polymeric metal nucleation inducers in fabricating large‐area, flexible, and transparent electrodes for printable electronics
  publication-title: Adv Funct Mater
– volume: 89
  issue: 7
  year: 2021
  article-title: Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells
  publication-title: Nano Energy
– volume: 31
  issue: 22
  year: 2019
  article-title: Stretchable organometal‐halide‐perovskite quantum‐dot light‐emitting diodes
  publication-title: Adv Mater
– volume: 4
  start-page: 11
  issue: 1
  year: 2010
  end-page: 14
  article-title: The race to replace tin‐doped indium oxide: which material will win?
  publication-title: ACS Nano
– volume: 44
  start-page: 5181
  issue: 15
  year: 2015
  end-page: 5199
  article-title: Flexible supercapacitors based on paper substrates: a new paradigm for low‐cost energy storage
  publication-title: Chem Soc Rev
– volume: 7
  issue: 23
  year: 2021
  article-title: Standalone real‐time health monitoring patch based on a stretchable organic optoelectronic system
  publication-title: Sci Adv
– volume: 14
  issue: 7
  year: 2018
  article-title: Junction‐free electrospun Ag fiber electrodes for flexible organic light‐emitting diodes
  publication-title: Small
– volume: 23
  start-page: 3989
  issue: 34
  year: 2011
  end-page: 3994
  article-title: Intrinsically stretchable polymer light‐emitting devices using carbon nanotube‐polymer composite electrodes
  publication-title: Adv Mater
– volume: 7
  issue: 21
  year: 2019
  article-title: Releasing the trapped light for efficient silver nanowires‐based white flexible organic light‐emitting diodes
  publication-title: Adv Opt Mater
– volume: 11
  start-page: 384
  issue: 2
  year: 2019
  article-title: Emergence of flexible white organic light‐emitting diodes
  publication-title: Polymers
– volume: 25
  start-page: 4006
  issue: 29
  year: 2013
  end-page: 4013
  article-title: Color in the corners: ITO‐free white OLEDs with angular color stability
  publication-title: Adv Mater
– volume: 30
  issue: 18
  year: 2018
  article-title: Textile display for electronic and brain‐interfaced communications
  publication-title: Adv Mater
– volume: 540
  start-page: 379
  issue: 7633
  year: 2016
  end-page: 385
  article-title: The rise of plastic bioelectronics
  publication-title: Nature
– volume: 600
  start-page: 246
  issue: 7888
  year: 2021
  end-page: 252
  article-title: High‐frequency and intrinsically stretchable polymer diodes
  publication-title: Nature
– volume: 31
  issue: 16
  year: 2021
  article-title: Ice‐templated, large‐area silver nanowire pattern for flexible transparent electrode
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  end-page: 7
  article-title: Efficient and bright organic light‐emitting diodes on single‐layer graphene electrodes
  publication-title: Nat Commun
– volume: 7
  issue: 9
  year: 2021
  article-title: Intrinsically stretchable organic light‐emitting diodes
  publication-title: Sci Adv
– volume: 8
  issue: 7
  year: 2021
  article-title: Foldable perovskite solar cells using carbon nanotube‐embedded ultrathin polyimide conductor
  publication-title: Adv Sci
– volume: 33
  issue: 21
  year: 2021
  article-title: Templateless, plating‐free fabrication of flexible transparent electrodes with embedded silver mesh by electric‐field‐driven microscale 3D printing and hybrid hot embossing
  publication-title: Adv Mater
– volume: 370
  start-page: 961
  issue: 6519
  year: 2020
  end-page: 965
  article-title: Artificial multimodal receptors based on ion relaxation dynamics
  publication-title: Science
– volume: 9
  start-page: 758
  issue: 11
  year: 2015
  end-page: 763
  article-title: Enhanced light extraction from organic light‐emitting devices using a sub‐anode grid
  publication-title: Nat Photon
– volume: 22
  start-page: 4696
  issue: 42
  year: 2010
  end-page: 4700
  article-title: Shaping white light through electroluminescent fully organic coupled microcavities
  publication-title: Adv Mater
– volume: 11
  start-page: 4346
  issue: 4
  year: 2017
  end-page: 4357
  article-title: Large‐area cross‐aligned silver nanowire electrodes for flexible, transparent, and force‐sensitive mechanochromic touch screens
  publication-title: ACS Nano
– volume: 7
  issue: 1
  year: 2016
  article-title: Efficient and mechanically robust stretchable organic light‐emitting devices by a laser‐programmable buckling process
  publication-title: Nat Commun
– volume: 2
  issue: 4
  year: 2016
  article-title: Ultraflexible organic photonic skin
  publication-title: Sci Adv
– volume: 71
  year: 2020
  article-title: Transparent ultra‐thin silver electrodes formed a maskless evaporation process for applications in flexible organic light‐emitting devices
  publication-title: Nano Energy
– volume: 9
  start-page: 8570
  issue: 27
  year: 2021
  end-page: 8578
  article-title: Highly efficient ultra‐flexible tandem organic light‐emitting diodes adopting a non‐doped charge generation unit
  publication-title: J Mater Chem C
– volume: 12
  start-page: 2234
  issue: 1
  year: 2021
  article-title: Self‐powered ultraflexible photonic skin for continuous bio‐signal detection via air‐operation‐stable polymer light‐emitting diodes
  publication-title: Nat Commun
– volume: 25
  start-page: 3888
  issue: 25
  year: 2015
  end-page: 3898
  article-title: Highly conductive, bendable, embedded ag nanoparticle wire arrays convective self‐assembly: hybridization into ag nanowire transparent conductors
  publication-title: Adv Funct Mater
– volume: 7
  issue: 5
  year: 2021
  article-title: Metal‐based flexible transparent electrodes: challenges and recent advances
  publication-title: Adv Electron Mater
– volume: 3
  issue: 9
  year: 2017
  article-title: Ultratransparent and stretchable graphene electrodes
  publication-title: Sci Adv
– volume: 8
  start-page: 494
  issue: 6
  year: 2009
  end-page: 499
  article-title: Stretchable active‐matrix organic light‐emitting diode display using printable elastic conductors
  publication-title: Nat Mater
– volume: 7
  start-page: 11791
  issue: 1
  year: 2016
  article-title: Synergetic electrode architecture for efficient graphene‐based flexible organic light‐emitting diodes
  publication-title: Nat Commun
– volume: 7
  start-page: 811
  issue: 10
  year: 2013
  end-page: 816
  article-title: Ultrathin, highly flexible and stretchable PLEDs
  publication-title: Nat Photon
– volume: 22
  start-page: 421
  issue: 2
  year: 2012
  end-page: 428
  article-title: Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes
  publication-title: Adv Funct Mater
– volume: 30
  issue: 26
  year: 2018
  article-title: All‐solution‐processed metal‐oxide‐free flexible organic solar cells with over 10% efficiency
  publication-title: Adv Mater
– volume: 3
  start-page: 2194
  issue: 8
  year: 2021
  end-page: 2202
  article-title: Direct‐writing large‐area cross‐aligned Ag nanowires network: toward high‐performance transparent quantum dot light‐emitting diodes
  publication-title: CCS Chem
– volume: 14
  start-page: 156
  issue: 2
  year: 2019
  end-page: 160
  article-title: Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes
  publication-title: Nat Nanotechnol
– ident: e_1_2_6_32_1
  doi: 10.1002/adfm.201500677
– ident: e_1_2_6_35_1
  doi: 10.1038/s41928-019-0315-1
– ident: e_1_2_6_52_1
  doi: 10.1002/adma.201300923
– ident: e_1_2_6_14_1
  doi: 10.1002/adfm.202010155
– ident: e_1_2_6_31_1
  doi: 10.1016/j.nanoen.2020.104649
– ident: e_1_2_6_37_1
  doi: 10.1016/j.nanoen.2021.106384
– ident: e_1_2_6_54_1
  doi: 10.1002/adma.201001631
– ident: e_1_2_6_22_1
  doi: 10.1038/nphoton.2011.318
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.202110276
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.202003422
– ident: e_1_2_6_47_1
  doi: 10.1039/C6TA05319J
– ident: e_1_2_6_36_1
  doi: 10.1002/advs.202105331
– ident: e_1_2_6_49_1
  doi: 10.1021/nn506034g
– ident: e_1_2_6_8_1
  doi: 10.1038/nature21004
– ident: e_1_2_6_29_1
  doi: 10.1038/ncomms11573
– ident: e_1_2_6_34_1
  doi: 10.1002/smll.201702567
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.201800075
– ident: e_1_2_6_43_1
  doi: 10.1126/sciadv.abg9180
– ident: e_1_2_6_18_1
  doi: 10.1038/nphoton.2013.242
– ident: e_1_2_6_50_1
  doi: 10.3390/polym11020384
– ident: e_1_2_6_25_1
  doi: 10.1002/adfm.201101775
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201101986
– ident: e_1_2_6_55_1
  doi: 10.1039/D1TC01157J
– ident: e_1_2_6_2_1
  doi: 10.1126/science.aba5132
– ident: e_1_2_6_48_1
  doi: 10.31635/ccschem.020.202000402
– ident: e_1_2_6_11_1
  doi: 10.1038/s41565-018-0331-8
– ident: e_1_2_6_12_1
  doi: 10.1039/C5CS00174A
– ident: e_1_2_6_51_1
  doi: 10.1038/ncomms3651
– ident: e_1_2_6_5_1
  doi: 10.1038/s41586-022-04400-1
– ident: e_1_2_6_46_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_6_13_1
  doi: 10.1002/aelm.202001121
– ident: e_1_2_6_15_1
  doi: 10.1038/s41586-018-0390-x
– ident: e_1_2_6_57_1
  doi: 10.1002/adma.201807516
– ident: e_1_2_6_56_1
  doi: 10.1021/acsami.6b10328
– ident: e_1_2_6_24_1
  doi: 10.1002/advs.202004092
– ident: e_1_2_6_44_1
  doi: 10.1126/science.aac5082
– ident: e_1_2_6_53_1
  doi: 10.1002/adom.201900985
– ident: e_1_2_6_9_1
  doi: 10.1038/nmat2459
– ident: e_1_2_6_17_1
  doi: 10.1038/s41467-020-17084-w
– ident: e_1_2_6_20_1
  doi: 10.1126/sciadv.1700159
– ident: e_1_2_6_41_1
  doi: 10.1002/adma.202007772
– ident: e_1_2_6_4_1
  doi: 10.1038/s41586-018-0536-x
– ident: e_1_2_6_19_1
  doi: 10.1126/sciadv.abd9715
– ident: e_1_2_6_21_1
  doi: 10.1021/nn901903b
– ident: e_1_2_6_3_1
  doi: 10.1038/s41586-021-04053-6
– ident: e_1_2_6_42_1
  doi: 10.1002/adma.201902479
– ident: e_1_2_6_45_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201800323
– ident: e_1_2_6_7_1
  doi: 10.1038/s41467-021-22558-6
– ident: e_1_2_6_6_1
  doi: 10.1002/adfm.202107484
– ident: e_1_2_6_26_1
  doi: 10.1038/nphoton.2013.188
– ident: e_1_2_6_28_1
  doi: 10.1038/ncomms7503
– ident: e_1_2_6_23_1
  doi: 10.1038/ncomms11791
– ident: e_1_2_6_30_1
  doi: 10.1002/adfm.201606842
– ident: e_1_2_6_33_1
  doi: 10.1021/acsnano.7b01714
– ident: e_1_2_6_40_1
  doi: 10.1038/nphoton.2015.194
SSID ssj0002504251
Score 2.4115872
Snippet Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing...
Stretchable organic light-emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing...
Abstract Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bending machines
Contact angle
Current efficiency
Efficiency
Electric fields
Electrodes
Electroluminescence
Electronics
Flexibility
flexible electrodes
flexible electronics
Glass electrodes
Glass substrates
Light emitting diodes
Luminance
Mechanical properties
Optoelectronic devices
Organic light emitting diodes
printed embedded metal composite electrodes
Scanning electron microscopy
Silicon wafers
stretchable OLEDs
Tensile strain
transparent electrodes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXAb0oVGubZpOjisvqwZOCt5DHBIR9iLveBf-Av9Ff4kzaXSqIXryVMilhJsl808x8w9iRIMLnUuVZCLLMRKVDZlVus1B6ey7zKERM2RZ3sv8gbh-rx1arL8oJq-mBa8WdIZ72EqK1mnhPglaysgiBpVSRqM8SNEKf1wqm6AwmYi703HM-0uIM7VWcojOjUtmWB0pE_d_QZRujJifTW2UrDTrkF_Ws1tgCjNbZcoszcIO9U2bG59sHJO4HKpzkVO-ByqciKF53afJ8QEE3iQ2fUmYzD0_jABNOXivw8Yi_DqYvFgUiMWLSSPrDh_CTw9ABnkaBDwGBOaecc0rsAt50zMGvbLKH3vX9VT9rOilkXuAuzqzOo6PuU1Y7ZSuIKkblc-hK53HLe2e7sVtVUcC59k4I7TQoFYqA_tsHjGi22OJoPIJtxotSqAqgkq6wAiB3OuY-XZaKsnRBdtjxTLvGNzTj1O1iYGqC5MKQJUyyRIcdzmWfa3KNH6UuyUhzCSLETi9Qo6ZZJuavZdJhezMTm2aXTgxdImoMYHW3w06S2X-Zhrm56xXpaec_JrTLlqhzfZ07uccWpy-vsI_4ZuoO0lL-AgK9-90
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEG7EXMxB4iO4iUpDclEYHXu6e7shlyguJgfxoOCt6Uc1CPsI7noX_AP5jfklqeqZHRVCwNswVA_DfFNdj676irGvkgifG1NXKemmksqmypvaV6mJ_kTXWcpcqi0u9cWN_HmrblfYt2UvTMsP0SfcSDPKfk0K7sP8-Jk0FAEQR2idqL_qHfXWEnO-kFd9hoXIuUSZv4hmnZJxWvX8pOL4efkri1SI-195my991mJ0Rh_Yeuct8u8tvBtsBaab7P0LDsEt9kSVGn8ef0PhgqBGSk79HwgGNUXxdmpT5GMKwklsclcqnXm6myWYc7Jiic-m_GG8uPcokIkhk1ZSxg_dUQ6TALg7JT4BdNQ51aBToRfwboIOPmWb3YzOr88uqm6yQhUlanXlbZ0DTaPyNhivIJucTaxhqEPELSAGP8xDpbKEExuDlDZYMCaJhPY8JoxwPrLV6WwKO4yLRhoFoHQQXgLUweY6lsNT2TQh6QE7WH5dFzvacZp-MXYtYbJwhIQrSAzYl172V0u28U-pUwKplyCC7HIDv6jr9M1hGBY1ZO8t0eUka7TyGDlpbTIx5vkB211C7DqtnTs6VLQY0NrhgB0W2P_zGu7H5UiUq09vEf7M1mhifVszuctWF_cPsId-zSLsl9_3LzPg9mU
  priority: 102
  providerName: Wiley-Blackwell
Title High‐efficiency stretchable organic light‐emitting diodes based on ultra‐flexible printed embedded metal composite electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12410
https://www.proquest.com/docview/2819915697
https://doaj.org/article/875c6efaa95645d9865a747668f7786a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSxwxFA9-XNqDVNvStboE7KWF1HEmk01OpYqr9rBIqeAt5OMFhP1Qdz32f-97mex2BfEyDENmGPLy8j7y3u_H2BdJgM-NrkSMqhGyNVE4XTkRm-BOVJWkTLnaYqQub-Sv2_a2JNzmpaxyuSfmjTrOAuXIj-nAx2CwYQY_7h8EsUbR6Wqh0Nhk27gFawy-tk_PR9e_V1kWAuhCC77CJa2PUW71dzRq1DK7ZokyYP8zL3PdV83GZviO7RQvkf_sxLrLNmC6x96uYQe-Z3-pQkNARoCg9klOXR8oAmqF4h1XU-DjDBMCk7tc3czj3SzCnJPlinw25U_jxaMTiTAx6S3K8aEDymHiAfejyCeArjmnqnMq7QJeOHPwGx_YzfD8z9mlKFwKIkjUY-FMlTzxTznjtWsh6ZR0qGCgfEClD94N0qBtk4QTE7yUxhvQOtYRLXiIGNN8ZFvT2RQ-MV43UrcArfK1kwCVN6kK-bhUNo2Pqse-LufVhgI0TnwXY9tBJNeWZGCzDHrsaDX2voPXeHHUKYlnNYIgsfMDnE1bNMxi4BUUJOcMAeREo1XrMFZSSifCyHM9drAUri16Orf_V1WPfcsCf-U37NVoWOe7_de_9Zm9IVb6ri7ygG0tHp_gEH2Xhe-zzVpe41UPL_plsfZzHuAfYmvy5w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKfYUsAScADJNHWcxD4gxGvZpWVPrdSb8WMsVdpH6W6FOPCX-I3MOMmySKi33qLIsSLPeB72zPcx9lwR4HOpCxFjXQpVmSicLpyIZXD7dZGUSrnaYlKPjtWXk-pki_3ue2GorLK3idlQx0WgM_I9uvAxmGyY5u3Zd0GsUXS72lNotGpxAD9_YMq2fDP-iPJ9IeXw09GHkehYBURQqNHCmSJ5YmJyxmtXQdIp6VBAU_uA6h-8a1JTVUnBvgleKeMNaB1lRF8WYkMsEWjyr6myNLSj9PDz-kyH4MAwXlijoMo91BL5Gl0oNehu-L1MD_BPTLsZGWfXNrzNbnUxKX_XKtEdtgXzu-zmBlLhPfaL6kEEZLwJatbk1GOCAqfGK94yQwU-zaAkMDvNtdQ8ni4iLDn5ycgXc34xXZ07kQiBk76iE0UMdznMPKD1i3wGmAhwqnGnQjLgHUMPznGfHV_JGj9g2_PFHB4yLkulK4Cq9tIpgMKbVIR8OYsS8LEesJf9utrQwZoTu8bUtoDM0pIMbJbBgD1bjz1rwTz-O-o9iWc9ggC48wtcTdvtZ4tpXqghOWcIjicaXVcOM7O61okQ-dyA7fbCtZ1VWNq_Ojxgr7LAL_kNO54MZX7auXyup-z66OjroT0cTw4esRsSo7C2InOXba_OL-AxRk0r_ySrKmffrnpv_AFy-Cy2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA5lC6IP4hVXqwbUB4Vxp5lMJnkQsbZL18pSxELfYi4nUNhL7W4RH_xj_jrPycyuK0jf-jYMmTDknJxLcs73MfZSEuBzpcsiRlUVsjaxcLp0RayC21VlkjLlaouxOjyRn07r0y32e9ULQ2WVK5uYDXWcBzojH9CFj8FkwzSD1JVFHO8P359_L4hBim5aV3QarYocwc8fmL4t3o32UdavhBgefP14WHQMA0WQqN2FM2XyxMrkjNeuhqRT0qGERvmAWyF416SmrpOEXRO8lMYb0DqKiH4txIYYI9D8bzeYFZU9tr13MD7-sj7hIXAwjB7WmKhigDoj3qJDpXbdDS-YyQL-iXA34-Ts6IZ32O0uQuUfWpW6y7Zgdo_d2sAtvM9-UXVIARl9glo3OXWcoPipDYu3PFGBTzJECUzPcmU1j2fzCAtOXjPy-YxfTpYXrkiEx0lf0fkiBr8cph7QFkY-BUwLOFW8U1kZ8I6vB-d4wE6uZZUfst5sPoNHjItK6hqgVl44CVB6k8qQr2plVfmo-uz1al1t6EDOiWtjYlt4ZmFJBjbLoM9erMeet9Ae_x21R-JZjyA47vwCV9N2u9ti0hcUJOcMgfNEo1XtME9TSifC53N9trMSru1sxML-1eg-e5MFfsVv2NF4KPLT46vnes5u4L6wn0fjoyfspsCQrC3P3GG95cUlPMUQaumfdbrK2bfr3h5_ADcsMkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+stretchable+organic+light-emitting+diodes+based+on+ultra-flexible+printed+embedded+metal+composite+electrodes&rft.jtitle=InfoMat&rft.au=Lan-Qian%2C+Yao&rft.au=Qin%2C+Yue&rft.au=Xiang-Chun%2C+Li&rft.au=Xue%2C+Qian&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Finf2.12410&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon