Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators
We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N...
Saved in:
Published in | Journal of statistical physics Vol. 181; no. 1; pp. 53 - 94 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-4715 1572-9613 |
DOI | 10.1007/s10955-020-02565-5 |
Cover
Abstract | We study a 1-dimensional chain of
N
weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with
N
dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than
N
-
3
. For the purely harmonic chain the order of the rate is in
[
N
-
3
,
N
-
1
]
. This shows that, in this set up, the spectral gap decays at most polynomially with
N
. |
---|---|
AbstractList | We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry-Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein-Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than [Formula omitted]. For the purely harmonic chain the order of the rate is in [Formula omitted]. This shows that, in this set up, the spectral gap decays at most polynomially with N. We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than N-3. For the purely harmonic chain the order of the rate is in [N-3,N-1]. This shows that, in this set up, the spectral gap decays at most polynomially with N. We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than $$N^{-3}$$ N - 3 . For the purely harmonic chain the order of the rate is in $$ [N^{-3},N^{-1}]$$ [ N - 3 , N - 1 ] . This shows that, in this set up, the spectral gap decays at most polynomially with N . We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is subject to pinning potential and it also interacts with its nearest neighbors. In our set up both potentials are homogeneous and bounded (with N dependent bounds) perturbations of the harmonic ones. We show how a generalised version of Bakry–Emery theory can be adapted to this case of a hypoelliptic generator which is inspired by Baudoin (J Funct Anal 273(7):2275-2291, 2017). By that we prove exponential convergence to non-equilibrium steady state in Wasserstein–Kantorovich distance and in relative entropy with quantitative rates. We estimate the constants in the rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate, for the homogeneous chain, has order bigger than N - 3 . For the purely harmonic chain the order of the rate is in [ N - 3 , N - 1 ] . This shows that, in this set up, the spectral gap decays at most polynomially with N . |
Audience | Academic |
Author | Menegaki, Angeliki |
Author_xml | – sequence: 1 givenname: Angeliki orcidid: 0000-0003-1192-3567 surname: Menegaki fullname: Menegaki, Angeliki email: angeliki.menegaki@dpmms.cam.ac.uk organization: DPMMS, University of Cambridge |
BookMark | eNp9kVtrGzEQhUVJoU7aP9AnQZ83Hd12tY_GtE0hNPRGH4UsjxylaymRtAH_-8rZQqEPYRgGxPnOoDnn5CymiIS8ZXDJAIb3hcGoVAccWqtedeoFWTE18G7smTgjKwDOOzkw9Yqcl3IHAKMe1YrEr7ONNVRbwyPSb7ZiocnTTYqPmPcYHdKa6JcUO3yYwxS2OcwH-r2i3R3baHrqU6aW_kL7ezrSdby1-ZBicHRza0M8md0UF6bJ1pTLa_LS26ngm7_zgvz8-OHH5qq7vvn0ebO-7pwEXjuPUnGl0SkhxG5wHrRgwCUOXCtm3TgqAVKPTCoEztjYe-GZQ7Hl2vMtiAvybvG9z-lhxlLNXZpzbCsNl0KPWot-aKrLRbW3E5oQfarZulY7PATXLuxDe1_3QjIpNZxs9QK4nErJ6I17Ol2KDQyTYWBOcZglDtPiME9xGNVQ_h96n8PB5uPzkFig0sRxj_nfN56h_gAYm54V |
CitedBy_id | crossref_primary_10_1016_j_spa_2023_04_006 crossref_primary_10_5802_ahl_129 crossref_primary_10_2140_paa_2021_3_223 crossref_primary_10_1016_j_jfa_2021_109286 crossref_primary_10_1016_j_jfa_2024_110814 |
Cites_doi | 10.1007/978-3-540-49938-1 10.1023/A:1004537730090 10.1007/BFb0075847 10.1016/j.crhy.2019.09.002 10.1142/9781848160224_0008 10.1103/PhysRevLett.84.2144 10.1007/3-540-33966-3_2 10.1016/j.jfa.2017.06.021 10.1080/00018730802538522 10.1137/18M1171047 10.1063/1.1665794 10.1016/S0024-3795(02)00393-2 10.1214/18-EJP177 10.1016/S0370-1573(02)00558-6 10.1007/s11118-018-9689-3 10.1007/s10955-006-9171-2 10.1007/s10955-016-1625-6 10.1016/j.spa.2006.12.003 10.1007/978-3-319-29261-8 10.1007/s002200100583 10.1007/s00220-009-0857-6 10.1214/17-ECP62 10.1103/RevModPhys.17.323 10.1007/BF02392081 10.1007/978-3-540-71050-9 10.1088/0951-7715/28/7/2397 10.1063/1.1665793 10.1515/9781400882311 10.1063/1.1705319 10.1007/s002200050572 10.1016/j.jfa.2010.01.010 10.1214/16-AOP1156 10.1007/s00023-018-0740-0 10.1002/cpa.20280 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10955-020-02565-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
EndPage | 94 |
ExternalDocumentID | A634144800 10_1007_s10955_020_02565_5 |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/L016516/1 funderid: http://dx.doi.org/10.13039/501100000266 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03 |
IEDL.DBID | U2A |
ISSN | 0022-4715 |
IngestDate | Sun Jul 13 04:24:12 EDT 2025 Tue Jun 10 20:28:24 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Tue Jul 01 00:19:12 EDT 2025 Fri Feb 21 02:26:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nonequilibrium steady states Exponential convergence Spectral gap Heat bath Hypocoercivity Hypoellipticity Functional inequalities Chain of oscillators |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-fe45258ec5333d7cf0831024e72851ac99530489145e021196f3f1ce3b28f2b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1192-3567 |
OpenAccessLink | https://link.springer.com/10.1007/s10955-020-02565-5 |
PQID | 2438988367 |
PQPubID | 2043551 |
PageCount | 42 |
ParticipantIDs | proquest_journals_2438988367 gale_infotracacademiconefile_A634144800 crossref_citationtrail_10_1007_s10955_020_02565_5 crossref_primary_10_1007_s10955_020_02565_5 springer_journals_10_1007_s10955_020_02565_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | CasherALebowitzJLHeat flow in regular and disordered harmonic chainsJ. Math. Phys.19711217011971JMP....12.1701C10.1063/1.1665794 HairerMHow hot can a heat bath get?Commun. Math. Phys.200929211311772009CMaPh.292..131H254007310.1007/s00220-009-0857-6 HörmanderLHypoelliptic second order differential equationsActa Math.196711914717122247410.1007/BF02392081 CuneoNEckmannJ-PPoquetCNon-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotorsNonlinearity2015287239724212015Nonli..28.2397C336664910.1088/0951-7715/28/7/2397 EckmannJ-PPilletC-ARey-BelletLEntropy production in nonlinear, thermally driven Hamiltonian systemsJ. Stat. Phys.1999951–23053311999JSP....95..305E170558910.1023/A:1004537730090 Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition KuwadaKDuality on gradient estimates and Wasserstein controlsJ. Funct. Anal.20102581137583774260687110.1016/j.jfa.2010.01.010 Liapounoff, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, no. 17. Princeton University Press, Princeton, N.J.; Oxford University Press, London (1947) Bakry, D.: Functional inequalities for Markov semigroups. In: Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Inst. Fund. Res., Mumbai (2006) Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000) JakšićVPilletC-AShirikyanAEntropic fluctuations in thermally driven harmonic networksJ. Stat. Phys.20171663–492610152017JSP...166..926J360759610.1007/s10955-016-1625-6 Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, vol. 8, pp. 163–198 (2002). Inhomogeneous random systems (Cergy-Pontoise, 2001) LetiziaVOllaSNonequilibrium isothermal transformations in a temperature gradient from a microscopic dynamicsAnn. Probab.2017456A39874018372962110.1214/16-AOP1156 Gantmacher, F.R.: Applications of the theory of matrices, translated by J.L. Brenner, with the assistance of D.W. Bushaw and S. Evanusa. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London (1959) EckmannJ-PPilletC-ARey-BelletLNon-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperaturesCommun. Math. Phys.199920136576971999CMaPh.201..657E168589310.1007/s002200050572 LepriSLiviRPolitiAThermal conduction in classical low-dimensional latticesPhys. Rep.200337711802003PhR...377....1L197899210.1016/S0370-1573(02)00558-6 CuneoNPoquetCOn the relaxation rate of short chains of rotors interacting with Langevin thermostatsElectron. Commun. Probab.20172235366685610.1214/17-ECP62 Lepri, S. (eds). Thermal transport in low dimensions, vol. 921 of Lecture Notes in Physics. Springer, Cham (2016). From statistical physics to nanoscale heat transfer CarmonaPExistence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat bathsStoch. Process. Appl.2007117810761092234088010.1016/j.spa.2006.12.003 AokiKLukkarinenJSpohnHEnergy transport in weakly anharmonic chainsJ. Stat. Phys.20061245110511292006JSP...124.1105A226584610.1007/s10955-006-9171-2 MonmarchéPGeneralized Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} calculus and application to interacting particles on a graphPotential Anal.2019503439466392558910.1007/s11118-018-9689-3 CuneoNEckmannJ-PHairerMRey-BelletLNon-equilibrium steady states for networks of oscillatorsElectron. J. Probab.20182328381424910.1214/18-EJP177 DharAHeat transport in low-dimensional systemsAdv. Phys.2008570810.1080/00018730802538522 RousselJStoltzGA perturbative approach to control variates in molecular dynamicsMultiscale Model. Simul.2019171552591393261210.1137/18M1171047 RubinRJGreerWAbnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystalJ. Math. Phys.197112168617011971JMP....12.1686R10.1063/1.1665793 RiederZLebowitzJLLiebEProperties of a harmonic crystal in a stationary nonequilibrium stateJ. Math. Phys.196785107310781967JMP.....8.1073R10.1063/1.1705319 Wang, F.-Y.: Generalized curvature condition for subelliptic diffusion processes. arXiv:1202.0778 (2012) BaudoinFBakry-Émery meet VillaniJ. Funct. Anal.2017273722752291367782610.1016/j.jfa.2017.06.021 GiardináCLiviRPolitiAVassalliMFinite thermal conductivity in 1D latticesPhys. Rev. Lett.200084214421472000PhRvL..84.2144G10.1103/PhysRevLett.84.2144 RaquépasRA note on Harris’ ergodic theorem, controllability and perturbations of harmonic networksAnn. Henri Poincaré20192026056292019AnHP...20..605R390884910.1007/s00023-018-0740-0 VillaniCHypocoercivityMem. Am. Math. Soc.2009202950iv+14125627091197.35004 Becker, S., Menegaki, A.: Spectral gap in O(n)-model and chain of oscillators using Schrödinger operators. arXiv:1909.12241 Rey-BelletLThomasLEExponential convergence to non-equilibrium stationary states in classical statistical mechanicsCommun. Math. Phys.200222523053292002CMaPh.225..305R188922710.1007/s002200100583 Baudoin, F.: Wasserstein contraction properties for hypoelliptic diffusions. arXiv:1602.04177 WangMCUhlenbeckGEOn the theory of the Brownian motion IIRev. Mod. Phys.1945173233421945RvMP...17..323W1326610.1103/RevModPhys.17.323 GodunovSVKiriljukOPKostinIVSpectral Portraits of Matrices (Russian)1990NovosibirskAN SSSR Siber. Otd HairerMMattinglyJCSlow energy dissipation in anharmonic oscillator chainsCommun. Pure Appl. Math.20096289991032253155110.1002/cpa.20280 Veselić, K.: Bounds for exponentially stable semigroups. Linear Algebra Appl., 358, 309–333 (2003). Special issue on accurate solution of eigenvalue problems (Hagen, 2000) Villani, C.: Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). Old and new Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric fokker-planck equations with linear drift. arXiv:1409.5425 Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp. 177–206. Springer, Berlin (1985) Flandrin, P., Bernardin, C. (eds) Fourier and the Science of Today/Fourier et la Science d’aujourd’hui, vol. 20, Issue 5. Comptes Rendus Physique (2019) Rey-Bellet, L.: Open Classical Systems. In: Open quantum systems. II, volume 1881 of Lecture Notes in Math., pp. 41–78. Springer, Berlin (2006) J-P Eckmann (2565_CR16) 1999; 201 R Raquépas (2565_CR32) 2019; 20 A Casher (2565_CR10) 1971; 12 J Roussel (2565_CR36) 2019; 17 2565_CR1 M Hairer (2565_CR22) 2009; 62 2565_CR3 2565_CR27 2565_CR5 2565_CR4 S Lepri (2565_CR28) 2003; 377 2565_CR7 2565_CR8 M Hairer (2565_CR21) 2009; 292 N Cuneo (2565_CR11) 2015; 28 V Jakšić (2565_CR25) 2017; 166 V Letizia (2565_CR29) 2017; 45 N Cuneo (2565_CR13) 2017; 22 J-P Eckmann (2565_CR15) 1999; 95 2565_CR24 P Monmarché (2565_CR31) 2019; 50 2565_CR42 2565_CR41 C Villani (2565_CR40) 2009; 202 2565_CR18 K Aoki (2565_CR2) 2006; 124 2565_CR17 2565_CR39 2565_CR38 K Kuwada (2565_CR26) 2010; 258 P Carmona (2565_CR9) 2007; 117 L Rey-Bellet (2565_CR34) 2002; 225 MC Wang (2565_CR43) 1945; 17 Z Rieder (2565_CR35) 1967; 8 L Hörmander (2565_CR23) 1967; 119 RJ Rubin (2565_CR37) 1971; 12 N Cuneo (2565_CR12) 2018; 23 A Dhar (2565_CR14) 2008; 57 SV Godunov (2565_CR19) 1990 2565_CR33 C Giardiná (2565_CR20) 2000; 84 F Baudoin (2565_CR6) 2017; 273 2565_CR30 |
References_xml | – reference: CuneoNPoquetCOn the relaxation rate of short chains of rotors interacting with Langevin thermostatsElectron. Commun. Probab.20172235366685610.1214/17-ECP62 – reference: LetiziaVOllaSNonequilibrium isothermal transformations in a temperature gradient from a microscopic dynamicsAnn. Probab.2017456A39874018372962110.1214/16-AOP1156 – reference: CasherALebowitzJLHeat flow in regular and disordered harmonic chainsJ. Math. Phys.19711217011971JMP....12.1701C10.1063/1.1665794 – reference: EckmannJ-PPilletC-ARey-BelletLEntropy production in nonlinear, thermally driven Hamiltonian systemsJ. Stat. Phys.1999951–23053311999JSP....95..305E170558910.1023/A:1004537730090 – reference: Veselić, K.: Bounds for exponentially stable semigroups. Linear Algebra Appl., 358, 309–333 (2003). Special issue on accurate solution of eigenvalue problems (Hagen, 2000) – reference: KuwadaKDuality on gradient estimates and Wasserstein controlsJ. Funct. Anal.20102581137583774260687110.1016/j.jfa.2010.01.010 – reference: Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, vol. 8, pp. 163–198 (2002). Inhomogeneous random systems (Cergy-Pontoise, 2001) – reference: CuneoNEckmannJ-PHairerMRey-BelletLNon-equilibrium steady states for networks of oscillatorsElectron. J. Probab.20182328381424910.1214/18-EJP177 – reference: RaquépasRA note on Harris’ ergodic theorem, controllability and perturbations of harmonic networksAnn. Henri Poincaré20192026056292019AnHP...20..605R390884910.1007/s00023-018-0740-0 – reference: GodunovSVKiriljukOPKostinIVSpectral Portraits of Matrices (Russian)1990NovosibirskAN SSSR Siber. Otd – reference: Lepri, S. (eds). Thermal transport in low dimensions, vol. 921 of Lecture Notes in Physics. Springer, Cham (2016). From statistical physics to nanoscale heat transfer – reference: Rey-Bellet, L.: Open Classical Systems. In: Open quantum systems. II, volume 1881 of Lecture Notes in Math., pp. 41–78. Springer, Berlin (2006) – reference: HairerMHow hot can a heat bath get?Commun. Math. Phys.200929211311772009CMaPh.292..131H254007310.1007/s00220-009-0857-6 – reference: Wang, F.-Y.: Generalized curvature condition for subelliptic diffusion processes. arXiv:1202.0778 (2012) – reference: EckmannJ-PPilletC-ARey-BelletLNon-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperaturesCommun. Math. Phys.199920136576971999CMaPh.201..657E168589310.1007/s002200050572 – reference: LepriSLiviRPolitiAThermal conduction in classical low-dimensional latticesPhys. Rep.200337711802003PhR...377....1L197899210.1016/S0370-1573(02)00558-6 – reference: AokiKLukkarinenJSpohnHEnergy transport in weakly anharmonic chainsJ. Stat. Phys.20061245110511292006JSP...124.1105A226584610.1007/s10955-006-9171-2 – reference: Becker, S., Menegaki, A.: Spectral gap in O(n)-model and chain of oscillators using Schrödinger operators. arXiv:1909.12241 – reference: CarmonaPExistence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat bathsStoch. Process. Appl.2007117810761092234088010.1016/j.spa.2006.12.003 – reference: Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric fokker-planck equations with linear drift. arXiv:1409.5425 – reference: MonmarchéPGeneralized Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} calculus and application to interacting particles on a graphPotential Anal.2019503439466392558910.1007/s11118-018-9689-3 – reference: JakšićVPilletC-AShirikyanAEntropic fluctuations in thermally driven harmonic networksJ. Stat. Phys.20171663–492610152017JSP...166..926J360759610.1007/s10955-016-1625-6 – reference: Bakry, D.: Functional inequalities for Markov semigroups. In: Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Inst. Fund. Res., Mumbai (2006) – reference: Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000) – reference: RubinRJGreerWAbnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystalJ. Math. Phys.197112168617011971JMP....12.1686R10.1063/1.1665793 – reference: DharAHeat transport in low-dimensional systemsAdv. Phys.2008570810.1080/00018730802538522 – reference: Flandrin, P., Bernardin, C. (eds) Fourier and the Science of Today/Fourier et la Science d’aujourd’hui, vol. 20, Issue 5. Comptes Rendus Physique (2019) – reference: RousselJStoltzGA perturbative approach to control variates in molecular dynamicsMultiscale Model. Simul.2019171552591393261210.1137/18M1171047 – reference: BaudoinFBakry-Émery meet VillaniJ. Funct. Anal.2017273722752291367782610.1016/j.jfa.2017.06.021 – reference: CuneoNEckmannJ-PPoquetCNon-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotorsNonlinearity2015287239724212015Nonli..28.2397C336664910.1088/0951-7715/28/7/2397 – reference: Rey-BelletLThomasLEExponential convergence to non-equilibrium stationary states in classical statistical mechanicsCommun. Math. Phys.200222523053292002CMaPh.225..305R188922710.1007/s002200100583 – reference: Villani, C.: Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). Old and new – reference: Liapounoff, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, no. 17. Princeton University Press, Princeton, N.J.; Oxford University Press, London (1947) – reference: Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp. 177–206. Springer, Berlin (1985) – reference: Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition – reference: VillaniCHypocoercivityMem. Am. Math. Soc.2009202950iv+14125627091197.35004 – reference: Baudoin, F.: Wasserstein contraction properties for hypoelliptic diffusions. arXiv:1602.04177 – reference: HairerMMattinglyJCSlow energy dissipation in anharmonic oscillator chainsCommun. Pure Appl. Math.20096289991032253155110.1002/cpa.20280 – reference: WangMCUhlenbeckGEOn the theory of the Brownian motion IIRev. Mod. Phys.1945173233421945RvMP...17..323W1326610.1103/RevModPhys.17.323 – reference: GiardináCLiviRPolitiAVassalliMFinite thermal conductivity in 1D latticesPhys. Rev. Lett.200084214421472000PhRvL..84.2144G10.1103/PhysRevLett.84.2144 – reference: RiederZLebowitzJLLiebEProperties of a harmonic crystal in a stationary nonequilibrium stateJ. Math. Phys.196785107310781967JMP.....8.1073R10.1063/1.1705319 – reference: Gantmacher, F.R.: Applications of the theory of matrices, translated by J.L. Brenner, with the assistance of D.W. Bushaw and S. Evanusa. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London (1959) – reference: HörmanderLHypoelliptic second order differential equationsActa Math.196711914717122247410.1007/BF02392081 – ident: 2565_CR42 – ident: 2565_CR24 doi: 10.1007/978-3-540-49938-1 – ident: 2565_CR38 – volume: 95 start-page: 305 issue: 1–2 year: 1999 ident: 2565_CR15 publication-title: J. Stat. Phys. doi: 10.1023/A:1004537730090 – ident: 2565_CR4 doi: 10.1007/BFb0075847 – ident: 2565_CR17 doi: 10.1016/j.crhy.2019.09.002 – volume: 202 start-page: iv+141 issue: 950 year: 2009 ident: 2565_CR40 publication-title: Mem. Am. Math. Soc. – ident: 2565_CR8 doi: 10.1142/9781848160224_0008 – volume: 84 start-page: 2144 year: 2000 ident: 2565_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2144 – volume-title: Spectral Portraits of Matrices (Russian) year: 1990 ident: 2565_CR19 – ident: 2565_CR33 doi: 10.1007/3-540-33966-3_2 – volume: 273 start-page: 2275 issue: 7 year: 2017 ident: 2565_CR6 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2017.06.021 – volume: 57 start-page: 08 year: 2008 ident: 2565_CR14 publication-title: Adv. Phys. doi: 10.1080/00018730802538522 – volume: 17 start-page: 552 issue: 1 year: 2019 ident: 2565_CR36 publication-title: Multiscale Model. Simul. doi: 10.1137/18M1171047 – volume: 12 start-page: 1701 year: 1971 ident: 2565_CR10 publication-title: J. Math. Phys. doi: 10.1063/1.1665794 – ident: 2565_CR39 doi: 10.1016/S0024-3795(02)00393-2 – volume: 23 start-page: 28 year: 2018 ident: 2565_CR12 publication-title: Electron. J. Probab. doi: 10.1214/18-EJP177 – volume: 377 start-page: 1 issue: 1 year: 2003 ident: 2565_CR28 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00558-6 – volume: 50 start-page: 439 issue: 3 year: 2019 ident: 2565_CR31 publication-title: Potential Anal. doi: 10.1007/s11118-018-9689-3 – volume: 124 start-page: 1105 issue: 5 year: 2006 ident: 2565_CR2 publication-title: J. Stat. Phys. doi: 10.1007/s10955-006-9171-2 – volume: 166 start-page: 926 issue: 3–4 year: 2017 ident: 2565_CR25 publication-title: J. Stat. Phys. doi: 10.1007/s10955-016-1625-6 – volume: 117 start-page: 1076 issue: 8 year: 2007 ident: 2565_CR9 publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2006.12.003 – ident: 2565_CR27 doi: 10.1007/978-3-319-29261-8 – volume: 225 start-page: 305 issue: 2 year: 2002 ident: 2565_CR34 publication-title: Commun. Math. Phys. doi: 10.1007/s002200100583 – ident: 2565_CR18 – volume: 292 start-page: 131 issue: 1 year: 2009 ident: 2565_CR21 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-009-0857-6 – volume: 22 start-page: 35 year: 2017 ident: 2565_CR13 publication-title: Electron. Commun. Probab. doi: 10.1214/17-ECP62 – volume: 17 start-page: 323 year: 1945 ident: 2565_CR43 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.17.323 – volume: 119 start-page: 147 year: 1967 ident: 2565_CR23 publication-title: Acta Math. doi: 10.1007/BF02392081 – ident: 2565_CR41 doi: 10.1007/978-3-540-71050-9 – volume: 28 start-page: 2397 issue: 7 year: 2015 ident: 2565_CR11 publication-title: Nonlinearity doi: 10.1088/0951-7715/28/7/2397 – ident: 2565_CR3 – volume: 12 start-page: 1686 year: 1971 ident: 2565_CR37 publication-title: J. Math. Phys. doi: 10.1063/1.1665793 – ident: 2565_CR30 doi: 10.1515/9781400882311 – volume: 8 start-page: 1073 issue: 5 year: 1967 ident: 2565_CR35 publication-title: J. Math. Phys. doi: 10.1063/1.1705319 – volume: 201 start-page: 657 issue: 3 year: 1999 ident: 2565_CR16 publication-title: Commun. Math. Phys. doi: 10.1007/s002200050572 – ident: 2565_CR7 – ident: 2565_CR5 – volume: 258 start-page: 3758 issue: 11 year: 2010 ident: 2565_CR26 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2010.01.010 – volume: 45 start-page: 3987 issue: 6A year: 2017 ident: 2565_CR29 publication-title: Ann. Probab. doi: 10.1214/16-AOP1156 – volume: 20 start-page: 605 issue: 2 year: 2019 ident: 2565_CR32 publication-title: Ann. Henri Poincaré doi: 10.1007/s00023-018-0740-0 – volume: 62 start-page: 999 issue: 8 year: 2009 ident: 2565_CR22 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20280 – ident: 2565_CR1 |
SSID | ssj0009895 |
Score | 2.3566477 |
Snippet | We study a 1-dimensional chain of
N
weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is... We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled at its ends to heat baths at different temperatures. Each oscillator is... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 53 |
SubjectTerms | Anharmonicity Chains Convergence Mathematical and Computational Physics Oscillators Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Steady state Theoretical |
Title | Quantitative Rates of Convergence to Non-equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators |
URI | https://link.springer.com/article/10.1007/s10955-020-02565-5 https://www.proquest.com/docview/2438988367 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED6NIiRepo0xrVtX-WESDyNSEsdx_BgiOrSJok2rgCcrcWxRwdJB2wf-_e7chLIxkHjKQxzHyvnuvovvvgP4xJ2UdcltkBiMVRMjoyBL6U9cLA0CaFQ_SYXCx-P0aJJ8PRNnbVHYvMt2744kvaW-V-ymBFUThwH5aRGIDdgUGLuTOk7ifE21mynRcYSj6RVtqcz_5_jLHf1rlB-cjnqnM3oFL1u0yPKVeF_DC9vswJbP2jTzHdgmqLhiWn4Dzfdl2fiSMTRg7AdhSDZzrKC0cl9hadlixsazJrDXy6lP9V_-YpTPW98yjzkZAlhWslNbXl7dsrwhVmtizmXFRTltaLITdJi4b6hDzy5MRoc_i6Og7aYQGIwRF4GzdISZWYMAj9fSON9jLE6sjBF1lUYpwVGdVZQIGxLvW-q4i4zlVZy5uAr5W-g1s8a-A-YSVTmVGamyOqmipKpU7VzluEXROxP2Ieo-qjYt1Th1vLjSa5JkEoRGQWgvCC368Pnumd8roo0nR--RrDRpIc5syraYANdHfFY6T9E7Y-QZ4loGnTh1q55zHVPP9yzjqezDfifi9e3H3_v-ecM_wHZMm80n_w2gt7hZ2o8IYhbVEDbz0cHBmK5fzr8dDmGjSIuh38l_AMj36W8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xpmm8oK3btAIDP0zawxYpiePYfqwqqvKjRZtajTcrcWyBBinQ9oH_njs3oWO_pD3HcaKc7-5zfN93AB-5l7IquIsyi3vVzMokUjn9iUulRQCN7ieJKDwa58NpdnwuzhtS2Lytdm-PJEOk_onspgWxieOI8rSIxDN4jmBAUd-CadpbS-0qLVqNcAy9oqHK_HmOJ-no16D82-loSDqDV7DdoEXWW5n3NWy4ugMvQtWmnXdgi6DiSmn5DdRfl0UdKGMYwNg3wpBs5lmfysoDw9KxxYyNZ3XkbpeXodR_ec2onre6ZwFzMgSwrGDfXfHj6p71alK1JuVc1r8oLmua7AwTJq4b6tDzFqaDw0l_GDXdFCKLe8RF5B0dYSpnEeDxSlofeoylmZMpoq7Cai04urNOMuFi0n3LPfeJdbxMlU_LmL-DzXpWu_fAfKZLr5WVWlVZmWRlqSvvS88dmt7buAtJ-1GNbaTGqePFlVmLJJMhDBrCBEMY0YXPj_fcrIQ2_jn6E9nKkBfizLZoyAT4fqRnZXo5Zmfcecb4LnutOU3jnnOTUs93pXguu_ClNfH68t-fu_N_ww_g5XAyOjWnR-OTXdhKaeGFQsA92FzcLd0HBDSLcj-s3wfeReh1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ4oBsOLUZBwiroPJj5AQ9vd7XYfL6cXFD2VQOBt0253AxH3UHoP_Htn9loPBEl47nbbdGZ3vu3M9w3AW-6VairuEmHxrCqsypKyoD9xubIIoHH5KSIKf5kUu4fi07E8vsLij9XufUpyzmkglabQ7pw3fucK8U1LYhanCcVsmciH8EhQ6KN0bTFayO6WWvZ64bgNy442c_sc10LTvxv0jUxpDEDjp_CkQ45sODf1M3jgwiosxwpOe7EKKwQb56rLaxC-z6oQ6WO4mbF9wpNs6tmISswj29Kxdsom05C4X7PTWPY_-8motre5ZBF_MgSzrGJHrvpxdsmGgRSuSUWXjU6q00CTfcXgiT5E3Xqew-H4w8FoN-k6KyQWz4tt4h2lM0tnEezxRlkf-43lwqkcEVhltZYcl7bOhHQpacAVnvvMOl7npc_rlK_DUpgGtwHMC117XVqly0bUmahr3Xhfe-7QDbxNB5D1H9XYTnacul-cmYVgMhnCoCFMNISRA9j6e8_5XHTjztHvyFaGViTObKuOWIDvR9pWZlhgpMZTaIrvstmb03RL9cLk1P-9LHmhBrDdm3hx-f_PfXG_4W_g8bf3Y_P542TvJazk5HexJnATltrfM_cKsU1bv47u-wdP4Oyb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Rates+of+Convergence+to+Non-equilibrium+Steady+State+for+a+Weakly+Anharmonic+Chain+of+Oscillators&rft.jtitle=Journal+of+statistical+physics&rft.au=Menegaki+Angeliki&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=181&rft.issue=1&rft.spage=53&rft.epage=94&rft_id=info:doi/10.1007%2Fs10955-020-02565-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |