Multiple control of thermoelectric dual‐function metamaterials

Thermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of material parameters, implementing interesting functions such as cloaking, concentrating, and rotating. However, most existing designs are limited to serving...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical system dynamics Vol. 3; no. 2; pp. 127 - 135
Main Authors Zhuang, Pengfei, Huang, Jiping
Format Journal Article
LanguageEnglish
Published Nanjing John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text
ISSN2767-1402
2767-1399
2767-1402
DOI10.1002/msd2.12070

Cover

Abstract Thermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of material parameters, implementing interesting functions such as cloaking, concentrating, and rotating. However, most existing designs are limited to serving a single target function within a given physical domain. Here, we analytically prove the form invariance of thermoelectric (TE) governing equations, ensuring precise controls of the thermal flux and electric current. Then, we propose a dual‐function metamaterial that can concentrate (or cloak) and rotate the TE field simultaneously. In addition, we introduce two practical control methods to realize corresponding functions: one is a temperature‐switching TE rotating concentrator cloak that can switch between cloaking and concentrating; the other is an electrically controlled TE rotating concentrator that can handle the temperature field precisely by adjusting external voltages. The theoretical predictions and finite‐element simulations agree well with each other. This work provides a unified framework for manipulating the direction and density of the TE field simultaneously and may contribute to the study of thermal management, such as thermal rectification and thermal diodes.
AbstractList Thermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of material parameters, implementing interesting functions such as cloaking, concentrating, and rotating. However, most existing designs are limited to serving a single target function within a given physical domain. Here, we analytically prove the form invariance of thermoelectric (TE) governing equations, ensuring precise controls of the thermal flux and electric current. Then, we propose a dual‐function metamaterial that can concentrate (or cloak) and rotate the TE field simultaneously. In addition, we introduce two practical control methods to realize corresponding functions: one is a temperature‐switching TE rotating concentrator cloak that can switch between cloaking and concentrating; the other is an electrically controlled TE rotating concentrator that can handle the temperature field precisely by adjusting external voltages. The theoretical predictions and finite‐element simulations agree well with each other. This work provides a unified framework for manipulating the direction and density of the TE field simultaneously and may contribute to the study of thermal management, such as thermal rectification and thermal diodes.
Abstract Thermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of material parameters, implementing interesting functions such as cloaking, concentrating, and rotating. However, most existing designs are limited to serving a single target function within a given physical domain. Here, we analytically prove the form invariance of thermoelectric (TE) governing equations, ensuring precise controls of the thermal flux and electric current. Then, we propose a dual‐function metamaterial that can concentrate (or cloak) and rotate the TE field simultaneously. In addition, we introduce two practical control methods to realize corresponding functions: one is a temperature‐switching TE rotating concentrator cloak that can switch between cloaking and concentrating; the other is an electrically controlled TE rotating concentrator that can handle the temperature field precisely by adjusting external voltages. The theoretical predictions and finite‐element simulations agree well with each other. This work provides a unified framework for manipulating the direction and density of the TE field simultaneously and may contribute to the study of thermal management, such as thermal rectification and thermal diodes.
Author Huang, Jiping
Zhuang, Pengfei
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Zhuang
  fullname: Zhuang, Pengfei
  organization: Fudan University
– sequence: 2
  givenname: Jiping
  orcidid: 0000-0002-3617-3275
  surname: Huang
  fullname: Huang, Jiping
  email: jphuang@fudan.edu.cn
  organization: Fudan University
BookMark eNp9kMtKxDAUhoOM4G02PkHBnTBjTpJeslPGKygu1HWI6almSJsxTZHZ-Qg-o09iZ6ogIq5OCN__8fPvkFHjGyRkH-gUKGVHdVuyKTCa0w2yzfIsn4CgbPTjvUXGbTunPVwA8CzdJsc3nYt24TAxvonBu8RXSXzGUHt0aGKwJik77T7e3quuMdH6Jqkx6lpHDFa7do9sVv3B8dfdJQ_nZ_ezy8n17cXV7OR6YgTldMJyDiWiSY0GiaA1L_Jcy0KLRyZFCgUUpShKA4ILyLkBLjmyFMuKgeib811yNXhLr-dqEWytw1J5bdX6w4cnpUO0xqFCQSWHipk8E6K3FjIDoWVWSqxWyt51MLgWwb902EY1911o-vqKU8k4k6xIe4oOlAm-bQNWytioVwvEoK1TQNVqdrWaXa1n7yOHvyLfRf-EYYBfrcPlP6S6uTtlQ-YTLziTSQ
CitedBy_id crossref_primary_10_1103_PhysRevE_109_044124
crossref_primary_10_1063_5_0190120
crossref_primary_10_3390_cryst14110997
crossref_primary_10_1063_5_0207725
crossref_primary_10_1016_j_aej_2024_05_034
crossref_primary_10_1103_RevModPhys_96_015002
Cites_doi 10.1016/j.icheatmasstransfer.2019.104337
10.1038/s41563-021-01046-8
10.1364/OE.23.024475
10.1103/PhysRevE.102.032140
10.1088/1361-6463/aacf0a
10.1007/s11467-010-0142-3
10.1038/s41598-017-05593-6
10.1038/nmat4362
10.1103/PhysRevE.99.042144
10.1063/1.4959251
10.1088/1361-6463/ab545f
10.1016/j.physleta.2016.02.040
10.1103/PhysRevE.101.022119
10.1103/PhysRevLett.109.037206
10.1103/PhysRevLett.108.214303
10.1002/adma.202003084
10.1209/0295-5075/ac1648
10.1007/s11433-021-1889-5
10.1103/PhysRevE.106.044203
10.1103/PhysRevApplied.14.054024
10.1016/j.physleta.2018.11.041
10.1364/OE.21.006578
10.1016/j.ijheatmasstransfer.2021.120948
10.1103/PhysRevB.81.205321
10.1103/PhysRevApplied.11.044021
10.1103/PhysRevLett.117.055501
10.1063/1.4930989
10.1126/science.1261164
10.1016/j.ijheatmasstransfer.2019.118917
10.1140/epjb/e2018-80596-8
10.1364/OE.20.008207
10.1364/OE.24.023072
10.1063/1.2951600
10.1103/PhysRevLett.113.205501
10.1126/science.1246545
10.1016/j.enconman.2018.03.070
10.1103/PhysRevLett.115.195503
10.1016/j.ijheatmasstransfer.2020.120082
10.1209/0295-5075/130/34001
10.1063/1.4907219
10.1016/j.physrep.2020.12.006
10.1103/PhysRevApplied.11.024053
10.1103/PhysRevApplied.15.024010
10.1038/s41578-021-00283-2
10.1016/j.ijheatmasstransfer.2022.122568
10.1209/0295-5075/ac159d
10.1103/PhysRevB.99.035129
10.1073/pnas.2207630119
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/msd2.12070
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-1402
EndPage 135
ExternalDocumentID oai_doaj_org_article_e40931f2c7644d4889614a96d9ef25ed
10_1002_msd2_12070
MSD212070
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12035004
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 20JC1414700
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
M7S
OK1
PIMPY
PTHSS
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4030-2731deec5ca19e1aa3877a98a4b29451818d48dc1434173c1393e25edf2144023
IEDL.DBID 8FG
ISSN 2767-1402
2767-1399
IngestDate Wed Aug 27 01:32:00 EDT 2025
Fri Jul 25 11:36:37 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 03:33:58 EDT 2025
Wed Jan 22 16:19:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4030-2731deec5ca19e1aa3877a98a4b29451818d48dc1434173c1393e25edf2144023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3617-3275
OpenAccessLink https://www.proquest.com/docview/3092329285?pq-origsite=%requestingapplication%
PQID 3092329285
PQPubID 6853477
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e40931f2c7644d4889614a96d9ef25ed
proquest_journals_3092329285
crossref_citationtrail_10_1002_msd2_12070
crossref_primary_10_1002_msd2_12070
wiley_primary_10_1002_msd2_12070_MSD212070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationTitle International journal of mechanical system dynamics
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 7
2021; 6
2018; 165
2015; 14
2015; 5
2021; 20
2021; 908
2019; 53
2013; 21
2016; 109
2019; 11
2019; 99
2021; 169
2013; 342
2020; 14
2019; 108
2020; 101
2022; 65
2020; 102
2015; 107
2020; 147
2015; 348
2022; 119
2016; 380
2010; 81
2019; 383
2008; 92
2011; 6
2012; 108
2012; 109
2014; 113
2015; 23
2021; 15
2022; 187
2014; 4
2021; 33
2021; 135
2015; 115
2020; 130
2020; 159
2018; 91
2016; 117
2018; 51
2015; 117
2022; 106
2012; 20
2016; 24
Moccia M (e_1_2_8_26_1) 2014; 4
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Chen F (e_1_2_8_9_1) 2015; 5
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 380
  start-page: 1641
  issue: 18
  year: 2016
  end-page: 1647
  article-title: Temperature‐dependent transformation thermotics for unsteady states: switchable concentrator for transient heat flow
  publication-title: Phys Lett A
– volume: 21
  start-page: 6578
  issue: 5
  year: 2013
  end-page: 6583
  article-title: Anisotropic conductivity rotates heat fluxes in transient regimes
  publication-title: Opt Express
– volume: 101
  issue: 2
  year: 2020
  article-title: Designing bistability or multistability in macroscopic diffusive systems
  publication-title: Phys Rev E
– volume: 169
  year: 2021
  article-title: Designing thermal energy harvesting devices with natural materials through optimized microstructures
  publication-title: Int J Heat Mass Transf
– volume: 147
  year: 2020
  article-title: Nonlinear thermal conductivity of periodic composites
  publication-title: Int J Heat Mass Transfer
– volume: 99
  issue: 4
  year: 2019
  article-title: Metathermotics: nonlinear thermal responses of core‐shell metamaterials
  publication-title: Phys Rev E
– volume: 91
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Nonlinear thermotics: nonlinearity enhancement and harmonic generation in thermal metasurfaces
  publication-title: Eur Phys J B
– volume: 130
  issue: 3
  year: 2020
  article-title: Nonlinear thermal conductivities of core‐shell metamaterials: rigorous theory and intelligent application
  publication-title: EPL
– volume: 11
  issue: 2
  year: 2019
  article-title: Negative energy consumption of thermostats at ambient temperature: electricity generation with zero energy maintenance
  publication-title: Phys Rev Appl
– volume: 23
  start-page: 24475
  issue: 19
  year: 2015
  end-page: 24483
  article-title: Simultaneously concentrated electric and thermal fields using fan‐shaped structure
  publication-title: Opt Express
– volume: 108
  issue: 21
  year: 2012
  article-title: Heat flux manipulation with engineered thermal materials
  publication-title: Phys Rev Lett
– volume: 109
  issue: 3
  year: 2012
  article-title: Seebeck rectification enabled by intrinsic thermoelectrical coupling in magnetic tunneling junctions
  publication-title: Phys Rev Lett
– volume: 135
  issue: 5
  year: 2021
  article-title: Temperature‐dependent transformation multiphysics and ambient‐adaptive multiphysical metamaterials
  publication-title: EPL
– volume: 6
  start-page: 488
  issue: 6
  year: 2021
  end-page: 507
  article-title: Transforming heat transfer with thermal metamaterials and devices
  publication-title: Nat Rev Mater
– volume: 135
  issue: 5
  year: 2021
  article-title: Manipulating thermoelectric fields with bilayer schemes beyond Laplacian metamaterials
  publication-title: EPL
– volume: 113
  issue: 20
  year: 2014
  article-title: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously
  publication-title: Phys Rev Lett
– volume: 33
  issue: 4
  year: 2021
  article-title: Path‐dependent thermal metadevice beyond Janus functionalities
  publication-title: Adv Mater
– volume: 14
  start-page: 760
  issue: 8
  year: 2015
  end-page: 761
  article-title: Shape memory alloys: towards practical actuators
  publication-title: Nat Mater
– volume: 92
  issue: 25
  year: 2008
  article-title: Shaped graded materials with an apparent negative thermal conductivity
  publication-title: Appl Phys Lett
– volume: 117
  issue: 5
  year: 2016
  article-title: Temperature trapping: energy‐free maintenance of constant temperatures as ambient temperature gradients change
  publication-title: Phys Rev Lett
– volume: 117
  issue: 5
  year: 2015
  article-title: Materials with constant anisotropic conductivity as a thermal cloak or concentrator
  publication-title: J Appl Phys
– volume: 15
  issue: 2
  year: 2021
  article-title: Optimization method for practical design of planar arbitrary‐geometry thermal cloaks using natural materials
  publication-title: Phys Rev Appl
– volume: 102
  issue: 3
  year: 2020
  article-title: Geometric phase and bilayer cloak in macroscopic particle‐diffusion systems
  publication-title: Phys Rev E
– volume: 53
  issue: 6
  year: 2019
  article-title: Design of a bifunctional thermal device exhibiting heat flux concentration and scattering amplification effects
  publication-title: J Phys D Appl Phys
– volume: 165
  start-page: 253
  year: 2018
  end-page: 262
  article-title: Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function
  publication-title: Energy Convers Manage
– volume: 4
  issue: 2
  year: 2014
  article-title: Independent manipulation of heat and electrical current via bifunctional metamaterials
  publication-title: Phys Rev X
– volume: 65
  issue: 11
  year: 2022
  article-title: Breaking efficiency limit of thermal concentrators by conductivity couplings
  publication-title: Sci China Phys Mech Astron
– volume: 24
  start-page: 23072
  issue: 20
  year: 2016
  end-page: 23080
  article-title: Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields
  publication-title: Opt Express
– volume: 7
  start-page: 6988
  issue: 1
  year: 2017
  article-title: Cloaking of thermoelectric transport
  publication-title: Sci Rep
– volume: 348
  start-page: 1004
  issue: 6238
  year: 2015
  end-page: 1007
  article-title: Ultralow‐fatigue shape memory alloy films
  publication-title: Science
– volume: 6
  start-page: 70
  issue: 1
  year: 2011
  article-title: Design of square‐shaped heat flux cloaks and concentrators using method of coordinate transformation
  publication-title: Front Phys
– volume: 115
  issue: 19
  year: 2015
  article-title: Temperature‐dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes
  publication-title: Phys Rev Lett
– volume: 187
  year: 2022
  article-title: Design of thermal cloak and concentrator with interconnected structure
  publication-title: Int J Heat Mass Transfer
– volume: 99
  issue: 3
  year: 2019
  article-title: Quantum‐dot circuit‐QED thermoelectric diodes and transistors
  publication-title: Phys Rev B
– volume: 109
  issue: 3
  year: 2016
  article-title: Thermal cloak‐concentrator
  publication-title: Appl Phys Lett
– volume: 383
  start-page: 759
  issue: 8
  year: 2019
  end-page: 763
  article-title: While rotating while cloaking
  publication-title: Phys Lett A
– volume: 119
  issue: 49
  year: 2022
  article-title: Realizing the multifunctional metamaterial for fluid flow in a porous medium
  publication-title: Proc Natl Acad Sci USA
– volume: 51
  issue: 31
  year: 2018
  article-title: Achieving thermal concentration based on fiber reinforced composite microstructures design
  publication-title: J Phys D Appl Phys
– volume: 342
  start-page: 939
  issue: 6161
  year: 2013
  end-page: 940
  article-title: Metamaterials beyond optics
  publication-title: Science
– volume: 159
  year: 2020
  article-title: Cloaking a concentrator in thermal conduction via topology optimization
  publication-title: Int J Heat Mass Transf
– volume: 20
  start-page: 1635
  issue: 12
  year: 2021
  end-page: 1642
  article-title: Achieving adjustable elasticity with non‐affine to affine transition
  publication-title: Nat Mater
– volume: 908
  start-page: 1
  year: 2021
  end-page: 65
  article-title: Controlling macroscopic heat transfer with thermal metamaterials: theory, experiment and application
  publication-title: Phys Rep
– volume: 20
  start-page: 8207
  issue: 7
  year: 2012
  end-page: 8218
  article-title: Transformation thermodynamics: cloaking and concentrating heat flux
  publication-title: Opt Express
– volume: 107
  issue: 12
  year: 2015
  article-title: Active thermal cloak
  publication-title: Appl Phys Lett
– volume: 14
  issue: 5
  year: 2020
  article-title: Experimental demonstration of thermal chameleonlike rotators with transformation‐invariant metamaterials
  publication-title: Phys Rev Appl
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  end-page: 8
  article-title: Experimental realization of extreme heat flux concentration with easy‐to‐make thermal metamaterials
  publication-title: Sci Rep
– volume: 108
  year: 2019
  article-title: Converging heat transfer in completely arbitrary profiles with unconventional thermal concentrator
  publication-title: Int Commun Heat Mass Transf
– volume: 106
  issue: 4
  year: 2022
  article-title: Nonlinear thermal responses in geometrically anisotropic metamaterials
  publication-title: Phys Rev E
– volume: 11
  issue: 4
  year: 2019
  article-title: Doublet thermal metadevice
  publication-title: Phys Rev Appl
– volume: 81
  issue: 20
  year: 2010
  article-title: Thermoelectric and thermal rectification properties of quantum dot junctions
  publication-title: Phys Rev B
– ident: e_1_2_8_12_1
  doi: 10.1016/j.icheatmasstransfer.2019.104337
– ident: e_1_2_8_36_1
  doi: 10.1038/s41563-021-01046-8
– ident: e_1_2_8_15_1
  doi: 10.1364/OE.23.024475
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevE.102.032140
– ident: e_1_2_8_11_1
  doi: 10.1088/1361-6463/aacf0a
– ident: e_1_2_8_7_1
  doi: 10.1007/s11467-010-0142-3
– ident: e_1_2_8_31_1
  doi: 10.1038/s41598-017-05593-6
– ident: e_1_2_8_48_1
  doi: 10.1038/nmat4362
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevE.99.042144
– ident: e_1_2_8_40_1
  doi: 10.1063/1.4959251
– ident: e_1_2_8_27_1
  doi: 10.1088/1361-6463/ab545f
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: e_1_2_8_9_1
  article-title: Experimental realization of extreme heat flux concentration with easy‐to‐make thermal metamaterials
  publication-title: Sci Rep
– ident: e_1_2_8_38_1
  doi: 10.1016/j.physleta.2016.02.040
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevE.101.022119
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevLett.109.037206
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevLett.108.214303
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.202003084
– ident: e_1_2_8_34_1
  doi: 10.1209/0295-5075/ac1648
– ident: e_1_2_8_13_1
  doi: 10.1007/s11433-021-1889-5
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevE.106.044203
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevApplied.14.054024
– ident: e_1_2_8_28_1
  doi: 10.1016/j.physleta.2018.11.041
– ident: e_1_2_8_5_1
  doi: 10.1364/OE.21.006578
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ijheatmasstransfer.2021.120948
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevB.81.205321
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevApplied.11.044021
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevLett.117.055501
– ident: e_1_2_8_20_1
  doi: 10.1063/1.4930989
– ident: e_1_2_8_47_1
  doi: 10.1126/science.1261164
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ijheatmasstransfer.2019.118917
– ident: e_1_2_8_42_1
  doi: 10.1140/epjb/e2018-80596-8
– ident: e_1_2_8_8_1
  doi: 10.1364/OE.20.008207
– ident: e_1_2_8_35_1
  doi: 10.1364/OE.24.023072
– ident: e_1_2_8_2_1
  doi: 10.1063/1.2951600
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.113.205501
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1246545
– ident: e_1_2_8_10_1
  doi: 10.1016/j.enconman.2018.03.070
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevLett.115.195503
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ijheatmasstransfer.2020.120082
– ident: e_1_2_8_41_1
  doi: 10.1209/0295-5075/130/34001
– ident: e_1_2_8_16_1
  doi: 10.1063/1.4907219
– ident: e_1_2_8_3_1
  doi: 10.1016/j.physrep.2020.12.006
– volume: 4
  issue: 2
  year: 2014
  ident: e_1_2_8_26_1
  article-title: Independent manipulation of heat and electrical current via bifunctional metamaterials
  publication-title: Phys Rev X
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevApplied.11.024053
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevApplied.15.024010
– ident: e_1_2_8_4_1
  doi: 10.1038/s41578-021-00283-2
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ijheatmasstransfer.2022.122568
– ident: e_1_2_8_30_1
  doi: 10.1209/0295-5075/ac159d
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.99.035129
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.2207630119
SSID ssj0002811365
Score 2.356128
Snippet Thermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of material...
Abstract Thermal metamaterials based on transformation theory offer a practical design for controlling heat flow by engineering spatial distributions of...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Boundary conditions
Concentrators
Control methods
Coordinate transformations
Design parameters
dual‐function thermal metamaterials
Electric currents
Electric fields
Heat
Heat transfer
Heat transmission
Metamaterials
Rotation
Spatial distribution
Temperature distribution
Thermal management
Thermal transformations
thermoelectric effect
Thermoelectric materials
Thermoelectricity
transformation thermotics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA7iSQ_iJ1anFPSiUNemzdLc_BxDmBcd7BbyVVDcJm7e_Qn-Rn-J75t0o4LoxVspKYTnTfo8aZPnIeSYO5rpjoW3n2FVgvYniRJFnjijKlhtaGV8NmD_rtMbFLdDNmxEfeGesGAPHIBrO1iA5FlFDQfmtjDcBBCKEh0rXEWZs_j2TUXaWEw9-U9GmFXCFn6ktD2aWnqW0RRTiRsM5I36v6nLpkb1JNNdJ2u1OowvQq82yJIbb5LVhmfgFjnv11sA43qXeTypYlRxo0mItHk0MZ6v-nz_QM5C3OORmylQpmGwbZNB9-bhqpfUMQiJKWAK4uGZzDpnmFGZcJlSecm5EqUqNBUFA4ouARdrQPkUGc8BXJE7hKZCOzTg5B2yPJ6M3S6JGae61JW2HB7hGq2VKTPA-Qz_D_I0IidzaKSpPcIxquJZBndjKhFG6WGMyNGi7Utwxvix1SUivGiBbtb-BtRY1jWWf9U4Iq15fWQ9xaYyT0GbUkFLFpFTX7NfuiH799fUX-39R4f2yQrGzoctYy2yPHt9cwcgTmb60I_DLwHw39c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS8MwED_mfNEH8S9WpxT0RaFq02ZpwAf_jiFMBB34FpI0FcFtss13P4Kf0U_iXdrNCSL4VsoFmrtc7pf07ncA-8Kx2DRz3P0sLyKiP4m0TJPIWV3gacNo63sDdm6b7W5688gfa3A6qYUp-SGmF27kGX6_JgfXZnT8TRraG-XsKGa4ZOdgnmprqXEDS--mNywso34llMPIBO4GsU_lqfhJ2fH38B8RyRP3_0Cbs5jVB53WMixVaDE8L827AjXXX4XFGQ7BNTjrVCmBYZV1Hg6KkFBdb1C2uHm2IdVbfb5_UAwjO4Q9N9aIVMvFtw7d1vXDZTuq2iJENkWXpGKaOHfOcqtj6WKtk0wILTOdGiZTjiE7y9Mst4iE0lgkqGyZOMZdXhA9GsboDaj3B323CSEXzGSmMLnAIcIQ1TLjFjEAp_-F4iSAg4lqlK04w6l1xYsq2Y6ZIjUqr8YA9qayryVTxq9SF6ThqQSxW_sXg-GTqpxFOTx0JnHBrEC0hnPJJIIILZu5dAVNJIDGxD6qcrmRSk4QqzLJMh7AobfZH5-hOvdXzD9t_Ud4Gxao3XyZKtaA-nj45nYQlIzNrl97X6BO2j8
  priority: 102
  providerName: Wiley-Blackwell
Title Multiple control of thermoelectric dual‐function metamaterials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmsd2.12070
https://www.proquest.com/docview/3092329285
https://doaj.org/article/e40931f2c7644d4889614a96d9ef25ed
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED4BfRkPCNgmCqyKBC-blNE4cW0_wQoUNKkIbUPizXJsB01aG6DlnZ_Ab-SXcOe4XZEQb1HkRMnd2ffZPn8fwL7wLCt7Dkc_y6uU6E9So4o89dZUONsojQ3agMOL3vlV8fOaX8cFt0ksq5yNiWGgdrWlNfKDvItQhCkm-eHtXUqqUbS7GiU0lqGVYaahOJeDs_kaC5OkWEJVjEzgeIBgR80ZStnBaOLY94x1Sad4IScF6v5XeHMRtYa0M1iHtYgXkx-NgzdgyY83YXWBRfAjHA1jUWAS686TukoI143qRuTmr03oxNXz4xNlMfJEMvJTg1i1Cb9PcDU4_XN8nkZhhNQW2CnpOE3mvLfcmkz5zJhcCmGUNEXJVMExaUtXSGcRCxWZyNHcKveMe1cRQRpm6c-wMq7HfgsSLlgpy6p0Ah8RJZEtM24RBXDaMRTdNnydmUbbyBpO4hX_dMN3zDSZUQcztmFv3va24cp4s1WfLDxvQfzW4UZ9f6Njd9Eep515VjErEK_hv0iFMMKonlO-oh9pw-7MPzp2uon-HyJt-BZ89s5n6OHvExautt9_1w58IIn5pjxsF1am9w_-CwKRadmBZVZcdkLMdaDVP724_NUJk_oX_nTdGw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V20PhgKCAWCg0EnAAKXQzidfxAZX-aku7KwSt1Jvr2A5CYjeluwhx4xH6JDwUT8KMk2wXCfXWWxTZkTMejz_b4-8DeCE9JkXfUfSzooyZ_iQ2Kktjb01Jq43C2KANOBz1ByfZ-1NxugS_27swnFbZxsQQqF1leY98I-0RFEGFudg8_xazahSfrrYSGrVbHPqfP2jJNn17sEv9-xJxf-94ZxA3qgKxzcij-S5K4ry3wppE-cSYNJfSqNxkBapM0IyXuyx3loBElsiU2qpSj8K7ktnFAtEBhfzljG-0dmB5e2_04eN8Vwdz1kjhvEmUFIGorppzouLGeOrwTYI9VkZemAWDWMA_CHcRJ4eJbv8u3GkQarRVu9Q9WPKTVbi9wFt4H94NmzTEqMl0j6oyYiQ5rmpZnS824jtef35d8rzJfR-N_cwQOq4d_gGc3IjRHkJnUk38I4iExCIvysJJqiILpndGYQl3CD6jlL0uvGpNo23DU85yGV91zbCMms2ogxm78Hxe9rxm5_hvqW228LwEM2qHF9XFZ90MUO1poZsmJVpJCJH-JVcEXIzqO-VL_pEurLX9o5thPtVXTtmF16HPrmmGHn7axfD0-PpvrcPK4Hh4pI8ORodP4BYL3NfJaWvQmV18908JBs2KZ43vRXB20-7-FywLFbU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QPRBPHE9C_qiUN2mzaYBHzwXr10EFXwLaZKK4B6s67s_wd_oL3Em7a4uiOBbKRNIZjKZL8nkG4Ad4ViU1SyufobnIdGfhFomceiMznG3kWnjawM2mrWLh-TqkT-OweHgLUzBDzE8cCPP8Os1OXjX5gffpKGtV8v2I4ZTdhwm6baP3JIlt8MTFpZSvRLKYWQCV4PIp_KU_KTs4Lv5SETyxP0jaPMnZvVBpz4HsyVaDI4L887DmGsvwMwPDsFFOGqUKYFBmXUedPKAUF2rU5S4eTYBvbf6fP-gGEZ2CFqurxGpFpNvCR7q5_enF2FZFiE0CbokPaaJrHOGGx1JF2kdp0JomeokYzLhGLJTm6TWIBJKIhGjsmXsGHc2J3o0jNHLMNHutN0KBFywLM3yzApsIjKiWmbcIAbgdF8oqhXYHahGmZIznEpXvKiC7ZgpUqPyaqzA9lC2WzBl_Cp1QhoeShC7tf_R6T2p0lmUw01nHOXMCERrOJZUIojQsmaly2kgFVgf2EeVLveq4ipiVSZZyiuw5232RzdU4-6M-a_V_whvwdTtWV3dXDav12CaKs8XWWPrMNHvvbkNxCf9bNNPwy9ANNzb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+control+of+thermoelectric+dual%E2%80%90function+metamaterials&rft.jtitle=International+journal+of+mechanical+system+dynamics&rft.au=Zhuang%2C+Pengfei&rft.au=Huang%2C+Jiping&rft.date=2023-06-01&rft.issn=2767-1399&rft.eissn=2767-1402&rft.volume=3&rft.issue=2&rft.spage=127&rft.epage=135&rft_id=info:doi/10.1002%2Fmsd2.12070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_msd2_12070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-1402&client=summon