Applying spark based machine learning model on streaming big data for health status prediction

•Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache Spark.•Machine learning model applied on streaming data to predict health status.•Predicted health status is sent back as a direct message to the...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 65; pp. 393 - 399
Main Authors Nair, Lekha R., Shetty, Sujala D., Shetty, Siddhanth D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.01.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache Spark.•Machine learning model applied on streaming data to predict health status.•Predicted health status is sent back as a direct message to the user.•Successfully deployed and tested the system in Amazon Elastic Compute Cloud. Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in the application of machine learning techniques on this voluminous data having varying velocity. With the availability of large health care datasets and progressions in machine learning techniques, computers are now well equipped in diagnosing many health issues. This work aims at developing a real time remote health status prediction system built around open source Big Data processing engine, the Apache Spark, deployed in the cloud which focus on applying machine learning model on streaming Big Data. In this scalable system, the user tweets his health attributes and the application receives the same in real time, extracts the attributes and applies machine learning model to predict user's health status which is then directly messaged to him/her instantly for taking appropriate action. [Display omitted]
AbstractList Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in the application of machine learning techniques on this voluminous data having varying velocity. With the availability of large health care datasets and progressions in machine learning techniques, computers are now well equipped in diagnosing many health issues. This work aims at developing a real time remote health status prediction system built around open source Big Data processing engine, the Apache Spark, deployed in the cloud which focus on applying machine learning model on streaming Big Data. In this scalable system, the user tweets his health attributes and the application receives the same in real time, extracts the attributes and applies machine learning model to predict user's health status which is then directly messaged to him/her instantly for taking appropriate action.
•Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache Spark.•Machine learning model applied on streaming data to predict health status.•Predicted health status is sent back as a direct message to the user.•Successfully deployed and tested the system in Amazon Elastic Compute Cloud. Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in the application of machine learning techniques on this voluminous data having varying velocity. With the availability of large health care datasets and progressions in machine learning techniques, computers are now well equipped in diagnosing many health issues. This work aims at developing a real time remote health status prediction system built around open source Big Data processing engine, the Apache Spark, deployed in the cloud which focus on applying machine learning model on streaming Big Data. In this scalable system, the user tweets his health attributes and the application receives the same in real time, extracts the attributes and applies machine learning model to predict user's health status which is then directly messaged to him/her instantly for taking appropriate action. [Display omitted]
Author Shetty, Sujala D.
Nair, Lekha R.
Shetty, Siddhanth D.
Author_xml – sequence: 1
  givenname: Lekha R.
  surname: Nair
  fullname: Nair, Lekha R.
  email: lekharnair@gmail.com
– sequence: 2
  givenname: Sujala D.
  surname: Shetty
  fullname: Shetty, Sujala D.
  email: sujala@dubai.bits-pilani.ac.in
– sequence: 3
  givenname: Siddhanth D.
  surname: Shetty
  fullname: Shetty, Siddhanth D.
  email: siddaredevill@gmail.com
BookMark eNqNUMtOwzAQtFCRaAv_YMQ5YR03cXKsKl5SJS5wxXKcTeuS2MFOkfr3OCoHjpxWu_NYzSzIzDqLhNwySBmw4v6QatcP2KFGu0szYCIFngJUF2TOSlElIPJ8RuYAqzwRFRRXZBHCAeJesHJOPtbD0J2M3dEwKP9JaxWwob3Se2ORdqi8ncDeNdhRZ2kYPap-OtVmRxs1Kto6T_eounEfUTUeAx08NkaPxtlrctmqLuDN71yS98eHt81zsn19etmst4leQTYmbZ1BLTTPxargTaXLWmPF81zwrBEtYraKhKIuC9ScCag0lHnkqxLrHErN-JLcnX0H776OGEZ5cEdv40uZQcYF47zKIqs6s7R3IXhs5eBNr_xJMpBTnfIg_9QppzolcBnrjNrNWYsxxrdBL4M2aHVM6lGPsnHmHy4_1UWG0g
CitedBy_id crossref_primary_10_1155_2021_6653508
crossref_primary_10_3390_electronics10161872
crossref_primary_10_1016_j_suscom_2022_100719
crossref_primary_10_1016_j_future_2022_11_003
crossref_primary_10_3233_JIFS_213486
crossref_primary_10_1038_s41598_022_26090_5
crossref_primary_10_1007_s00500_019_04014_2
crossref_primary_10_1016_j_future_2019_09_056
crossref_primary_10_1007_s10462_019_09685_9
crossref_primary_10_1016_j_comcom_2020_07_001
crossref_primary_10_1016_j_cmpb_2021_106293
crossref_primary_10_1155_2021_6636898
crossref_primary_10_3389_fmed_2021_784455
crossref_primary_10_29130_dubited_999048
crossref_primary_10_1109_ACCESS_2020_2995572
crossref_primary_10_1007_s00521_021_06219_9
crossref_primary_10_3390_electronics10212668
crossref_primary_10_1016_j_jpdc_2022_04_004
crossref_primary_10_1007_s11227_019_03132_w
crossref_primary_10_1007_s11277_021_08857_7
crossref_primary_10_1007_s13748_020_00210_6
crossref_primary_10_1142_S0219622020500091
crossref_primary_10_1016_j_compeleceng_2018_01_007
crossref_primary_10_1002_cpe_6688
crossref_primary_10_1109_ACCESS_2020_3006037
crossref_primary_10_1007_s10586_022_03568_5
crossref_primary_10_7717_peerj_cs_488
crossref_primary_10_3390_sym10100485
crossref_primary_10_1016_j_procs_2021_05_019
crossref_primary_10_2174_2666255813999200904163404
crossref_primary_10_1002_spe_2724
crossref_primary_10_1016_j_matpr_2021_04_356
crossref_primary_10_1016_j_ipm_2021_102758
crossref_primary_10_1088_1757_899X_928_3_032044
crossref_primary_10_21595_jve_2018_20120
crossref_primary_10_3390_electronics9122208
crossref_primary_10_1088_1757_899X_1022_1_012014
crossref_primary_10_1016_j_future_2019_11_008
crossref_primary_10_1007_s00354_023_00211_8
crossref_primary_10_1016_j_datak_2023_102233
crossref_primary_10_32604_cmc_2022_019458
crossref_primary_10_1002_cpe_5107
crossref_primary_10_1109_ACCESS_2023_3262467
crossref_primary_10_1155_2021_6655477
crossref_primary_10_1155_2022_9898831
crossref_primary_10_4018_IJBDAH_2017010101
crossref_primary_10_3390_s19122717
crossref_primary_10_1007_s12559_023_10176_x
crossref_primary_10_1007_s40617_023_00864_3
crossref_primary_10_3390_s23020822
crossref_primary_10_12677_CSA_2021_116174
crossref_primary_10_25046_aj060447
crossref_primary_10_1016_j_ijinfomgt_2018_08_006
crossref_primary_10_1002_ima_22667
crossref_primary_10_1108_IJIUS_06_2021_0040
crossref_primary_10_1155_2020_2836064
crossref_primary_10_1007_s00521_021_05798_x
crossref_primary_10_1007_s12065_019_00267_w
crossref_primary_10_4018_IJIRR_289575
Cites_doi 10.1109/MC.2015.25
10.3414/ME12-02-0010
10.1109/TKDE.2013.109
10.1109/TKDE.2012.29
10.1109/MIS.2014.29
10.1109/TASL.2013.2282191
10.1016/j.chb.2011.11.001
10.1109/MIS.2012.76
10.1109/TKDE.2014.2382600
10.1109/TNSM.2014.2377295
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jan 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2017.03.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 399
ExternalDocumentID 10_1016_j_compeleceng_2017_03_009
S0045790617305359
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-fb20b7c357463d9c8bce9355732d7fee24b206b86ec31709c085b7ca8eb508c13
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Thu Oct 10 17:09:22 EDT 2024
Thu Sep 26 18:58:06 EDT 2024
Fri Feb 23 02:25:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Streaming data processing
Apache spark
Big data machine learning
Tweet processing
Health informatics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-fb20b7c357463d9c8bce9355732d7fee24b206b86ec31709c085b7ca8eb508c13
PQID 2023713392
PQPubID 2045266
PageCount 7
ParticipantIDs proquest_journals_2023713392
crossref_primary_10_1016_j_compeleceng_2017_03_009
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2017_03_009
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sakaki, Makoto, Yutaka (bib0012) 2013; 25
Feroz, Mengel (bib0006) 2014
Sumner, Byers, Boochever, Park (bib0014) 2012
Abbas, Adjeroh, Dredze, Paul, Zahedi, Zhao (bib0004) 2014; 2
Lee, Ankit, Alok (bib0017) 2013
Thomas, Grier, Song, Paxson (bib0009) 2011
Dredze (bib0015) 2012; 27
Liu, Cheng, Li, Li (bib0008) 2015; 27
Trigo, Eguzkiza, Martínez-Espronceda, Serrano (bib0018) 2013
Dehong, Li, Cai, Zhang, Ouyang (bib0011) 2014; 22
Denecke, Krieck, Otrusina, Smrz, Dolog, Nejdl (bib0016) 2013; 52
Khorakhun, Saleem (bib0019) 2013
[Online]. Available
Samuel, Jérôme, Radu, Engel (bib0007) 2014; 11
Hughes, Rowe, Batey, Lee (bib0013) 2012; 28
Kejela, Esteves, Rong (bib0005) 2014
Song, Sangho, Jong (bib0010) 2011
Zaharia, Chowdhury, Franklin, Shenker, Stoica (bib0021) 2010; 10
Condie, Mineiro, Polyzotis, Weimer (bib0001) 2013
Gebara, Hofstee, Nowka (bib0003) 2015; 48
2016 [Accessed 15 Nov.].
Wu, Zhu, Gong-Qing, Ding (bib0002) 2014; 26
Abbas (10.1016/j.compeleceng.2017.03.009_bib0004) 2014; 2
Trigo (10.1016/j.compeleceng.2017.03.009_bib0018) 2013
Samuel (10.1016/j.compeleceng.2017.03.009_bib0007) 2014; 11
Wu (10.1016/j.compeleceng.2017.03.009_bib0002) 2014; 26
Feroz (10.1016/j.compeleceng.2017.03.009_bib0006) 2014
Thomas (10.1016/j.compeleceng.2017.03.009_bib0009) 2011
Hughes (10.1016/j.compeleceng.2017.03.009_bib0013) 2012; 28
Khorakhun (10.1016/j.compeleceng.2017.03.009_bib0019) 2013
Sumner (10.1016/j.compeleceng.2017.03.009_bib0014) 2012
Denecke (10.1016/j.compeleceng.2017.03.009_bib0016) 2013; 52
Condie (10.1016/j.compeleceng.2017.03.009_bib0001) 2013
Dehong (10.1016/j.compeleceng.2017.03.009_bib0011) 2014; 22
Song (10.1016/j.compeleceng.2017.03.009_bib0010) 2011
Dredze (10.1016/j.compeleceng.2017.03.009_bib0015) 2012; 27
Gebara (10.1016/j.compeleceng.2017.03.009_bib0003) 2015; 48
10.1016/j.compeleceng.2017.03.009_bib0020
Zaharia (10.1016/j.compeleceng.2017.03.009_bib0021) 2010; 10
Kejela (10.1016/j.compeleceng.2017.03.009_bib0005) 2014
Liu (10.1016/j.compeleceng.2017.03.009_bib0008) 2015; 27
Sakaki (10.1016/j.compeleceng.2017.03.009_bib0012) 2013; 25
Lee (10.1016/j.compeleceng.2017.03.009_bib0017) 2013
References_xml – volume: 27
  start-page: 81
  year: 2012
  end-page: 84
  ident: bib0015
  article-title: How social media will change public health
  publication-title: Intell Syst IEEE
  contributor:
    fullname: Dredze
– year: 2011
  ident: bib0009
  article-title: Suspended accounts in retrospect: an analysis of twitter spam
  publication-title: ACM SIGCOMM conference on internet measurement conference
  contributor:
    fullname: Paxson
– volume: 26
  start-page: 97
  year: 2014
  end-page: 107
  ident: bib0002
  article-title: Data mining with big data
  publication-title: IEEE Trans Knowl Data Eng
  contributor:
    fullname: Ding
– volume: 48
  start-page: 36
  year: 2015
  end-page: 41
  ident: bib0003
  article-title: Second-generation big data systems
  publication-title: IEEE Comput
  contributor:
    fullname: Nowka
– year: 2013
  ident: bib0001
  article-title: Machine learning for big data
  publication-title: ACM SIGMOD international conference on management of data
  contributor:
    fullname: Weimer
– volume: 27
  start-page: 1696
  year: 2015
  end-page: 1709
  ident: bib0008
  article-title: TASC: topic-adaptive sentiment classification on dynamic tweets
  publication-title: IEEE Trans Knowl Data Eng
  contributor:
    fullname: Li
– year: 2012
  ident: bib0014
  article-title: Predicting dark triad personality traits from Twitter usage and a linguistic analysis of tweets
  publication-title: 11th International conference on machine learning and applications (ICMLA)
  contributor:
    fullname: Park
– volume: 2
  start-page: 60
  year: 2014
  end-page: 80
  ident: bib0004
  article-title: Social media analytics for smart health
  publication-title: Intell Syst IEEE
  contributor:
    fullname: Zhao
– volume: 52
  start-page: 326
  year: 2013
  end-page: 339
  ident: bib0016
  article-title: How to exploit twitter for public health monitoring
  publication-title: Methods Inf Med
  contributor:
    fullname: Nejdl
– start-page: 301
  year: 2011
  end-page: 317
  ident: bib0010
  article-title: Spam filtering in twitter using sender-receiver relationship
  publication-title: International workshop on recent advances in intrusion detection
  contributor:
    fullname: Jong
– volume: 11
  start-page: 458
  year: 2014
  end-page: 471
  ident: bib0007
  article-title: PhishStorm: detecting phishing with streaming analytics
  publication-title: IEEE Trans Netw Serv Manage
  contributor:
    fullname: Engel
– volume: 28
  start-page: 561
  year: 2012
  end-page: 569
  ident: bib0013
  article-title: A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage
  publication-title: Comput Hum Behav
  contributor:
    fullname: Lee
– volume: 10
  start-page: 95
  year: 2010
  ident: bib0021
  article-title: Spark: cluster computing with working sets
  publication-title: HotCloud
  contributor:
    fullname: Stoica
– volume: 25
  start-page: 919
  year: 2013
  end-page: 931
  ident: bib0012
  article-title: Tweet analysis for real-time event detection and earthquake reporting system development
  publication-title: IEEE Trans Knowl Data Eng
  contributor:
    fullname: Yutaka
– year: 2013
  ident: bib0018
  article-title: A cardiovascular patient follow-up system using Twitter and HL7
  publication-title: Proceedings of computing in cardiology conference (CinC)
  contributor:
    fullname: Serrano
– year: 2013
  ident: bib0017
  article-title: Real-time disease surveillance using twitter data: demonstration on flu and cancer
  publication-title: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining
  contributor:
    fullname: Alok
– year: 2014
  ident: bib0006
  article-title: Examination of data, rule generation and detection of phishing URLs using online logistic regression
  publication-title: IEEE international conference on big data
  contributor:
    fullname: Mengel
– volume: 22
  start-page: 293
  year: 2014
  end-page: 302
  ident: bib0011
  article-title: Sequential summarization: a full view of twitter trending
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  contributor:
    fullname: Ouyang
– year: 2013
  ident: bib0019
  article-title: Alerts for remote health monitoring using online social media platforms
  publication-title: Proceedings of IEEE 15th international conference on e-health networking, applications and services (Healthcom 2013)
  contributor:
    fullname: Saleem
– year: 2014
  ident: bib0005
  article-title: Predictive analytics of sensor data using distributed machine learning techniques
  publication-title: IEEE 6th international conference on cloud computing technology and science (CloudCom)
  contributor:
    fullname: Rong
– volume: 48
  start-page: 36
  issue: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2017.03.009_bib0003
  article-title: Second-generation big data systems
  publication-title: IEEE Comput
  doi: 10.1109/MC.2015.25
  contributor:
    fullname: Gebara
– volume: 52
  start-page: 326
  issue: 4
  year: 2013
  ident: 10.1016/j.compeleceng.2017.03.009_bib0016
  article-title: How to exploit twitter for public health monitoring
  publication-title: Methods Inf Med
  doi: 10.3414/ME12-02-0010
  contributor:
    fullname: Denecke
– year: 2013
  ident: 10.1016/j.compeleceng.2017.03.009_bib0019
  article-title: Alerts for remote health monitoring using online social media platforms
  contributor:
    fullname: Khorakhun
– year: 2012
  ident: 10.1016/j.compeleceng.2017.03.009_bib0014
  article-title: Predicting dark triad personality traits from Twitter usage and a linguistic analysis of tweets
  contributor:
    fullname: Sumner
– year: 2014
  ident: 10.1016/j.compeleceng.2017.03.009_bib0006
  article-title: Examination of data, rule generation and detection of phishing URLs using online logistic regression
  contributor:
    fullname: Feroz
– year: 2014
  ident: 10.1016/j.compeleceng.2017.03.009_bib0005
  article-title: Predictive analytics of sensor data using distributed machine learning techniques
  contributor:
    fullname: Kejela
– volume: 26
  start-page: 97
  issue: 1
  year: 2014
  ident: 10.1016/j.compeleceng.2017.03.009_bib0002
  article-title: Data mining with big data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.109
  contributor:
    fullname: Wu
– volume: 25
  start-page: 919
  issue: 4
  year: 2013
  ident: 10.1016/j.compeleceng.2017.03.009_bib0012
  article-title: Tweet analysis for real-time event detection and earthquake reporting system development
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.29
  contributor:
    fullname: Sakaki
– start-page: 301
  year: 2011
  ident: 10.1016/j.compeleceng.2017.03.009_bib0010
  article-title: Spam filtering in twitter using sender-receiver relationship
  contributor:
    fullname: Song
– year: 2013
  ident: 10.1016/j.compeleceng.2017.03.009_bib0017
  article-title: Real-time disease surveillance using twitter data: demonstration on flu and cancer
  contributor:
    fullname: Lee
– year: 2013
  ident: 10.1016/j.compeleceng.2017.03.009_bib0001
  article-title: Machine learning for big data
  contributor:
    fullname: Condie
– year: 2013
  ident: 10.1016/j.compeleceng.2017.03.009_bib0018
  article-title: A cardiovascular patient follow-up system using Twitter and HL7
  contributor:
    fullname: Trigo
– ident: 10.1016/j.compeleceng.2017.03.009_bib0020
– volume: 10
  start-page: 95
  issue: 10-10
  year: 2010
  ident: 10.1016/j.compeleceng.2017.03.009_bib0021
  article-title: Spark: cluster computing with working sets
  publication-title: HotCloud
  contributor:
    fullname: Zaharia
– volume: 2
  start-page: 60
  issue: 29
  year: 2014
  ident: 10.1016/j.compeleceng.2017.03.009_bib0004
  article-title: Social media analytics for smart health
  publication-title: Intell Syst IEEE
  doi: 10.1109/MIS.2014.29
  contributor:
    fullname: Abbas
– volume: 22
  start-page: 293
  issue: 2
  year: 2014
  ident: 10.1016/j.compeleceng.2017.03.009_bib0011
  article-title: Sequential summarization: a full view of twitter trending
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2013.2282191
  contributor:
    fullname: Dehong
– volume: 28
  start-page: 561
  issue: 2
  year: 2012
  ident: 10.1016/j.compeleceng.2017.03.009_bib0013
  article-title: A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2011.11.001
  contributor:
    fullname: Hughes
– volume: 27
  start-page: 81
  issue: 4
  year: 2012
  ident: 10.1016/j.compeleceng.2017.03.009_bib0015
  article-title: How social media will change public health
  publication-title: Intell Syst IEEE
  doi: 10.1109/MIS.2012.76
  contributor:
    fullname: Dredze
– volume: 27
  start-page: 1696
  issue: 6
  year: 2015
  ident: 10.1016/j.compeleceng.2017.03.009_bib0008
  article-title: TASC: topic-adaptive sentiment classification on dynamic tweets
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2382600
  contributor:
    fullname: Liu
– volume: 11
  start-page: 458
  issue: 4
  year: 2014
  ident: 10.1016/j.compeleceng.2017.03.009_bib0007
  article-title: PhishStorm: detecting phishing with streaming analytics
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2014.2377295
  contributor:
    fullname: Samuel
– year: 2011
  ident: 10.1016/j.compeleceng.2017.03.009_bib0009
  article-title: Suspended accounts in retrospect: an analysis of twitter spam
  contributor:
    fullname: Thomas
SSID ssj0004618
Score 2.4413543
Snippet •Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache...
Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 393
SubjectTerms Apache spark
Artificial intelligence
Big Data
Big data machine learning
Computer simulation
Data management
Data processing
Health
Health informatics
Machine learning
Mathematical models
Progressions
Real time
Streaming data processing
Tweet processing
Title Applying spark based machine learning model on streaming big data for health status prediction
URI https://dx.doi.org/10.1016/j.compeleceng.2017.03.009
https://www.proquest.com/docview/2023713392
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KBdGD-MRqLSt4jU2ym8eCl1IsVbEnCz25dDebUqVp6ePqb3cmD6yCIHjMsglhZvPNt5v5ZgBu3NC3QRoJR0tXOCLxxw4dMDhSG8k1EmQ3r67_PAj7Q_E4CkY16FZaGEqrLLG_wPQcrcuRdmnN9mI6JY2vCCJJIZhTkRIS8QkMf7imbz-8LW2kV6CxoNKMbrgL1185XpS2Te1mbDahLK-oqHcqf4tRP9A6D0G9QzgouSPrFK93BDWbHcP-VkXBE3glVknKJYZIsXxnFKQSNsszJi0rW0RMWN7_hs0zRlKR8YyG9HTCKF2UIYtlhTqSkdpos2KLJf3NIQ-ewrB3_9LtO2ULBcfgxnDtpNp3dWR4EImQJ9LE2liqqB5xP4lSa32BE0Idh9YgkXClQQaG88ex1cjcjMfPoJ7NM3sODKmJ5cJ6nha4BZFa6ygIuWcQEHgqYtEAvzKaWhSVMlSVQvamtiytyNLK5Qot3YC7yrzqm9sVIvpfbm9WLlHlt7dS1BCett7Sv_jf0y9hD6_i4sClCfX1cmOvkIKsdStfYy3Y6Tw89QefeDrcDA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Ugo-D-MT6XMFraJLdPBa8SFFSbXtqwZNLd7MpVRpLbf-_M3lgFQTB62YTwkz2m283M98A3Lihb4MsEo6WrnBE6o8cOmBwpDaSayTIbqGu3-uHyVA8PgfPa9Cua2EorbLC_hLTC7SuRlqVNVuzyYRqfEUQSQrBnERK5Do0kA1IXJ2Nu85T0l8pj_RKQBakzuiGm3D9leZFmdvUccbmY0r0ikrJU_lbmPoB2EUUetiD3Yo-srvyDfdhzeYHsLMiKngIL0QsqXiJIVjM3xjFqZRNi6RJy6ouEWNWtMBh7zmjapHRlIb0ZMwoY5QhkWVlgSSjgqPlB5vN6YcOOfEIhg_3g3biVF0UHIN7w4WTad_VkeFBJEKeShNrY0lUPeJ-GmXW-gInhDoOrUEu4UqDJAznj2KrkbwZjx_DRv6e2xNgyE4sF9bztMBdiNRaR0HIPYOYwDMRiyb4tdHUrBTLUHUW2atasbQiSyuXK7R0E25r86pvnlcI6n-5_bx2iaqW34einvC0-5b-6f-efgVbyaDXVd1O_-kMtvFKXJ6_nMPGYr60F8hIFvqy-uI-ARGd3sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+spark+based+machine+learning+model+on+streaming+big+data+for+health+status+prediction&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Nair%2C+Lekha+R.&rft.au=Shetty%2C+Sujala+D.&rft.au=Shetty%2C+Siddhanth+D.&rft.date=2018-01-01&rft.issn=0045-7906&rft.volume=65&rft.spage=393&rft.epage=399&rft_id=info:doi/10.1016%2Fj.compeleceng.2017.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2017_03_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon