Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators

We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical physics Vol. 181; no. 1; pp. 53 - 94
Main Author Menegaki, Angeliki
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-4715
1572-9613
DOI10.1007/s10955-020-02565-5

Cover

Abstract We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than N - 3 . For the purely harmonic chain the order of the rate is in [ N - 3 , N - 1 ] . This shows that, in this set up, the spectral gap decays at most polynomially with N .
AbstractList We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry-Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein-Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than [Formula omitted]. For the purely harmonic chain the order of the rate is in [Formula omitted]. This shows that, in this set up, the spectral gap decays at most polynomially with N.
We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than N-3. For the purely harmonic chain the order of the rate is in [N-3,N-1]. This shows that, in this set up, the spectral gap decays at most polynomially with N.
We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than $$N^{-3}$$ N - 3 . For the purely harmonic chain the order of the rate is in $$ [N^{-3},N^{-1}]$$ [ N - 3 , N - 1 ] . This shows that, in this set up, the spectral gap decays at most polynomially with N .
We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than N - 3 . For the purely harmonic chain the order of the rate is in [ N - 3 , N - 1 ] . This shows that, in this set up, the spectral gap decays at most polynomially with N .
Audience Academic
Author Menegaki, Angeliki
Author_xml – sequence: 1
  givenname: Angeliki
  orcidid: 0000-0003-1192-3567
  surname: Menegaki
  fullname: Menegaki, Angeliki
  email: angeliki.menegaki@dpmms.cam.ac.uk
  organization: DPMMS, University of Cambridge
BookMark eNp9kVtrGzEQhUVJoU7aP9AnQZ83Hd12tY_GtE0hNPRGH4UsjxylaymRtAH_-8rZQqEPYRgGxPnOoDnn5CymiIS8ZXDJAIb3hcGoVAccWqtedeoFWTE18G7smTgjKwDOOzkw9Yqcl3IHAKMe1YrEr7ONNVRbwyPSb7ZiocnTTYqPmPcYHdKa6JcUO3yYwxS2OcwH-r2i3R3baHrqU6aW_kL7ezrSdby1-ZBicHRza0M8md0UF6bJ1pTLa_LS26ngm7_zgvz8-OHH5qq7vvn0ebO-7pwEXjuPUnGl0SkhxG5wHrRgwCUOXCtm3TgqAVKPTCoEztjYe-GZQ7Hl2vMtiAvybvG9z-lhxlLNXZpzbCsNl0KPWot-aKrLRbW3E5oQfarZulY7PATXLuxDe1_3QjIpNZxs9QK4nErJ6I17Ol2KDQyTYWBOcZglDtPiME9xGNVQ_h96n8PB5uPzkFig0sRxj_nfN56h_gAYm54V
CitedBy_id crossref_primary_10_1016_j_spa_2023_04_006
crossref_primary_10_5802_ahl_129
crossref_primary_10_2140_paa_2021_3_223
crossref_primary_10_1016_j_jfa_2021_109286
crossref_primary_10_1016_j_jfa_2024_110814
Cites_doi 10.1007/978-3-540-49938-1
10.1023/A:1004537730090
10.1007/BFb0075847
10.1016/j.crhy.2019.09.002
10.1142/9781848160224_0008
10.1103/PhysRevLett.84.2144
10.1007/3-540-33966-3_2
10.1016/j.jfa.2017.06.021
10.1080/00018730802538522
10.1137/18M1171047
10.1063/1.1665794
10.1016/S0024-3795(02)00393-2
10.1214/18-EJP177
10.1016/S0370-1573(02)00558-6
10.1007/s11118-018-9689-3
10.1007/s10955-006-9171-2
10.1007/s10955-016-1625-6
10.1016/j.spa.2006.12.003
10.1007/978-3-319-29261-8
10.1007/s002200100583
10.1007/s00220-009-0857-6
10.1214/17-ECP62
10.1103/RevModPhys.17.323
10.1007/BF02392081
10.1007/978-3-540-71050-9
10.1088/0951-7715/28/7/2397
10.1063/1.1665793
10.1515/9781400882311
10.1063/1.1705319
10.1007/s002200050572
10.1016/j.jfa.2010.01.010
10.1214/16-AOP1156
10.1007/s00023-018-0740-0
10.1002/cpa.20280
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Springer
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Springer
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10955-020-02565-5
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
EISSN 1572-9613
EndPage 94
ExternalDocumentID A634144800
10_1007_s10955_020_02565_5
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L016516/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03
IEDL.DBID U2A
ISSN 0022-4715
IngestDate Sun Jul 13 04:24:12 EDT 2025
Tue Jun 10 20:28:24 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Tue Jul 01 00:19:12 EDT 2025
Fri Feb 21 02:26:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonequilibrium steady states
Exponential convergence
Spectral gap
Heat bath
Hypocoercivity
Hypoellipticity
Functional inequalities
Chain of oscillators
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1192-3567
OpenAccessLink https://link.springer.com/10.1007/s10955-020-02565-5
PQID 2438988367
PQPubID 2043551
PageCount 42
ParticipantIDs proquest_journals_2438988367
gale_infotracacademiconefile_A634144800
crossref_citationtrail_10_1007_s10955_020_02565_5
crossref_primary_10_1007_s10955_020_02565_5
springer_journals_10_1007_s10955_020_02565_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CasherALebowitzJLHeat flow in regular and disordered harmonic chainsJ. Math. Phys.19711217011971JMP....12.1701C10.1063/1.1665794
HairerMHow hot can a heat bath get?Commun. Math. Phys.200929211311772009CMaPh.292..131H254007310.1007/s00220-009-0857-6
HörmanderLHypoelliptic second order differential equationsActa Math.196711914717122247410.1007/BF02392081
CuneoNEckmannJ-PPoquetCNon-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotorsNonlinearity2015287239724212015Nonli..28.2397C336664910.1088/0951-7715/28/7/2397
EckmannJ-PPilletC-ARey-BelletLEntropy production in nonlinear, thermally driven Hamiltonian systemsJ. Stat. Phys.1999951–23053311999JSP....95..305E170558910.1023/A:1004537730090
Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition
KuwadaKDuality on gradient estimates and Wasserstein controlsJ. Funct. Anal.20102581137583774260687110.1016/j.jfa.2010.01.010
Liapounoff, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, no. 17. Princeton University Press, Princeton, N.J.; Oxford University Press, London (1947)
Bakry, D.: Functional inequalities for Markov semigroups. In: Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Inst. Fund. Res., Mumbai (2006)
Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000)
JakšićVPilletC-AShirikyanAEntropic fluctuations in thermally driven harmonic networksJ. Stat. Phys.20171663–492610152017JSP...166..926J360759610.1007/s10955-016-1625-6
Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, vol. 8, pp. 163–198 (2002). Inhomogeneous random systems (Cergy-Pontoise, 2001)
LetiziaVOllaSNonequilibrium isothermal transformations in a temperature gradient from a microscopic dynamicsAnn. Probab.2017456A39874018372962110.1214/16-AOP1156
Gantmacher, F.R.: Applications of the theory of matrices, translated by J.L. Brenner, with the assistance of D.W. Bushaw and S. Evanusa. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London (1959)
EckmannJ-PPilletC-ARey-BelletLNon-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperaturesCommun. Math. Phys.199920136576971999CMaPh.201..657E168589310.1007/s002200050572
LepriSLiviRPolitiAThermal conduction in classical low-dimensional latticesPhys. Rep.200337711802003PhR...377....1L197899210.1016/S0370-1573(02)00558-6
CuneoNPoquetCOn the relaxation rate of short chains of rotors interacting with Langevin thermostatsElectron. Commun. Probab.20172235366685610.1214/17-ECP62
Lepri, S. (eds). Thermal transport in low dimensions, vol. 921 of Lecture Notes in Physics. Springer, Cham (2016). From statistical physics to nanoscale heat transfer
CarmonaPExistence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat bathsStoch. Process. Appl.2007117810761092234088010.1016/j.spa.2006.12.003
AokiKLukkarinenJSpohnHEnergy transport in weakly anharmonic chainsJ. Stat. Phys.20061245110511292006JSP...124.1105A226584610.1007/s10955-006-9171-2
MonmarchéPGeneralized Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} calculus and application to interacting particles on a graphPotential Anal.2019503439466392558910.1007/s11118-018-9689-3
CuneoNEckmannJ-PHairerMRey-BelletLNon-equilibrium steady states for networks of oscillatorsElectron. J. Probab.20182328381424910.1214/18-EJP177
DharAHeat transport in low-dimensional systemsAdv. Phys.2008570810.1080/00018730802538522
RousselJStoltzGA perturbative approach to control variates in molecular dynamicsMultiscale Model. Simul.2019171552591393261210.1137/18M1171047
RubinRJGreerWAbnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystalJ. Math. Phys.197112168617011971JMP....12.1686R10.1063/1.1665793
RiederZLebowitzJLLiebEProperties of a harmonic crystal in a stationary nonequilibrium stateJ. Math. Phys.196785107310781967JMP.....8.1073R10.1063/1.1705319
Wang, F.-Y.: Generalized curvature condition for subelliptic diffusion processes. arXiv:1202.0778 (2012)
BaudoinFBakry-Émery meet VillaniJ. Funct. Anal.2017273722752291367782610.1016/j.jfa.2017.06.021
GiardináCLiviRPolitiAVassalliMFinite thermal conductivity in 1D latticesPhys. Rev. Lett.200084214421472000PhRvL..84.2144G10.1103/PhysRevLett.84.2144
RaquépasRA note on Harris’ ergodic theorem, controllability and perturbations of harmonic networksAnn. Henri Poincaré20192026056292019AnHP...20..605R390884910.1007/s00023-018-0740-0
VillaniCHypocoercivityMem. Am. Math. Soc.2009202950iv+14125627091197.35004
Becker, S., Menegaki, A.: Spectral gap in O(n)-model and chain of oscillators using Schrödinger operators. arXiv:1909.12241
Rey-BelletLThomasLEExponential convergence to non-equilibrium stationary states in classical statistical mechanicsCommun. Math. Phys.200222523053292002CMaPh.225..305R188922710.1007/s002200100583
Baudoin, F.: Wasserstein contraction properties for hypoelliptic diffusions. arXiv:1602.04177
WangMCUhlenbeckGEOn the theory of the Brownian motion IIRev. Mod. Phys.1945173233421945RvMP...17..323W1326610.1103/RevModPhys.17.323
GodunovSVKiriljukOPKostinIVSpectral Portraits of Matrices (Russian)1990NovosibirskAN SSSR Siber. Otd
HairerMMattinglyJCSlow energy dissipation in anharmonic oscillator chainsCommun. Pure Appl. Math.20096289991032253155110.1002/cpa.20280
Veselić, K.: Bounds for exponentially stable semigroups. Linear Algebra Appl., 358, 309–333 (2003). Special issue on accurate solution of eigenvalue problems (Hagen, 2000)
Villani, C.: Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). Old and new
Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric fokker-planck equations with linear drift. arXiv:1409.5425
Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp. 177–206. Springer, Berlin (1985)
Flandrin, P., Bernardin, C.  (eds) Fourier and the Science of Today/Fourier et la Science d’aujourd’hui, vol. 20, Issue 5. Comptes Rendus Physique (2019)
Rey-Bellet, L.: Open Classical Systems. In: Open quantum systems. II, volume 1881 of Lecture Notes in Math., pp. 41–78. Springer, Berlin (2006)
J-P Eckmann (2565_CR16) 1999; 201
R Raquépas (2565_CR32) 2019; 20
A Casher (2565_CR10) 1971; 12
J Roussel (2565_CR36) 2019; 17
2565_CR1
M Hairer (2565_CR22) 2009; 62
2565_CR3
2565_CR27
2565_CR5
2565_CR4
S Lepri (2565_CR28) 2003; 377
2565_CR7
2565_CR8
M Hairer (2565_CR21) 2009; 292
N Cuneo (2565_CR11) 2015; 28
V Jakšić (2565_CR25) 2017; 166
V Letizia (2565_CR29) 2017; 45
N Cuneo (2565_CR13) 2017; 22
J-P Eckmann (2565_CR15) 1999; 95
2565_CR24
P Monmarché (2565_CR31) 2019; 50
2565_CR42
2565_CR41
C Villani (2565_CR40) 2009; 202
2565_CR18
K Aoki (2565_CR2) 2006; 124
2565_CR17
2565_CR39
2565_CR38
K Kuwada (2565_CR26) 2010; 258
P Carmona (2565_CR9) 2007; 117
L Rey-Bellet (2565_CR34) 2002; 225
MC Wang (2565_CR43) 1945; 17
Z Rieder (2565_CR35) 1967; 8
L Hörmander (2565_CR23) 1967; 119
RJ Rubin (2565_CR37) 1971; 12
N Cuneo (2565_CR12) 2018; 23
A Dhar (2565_CR14) 2008; 57
SV Godunov (2565_CR19) 1990
2565_CR33
C Giardiná (2565_CR20) 2000; 84
F Baudoin (2565_CR6) 2017; 273
2565_CR30
References_xml – reference: CuneoNPoquetCOn the relaxation rate of short chains of rotors interacting with Langevin thermostatsElectron. Commun. Probab.20172235366685610.1214/17-ECP62
– reference: LetiziaVOllaSNonequilibrium isothermal transformations in a temperature gradient from a microscopic dynamicsAnn. Probab.2017456A39874018372962110.1214/16-AOP1156
– reference: CasherALebowitzJLHeat flow in regular and disordered harmonic chainsJ. Math. Phys.19711217011971JMP....12.1701C10.1063/1.1665794
– reference: EckmannJ-PPilletC-ARey-BelletLEntropy production in nonlinear, thermally driven Hamiltonian systemsJ. Stat. Phys.1999951–23053311999JSP....95..305E170558910.1023/A:1004537730090
– reference: Veselić, K.: Bounds for exponentially stable semigroups. Linear Algebra Appl., 358, 309–333 (2003). Special issue on accurate solution of eigenvalue problems (Hagen, 2000)
– reference: KuwadaKDuality on gradient estimates and Wasserstein controlsJ. Funct. Anal.20102581137583774260687110.1016/j.jfa.2010.01.010
– reference: Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, vol. 8, pp. 163–198 (2002). Inhomogeneous random systems (Cergy-Pontoise, 2001)
– reference: CuneoNEckmannJ-PHairerMRey-BelletLNon-equilibrium steady states for networks of oscillatorsElectron. J. Probab.20182328381424910.1214/18-EJP177
– reference: RaquépasRA note on Harris’ ergodic theorem, controllability and perturbations of harmonic networksAnn. Henri Poincaré20192026056292019AnHP...20..605R390884910.1007/s00023-018-0740-0
– reference: GodunovSVKiriljukOPKostinIVSpectral Portraits of Matrices (Russian)1990NovosibirskAN SSSR Siber. Otd
– reference: Lepri, S. (eds). Thermal transport in low dimensions, vol. 921 of Lecture Notes in Physics. Springer, Cham (2016). From statistical physics to nanoscale heat transfer
– reference: Rey-Bellet, L.: Open Classical Systems. In: Open quantum systems. II, volume 1881 of Lecture Notes in Math., pp. 41–78. Springer, Berlin (2006)
– reference: HairerMHow hot can a heat bath get?Commun. Math. Phys.200929211311772009CMaPh.292..131H254007310.1007/s00220-009-0857-6
– reference: Wang, F.-Y.: Generalized curvature condition for subelliptic diffusion processes. arXiv:1202.0778 (2012)
– reference: EckmannJ-PPilletC-ARey-BelletLNon-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperaturesCommun. Math. Phys.199920136576971999CMaPh.201..657E168589310.1007/s002200050572
– reference: LepriSLiviRPolitiAThermal conduction in classical low-dimensional latticesPhys. Rep.200337711802003PhR...377....1L197899210.1016/S0370-1573(02)00558-6
– reference: AokiKLukkarinenJSpohnHEnergy transport in weakly anharmonic chainsJ. Stat. Phys.20061245110511292006JSP...124.1105A226584610.1007/s10955-006-9171-2
– reference: Becker, S., Menegaki, A.: Spectral gap in O(n)-model and chain of oscillators using Schrödinger operators. arXiv:1909.12241
– reference: CarmonaPExistence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat bathsStoch. Process. Appl.2007117810761092234088010.1016/j.spa.2006.12.003
– reference: Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric fokker-planck equations with linear drift. arXiv:1409.5425
– reference: MonmarchéPGeneralized Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} calculus and application to interacting particles on a graphPotential Anal.2019503439466392558910.1007/s11118-018-9689-3
– reference: JakšićVPilletC-AShirikyanAEntropic fluctuations in thermally driven harmonic networksJ. Stat. Phys.20171663–492610152017JSP...166..926J360759610.1007/s10955-016-1625-6
– reference: Bakry, D.: Functional inequalities for Markov semigroups. In: Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Inst. Fund. Res., Mumbai (2006)
– reference: Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000)
– reference: RubinRJGreerWAbnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystalJ. Math. Phys.197112168617011971JMP....12.1686R10.1063/1.1665793
– reference: DharAHeat transport in low-dimensional systemsAdv. Phys.2008570810.1080/00018730802538522
– reference: Flandrin, P., Bernardin, C.  (eds) Fourier and the Science of Today/Fourier et la Science d’aujourd’hui, vol. 20, Issue 5. Comptes Rendus Physique (2019)
– reference: RousselJStoltzGA perturbative approach to control variates in molecular dynamicsMultiscale Model. Simul.2019171552591393261210.1137/18M1171047
– reference: BaudoinFBakry-Émery meet VillaniJ. Funct. Anal.2017273722752291367782610.1016/j.jfa.2017.06.021
– reference: CuneoNEckmannJ-PPoquetCNon-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotorsNonlinearity2015287239724212015Nonli..28.2397C336664910.1088/0951-7715/28/7/2397
– reference: Rey-BelletLThomasLEExponential convergence to non-equilibrium stationary states in classical statistical mechanicsCommun. Math. Phys.200222523053292002CMaPh.225..305R188922710.1007/s002200100583
– reference: Villani, C.: Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). Old and new
– reference: Liapounoff, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, no. 17. Princeton University Press, Princeton, N.J.; Oxford University Press, London (1947)
– reference: Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp. 177–206. Springer, Berlin (1985)
– reference: Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition
– reference: VillaniCHypocoercivityMem. Am. Math. Soc.2009202950iv+14125627091197.35004
– reference: Baudoin, F.: Wasserstein contraction properties for hypoelliptic diffusions. arXiv:1602.04177
– reference: HairerMMattinglyJCSlow energy dissipation in anharmonic oscillator chainsCommun. Pure Appl. Math.20096289991032253155110.1002/cpa.20280
– reference: WangMCUhlenbeckGEOn the theory of the Brownian motion IIRev. Mod. Phys.1945173233421945RvMP...17..323W1326610.1103/RevModPhys.17.323
– reference: GiardináCLiviRPolitiAVassalliMFinite thermal conductivity in 1D latticesPhys. Rev. Lett.200084214421472000PhRvL..84.2144G10.1103/PhysRevLett.84.2144
– reference: RiederZLebowitzJLLiebEProperties of a harmonic crystal in a stationary nonequilibrium stateJ. Math. Phys.196785107310781967JMP.....8.1073R10.1063/1.1705319
– reference: Gantmacher, F.R.: Applications of the theory of matrices, translated by J.L. Brenner, with the assistance of D.W. Bushaw and S. Evanusa. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London (1959)
– reference: HörmanderLHypoelliptic second order differential equationsActa Math.196711914717122247410.1007/BF02392081
– ident: 2565_CR42
– ident: 2565_CR24
  doi: 10.1007/978-3-540-49938-1
– ident: 2565_CR38
– volume: 95
  start-page: 305
  issue: 1–2
  year: 1999
  ident: 2565_CR15
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1004537730090
– ident: 2565_CR4
  doi: 10.1007/BFb0075847
– ident: 2565_CR17
  doi: 10.1016/j.crhy.2019.09.002
– volume: 202
  start-page: iv+141
  issue: 950
  year: 2009
  ident: 2565_CR40
  publication-title: Mem. Am. Math. Soc.
– ident: 2565_CR8
  doi: 10.1142/9781848160224_0008
– volume: 84
  start-page: 2144
  year: 2000
  ident: 2565_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2144
– volume-title: Spectral Portraits of Matrices (Russian)
  year: 1990
  ident: 2565_CR19
– ident: 2565_CR33
  doi: 10.1007/3-540-33966-3_2
– volume: 273
  start-page: 2275
  issue: 7
  year: 2017
  ident: 2565_CR6
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2017.06.021
– volume: 57
  start-page: 08
  year: 2008
  ident: 2565_CR14
  publication-title: Adv. Phys.
  doi: 10.1080/00018730802538522
– volume: 17
  start-page: 552
  issue: 1
  year: 2019
  ident: 2565_CR36
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/18M1171047
– volume: 12
  start-page: 1701
  year: 1971
  ident: 2565_CR10
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665794
– ident: 2565_CR39
  doi: 10.1016/S0024-3795(02)00393-2
– volume: 23
  start-page: 28
  year: 2018
  ident: 2565_CR12
  publication-title: Electron. J. Probab.
  doi: 10.1214/18-EJP177
– volume: 377
  start-page: 1
  issue: 1
  year: 2003
  ident: 2565_CR28
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00558-6
– volume: 50
  start-page: 439
  issue: 3
  year: 2019
  ident: 2565_CR31
  publication-title: Potential Anal.
  doi: 10.1007/s11118-018-9689-3
– volume: 124
  start-page: 1105
  issue: 5
  year: 2006
  ident: 2565_CR2
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-006-9171-2
– volume: 166
  start-page: 926
  issue: 3–4
  year: 2017
  ident: 2565_CR25
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-016-1625-6
– volume: 117
  start-page: 1076
  issue: 8
  year: 2007
  ident: 2565_CR9
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2006.12.003
– ident: 2565_CR27
  doi: 10.1007/978-3-319-29261-8
– volume: 225
  start-page: 305
  issue: 2
  year: 2002
  ident: 2565_CR34
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100583
– ident: 2565_CR18
– volume: 292
  start-page: 131
  issue: 1
  year: 2009
  ident: 2565_CR21
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0857-6
– volume: 22
  start-page: 35
  year: 2017
  ident: 2565_CR13
  publication-title: Electron. Commun. Probab.
  doi: 10.1214/17-ECP62
– volume: 17
  start-page: 323
  year: 1945
  ident: 2565_CR43
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.17.323
– volume: 119
  start-page: 147
  year: 1967
  ident: 2565_CR23
  publication-title: Acta Math.
  doi: 10.1007/BF02392081
– ident: 2565_CR41
  doi: 10.1007/978-3-540-71050-9
– volume: 28
  start-page: 2397
  issue: 7
  year: 2015
  ident: 2565_CR11
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/28/7/2397
– ident: 2565_CR3
– volume: 12
  start-page: 1686
  year: 1971
  ident: 2565_CR37
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665793
– ident: 2565_CR30
  doi: 10.1515/9781400882311
– volume: 8
  start-page: 1073
  issue: 5
  year: 1967
  ident: 2565_CR35
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1705319
– volume: 201
  start-page: 657
  issue: 3
  year: 1999
  ident: 2565_CR16
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050572
– ident: 2565_CR7
– ident: 2565_CR5
– volume: 258
  start-page: 3758
  issue: 11
  year: 2010
  ident: 2565_CR26
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2010.01.010
– volume: 45
  start-page: 3987
  issue: 6A
  year: 2017
  ident: 2565_CR29
  publication-title: Ann. Probab.
  doi: 10.1214/16-AOP1156
– volume: 20
  start-page: 605
  issue: 2
  year: 2019
  ident: 2565_CR32
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/s00023-018-0740-0
– volume: 62
  start-page: 999
  issue: 8
  year: 2009
  ident: 2565_CR22
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20280
– ident: 2565_CR1
SSID ssj0009895
Score 2.3566477
Snippet We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is...
We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms Anharmonicity
Chains
Convergence
Mathematical and Computational Physics
Oscillators
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Steady state
Theoretical
Title Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators
URI https://link.springer.com/article/10.1007/s10955-020-02565-5
https://www.proquest.com/docview/2438988367
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED6NIiRepo0xrVtX-WESDyNSEsdx_BgiOrSJok2rgCcrcWxRwdJB2wf-_e7chLIxkHjKQxzHyvnuvovvvgP4xJ2UdcltkBiMVRMjoyBL6U9cLA0CaFQ_SYXCx-P0aJJ8PRNnbVHYvMt2744kvaW-V-ymBFUThwH5aRGIDdgUGLuTOk7ifE21mynRcYSj6RVtqcz_5_jLHf1rlB-cjnqnM3oFL1u0yPKVeF_DC9vswJbP2jTzHdgmqLhiWn4Dzfdl2fiSMTRg7AdhSDZzrKC0cl9hadlixsazJrDXy6lP9V_-YpTPW98yjzkZAlhWslNbXl7dsrwhVmtizmXFRTltaLITdJi4b6hDzy5MRoc_i6Og7aYQGIwRF4GzdISZWYMAj9fSON9jLE6sjBF1lUYpwVGdVZQIGxLvW-q4i4zlVZy5uAr5W-g1s8a-A-YSVTmVGamyOqmipKpU7VzluEXROxP2Ieo-qjYt1Th1vLjSa5JkEoRGQWgvCC368Pnumd8roo0nR--RrDRpIc5syraYANdHfFY6T9E7Y-QZ4loGnTh1q55zHVPP9yzjqezDfifi9e3H3_v-ecM_wHZMm80n_w2gt7hZ2o8IYhbVEDbz0cHBmK5fzr8dDmGjSIuh38l_AMj36W8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xpmm8oK3btAIDP0zawxYpiePYfqwqqvKjRZtajTcrcWyBBinQ9oH_njs3oWO_pD3HcaKc7-5zfN93AB-5l7IquIsyi3vVzMokUjn9iUulRQCN7ieJKDwa58NpdnwuzhtS2Lytdm-PJEOk_onspgWxieOI8rSIxDN4jmBAUd-CadpbS-0qLVqNcAy9oqHK_HmOJ-no16D82-loSDqDV7DdoEXWW5n3NWy4ugMvQtWmnXdgi6DiSmn5DdRfl0UdKGMYwNg3wpBs5lmfysoDw9KxxYyNZ3XkbpeXodR_ec2onre6ZwFzMgSwrGDfXfHj6p71alK1JuVc1r8oLmua7AwTJq4b6tDzFqaDw0l_GDXdFCKLe8RF5B0dYSpnEeDxSlofeoylmZMpoq7Cai04urNOMuFi0n3LPfeJdbxMlU_LmL-DzXpWu_fAfKZLr5WVWlVZmWRlqSvvS88dmt7buAtJ-1GNbaTGqePFlVmLJJMhDBrCBEMY0YXPj_fcrIQ2_jn6E9nKkBfizLZoyAT4fqRnZXo5Zmfcecb4LnutOU3jnnOTUs93pXguu_ClNfH68t-fu_N_ww_g5XAyOjWnR-OTXdhKaeGFQsA92FzcLd0HBDSLcj-s3wfeReh1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ4oBsOLUZBwiroPJj5AQ9vd7XYfL6cXFD2VQOBt0253AxH3UHoP_Htn9loPBEl47nbbdGZ3vu3M9w3AW-6VairuEmHxrCqsypKyoD9xubIIoHH5KSIKf5kUu4fi07E8vsLij9XufUpyzmkglabQ7pw3fucK8U1LYhanCcVsmciH8EhQ6KN0bTFayO6WWvZ64bgNy442c_sc10LTvxv0jUxpDEDjp_CkQ45sODf1M3jgwiosxwpOe7EKKwQb56rLaxC-z6oQ6WO4mbF9wpNs6tmISswj29Kxdsom05C4X7PTWPY_-8motre5ZBF_MgSzrGJHrvpxdsmGgRSuSUWXjU6q00CTfcXgiT5E3Xqew-H4w8FoN-k6KyQWz4tt4h2lM0tnEezxRlkf-43lwqkcEVhltZYcl7bOhHQpacAVnvvMOl7npc_rlK_DUpgGtwHMC117XVqly0bUmahr3Xhfe-7QDbxNB5D1H9XYTnacul-cmYVgMhnCoCFMNISRA9j6e8_5XHTjztHvyFaGViTObKuOWIDvR9pWZlhgpMZTaIrvstmb03RL9cLk1P-9LHmhBrDdm3hx-f_PfXG_4W_g8bf3Y_P542TvJazk5HexJnATltrfM_cKsU1bv47u-wdP4Oyb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Rates+of+Convergence+to+Non-equilibrium+Steady+State+for+a+Weakly+Anharmonic+Chain+of+Oscillators&rft.jtitle=Journal+of+statistical+physics&rft.au=Menegaki+Angeliki&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=181&rft.issue=1&rft.spage=53&rft.epage=94&rft_id=info:doi/10.1007%2Fs10955-020-02565-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon