High‐efficiency stretchable organic light‐emitting diodes based on ultra‐flexible printed embedded metal composite electrodes
Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent...
Saved in:
Published in | InfoMat Vol. 5; no. 5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.05.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics.
An effective and robust printed embedded metal composite electrode strategy has been proposed and developed to manufacture high‐performance ultra‐flexible transparent composite electrodes based on embedded Ag‐mesh with PEDOT:PSS by an integrated printing process combining blade‐coating, inkjet printing and transfer printing, showing great promise for use in a variety of flexible/stretchable electronics. |
---|---|
AbstractList | Abstract Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. Stretchable organic light-emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra-thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag-mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra-flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A−1 and a maximum luminance of 34 787 cd m−2. The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. An effective and robust printed embedded metal composite electrode strategy has been proposed and developed to manufacture high‐performance ultra‐flexible transparent composite electrodes based on embedded Ag‐mesh with PEDOT:PSS by an integrated printing process combining blade‐coating, inkjet printing and transfer printing, showing great promise for use in a variety of flexible/stretchable electronics. Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts, one of the main reasons being the lack of ideal flexible transparent electrodes. Herein, we propose and develop a printed embedded metal composite electrode (PEMCE) strategy that enables the fabrication of ultra‐thin, highly flexible transparent electrodes with robust mechanical properties. With the flexible transparent electrodes serves as the anodes, flexible/stretchable white OLEDs have been successfully constructed, achieving a current efficiency of up to 77.4 cd A −1 and a maximum luminance of 34 787 cd m −2 . The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs, which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes. The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag‐mesh account for the significant increase in current efficiency. Remarkably, the electroluminescence performance still retains ~83% of the original luminance even after bending the device 2000 cycles at a radii of ~0.5 mm. More importantly, the device can withstand tensile strains of up to ~100%, and even mechanical deformation of 90% tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%. The results confirm that the PEMCE strategy is effective for constructing ultra‐flexible transparent electrodes, showing great promise for use in a variety of flexible/stretchable electronics. image |
Author | Yao, Lan‐Qian Qin, Yue Xue, Qian Li, Guan‐Jun Zhang, Xinwen Lai, Wen‐Yong Cheng, Tao Li, Xiang‐Chun Liu, Fang |
Author_xml | – sequence: 1 givenname: Lan‐Qian surname: Yao fullname: Yao, Lan‐Qian organization: Nanjing University of Posts & Telecommunications – sequence: 2 givenname: Yue surname: Qin fullname: Qin, Yue organization: Nanjing University of Posts & Telecommunications – sequence: 3 givenname: Xiang‐Chun surname: Li fullname: Li, Xiang‐Chun organization: Nanjing University of Posts & Telecommunications – sequence: 4 givenname: Qian surname: Xue fullname: Xue, Qian organization: Nanjing University of Posts & Telecommunications – sequence: 5 givenname: Fang surname: Liu fullname: Liu, Fang organization: Nanjing University of Posts & Telecommunications – sequence: 6 givenname: Tao surname: Cheng fullname: Cheng, Tao organization: Nanjing University of Posts & Telecommunications – sequence: 7 givenname: Guan‐Jun surname: Li fullname: Li, Guan‐Jun organization: Nanjing University of Posts & Telecommunications – sequence: 8 givenname: Xinwen surname: Zhang fullname: Zhang, Xinwen organization: Nanjing University of Posts & Telecommunications – sequence: 9 givenname: Wen‐Yong orcidid: 0000-0003-2381-1570 surname: Lai fullname: Lai, Wen‐Yong email: iamwylai@njupt.edu.cn organization: Northwestern Polytechnical University |
BookMark | eNp9kd9qFDEYxYdSobX2xicY8E7YmmQn_y6lWLtQ9KZeh0zyZZslk6xJFt07wRfwGX0SMx0FEelVPpLfOZwv53l3GlOErnuJ0RVGiLzx0ZErTAaMTrpzQhlfrTGjp3_NZ91lKTvUYIoGQvF59_3Wbx9-fvsBznnjIZpjX2qGah70GKBPeaujN31oVJ2xydfq47a3Plko_agL2D7F_hBq1g1wAb76WbnPPtb2BtMI1rZhgqpDb9K0T8VX6CGAqXl2edE9czoUuPx9XnSfbt7dX9-u7j6-31y_vVuZAa3RSkvkRoIF03IUmoITzgmDgLPRcLQ2o-aOU-oGwNKMwyBHCUJYYgfCjOV0fdFtFl-b9E61gJPOR5W0V48XbVelc_UmgBKcGgZOa0nZQK0UjGo-cMaE47wlaF6vFq99Tp8PUKrapUOOLb4iAkuJKZO8UWihTE6lZHDK-KqrT7H9lg8KIzU3p-bm1GNzTfL6H8mfoP-F8QJ_8QGOT5Bq8-GGLJpf4v-vzw |
CitedBy_id | crossref_primary_10_1038_s41528_024_00303_5 crossref_primary_10_1021_acsami_3c03378 crossref_primary_10_1021_acs_chemmater_3c01784 crossref_primary_10_1002_admi_202300652 crossref_primary_10_1002_lpor_202400358 crossref_primary_10_1016_j_orgel_2025_107216 crossref_primary_10_1063_5_0220555 crossref_primary_10_1039_D3NR03670G crossref_primary_10_1021_acsomega_3c04601 crossref_primary_10_1021_acsami_4c15774 crossref_primary_10_1109_JSTQE_2023_3311637 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1002_smll_202409621 crossref_primary_10_1016_j_compositesb_2024_111934 crossref_primary_10_1002_aelm_202400510 crossref_primary_10_1021_acsaelm_3c01164 crossref_primary_10_1007_s12274_024_6718_y crossref_primary_10_1002_admi_202500051 crossref_primary_10_1364_OE_499932 crossref_primary_10_1002_adma_202420008 crossref_primary_10_1002_smtd_202301803 crossref_primary_10_1002_adfm_202316550 crossref_primary_10_1002_aelm_202300763 crossref_primary_10_1039_D4TA00328D crossref_primary_10_34133_cbsystems_0172 crossref_primary_10_56767_jfpe_2024_3_2_163 crossref_primary_10_1002_admt_202301810 crossref_primary_10_1039_D4TC00332B crossref_primary_10_1039_D3MA00365E crossref_primary_10_1038_s41528_024_00332_0 crossref_primary_10_1364_OE_521825 crossref_primary_10_1016_j_mser_2025_100943 crossref_primary_10_1016_j_saa_2024_125110 crossref_primary_10_1002_smll_202304716 crossref_primary_10_1002_adom_202402019 |
Cites_doi | 10.1002/adfm.201500677 10.1038/s41928-019-0315-1 10.1002/adma.201300923 10.1002/adfm.202010155 10.1016/j.nanoen.2020.104649 10.1016/j.nanoen.2021.106384 10.1002/adma.201001631 10.1038/nphoton.2011.318 10.1002/adma.202110276 10.1002/adma.202003422 10.1039/C6TA05319J 10.1002/advs.202105331 10.1021/nn506034g 10.1038/nature21004 10.1038/ncomms11573 10.1002/smll.201702567 10.1002/adma.201800075 10.1126/sciadv.abg9180 10.1038/nphoton.2013.242 10.3390/polym11020384 10.1002/adfm.201101775 10.1002/adma.201101986 10.1039/D1TC01157J 10.1126/science.aba5132 10.31635/ccschem.020.202000402 10.1038/s41565-018-0331-8 10.1039/C5CS00174A 10.1038/ncomms3651 10.1038/s41586-022-04400-1 10.1126/science.aah4496 10.1002/aelm.202001121 10.1038/s41586-018-0390-x 10.1002/adma.201807516 10.1021/acsami.6b10328 10.1002/advs.202004092 10.1126/science.aac5082 10.1002/adom.201900985 10.1038/nmat2459 10.1038/s41467-020-17084-w 10.1126/sciadv.1700159 10.1002/adma.202007772 10.1038/s41586-018-0536-x 10.1126/sciadv.abd9715 10.1021/nn901903b 10.1038/s41586-021-04053-6 10.1002/adma.201902479 10.1126/sciadv.1501856 10.1002/adma.201800323 10.1038/s41467-021-22558-6 10.1002/adfm.202107484 10.1038/nphoton.2013.188 10.1038/ncomms7503 10.1038/ncomms11791 10.1002/adfm.201606842 10.1021/acsnano.7b01714 10.1038/nphoton.2015.194 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/inf2.12410 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_875c6efaa95645d9865a747668f7786a 10_1002_inf2_12410 INF212410 |
Genre | article |
GrantInformation_xml | – fundername: Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions funderid: TJ217038 – fundername: Leading Talent of Technological Innovation of National Ten‐Thousands Talents Program of China – fundername: NUPT Scientific Foundation funderid: NY220152 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) – fundername: National Natural Science Foundation of China funderid: 21835003; 21422402; 21674050; 62005126 – fundername: National Key Basic Research Program of China funderid: 2014CB648300; 2017YFB0404501 – fundername: Natural Science Foundation of Jiangsu Province funderid: BE2019120; BK20140060 – fundername: Program for Jiangsu Specially‐Appointed Professor funderid: RK030STP15001 – fundername: 333 Project of Jiangsu Province funderid: BRA2017402 – fundername: Six Talent Peaks Project of Jiangsu Province funderid: TD‐XCL‐009 |
GroupedDBID | 0R~ 1OC 24P AAMMB ABJCF ACCMX ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PTHSS WIN AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 8FE 8FG ABUWG AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4030-a90fb2186a9b8a5ef8ff8c0e76bc703cba7f755f4e19cb449b9e88d2d426cd753 |
IEDL.DBID | BENPR |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Wed Aug 13 06:45:17 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Wed Aug 20 07:26:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4030-a90fb2186a9b8a5ef8ff8c0e76bc703cba7f755f4e19cb449b9e88d2d426cd753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2381-1570 |
OpenAccessLink | https://www.proquest.com/docview/2819915697?pq-origsite=%requestingapplication% |
PQID | 2819915697 |
PQPubID | 5068510 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_875c6efaa95645d9865a747668f7786a proquest_journals_2819915697 crossref_citationtrail_10_1002_inf2_12410 crossref_primary_10_1002_inf2_12410 wiley_primary_10_1002_inf2_12410_INF212410 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 20230501 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2018; 560 2018; 561 2013; 4 2013; 25 2017; 3 2019; 11 2021; 600 2019; 14 2016; 540 2020; 11 2013; 7 2017; 355 2010; 22 2021; 31 2021; 33 2020; 370 2015; 44 2022; 34 2018; 30 2011; 23 2022; 603 2014; 8 2010; 4 2012; 22 2016; 351 2021; 9 2021; 8 2019; 7 2021; 7 2015; 6 2021; 89 2021; 3 2019; 31 2019; 2 2017; 27 2020; 32 2015; 9 2016; 4 2016; 7 2015; 25 2021; 12 2016; 2 2020; 71 2017; 11 2022; 9 2009; 8 2012; 6 2016; 8 2018; 14 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 31 issue: 50 year: 2021 article-title: 3D wearable fabric‐based micro‐supercapacitors with ultra‐high areal capacitance publication-title: Adv Funct Mater – volume: 32 issue: 38 year: 2020 article-title: Embedded nickel‐mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source publication-title: Adv Mater – volume: 2 start-page: 513 issue: 11 year: 2019 end-page: 520 article-title: Flexible organic photovoltaics based on water‐processed silver nanowire electrodes publication-title: Nat Electron – volume: 355 start-page: 59 issue: 6320 year: 2017 end-page: 64 article-title: Highly stretchable polymer semiconductor films through the nanoconfinement effect publication-title: Science – volume: 11 start-page: 3362 issue: 1 year: 2020 article-title: Fully stretchable active‐matrix organic light‐emitting electrochemical cell array publication-title: Nat Commun – volume: 8 start-page: 31166 issue: 45 year: 2016 end-page: 31171 article-title: Two‐dimensional stretchable organic light‐emitting devices with high efficiency publication-title: ACS Appl Mater Interfaces – volume: 31 issue: 32 year: 2019 article-title: Fabrication of high‐performance silver mesh for transparent glass heaters electric‐field‐driven microscale 3D printing and UV‐assisted microtransfer publication-title: Adv Mater – volume: 560 start-page: 214 issue: 7717 year: 2018 end-page: 218 article-title: Diode fibres for fabric‐based optical communications publication-title: Nature – volume: 6 start-page: 105 issue: 2 year: 2012 end-page: 110 article-title: Extremely efficient flexible organic light‐emitting diodes with modified graphene anode publication-title: Nat Photon – volume: 4 start-page: 13754 issue: 36 year: 2016 end-page: 13763 article-title: Inkjet‐printed flexible, transparent and aesthetic energy storage devices based on PEDOT: PSS/Ag grid electrodes publication-title: J Mater Chem A – volume: 6 start-page: 6503 issue: 1 year: 2015 article-title: Polymer‐metal hybrid transparent electrodes for flexible electronics publication-title: Nat Commun – volume: 561 start-page: 516 issue: 7724 year: 2018 end-page: 521 article-title: Self‐powered ultra‐flexible electronics nano‐grating‐patterned organic photovoltaics publication-title: Nature – volume: 8 start-page: 12796 issue: 12 year: 2014 end-page: 12805 article-title: High‐performance flexible organic light‐emitting diodes using embedded silver network transparent electrodes publication-title: ACS Nano – volume: 34 issue: 17 year: 2022 article-title: 12.42% monolithic 25.42 cm flexible organic solar cells enabled by an amorphous ITO‐modified metal grid electrode publication-title: Adv Mater – volume: 603 start-page: 624 issue: 7902 year: 2022 end-page: 630 article-title: High‐brightness all‐polymer stretchable LED with charge‐trapping dilution publication-title: Nature – volume: 351 start-page: 1071 issue: 6277 year: 2016 end-page: 1074 article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing publication-title: Science – volume: 9 issue: 14 year: 2022 article-title: Directly printed embedded metal mesh for flexible transparent electrode liquid substrate electric‐field‐driven jet publication-title: Adv Sci – volume: 7 start-page: 817 issue: 10 year: 2013 end-page: 824 article-title: Elastomeric polymer light‐emitting devices and displays publication-title: Nat Photon – volume: 27 issue: 22 year: 2017 article-title: Role of polymeric metal nucleation inducers in fabricating large‐area, flexible, and transparent electrodes for printable electronics publication-title: Adv Funct Mater – volume: 89 issue: 7 year: 2021 article-title: Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells publication-title: Nano Energy – volume: 31 issue: 22 year: 2019 article-title: Stretchable organometal‐halide‐perovskite quantum‐dot light‐emitting diodes publication-title: Adv Mater – volume: 4 start-page: 11 issue: 1 year: 2010 end-page: 14 article-title: The race to replace tin‐doped indium oxide: which material will win? publication-title: ACS Nano – volume: 44 start-page: 5181 issue: 15 year: 2015 end-page: 5199 article-title: Flexible supercapacitors based on paper substrates: a new paradigm for low‐cost energy storage publication-title: Chem Soc Rev – volume: 7 issue: 23 year: 2021 article-title: Standalone real‐time health monitoring patch based on a stretchable organic optoelectronic system publication-title: Sci Adv – volume: 14 issue: 7 year: 2018 article-title: Junction‐free electrospun Ag fiber electrodes for flexible organic light‐emitting diodes publication-title: Small – volume: 23 start-page: 3989 issue: 34 year: 2011 end-page: 3994 article-title: Intrinsically stretchable polymer light‐emitting devices using carbon nanotube‐polymer composite electrodes publication-title: Adv Mater – volume: 7 issue: 21 year: 2019 article-title: Releasing the trapped light for efficient silver nanowires‐based white flexible organic light‐emitting diodes publication-title: Adv Opt Mater – volume: 11 start-page: 384 issue: 2 year: 2019 article-title: Emergence of flexible white organic light‐emitting diodes publication-title: Polymers – volume: 25 start-page: 4006 issue: 29 year: 2013 end-page: 4013 article-title: Color in the corners: ITO‐free white OLEDs with angular color stability publication-title: Adv Mater – volume: 30 issue: 18 year: 2018 article-title: Textile display for electronic and brain‐interfaced communications publication-title: Adv Mater – volume: 540 start-page: 379 issue: 7633 year: 2016 end-page: 385 article-title: The rise of plastic bioelectronics publication-title: Nature – volume: 600 start-page: 246 issue: 7888 year: 2021 end-page: 252 article-title: High‐frequency and intrinsically stretchable polymer diodes publication-title: Nature – volume: 31 issue: 16 year: 2021 article-title: Ice‐templated, large‐area silver nanowire pattern for flexible transparent electrode publication-title: Adv Funct Mater – volume: 4 start-page: 1 issue: 1 year: 2013 end-page: 7 article-title: Efficient and bright organic light‐emitting diodes on single‐layer graphene electrodes publication-title: Nat Commun – volume: 7 issue: 9 year: 2021 article-title: Intrinsically stretchable organic light‐emitting diodes publication-title: Sci Adv – volume: 8 issue: 7 year: 2021 article-title: Foldable perovskite solar cells using carbon nanotube‐embedded ultrathin polyimide conductor publication-title: Adv Sci – volume: 33 issue: 21 year: 2021 article-title: Templateless, plating‐free fabrication of flexible transparent electrodes with embedded silver mesh by electric‐field‐driven microscale 3D printing and hybrid hot embossing publication-title: Adv Mater – volume: 370 start-page: 961 issue: 6519 year: 2020 end-page: 965 article-title: Artificial multimodal receptors based on ion relaxation dynamics publication-title: Science – volume: 9 start-page: 758 issue: 11 year: 2015 end-page: 763 article-title: Enhanced light extraction from organic light‐emitting devices using a sub‐anode grid publication-title: Nat Photon – volume: 22 start-page: 4696 issue: 42 year: 2010 end-page: 4700 article-title: Shaping white light through electroluminescent fully organic coupled microcavities publication-title: Adv Mater – volume: 11 start-page: 4346 issue: 4 year: 2017 end-page: 4357 article-title: Large‐area cross‐aligned silver nanowire electrodes for flexible, transparent, and force‐sensitive mechanochromic touch screens publication-title: ACS Nano – volume: 7 issue: 1 year: 2016 article-title: Efficient and mechanically robust stretchable organic light‐emitting devices by a laser‐programmable buckling process publication-title: Nat Commun – volume: 2 issue: 4 year: 2016 article-title: Ultraflexible organic photonic skin publication-title: Sci Adv – volume: 71 year: 2020 article-title: Transparent ultra‐thin silver electrodes formed a maskless evaporation process for applications in flexible organic light‐emitting devices publication-title: Nano Energy – volume: 9 start-page: 8570 issue: 27 year: 2021 end-page: 8578 article-title: Highly efficient ultra‐flexible tandem organic light‐emitting diodes adopting a non‐doped charge generation unit publication-title: J Mater Chem C – volume: 12 start-page: 2234 issue: 1 year: 2021 article-title: Self‐powered ultraflexible photonic skin for continuous bio‐signal detection via air‐operation‐stable polymer light‐emitting diodes publication-title: Nat Commun – volume: 25 start-page: 3888 issue: 25 year: 2015 end-page: 3898 article-title: Highly conductive, bendable, embedded ag nanoparticle wire arrays convective self‐assembly: hybridization into ag nanowire transparent conductors publication-title: Adv Funct Mater – volume: 7 issue: 5 year: 2021 article-title: Metal‐based flexible transparent electrodes: challenges and recent advances publication-title: Adv Electron Mater – volume: 3 issue: 9 year: 2017 article-title: Ultratransparent and stretchable graphene electrodes publication-title: Sci Adv – volume: 8 start-page: 494 issue: 6 year: 2009 end-page: 499 article-title: Stretchable active‐matrix organic light‐emitting diode display using printable elastic conductors publication-title: Nat Mater – volume: 7 start-page: 11791 issue: 1 year: 2016 article-title: Synergetic electrode architecture for efficient graphene‐based flexible organic light‐emitting diodes publication-title: Nat Commun – volume: 7 start-page: 811 issue: 10 year: 2013 end-page: 816 article-title: Ultrathin, highly flexible and stretchable PLEDs publication-title: Nat Photon – volume: 22 start-page: 421 issue: 2 year: 2012 end-page: 428 article-title: Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes publication-title: Adv Funct Mater – volume: 30 issue: 26 year: 2018 article-title: All‐solution‐processed metal‐oxide‐free flexible organic solar cells with over 10% efficiency publication-title: Adv Mater – volume: 3 start-page: 2194 issue: 8 year: 2021 end-page: 2202 article-title: Direct‐writing large‐area cross‐aligned Ag nanowires network: toward high‐performance transparent quantum dot light‐emitting diodes publication-title: CCS Chem – volume: 14 start-page: 156 issue: 2 year: 2019 end-page: 160 article-title: Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes publication-title: Nat Nanotechnol – ident: e_1_2_6_32_1 doi: 10.1002/adfm.201500677 – ident: e_1_2_6_35_1 doi: 10.1038/s41928-019-0315-1 – ident: e_1_2_6_52_1 doi: 10.1002/adma.201300923 – ident: e_1_2_6_14_1 doi: 10.1002/adfm.202010155 – ident: e_1_2_6_31_1 doi: 10.1016/j.nanoen.2020.104649 – ident: e_1_2_6_37_1 doi: 10.1016/j.nanoen.2021.106384 – ident: e_1_2_6_54_1 doi: 10.1002/adma.201001631 – ident: e_1_2_6_22_1 doi: 10.1038/nphoton.2011.318 – ident: e_1_2_6_39_1 doi: 10.1002/adma.202110276 – ident: e_1_2_6_38_1 doi: 10.1002/adma.202003422 – ident: e_1_2_6_47_1 doi: 10.1039/C6TA05319J – ident: e_1_2_6_36_1 doi: 10.1002/advs.202105331 – ident: e_1_2_6_49_1 doi: 10.1021/nn506034g – ident: e_1_2_6_8_1 doi: 10.1038/nature21004 – ident: e_1_2_6_29_1 doi: 10.1038/ncomms11573 – ident: e_1_2_6_34_1 doi: 10.1002/smll.201702567 – ident: e_1_2_6_27_1 doi: 10.1002/adma.201800075 – ident: e_1_2_6_43_1 doi: 10.1126/sciadv.abg9180 – ident: e_1_2_6_18_1 doi: 10.1038/nphoton.2013.242 – ident: e_1_2_6_50_1 doi: 10.3390/polym11020384 – ident: e_1_2_6_25_1 doi: 10.1002/adfm.201101775 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201101986 – ident: e_1_2_6_55_1 doi: 10.1039/D1TC01157J – ident: e_1_2_6_2_1 doi: 10.1126/science.aba5132 – ident: e_1_2_6_48_1 doi: 10.31635/ccschem.020.202000402 – ident: e_1_2_6_11_1 doi: 10.1038/s41565-018-0331-8 – ident: e_1_2_6_12_1 doi: 10.1039/C5CS00174A – ident: e_1_2_6_51_1 doi: 10.1038/ncomms3651 – ident: e_1_2_6_5_1 doi: 10.1038/s41586-022-04400-1 – ident: e_1_2_6_46_1 doi: 10.1126/science.aah4496 – ident: e_1_2_6_13_1 doi: 10.1002/aelm.202001121 – ident: e_1_2_6_15_1 doi: 10.1038/s41586-018-0390-x – ident: e_1_2_6_57_1 doi: 10.1002/adma.201807516 – ident: e_1_2_6_56_1 doi: 10.1021/acsami.6b10328 – ident: e_1_2_6_24_1 doi: 10.1002/advs.202004092 – ident: e_1_2_6_44_1 doi: 10.1126/science.aac5082 – ident: e_1_2_6_53_1 doi: 10.1002/adom.201900985 – ident: e_1_2_6_9_1 doi: 10.1038/nmat2459 – ident: e_1_2_6_17_1 doi: 10.1038/s41467-020-17084-w – ident: e_1_2_6_20_1 doi: 10.1126/sciadv.1700159 – ident: e_1_2_6_41_1 doi: 10.1002/adma.202007772 – ident: e_1_2_6_4_1 doi: 10.1038/s41586-018-0536-x – ident: e_1_2_6_19_1 doi: 10.1126/sciadv.abd9715 – ident: e_1_2_6_21_1 doi: 10.1021/nn901903b – ident: e_1_2_6_3_1 doi: 10.1038/s41586-021-04053-6 – ident: e_1_2_6_42_1 doi: 10.1002/adma.201902479 – ident: e_1_2_6_45_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201800323 – ident: e_1_2_6_7_1 doi: 10.1038/s41467-021-22558-6 – ident: e_1_2_6_6_1 doi: 10.1002/adfm.202107484 – ident: e_1_2_6_26_1 doi: 10.1038/nphoton.2013.188 – ident: e_1_2_6_28_1 doi: 10.1038/ncomms7503 – ident: e_1_2_6_23_1 doi: 10.1038/ncomms11791 – ident: e_1_2_6_30_1 doi: 10.1002/adfm.201606842 – ident: e_1_2_6_33_1 doi: 10.1021/acsnano.7b01714 – ident: e_1_2_6_40_1 doi: 10.1038/nphoton.2015.194 |
SSID | ssj0002504251 |
Score | 2.4115872 |
Snippet | Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing... Stretchable organic light-emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing... Abstract Stretchable organic light‐emitting diodes (OLEDs) are important components for flexible/wearable electronics. However, the efficiency of the existing... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bending machines Contact angle Current efficiency Efficiency Electric fields Electrodes Electroluminescence Electronics Flexibility flexible electrodes flexible electronics Glass electrodes Glass substrates Light emitting diodes Luminance Mechanical properties Optoelectronic devices Organic light emitting diodes printed embedded metal composite electrodes Scanning electron microscopy Silicon wafers stretchable OLEDs Tensile strain transparent electrodes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXAb0oVGubZpOjisvqwZOCt5DHBIR9iLveBf-Av9Ff4kzaXSqIXryVMilhJsl808x8w9iRIMLnUuVZCLLMRKVDZlVus1B6ey7zKERM2RZ3sv8gbh-rx1arL8oJq-mBa8WdIZ72EqK1mnhPglaysgiBpVSRqM8SNEKf1wqm6AwmYi703HM-0uIM7VWcojOjUtmWB0pE_d_QZRujJifTW2UrDTrkF_Ws1tgCjNbZcoszcIO9U2bG59sHJO4HKpzkVO-ByqciKF53afJ8QEE3iQ2fUmYzD0_jABNOXivw8Yi_DqYvFgUiMWLSSPrDh_CTw9ABnkaBDwGBOaecc0rsAt50zMGvbLKH3vX9VT9rOilkXuAuzqzOo6PuU1Y7ZSuIKkblc-hK53HLe2e7sVtVUcC59k4I7TQoFYqA_tsHjGi22OJoPIJtxotSqAqgkq6wAiB3OuY-XZaKsnRBdtjxTLvGNzTj1O1iYGqC5MKQJUyyRIcdzmWfa3KNH6UuyUhzCSLETi9Qo6ZZJuavZdJhezMTm2aXTgxdImoMYHW3w06S2X-Zhrm56xXpaec_JrTLlqhzfZ07uccWpy-vsI_4ZuoO0lL-AgK9-90 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEG7EXMxB4iO4iUpDclEYHXu6e7shlyguJgfxoOCt6Uc1CPsI7noX_AP5jfklqeqZHRVCwNswVA_DfFNdj676irGvkgifG1NXKemmksqmypvaV6mJ_kTXWcpcqi0u9cWN_HmrblfYt2UvTMsP0SfcSDPKfk0K7sP8-Jk0FAEQR2idqL_qHfXWEnO-kFd9hoXIuUSZv4hmnZJxWvX8pOL4efkri1SI-195my991mJ0Rh_Yeuct8u8tvBtsBaab7P0LDsEt9kSVGn8ef0PhgqBGSk79HwgGNUXxdmpT5GMKwklsclcqnXm6myWYc7Jiic-m_GG8uPcokIkhk1ZSxg_dUQ6TALg7JT4BdNQ51aBToRfwboIOPmWb3YzOr88uqm6yQhUlanXlbZ0DTaPyNhivIJucTaxhqEPELSAGP8xDpbKEExuDlDZYMCaJhPY8JoxwPrLV6WwKO4yLRhoFoHQQXgLUweY6lsNT2TQh6QE7WH5dFzvacZp-MXYtYbJwhIQrSAzYl172V0u28U-pUwKplyCC7HIDv6jr9M1hGBY1ZO8t0eUka7TyGDlpbTIx5vkB211C7DqtnTs6VLQY0NrhgB0W2P_zGu7H5UiUq09vEf7M1mhifVszuctWF_cPsId-zSLsl9_3LzPg9mU priority: 102 providerName: Wiley-Blackwell |
Title | High‐efficiency stretchable organic light‐emitting diodes based on ultra‐flexible printed embedded metal composite electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12410 https://www.proquest.com/docview/2819915697 https://doaj.org/article/875c6efaa95645d9865a747668f7786a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSxwxFA9-XNqDVNvStboE7KWF1HEmk01OpYqr9rBIqeAt5OMFhP1Qdz32f-97mex2BfEyDENmGPLy8j7y3u_H2BdJgM-NrkSMqhGyNVE4XTkRm-BOVJWkTLnaYqQub-Sv2_a2JNzmpaxyuSfmjTrOAuXIj-nAx2CwYQY_7h8EsUbR6Wqh0Nhk27gFawy-tk_PR9e_V1kWAuhCC77CJa2PUW71dzRq1DK7ZokyYP8zL3PdV83GZviO7RQvkf_sxLrLNmC6x96uYQe-Z3-pQkNARoCg9klOXR8oAmqF4h1XU-DjDBMCk7tc3czj3SzCnJPlinw25U_jxaMTiTAx6S3K8aEDymHiAfejyCeArjmnqnMq7QJeOHPwGx_YzfD8z9mlKFwKIkjUY-FMlTzxTznjtWsh6ZR0qGCgfEClD94N0qBtk4QTE7yUxhvQOtYRLXiIGNN8ZFvT2RQ-MV43UrcArfK1kwCVN6kK-bhUNo2Pqse-LufVhgI0TnwXY9tBJNeWZGCzDHrsaDX2voPXeHHUKYlnNYIgsfMDnE1bNMxi4BUUJOcMAeREo1XrMFZSSifCyHM9drAUri16Orf_V1WPfcsCf-U37NVoWOe7_de_9Zm9IVb6ri7ygG0tHp_gEH2Xhe-zzVpe41UPL_plsfZzHuAfYmvy5w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKfYUsAScADJNHWcxD4gxGvZpWVPrdSb8WMsVdpH6W6FOPCX-I3MOMmySKi33qLIsSLPeB72zPcx9lwR4HOpCxFjXQpVmSicLpyIZXD7dZGUSrnaYlKPjtWXk-pki_3ue2GorLK3idlQx0WgM_I9uvAxmGyY5u3Zd0GsUXS72lNotGpxAD9_YMq2fDP-iPJ9IeXw09GHkehYBURQqNHCmSJ5YmJyxmtXQdIp6VBAU_uA6h-8a1JTVUnBvgleKeMNaB1lRF8WYkMsEWjyr6myNLSj9PDz-kyH4MAwXlijoMo91BL5Gl0oNehu-L1MD_BPTLsZGWfXNrzNbnUxKX_XKtEdtgXzu-zmBlLhPfaL6kEEZLwJatbk1GOCAqfGK94yQwU-zaAkMDvNtdQ8ni4iLDn5ycgXc34xXZ07kQiBk76iE0UMdznMPKD1i3wGmAhwqnGnQjLgHUMPznGfHV_JGj9g2_PFHB4yLkulK4Cq9tIpgMKbVIR8OYsS8LEesJf9utrQwZoTu8bUtoDM0pIMbJbBgD1bjz1rwTz-O-o9iWc9ggC48wtcTdvtZ4tpXqghOWcIjicaXVcOM7O61okQ-dyA7fbCtZ1VWNq_Ojxgr7LAL_kNO54MZX7auXyup-z66OjroT0cTw4esRsSo7C2InOXba_OL-AxRk0r_ySrKmffrnpv_AFy-Cy2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA5lC6IP4hVXqwbUB4Vxp5lMJnkQsbZL18pSxELfYi4nUNhL7W4RH_xj_jrPycyuK0jf-jYMmTDknJxLcs73MfZSEuBzpcsiRlUVsjaxcLp0RayC21VlkjLlaouxOjyRn07r0y32e9ULQ2WVK5uYDXWcBzojH9CFj8FkwzSD1JVFHO8P359_L4hBim5aV3QarYocwc8fmL4t3o32UdavhBgefP14WHQMA0WQqN2FM2XyxMrkjNeuhqRT0qGERvmAWyF416SmrpOEXRO8lMYb0DqKiH4txIYYI9D8bzeYFZU9tr13MD7-sj7hIXAwjB7WmKhigDoj3qJDpXbdDS-YyQL-iXA34-Ts6IZ32O0uQuUfWpW6y7Zgdo_d2sAtvM9-UXVIARl9glo3OXWcoPipDYu3PFGBTzJECUzPcmU1j2fzCAtOXjPy-YxfTpYXrkiEx0lf0fkiBr8cph7QFkY-BUwLOFW8U1kZ8I6vB-d4wE6uZZUfst5sPoNHjItK6hqgVl44CVB6k8qQr2plVfmo-uz1al1t6EDOiWtjYlt4ZmFJBjbLoM9erMeet9Ae_x21R-JZjyA47vwCV9N2u9ti0hcUJOcMgfNEo1XtME9TSifC53N9trMSru1sxML-1eg-e5MFfsVv2NF4KPLT46vnes5u4L6wn0fjoyfspsCQrC3P3GG95cUlPMUQaumfdbrK2bfr3h5_ADcsMkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+stretchable+organic+light-emitting+diodes+based+on+ultra-flexible+printed+embedded+metal+composite+electrodes&rft.jtitle=InfoMat&rft.au=Lan-Qian%2C+Yao&rft.au=Qin%2C+Yue&rft.au=Xiang-Chun%2C+Li&rft.au=Xue%2C+Qian&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Finf2.12410&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |