Applying spark based machine learning model on streaming big data for health status prediction
•Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache Spark.•Machine learning model applied on streaming data to predict health status.•Predicted health status is sent back as a direct message to the...
Saved in:
Published in | Computers & electrical engineering Vol. 65; pp. 393 - 399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache Spark.•Machine learning model applied on streaming data to predict health status.•Predicted health status is sent back as a direct message to the user.•Successfully deployed and tested the system in Amazon Elastic Compute Cloud.
Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in the application of machine learning techniques on this voluminous data having varying velocity. With the availability of large health care datasets and progressions in machine learning techniques, computers are now well equipped in diagnosing many health issues. This work aims at developing a real time remote health status prediction system built around open source Big Data processing engine, the Apache Spark, deployed in the cloud which focus on applying machine learning model on streaming Big Data. In this scalable system, the user tweets his health attributes and the application receives the same in real time, extracts the attributes and applies machine learning model to predict user's health status which is then directly messaged to him/her instantly for taking appropriate action.
[Display omitted] |
---|---|
AbstractList | Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in the application of machine learning techniques on this voluminous data having varying velocity. With the availability of large health care datasets and progressions in machine learning techniques, computers are now well equipped in diagnosing many health issues. This work aims at developing a real time remote health status prediction system built around open source Big Data processing engine, the Apache Spark, deployed in the cloud which focus on applying machine learning model on streaming Big Data. In this scalable system, the user tweets his health attributes and the application receives the same in real time, extracts the attributes and applies machine learning model to predict user's health status which is then directly messaged to him/her instantly for taking appropriate action. •Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache Spark.•Machine learning model applied on streaming data to predict health status.•Predicted health status is sent back as a direct message to the user.•Successfully deployed and tested the system in Amazon Elastic Compute Cloud. Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in the application of machine learning techniques on this voluminous data having varying velocity. With the availability of large health care datasets and progressions in machine learning techniques, computers are now well equipped in diagnosing many health issues. This work aims at developing a real time remote health status prediction system built around open source Big Data processing engine, the Apache Spark, deployed in the cloud which focus on applying machine learning model on streaming Big Data. In this scalable system, the user tweets his health attributes and the application receives the same in real time, extracts the attributes and applies machine learning model to predict user's health status which is then directly messaged to him/her instantly for taking appropriate action. [Display omitted] |
Author | Shetty, Sujala D. Nair, Lekha R. Shetty, Siddhanth D. |
Author_xml | – sequence: 1 givenname: Lekha R. surname: Nair fullname: Nair, Lekha R. email: lekharnair@gmail.com – sequence: 2 givenname: Sujala D. surname: Shetty fullname: Shetty, Sujala D. email: sujala@dubai.bits-pilani.ac.in – sequence: 3 givenname: Siddhanth D. surname: Shetty fullname: Shetty, Siddhanth D. email: siddaredevill@gmail.com |
BookMark | eNqNUMtOwzAQtFCRaAv_YMQ5YR03cXKsKl5SJS5wxXKcTeuS2MFOkfr3OCoHjpxWu_NYzSzIzDqLhNwySBmw4v6QatcP2KFGu0szYCIFngJUF2TOSlElIPJ8RuYAqzwRFRRXZBHCAeJesHJOPtbD0J2M3dEwKP9JaxWwob3Se2ORdqi8ncDeNdhRZ2kYPap-OtVmRxs1Kto6T_eounEfUTUeAx08NkaPxtlrctmqLuDN71yS98eHt81zsn19etmst4leQTYmbZ1BLTTPxargTaXLWmPF81zwrBEtYraKhKIuC9ScCag0lHnkqxLrHErN-JLcnX0H776OGEZ5cEdv40uZQcYF47zKIqs6s7R3IXhs5eBNr_xJMpBTnfIg_9QppzolcBnrjNrNWYsxxrdBL4M2aHVM6lGPsnHmHy4_1UWG0g |
CitedBy_id | crossref_primary_10_1155_2021_6653508 crossref_primary_10_3390_electronics10161872 crossref_primary_10_1016_j_suscom_2022_100719 crossref_primary_10_1016_j_future_2022_11_003 crossref_primary_10_3233_JIFS_213486 crossref_primary_10_1038_s41598_022_26090_5 crossref_primary_10_1007_s00500_019_04014_2 crossref_primary_10_1016_j_future_2019_09_056 crossref_primary_10_1007_s10462_019_09685_9 crossref_primary_10_1016_j_comcom_2020_07_001 crossref_primary_10_1016_j_cmpb_2021_106293 crossref_primary_10_1155_2021_6636898 crossref_primary_10_3389_fmed_2021_784455 crossref_primary_10_29130_dubited_999048 crossref_primary_10_1109_ACCESS_2020_2995572 crossref_primary_10_1007_s00521_021_06219_9 crossref_primary_10_3390_electronics10212668 crossref_primary_10_1016_j_jpdc_2022_04_004 crossref_primary_10_1007_s11227_019_03132_w crossref_primary_10_1007_s11277_021_08857_7 crossref_primary_10_1007_s13748_020_00210_6 crossref_primary_10_1142_S0219622020500091 crossref_primary_10_1016_j_compeleceng_2018_01_007 crossref_primary_10_1002_cpe_6688 crossref_primary_10_1109_ACCESS_2020_3006037 crossref_primary_10_1007_s10586_022_03568_5 crossref_primary_10_7717_peerj_cs_488 crossref_primary_10_3390_sym10100485 crossref_primary_10_1016_j_procs_2021_05_019 crossref_primary_10_2174_2666255813999200904163404 crossref_primary_10_1002_spe_2724 crossref_primary_10_1016_j_matpr_2021_04_356 crossref_primary_10_1016_j_ipm_2021_102758 crossref_primary_10_1088_1757_899X_928_3_032044 crossref_primary_10_21595_jve_2018_20120 crossref_primary_10_3390_electronics9122208 crossref_primary_10_1088_1757_899X_1022_1_012014 crossref_primary_10_1016_j_future_2019_11_008 crossref_primary_10_1007_s00354_023_00211_8 crossref_primary_10_1016_j_datak_2023_102233 crossref_primary_10_32604_cmc_2022_019458 crossref_primary_10_1002_cpe_5107 crossref_primary_10_1109_ACCESS_2023_3262467 crossref_primary_10_1155_2021_6655477 crossref_primary_10_1155_2022_9898831 crossref_primary_10_4018_IJBDAH_2017010101 crossref_primary_10_3390_s19122717 crossref_primary_10_1007_s12559_023_10176_x crossref_primary_10_1007_s40617_023_00864_3 crossref_primary_10_3390_s23020822 crossref_primary_10_12677_CSA_2021_116174 crossref_primary_10_25046_aj060447 crossref_primary_10_1016_j_ijinfomgt_2018_08_006 crossref_primary_10_1002_ima_22667 crossref_primary_10_1108_IJIUS_06_2021_0040 crossref_primary_10_1155_2020_2836064 crossref_primary_10_1007_s00521_021_05798_x crossref_primary_10_1007_s12065_019_00267_w crossref_primary_10_4018_IJIRR_289575 |
Cites_doi | 10.1109/MC.2015.25 10.3414/ME12-02-0010 10.1109/TKDE.2013.109 10.1109/TKDE.2012.29 10.1109/MIS.2014.29 10.1109/TASL.2013.2282191 10.1016/j.chb.2011.11.001 10.1109/MIS.2012.76 10.1109/TKDE.2014.2382600 10.1109/TNSM.2014.2377295 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2018 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.compeleceng.2017.03.009 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0755 |
EndPage | 399 |
ExternalDocumentID | 10_1016_j_compeleceng_2017_03_009 S0045790617305359 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c402t-fb20b7c357463d9c8bce9355732d7fee24b206b86ec31709c085b7ca8eb508c13 |
IEDL.DBID | .~1 |
ISSN | 0045-7906 |
IngestDate | Thu Oct 10 17:09:22 EDT 2024 Thu Sep 26 18:58:06 EDT 2024 Fri Feb 23 02:25:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Streaming data processing Apache spark Big data machine learning Tweet processing Health informatics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-fb20b7c357463d9c8bce9355732d7fee24b206b86ec31709c085b7ca8eb508c13 |
PQID | 2023713392 |
PQPubID | 2045266 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2023713392 crossref_primary_10_1016_j_compeleceng_2017_03_009 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2017_03_009 |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Sakaki, Makoto, Yutaka (bib0012) 2013; 25 Feroz, Mengel (bib0006) 2014 Sumner, Byers, Boochever, Park (bib0014) 2012 Abbas, Adjeroh, Dredze, Paul, Zahedi, Zhao (bib0004) 2014; 2 Lee, Ankit, Alok (bib0017) 2013 Thomas, Grier, Song, Paxson (bib0009) 2011 Dredze (bib0015) 2012; 27 Liu, Cheng, Li, Li (bib0008) 2015; 27 Trigo, Eguzkiza, Martínez-Espronceda, Serrano (bib0018) 2013 Dehong, Li, Cai, Zhang, Ouyang (bib0011) 2014; 22 Denecke, Krieck, Otrusina, Smrz, Dolog, Nejdl (bib0016) 2013; 52 Khorakhun, Saleem (bib0019) 2013 [Online]. Available Samuel, Jérôme, Radu, Engel (bib0007) 2014; 11 Hughes, Rowe, Batey, Lee (bib0013) 2012; 28 Kejela, Esteves, Rong (bib0005) 2014 Song, Sangho, Jong (bib0010) 2011 Zaharia, Chowdhury, Franklin, Shenker, Stoica (bib0021) 2010; 10 Condie, Mineiro, Polyzotis, Weimer (bib0001) 2013 Gebara, Hofstee, Nowka (bib0003) 2015; 48 2016 [Accessed 15 Nov.]. Wu, Zhu, Gong-Qing, Ding (bib0002) 2014; 26 Abbas (10.1016/j.compeleceng.2017.03.009_bib0004) 2014; 2 Trigo (10.1016/j.compeleceng.2017.03.009_bib0018) 2013 Samuel (10.1016/j.compeleceng.2017.03.009_bib0007) 2014; 11 Wu (10.1016/j.compeleceng.2017.03.009_bib0002) 2014; 26 Feroz (10.1016/j.compeleceng.2017.03.009_bib0006) 2014 Thomas (10.1016/j.compeleceng.2017.03.009_bib0009) 2011 Hughes (10.1016/j.compeleceng.2017.03.009_bib0013) 2012; 28 Khorakhun (10.1016/j.compeleceng.2017.03.009_bib0019) 2013 Sumner (10.1016/j.compeleceng.2017.03.009_bib0014) 2012 Denecke (10.1016/j.compeleceng.2017.03.009_bib0016) 2013; 52 Condie (10.1016/j.compeleceng.2017.03.009_bib0001) 2013 Dehong (10.1016/j.compeleceng.2017.03.009_bib0011) 2014; 22 Song (10.1016/j.compeleceng.2017.03.009_bib0010) 2011 Dredze (10.1016/j.compeleceng.2017.03.009_bib0015) 2012; 27 Gebara (10.1016/j.compeleceng.2017.03.009_bib0003) 2015; 48 10.1016/j.compeleceng.2017.03.009_bib0020 Zaharia (10.1016/j.compeleceng.2017.03.009_bib0021) 2010; 10 Kejela (10.1016/j.compeleceng.2017.03.009_bib0005) 2014 Liu (10.1016/j.compeleceng.2017.03.009_bib0008) 2015; 27 Sakaki (10.1016/j.compeleceng.2017.03.009_bib0012) 2013; 25 Lee (10.1016/j.compeleceng.2017.03.009_bib0017) 2013 |
References_xml | – volume: 27 start-page: 81 year: 2012 end-page: 84 ident: bib0015 article-title: How social media will change public health publication-title: Intell Syst IEEE contributor: fullname: Dredze – year: 2011 ident: bib0009 article-title: Suspended accounts in retrospect: an analysis of twitter spam publication-title: ACM SIGCOMM conference on internet measurement conference contributor: fullname: Paxson – volume: 26 start-page: 97 year: 2014 end-page: 107 ident: bib0002 article-title: Data mining with big data publication-title: IEEE Trans Knowl Data Eng contributor: fullname: Ding – volume: 48 start-page: 36 year: 2015 end-page: 41 ident: bib0003 article-title: Second-generation big data systems publication-title: IEEE Comput contributor: fullname: Nowka – year: 2013 ident: bib0001 article-title: Machine learning for big data publication-title: ACM SIGMOD international conference on management of data contributor: fullname: Weimer – volume: 27 start-page: 1696 year: 2015 end-page: 1709 ident: bib0008 article-title: TASC: topic-adaptive sentiment classification on dynamic tweets publication-title: IEEE Trans Knowl Data Eng contributor: fullname: Li – year: 2012 ident: bib0014 article-title: Predicting dark triad personality traits from Twitter usage and a linguistic analysis of tweets publication-title: 11th International conference on machine learning and applications (ICMLA) contributor: fullname: Park – volume: 2 start-page: 60 year: 2014 end-page: 80 ident: bib0004 article-title: Social media analytics for smart health publication-title: Intell Syst IEEE contributor: fullname: Zhao – volume: 52 start-page: 326 year: 2013 end-page: 339 ident: bib0016 article-title: How to exploit twitter for public health monitoring publication-title: Methods Inf Med contributor: fullname: Nejdl – start-page: 301 year: 2011 end-page: 317 ident: bib0010 article-title: Spam filtering in twitter using sender-receiver relationship publication-title: International workshop on recent advances in intrusion detection contributor: fullname: Jong – volume: 11 start-page: 458 year: 2014 end-page: 471 ident: bib0007 article-title: PhishStorm: detecting phishing with streaming analytics publication-title: IEEE Trans Netw Serv Manage contributor: fullname: Engel – volume: 28 start-page: 561 year: 2012 end-page: 569 ident: bib0013 article-title: A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage publication-title: Comput Hum Behav contributor: fullname: Lee – volume: 10 start-page: 95 year: 2010 ident: bib0021 article-title: Spark: cluster computing with working sets publication-title: HotCloud contributor: fullname: Stoica – volume: 25 start-page: 919 year: 2013 end-page: 931 ident: bib0012 article-title: Tweet analysis for real-time event detection and earthquake reporting system development publication-title: IEEE Trans Knowl Data Eng contributor: fullname: Yutaka – year: 2013 ident: bib0018 article-title: A cardiovascular patient follow-up system using Twitter and HL7 publication-title: Proceedings of computing in cardiology conference (CinC) contributor: fullname: Serrano – year: 2013 ident: bib0017 article-title: Real-time disease surveillance using twitter data: demonstration on flu and cancer publication-title: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining contributor: fullname: Alok – year: 2014 ident: bib0006 article-title: Examination of data, rule generation and detection of phishing URLs using online logistic regression publication-title: IEEE international conference on big data contributor: fullname: Mengel – volume: 22 start-page: 293 year: 2014 end-page: 302 ident: bib0011 article-title: Sequential summarization: a full view of twitter trending publication-title: IEEE/ACM Trans Audio Speech Lang Process contributor: fullname: Ouyang – year: 2013 ident: bib0019 article-title: Alerts for remote health monitoring using online social media platforms publication-title: Proceedings of IEEE 15th international conference on e-health networking, applications and services (Healthcom 2013) contributor: fullname: Saleem – year: 2014 ident: bib0005 article-title: Predictive analytics of sensor data using distributed machine learning techniques publication-title: IEEE 6th international conference on cloud computing technology and science (CloudCom) contributor: fullname: Rong – volume: 48 start-page: 36 issue: 1 year: 2015 ident: 10.1016/j.compeleceng.2017.03.009_bib0003 article-title: Second-generation big data systems publication-title: IEEE Comput doi: 10.1109/MC.2015.25 contributor: fullname: Gebara – volume: 52 start-page: 326 issue: 4 year: 2013 ident: 10.1016/j.compeleceng.2017.03.009_bib0016 article-title: How to exploit twitter for public health monitoring publication-title: Methods Inf Med doi: 10.3414/ME12-02-0010 contributor: fullname: Denecke – year: 2013 ident: 10.1016/j.compeleceng.2017.03.009_bib0019 article-title: Alerts for remote health monitoring using online social media platforms contributor: fullname: Khorakhun – year: 2012 ident: 10.1016/j.compeleceng.2017.03.009_bib0014 article-title: Predicting dark triad personality traits from Twitter usage and a linguistic analysis of tweets contributor: fullname: Sumner – year: 2014 ident: 10.1016/j.compeleceng.2017.03.009_bib0006 article-title: Examination of data, rule generation and detection of phishing URLs using online logistic regression contributor: fullname: Feroz – year: 2014 ident: 10.1016/j.compeleceng.2017.03.009_bib0005 article-title: Predictive analytics of sensor data using distributed machine learning techniques contributor: fullname: Kejela – volume: 26 start-page: 97 issue: 1 year: 2014 ident: 10.1016/j.compeleceng.2017.03.009_bib0002 article-title: Data mining with big data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.109 contributor: fullname: Wu – volume: 25 start-page: 919 issue: 4 year: 2013 ident: 10.1016/j.compeleceng.2017.03.009_bib0012 article-title: Tweet analysis for real-time event detection and earthquake reporting system development publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.29 contributor: fullname: Sakaki – start-page: 301 year: 2011 ident: 10.1016/j.compeleceng.2017.03.009_bib0010 article-title: Spam filtering in twitter using sender-receiver relationship contributor: fullname: Song – year: 2013 ident: 10.1016/j.compeleceng.2017.03.009_bib0017 article-title: Real-time disease surveillance using twitter data: demonstration on flu and cancer contributor: fullname: Lee – year: 2013 ident: 10.1016/j.compeleceng.2017.03.009_bib0001 article-title: Machine learning for big data contributor: fullname: Condie – year: 2013 ident: 10.1016/j.compeleceng.2017.03.009_bib0018 article-title: A cardiovascular patient follow-up system using Twitter and HL7 contributor: fullname: Trigo – ident: 10.1016/j.compeleceng.2017.03.009_bib0020 – volume: 10 start-page: 95 issue: 10-10 year: 2010 ident: 10.1016/j.compeleceng.2017.03.009_bib0021 article-title: Spark: cluster computing with working sets publication-title: HotCloud contributor: fullname: Zaharia – volume: 2 start-page: 60 issue: 29 year: 2014 ident: 10.1016/j.compeleceng.2017.03.009_bib0004 article-title: Social media analytics for smart health publication-title: Intell Syst IEEE doi: 10.1109/MIS.2014.29 contributor: fullname: Abbas – volume: 22 start-page: 293 issue: 2 year: 2014 ident: 10.1016/j.compeleceng.2017.03.009_bib0011 article-title: Sequential summarization: a full view of twitter trending publication-title: IEEE/ACM Trans Audio Speech Lang Process doi: 10.1109/TASL.2013.2282191 contributor: fullname: Dehong – volume: 28 start-page: 561 issue: 2 year: 2012 ident: 10.1016/j.compeleceng.2017.03.009_bib0013 article-title: A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage publication-title: Comput Hum Behav doi: 10.1016/j.chb.2011.11.001 contributor: fullname: Hughes – volume: 27 start-page: 81 issue: 4 year: 2012 ident: 10.1016/j.compeleceng.2017.03.009_bib0015 article-title: How social media will change public health publication-title: Intell Syst IEEE doi: 10.1109/MIS.2012.76 contributor: fullname: Dredze – volume: 27 start-page: 1696 issue: 6 year: 2015 ident: 10.1016/j.compeleceng.2017.03.009_bib0008 article-title: TASC: topic-adaptive sentiment classification on dynamic tweets publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2014.2382600 contributor: fullname: Liu – volume: 11 start-page: 458 issue: 4 year: 2014 ident: 10.1016/j.compeleceng.2017.03.009_bib0007 article-title: PhishStorm: detecting phishing with streaming analytics publication-title: IEEE Trans Netw Serv Manage doi: 10.1109/TNSM.2014.2377295 contributor: fullname: Samuel – year: 2011 ident: 10.1016/j.compeleceng.2017.03.009_bib0009 article-title: Suspended accounts in retrospect: an analysis of twitter spam contributor: fullname: Thomas |
SSID | ssj0004618 |
Score | 2.4413543 |
Snippet | •Real-time health status prediction system and the user communicate via Twitter.•Tweet streams are processed and health attributes extracted using Apache... Machine learning is one of the driving forces of science and commerce, but the proliferation of Big Data demands paradigm shifts from traditional methods in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 393 |
SubjectTerms | Apache spark Artificial intelligence Big Data Big data machine learning Computer simulation Data management Data processing Health Health informatics Machine learning Mathematical models Progressions Real time Streaming data processing Tweet processing |
Title | Applying spark based machine learning model on streaming big data for health status prediction |
URI | https://dx.doi.org/10.1016/j.compeleceng.2017.03.009 https://www.proquest.com/docview/2023713392 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KBdGD-MRqLSt4jU2ym8eCl1IsVbEnCz25dDebUqVp6ePqb3cmD6yCIHjMsglhZvPNt5v5ZgBu3NC3QRoJR0tXOCLxxw4dMDhSG8k1EmQ3r67_PAj7Q_E4CkY16FZaGEqrLLG_wPQcrcuRdmnN9mI6JY2vCCJJIZhTkRIS8QkMf7imbz-8LW2kV6CxoNKMbrgL1185XpS2Te1mbDahLK-oqHcqf4tRP9A6D0G9QzgouSPrFK93BDWbHcP-VkXBE3glVknKJYZIsXxnFKQSNsszJi0rW0RMWN7_hs0zRlKR8YyG9HTCKF2UIYtlhTqSkdpos2KLJf3NIQ-ewrB3_9LtO2ULBcfgxnDtpNp3dWR4EImQJ9LE2liqqB5xP4lSa32BE0Idh9YgkXClQQaG88ex1cjcjMfPoJ7NM3sODKmJ5cJ6nha4BZFa6ygIuWcQEHgqYtEAvzKaWhSVMlSVQvamtiytyNLK5Qot3YC7yrzqm9sVIvpfbm9WLlHlt7dS1BCett7Sv_jf0y9hD6_i4sClCfX1cmOvkIKsdStfYy3Y6Tw89QefeDrcDA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Ugo-D-MT6XMFraJLdPBa8SFFSbXtqwZNLd7MpVRpLbf-_M3lgFQTB62YTwkz2m283M98A3Lihb4MsEo6WrnBE6o8cOmBwpDaSayTIbqGu3-uHyVA8PgfPa9Cua2EorbLC_hLTC7SuRlqVNVuzyYRqfEUQSQrBnERK5Do0kA1IXJ2Nu85T0l8pj_RKQBakzuiGm3D9leZFmdvUccbmY0r0ikrJU_lbmPoB2EUUetiD3Yo-srvyDfdhzeYHsLMiKngIL0QsqXiJIVjM3xjFqZRNi6RJy6ouEWNWtMBh7zmjapHRlIb0ZMwoY5QhkWVlgSSjgqPlB5vN6YcOOfEIhg_3g3biVF0UHIN7w4WTad_VkeFBJEKeShNrY0lUPeJ-GmXW-gInhDoOrUEu4UqDJAznj2KrkbwZjx_DRv6e2xNgyE4sF9bztMBdiNRaR0HIPYOYwDMRiyb4tdHUrBTLUHUW2atasbQiSyuXK7R0E25r86pvnlcI6n-5_bx2iaqW34einvC0-5b-6f-efgVbyaDXVd1O_-kMtvFKXJ6_nMPGYr60F8hIFvqy-uI-ARGd3sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+spark+based+machine+learning+model+on+streaming+big+data+for+health+status+prediction&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Nair%2C+Lekha+R.&rft.au=Shetty%2C+Sujala+D.&rft.au=Shetty%2C+Siddhanth+D.&rft.date=2018-01-01&rft.issn=0045-7906&rft.volume=65&rft.spage=393&rft.epage=399&rft_id=info:doi/10.1016%2Fj.compeleceng.2017.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2017_03_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |