A 2.5D coupled FE–BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace

This paper presents a general 2.5D coupled finite element–boundary element methodology for the computation of the dynamic interaction between a layered soil and structures with a longitudinally invariant geometry, such as railway tracks, roads, tunnels, dams, and pipelines. The classical 2.5D finite...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 199; no. 23; pp. 1536 - 1548
Main Authors François, S., Schevenels, M., Galvín, P., Lombaert, G., Degrande, G.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.04.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a general 2.5D coupled finite element–boundary element methodology for the computation of the dynamic interaction between a layered soil and structures with a longitudinally invariant geometry, such as railway tracks, roads, tunnels, dams, and pipelines. The classical 2.5D finite element method is combined with a novel 2.5D boundary element method. A regularized 2.5D boundary integral equation is derived that avoids the evaluation of singular traction integrals. The 2.5D Green’s functions of a layered halfspace, computed with the direct stiffness method, are used in a boundary element method formulation. This avoids meshing of the free surface and the layer interfaces with boundary elements and effectively reduces the computational efforts and storage requirements. The proposed technique is applied to four examples: a road on the surface of a halfspace, a tunnel embedded in a layered halfspace, a dike on a halfspace and a vibration isolating screen in the soil.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2010.01.001