Quantification of the Raf-C1 Interaction With Solid-Supported Bilayers

By use of the quartz crystal microbalance technique, the interaction of the Raf–Ras binding domain (RafRBD) and the cysteine‐rich domain Raf‐C1 with lipids was quantified by using solid‐supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid‐supported lipid bilayers...

Full description

Saved in:
Bibliographic Details
Published inChembiochem : a European journal of chemical biology Vol. 3; no. 2-3; pp. 190 - 197
Main Authors Eing, Andreas, Janshoff, Andreas, Galla, Hans-Joachim, Block, Christoph, Steinem, Claudia
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag GmbH 01.03.2002
WILEY‐VCH Verlag GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By use of the quartz crystal microbalance technique, the interaction of the Raf–Ras binding domain (RafRBD) and the cysteine‐rich domain Raf‐C1 with lipids was quantified by using solid‐supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid‐supported lipid bilayers were composed of an initial octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer varying in its lipid composition as the outermost layer. The integrity of bilayer preparation was monitored by impedance spectroscopy. For binding experiments, a protein construct comprising the RafRBD and Raf‐C1 linked to the maltose binding protein and a His tag, termed MBP‐Raf‐C1, was used. Dissociation constants and rate constants of the association and dissociation were obtained for various 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)/1,2‐dimyristoyl‐sn‐glycero‐3‐phosphoserine (DMPS) lipid mixtures. Independently of the phosphatidylserine (PS) content, the dissociation constants were in the order of 5×10−7 M, while the on‐rate constants were in the range of 2×103 (M s)−1 and the off‐rate constants in the range of 1×10−3 s−1. The maximum frequency shift increased significantly with increasing amounts of DMPS; this indicates that this negatively charged lipid is the primary binding site for MBP‐Raf‐C1. Exchange of DMPS for 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphoglycerol (DMPG) did not alter the thermodynamics and kinetics of protein binding, which implies that the protein interaction is mainly electrostatically driven. Scanning force microscopy (SFM) was employed to render protein adsorption visible and to confirm the assumption of a protein monolayer on the lipid layer. SFM images clearly revealed that the protein binds preferentially, but not solely, to negatively charged phosphatidylserine headgroups. We hypothesize that PS‐enriched domains are initial binding sites with high affinity for Raf‐C1, but that lateral interactions may account for protein domain growth. The interaction between the Raf‐C1 domain (see picture), which is a structural homologue of the protein kinase C phorbol ester binding domain, and solid‐supported bilayers was quantified by the quartz crystal microbalance technique. Thermodynamic and kinetic data were obtained from the time‐resolved shift in resonance frequency of the quartz crystal upon protein binding. Raf‐C1 binding was visualized by scanning force microscopy, which indicated that it preferentially interacts with negatively charged lipid domains.
AbstractList By use of the quartz crystal microbalance technique, the interaction of the Raf–Ras binding domain (RafRBD) and the cysteine‐rich domain Raf‐C1 with lipids was quantified by using solid‐supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid‐supported lipid bilayers were composed of an initial octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer varying in its lipid composition as the outermost layer. The integrity of bilayer preparation was monitored by impedance spectroscopy. For binding experiments, a protein construct comprising the RafRBD and Raf‐C1 linked to the maltose binding protein and a His tag, termed MBP‐Raf‐C1, was used. Dissociation constants and rate constants of the association and dissociation were obtained for various 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)/1,2‐dimyristoyl‐sn‐glycero‐3‐phosphoserine (DMPS) lipid mixtures. Independently of the phosphatidylserine (PS) content, the dissociation constants were in the order of 5×10−7 M, while the on‐rate constants were in the range of 2×103 (M s)−1 and the off‐rate constants in the range of 1×10−3 s−1. The maximum frequency shift increased significantly with increasing amounts of DMPS; this indicates that this negatively charged lipid is the primary binding site for MBP‐Raf‐C1. Exchange of DMPS for 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphoglycerol (DMPG) did not alter the thermodynamics and kinetics of protein binding, which implies that the protein interaction is mainly electrostatically driven. Scanning force microscopy (SFM) was employed to render protein adsorption visible and to confirm the assumption of a protein monolayer on the lipid layer. SFM images clearly revealed that the protein binds preferentially, but not solely, to negatively charged phosphatidylserine headgroups. We hypothesize that PS‐enriched domains are initial binding sites with high affinity for Raf‐C1, but that lateral interactions may account for protein domain growth. The interaction between the Raf‐C1 domain (see picture), which is a structural homologue of the protein kinase C phorbol ester binding domain, and solid‐supported bilayers was quantified by the quartz crystal microbalance technique. Thermodynamic and kinetic data were obtained from the time‐resolved shift in resonance frequency of the quartz crystal upon protein binding. Raf‐C1 binding was visualized by scanning force microscopy, which indicated that it preferentially interacts with negatively charged lipid domains.
By use of the quartz crystal microbalance technique, the interaction of the Raf-Ras binding domain (RafRBD) and the cysteine-rich domain Raf-C1 with lipids was quantified by using solid-supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid-supported lipid bilayers were composed of an initial octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer varying in its lipid composition as the outermost layer. The integrity of bilayer preparation was monitored by impedance spectroscopy. For binding experiments, a protein construct comprising the RafRBD and Raf-C1 linked to the maltose binding protein and a His tag, termed MBP-Raf-C1, was used. Dissociation constants and rate constants of the association and dissociation were obtained for various 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS) lipid mixtures. Independently of the phosphatidylserine (PS) content, the dissociation constants were in the order of 5x10(-7) M, while the on-rate constants were in the range of 2x10(3) (M s)(-1) and the off-rate constants in the range of 1x10(-3) s(-1). The maximum frequency shift increased significantly with increasing amounts of DMPS; this indicates that this negatively charged lipid is the primary binding site for MBP-Raf-C1. Exchange of DMPS for 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) did not alter the thermodynamics and kinetics of protein binding, which implies that the protein interaction is mainly electrostatically driven. Scanning force microscopy (SFM) was employed to render protein adsorption visible and to confirm the assumption of a protein monolayer on the lipid layer. SFM images clearly revealed that the protein binds preferentially, but not solely, to negatively charged phosphatidylserine headgroups. We hypothesize that PS-enriched domains are initial binding sites with high affinity for Raf-C1, but that lateral interactions may account for protein domain growth.
Author Janshoff, Andreas
Galla, Hans-Joachim
Block, Christoph
Eing, Andreas
Steinem, Claudia
Author_xml – sequence: 1
  givenname: Andreas
  surname: Eing
  fullname: Eing, Andreas
  organization: Institut für Biochemie Westfälische Wilhelms-Universität Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
– sequence: 2
  givenname: Andreas
  surname: Janshoff
  fullname: Janshoff, Andreas
  organization: Institut für Physikalische Chemie Johannes-Gutenberg-Universität Welderweg 11, 55128 Mainz (Germany)
– sequence: 3
  givenname: Hans-Joachim
  surname: Galla
  fullname: Galla, Hans-Joachim
  organization: Institut für Biochemie Westfälische Wilhelms-Universität Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
– sequence: 4
  givenname: Christoph
  surname: Block
  fullname: Block, Christoph
  organization: Max-Planck Institut für Molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
– sequence: 5
  givenname: Claudia
  surname: Steinem
  fullname: Steinem, Claudia
  email: claudia.steinem@chemie.uni-regensburg.de
  organization: Institut für Analytische Chemie, Chemo- und Biosensorik Universität Regensburg 93040 Regensburg (Germany) Fax: (+49) 941-943-4491
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11921397$$D View this record in MEDLINE/PubMed
BookMark eNqVkE1v1DAQhi1URD_oX0A5ITh4O2Mn8WapkNr0g5XarkqLinqxvM5ENWSTJU5E99_jZdNy4dKD5fl45x3Ns8u26qYmxg4RRgggDjCWGVeplB9ESEECfpQTcSAPMYPJ5Gh6wvPjaR6Sz3IEo3z2SXD1iu08j20NcSyE2ma73v8AgCyV-IZtI2YCZaZ22Nl1b-rOlc6azjV11JRR90DRV1PyHKNp3VFr7N_OneseopumcgW_6ZfLpu2oiI5dZVbU-rfsdWkqT_vDv8e-nZ3e5l_4xex8mh9dcBuHCziiLKxMClKU2CKcCWUpMszScWrlfB7PU2WJFFBsSpJWSoMGICmyMYK1aOUee7_xXbbNr558pxfOW6oqU1PTe60wSRDG4yC83Qht23jfUqmXrVuYdqUR9JqvXsPRa1D6ia8OYXgBqdaBrx74hhLofBZ6Kti-G_b38wUV_0wHoEHwfSP47SpavWzp_3c-lYI131g739Hjs7Vpf-pUSZXou6tznd5fntxfilwL-Qewj6Rc
ContentType Journal Article
Copyright 2002 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany
Copyright_xml – notice: 2002 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/1439-7633(20020301)3:2/3<190::AID-CBIC190>3.0.CO;2-7
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1439-7633
EndPage 197
ExternalDocumentID 10_1002_1439_7633_20020301_3_2_3_190__AID_CBIC190_3_0_CO_2_7
11921397
CBIC190
ark_67375_WNG_6ZMDZM2C_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
05W
0R~
1L6
1OC
29B
31~
33P
3WU
4.4
4ZD
50Y
53G
5GY
5VS
66C
6J9
6P2
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
R.K
ROL
RWI
RX1
SUPJJ
V2E
VH1
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XSW
XV2
Y6R
YZZ
ZZTAW
~KM
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4030-113dc35de7e5cd1000ff2919686c3bb4b67cee70e4afe3c33a1a005d9810cc1c3
IEDL.DBID DR2
ISSN 1439-4227
IngestDate Fri Aug 16 04:54:00 EDT 2024
Fri Aug 23 03:05:42 EDT 2024
Sat Sep 28 08:39:11 EDT 2024
Sat Aug 24 01:01:46 EDT 2024
Wed Oct 30 09:49:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2-3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4030-113dc35de7e5cd1000ff2919686c3bb4b67cee70e4afe3c33a1a005d9810cc1c3
Notes ark:/67375/WNG-6ZMDZM2C-2
istex:B6968D9220D3F5117DEAD89A84A95D5CFEF5D5C8
ArticleID:CBIC190
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 11921397
PQID 71551088
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_71551088
crossref_primary_10_1002_1439_7633_20020301_3_2_3_190__AID_CBIC190_3_0_CO_2_7
pubmed_primary_11921397
wiley_primary_10_1002_1439_7633_20020301_3_2_3_190_AID_CBIC190_3_0_CO_2_7_CBIC190
istex_primary_ark_67375_WNG_6ZMDZM2C_2
PublicationCentury 2000
PublicationDate 2002-03-01
March 1, 2002
2002-Mar-01
2002-3-1
20020301
PublicationDateYYYYMMDD 2002-03-01
PublicationDate_xml – month: 03
  year: 2002
  text: 2002-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chembiochem : a European journal of chemical biology
PublicationTitleAlternate ChemBioChem
PublicationYear 2002
Publisher WILEY-VCH Verlag GmbH
WILEY‐VCH Verlag GmbH
Publisher_xml – name: WILEY-VCH Verlag GmbH
– name: WILEY‐VCH Verlag GmbH
References G. Daum , I. Eisenmann-Trappe , H.-W. Fries , J. Troppmair , U. R. Rapp , Trends Biochem. Sci. 1994, 19, 474-479.
A. F. Quest , E. S. Bardes , R. M. Bell , J. Biol. Chem. 1994, 269, 2961-2970.
A. Ulman , Chem. Rev. 1996, 96, 1533-1554.
W. Kolch , Biochem. J. 2000, 351, 289-305.
M. Ross , C. Steinem , H.-J. Galla , A. Janshoff , Langmuir 2001, 17, 2437-2445.
D. Stokoe , S. G. Macdonald , K. Cadwallader , M. Symons , J. F. Hancock , Science 1994, 264, 1463-1467.
M. A. Rizzo , K. Shome , S. C. Watkins , G. Romero , J. Biol. Chem. 2000, 275, 23 911-23 918.
P. Dent , D. B. Reardon , D. K. Morrison , T. W. Sturgill , Mol. Cell. Biol. 1995, 15, 4125-4135.
M. A. Rizzo , K. Shome , C. Vasudevan , D. B. Stolz , T.-C. Sung , M. A. Frohmann , S. C. Watkins , G. Romero , J. Biol. Chem. 1999, 274, 1131-1139.
R. C. MacDonald , R. I. MacDonald , B. P. M. Menco , K. Takeshita , M. K. Subbarao , L. Hu , Biochim. Biophys. Acta 1991, 1061, 297-303.
A. Janshoff , C. Steinem , M. Sieber , H.-J. Galla , Eur. Biophys. J. 1996, 25, 105-113.
A. F. Quest , E. S. Bardes , W. Q. Xie , E. Willott , R. A. Borchardt , R. M. Bell , Methods Enzymol. 1995, 252, 153-167.
D. K. Morrison , R. E. Cutler , Curr. Opin. Cell Biol. 1997, 9, 174-179.
P. K. Smith , R. I. Krohn , G. T. Hermanson , A. K. Mallia , F. H. Gartner , M. D. Provenzano , E. K. Fujimoto , N. M. Goeke , B. J. Olson , D. C. Klenk , Anal. Biochem. 1985, 150, 76-85.
A. Huwiler , J. Brunner , R. Hummel , M. Vervoordeldonk , S. Stabel , H. van den Bosch , J. Pfeilschifter , Proc. Natl. Acad. Sci. USA 1996, 93, 6959-6963.
A. Janshoff , H.-J. Galla , C. Steinem , Angew. Chem. 2000, 112, 4164-4195
A. F. Quest , J. Bloomenthal , E. S. Bardes , R. M. Bell , J. Biol. Chem. 1992, 267, 10 193-10 197.
J. Avruch , X. Zhang , J. M. Kyriakis , Trends Biochem. Sci. 1994, 19, 279-283.
S. J. Leevers , H. F. Paterson , C. J. Marshall , Nature 1994, 369, 411-414.
H. R. Mott , J. W. Carpenter , S. Zhong , S. Ghosh , R. M. Bell , S. L. Campbell , Proc. Natl. Acad. Sci. USA 1996, 93, 8312-8317.
G. Heidecker , M. Huleihel , J. L. Cleveland , W. Kolch , T. W. Beck , P. Lloyd , T. Pawson , U. R. Rapp , Mol. Cell. Biochem. 1990, 10, 2503-2512.
C. Block , R. Janknecht , C. Herrmann , N. Nassar , A. Wittinghofer , Nat. Struct. Biol. 1996, 3, 244-251.
A. Janshoff , M. Ross , V. Gerke , C. Steinem , ChemBioChem 2001, 2, 587-590.
Angew. Chem. Int. Ed. 2000, 39, 4004-4032.
C. Steinem , A. Janshoff , J. Wegener , W.-P. Ulrich , W. Willenbrink , M. Sieber , H.-J. Galla , Biosens. Bioelectronics 1997, 43, 339-348.
T. Terada , Y. Ito , M. Shirouzu , M. Tateno , K. Hashimoto , T. Kigawa , T. Ebisuzaki , K. Takio , T. Shibata , S. Yokoyama , B. O. Smith , E. D. Laue , J. A. Cooper , J. Mol. Biol. 1999, 286, 219-232.
S. Roy , A. Lane , J. Yan , R. McPherson , J. F. Hancock , J. Biol. Chem. 1997, 272, 20 139-20 145.
S. Ghosh , J. C. Strum , V. A. Sciorra , L. Daniel , R. M. Bell , J. Biol. Chem. 1996, 271, 8472-8480.
J. H. Hurley , S. Misra , Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 49-79.
C. Steinem , A. Janshoff , W.-P. Ulrich , M. Sieber , H.-J. Galla , Biochim. Biophys. Acta 1996, 1279, 169-180.
E. Sackmann , Science 1996, 271, 43-48.
Y. A. Hannun , C. Luberto , Trends Cell Biol. 2000, 10, 73-80.
A. Janshoff , C. Steinem , M. Sieber , A. el Baya , M. A. Schmidt , H.-J. Galla , Eur. Biophys. J. 1997, 26, 261-270.
C. K. Weber , J. R. Slupsky , C. Herrmann , M. Schuler , U. R. Rapp , C. Block , Oncogene 2000, 19, 169-176.
T. Improta-Brears , S. Ghosh , R. M. Bell , Mol. Cell. Biochem. 1999, 198, 171-178.
S. Ghosh , W. Q. Xie , A. F. Quest , G. M. Mabrouk , J. C. Strum , R. M. Bell , J. Biol. Chem. 1994, 269, 10 000-10 007.
1990; 10
2000; 29
1997; 43
1997; 272
1995; 15
1996; 1279
1997; 26
1992; 267
1996; 93
1999; 286
1996; 96
2000; 351
2000; 275
1991; 1061
1995; 252
1997; 9
1994; 264
1994; 369
2000; 19
1994; 269
1994; 19
2000; 10
1999; 274
1996; 271
1999; 198
2001; 2
2001; 17
1996; 25
2000 2000; 112 39
1985; 150
1996; 3
References_xml – volume: 9
  start-page: 174
  year: 1997
  end-page: 179
  publication-title: Curr. Opin. Cell Biol.
– volume: 26
  start-page: 261
  year: 1997
  end-page: 270
  publication-title: Eur. Biophys. J.
– volume: 93
  start-page: 6959
  year: 1996
  end-page: 6963
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 351
  start-page: 289
  year: 2000
  end-page: 305
  publication-title: Biochem. J.
– volume: 112 39
  start-page: 4164 4004
  year: 2000 2000
  end-page: 4195 4032
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 93
  start-page: 8312
  year: 1996
  end-page: 8317
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 2437
  year: 2001
  end-page: 2445
  publication-title: Langmuir
– volume: 275
  start-page: 23 911
  year: 2000
  end-page: 23 918
  publication-title: J. Biol. Chem.
– volume: 150
  start-page: 76
  year: 1985
  end-page: 85
  publication-title: Anal. Biochem.
– volume: 271
  start-page: 8472
  year: 1996
  end-page: 8480
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 1131
  year: 1999
  end-page: 1139
  publication-title: J. Biol. Chem.
– volume: 267
  start-page: 10 193
  year: 1992
  end-page: 10 197
  publication-title: J. Biol. Chem.
– volume: 269
  start-page: 2961
  year: 1994
  end-page: 2970
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 4125
  year: 1995
  end-page: 4135
  publication-title: Mol. Cell. Biol.
– volume: 198
  start-page: 171
  year: 1999
  end-page: 178
  publication-title: Mol. Cell. Biochem.
– volume: 19
  start-page: 474
  year: 1994
  end-page: 479
  publication-title: Trends Biochem. Sci.
– volume: 10
  start-page: 73
  year: 2000
  end-page: 80
  publication-title: Trends Cell Biol.
– volume: 271
  start-page: 43
  year: 1996
  end-page: 48
  publication-title: Science
– volume: 19
  start-page: 169
  year: 2000
  end-page: 176
  publication-title: Oncogene
– volume: 1061
  start-page: 297
  year: 1991
  end-page: 303
  publication-title: Biochim. Biophys. Acta
– volume: 286
  start-page: 219
  year: 1999
  end-page: 232
  publication-title: J. Mol. Biol.
– volume: 252
  start-page: 153
  year: 1995
  end-page: 167
  publication-title: Methods Enzymol.
– volume: 29
  start-page: 49
  year: 2000
  end-page: 79
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 19
  start-page: 279
  year: 1994
  end-page: 283
  publication-title: Trends Biochem. Sci.
– volume: 369
  start-page: 411
  year: 1994
  end-page: 414
  publication-title: Nature
– volume: 96
  start-page: 1533
  year: 1996
  end-page: 1554
  publication-title: Chem. Rev.
– volume: 3
  start-page: 244
  year: 1996
  end-page: 251
  publication-title: Nat. Struct. Biol.
– volume: 43
  start-page: 339
  year: 1997
  end-page: 348
  publication-title: Biosens. Bioelectronics
– volume: 269
  start-page: 10 000
  year: 1994
  end-page: 10 007
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 2503
  year: 1990
  end-page: 2512
  publication-title: Mol. Cell. Biochem.
– volume: 25
  start-page: 105
  year: 1996
  end-page: 113
  publication-title: Eur. Biophys. J.
– volume: 272
  start-page: 20 139
  year: 1997
  end-page: 20 145
  publication-title: J. Biol. Chem.
– volume: 264
  start-page: 1463
  year: 1994
  end-page: 1467
  publication-title: Science
– volume: 2
  start-page: 587
  year: 2001
  end-page: 590
  publication-title: ChemBioChem
– volume: 1279
  start-page: 169
  year: 1996
  end-page: 180
  publication-title: Biochim. Biophys. Acta
SSID ssj0009631
Score 1.7411684
Snippet By use of the quartz crystal microbalance technique, the interaction of the Raf–Ras binding domain (RafRBD) and the cysteine‐rich domain Raf‐C1 with lipids was...
By use of the quartz crystal microbalance technique, the interaction of the Raf-Ras binding domain (RafRBD) and the cysteine-rich domain Raf-C1 with lipids was...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 190
SubjectTerms Adsorption
Biosensing Techniques - instrumentation
biosensors
Dimyristoylphosphatidylcholine - chemistry
Dimyristoylphosphatidylcholine - metabolism
Dimyristoylphosphatidylcholine - pharmacokinetics
Gold
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Microscopy, Atomic Force
Protein Structure, Tertiary
Proto-Oncogene Proteins c-raf - metabolism
quartz crystal microbalance
Raf kinase
scanning probe microscopy
solid-supported bilayers
Thermodynamics
Unithiol - chemistry
Unithiol - metabolism
Unithiol - pharmacokinetics
Title Quantification of the Raf-C1 Interaction With Solid-Supported Bilayers
URI https://api.istex.fr/ark:/67375/WNG-6ZMDZM2C-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1439-7633%2820020301%293%3A2%2F3%3C190%3A%3AAID-CBIC190%3E3.0.CO%3B2-7
https://www.ncbi.nlm.nih.gov/pubmed/11921397
https://search.proquest.com/docview/71551088
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxELaqIhUuQFsey9MHqOCwidfeZ6iQkk1LWymtWqha9WJ5ba-IWnZRu5EKJ34CV_4ev4SxnU0o6oUDQkqUjS15vOPPns87s2OEXhCRAk9mkQ8A0X5YpMovIhH7lFkIiKywHtPRbrx1GO4cR8cL6LJ9F8blh5g9cDMzw67XZoKL4qI7TxoKhj7zYXYwYGLUOtRMzvmMwciaavjNwdjBP_j0t4d-Pth2BRusQzr53ks2AG4Ji3fAEhMLNjyY550CVNqdmhERUposofWp4O5M7KtW6GvWo122Dm33er8JeuvEvAEhV2zeDTN8l9cR2qv82Bq4zTvoR6saF9dy2pk0RUd-_SNr5P_Q3V10e8qacd_BfBkt6GoFrfYr0dSfvuA1bONYrYNgBd3M2zPsVtHO_kS4aCgLQFyXGAgvPhDlz2_f8wDb56Hu1Q58NG4-4vf12VhBnTns1IQhKzwYnwmzLbmHDjc3PuRb_vT0CF-GcD9-EDAlWaR0oiOpjBujLGkGC04aS1YUYREnQBASokNRaiYZE4EAfKosDYiUgWT30WJVV_ohwkDLQqpIGWUiDBVlgshQa5JmJFUqEcRDo3Z8-WeXJIS7dNCUG1Vzo2reKprDJXxBn5yDcvlUuVBEeL4HdYmH1ixIZo2J81MTgJdE_Gj3HY9PRsOTEc059dDzFkUcNGt8PaLS9eSCJ4YKgwXx0AMHrnnHTAY8YKEe2rcQ-bseX9_htujRP2jzMbplT-CxcX9P0GJzPtFPgQg2xTM7aX8BTDo4dA
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxEB6VVqJceLQ8lld9gAoOm-za3leokJJNS1KaVH2pVS-Wd-0VUUuCSiJRTvwEzvw8fgljbzahqBcOCCmrZG3J44w_e771zI4BXngyRp7MAhcBol2excrNAhm6lFkIyCSzHtNeP-wc8e2T4GQBLqt3Ycr8ELMNNzMz7HptJrjZkK7Ps4aipU9cnB4MqRi1HjWTdD5hOLSmGr9TtHZ4h59mt-2mrW5ZsMlqXi3dfclaSC5vwBKuFcwcftDen2eeQlzaZzUjg1Ma3YSNqeT6TO6rSupr1qB1toGNNxq_SXpbynmDUq5YvSUzgF-uo7RXGbI1cVt34EelnDKy5aw2GWe1_OsfeSP_i_buwu0pcSbNEun3YEEPV2C1OZTj0cdLsk5sKKv1EazAclodY7cK23sTWQZEWQySUUGQ85J9Wfz89j31id0SLd_uIMeD8QdyMDofKKwz552aSGRFWoNzaZ5M7sPR1uZh2nGnB0i4Ocf_4_o-UzkLlI50kCvjySgKmuCaE4c5yzKehRFyhMjTXBaa5YxJXyJEVRL7Xp77OXsAi8PRUD8CgsyMU-UVQSI5V5RJL-dae3HixUpF0nOgVw2w-FTmCRFlRmgqjKqFUbWoFC3wJ16oTyFQuWKqXCzyRLqLdZED6xYls8bkxZmJwYsCcdx_J8LTXvu0R1NBHVirYCRQs8bdI4d6NPksIsOG0Yg48LBE17xjJgkeElEH9ixG_q7H13e4Knr8D9pcg-XOYW9H7HT775_ALXsgjw0DfAqL44uJfoa8cJw9tzP4F_91PI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFD4amzR44bJxCbf5ASZ4SOvEzq1MSG26sg7aXWDatBfLiR1RbbTTaKXBEz-BV_4ev4Rjp2kZ2gsPCClRElvycY4_53zJOTkGeEZljDyZBS4CRLs8i5WbBTJ0fWYhIJPMekx7_XDrgG8fBUcLcFH9C1Pmh5h9cDMzwz6vzQQ_U0V9njQUDX3i4uxgyMR861AzOecThiNrqvGYorHDK9ya3babtrplwSar0Vq685y1kFtegyUeMmqCwdr788RTCEv7qmZkcN-PlmFjKrk-k_uikvqSNfw628DGG43fJL0u5bxCKZeM3pIZv4urGO1lgmwtXOcW_Kh0Uwa2nNQm46yWf_0jbeT_UN5tuDmlzaRZ4vwOLOjhCqw2h3I8-vSFrBMbyGo9BCtwPa0WsVuF7b2JLMOhLALJqCDIeMm-LH5--556xH4QLf_tIIeD8UfyfnQ6UFhnVjs1cciKtAan0ryX3IWDzuaHdMudLh_h5hzvx_U8pnIWKB3pIFfGj1EUfoJPnDjMWZbxLIyQIURUc1loljMmPYkAVUns0Tz3cnYPFoejoX4ABHkZ9xUtgkRyrnwmac61pnFCY6UiSR3oVeMrzsosIaLMB-0Lo2phVC0qRQs8xR31KQQqV0yVi0VUpDtYFzmwbkEya0yen5gIvCgQh_03IjzutY97fip8B9YqFAnUrHH2yKEeTT6LyHBhNCEO3C_BNe-YSYGHNNSBPQuRv-vx1R2uih7-gzbXYHm33RHvuv23j-CGXY3HxgA-hsXx-UQ_QVI4zp7a-fsL3GE7PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+the+Raf-C1+interaction+with+solid-supported+bilayers&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Eing%2C+Andreas&rft.au=Janshoff%2C+Andreas&rft.au=Galla%2C+Hans-Joachim&rft.au=Block%2C+Christoph&rft.date=2002-03-01&rft.issn=1439-4227&rft.volume=3&rft.issue=2-3&rft.spage=190&rft_id=info:doi/10.1002%2F1439-7633%2820020301%293%3A2%2F3%3C190%3A%3AAID-CBIC190%3E3.0.CO%3B2-7&rft_id=info%3Apmid%2F11921397&rft.externalDocID=11921397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon