Adversarial attacks on graph-level embedding methods: a case study
As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper expl...
Saved in:
Published in | Annals of mathematics and artificial intelligence Vol. 91; no. 2-3; pp. 259 - 285 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1012-2443 1573-7470 |
DOI | 10.1007/s10472-022-09811-4 |
Cover
Loading…
Abstract | As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper explores the effects of such attacks on some graph datasets by applying different graph-level embedding techniques. The main attack strategy involves manipulating training data to produce an altered model. In this context, our goal is to go in-depth about methods, resources, experimental settings, and performance results to observe and study all the aspects that derive from the attack stage. |
---|---|
AbstractList | As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper explores the effects of such attacks on some graph datasets by applying different graph-level embedding techniques. The main attack strategy involves manipulating training data to produce an altered model. In this context, our goal is to go indepth about methods, resources, experimental settings, and performance results to observe and study all the aspects that derive from the attack stage. Keywords Adversarial attacks * Adversarial machine learning * Graph embedding * Graph neural networks * Graph classification Mathematics subject classification (2010) 68T01 * 68T07 * 68R10 Mathematics subject classification (2020) 68T01 * 68T07 * 92B20 * 68R10 As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper explores the effects of such attacks on some graph datasets by applying different graph-level embedding techniques. The main attack strategy involves manipulating training data to produce an altered model. In this context, our goal is to go in-depth about methods, resources, experimental settings, and performance results to observe and study all the aspects that derive from the attack stage. |
Audience | Academic |
Author | Maddalena, Lucia Manzo, Mario Guarracino, Mario Rosario Giordano, Maurizio |
Author_xml | – sequence: 1 givenname: Maurizio orcidid: 0000-0001-9917-7591 surname: Giordano fullname: Giordano, Maurizio email: maurizio.giordano@cnr.it organization: High Performance Computing and Networking Institute (ICAR), National Research Council (CNR) – sequence: 2 givenname: Lucia orcidid: 0000-0002-0567-4624 surname: Maddalena fullname: Maddalena, Lucia organization: High Performance Computing and Networking Institute (ICAR), National Research Council (CNR) – sequence: 3 givenname: Mario orcidid: 0000-0001-8727-9865 surname: Manzo fullname: Manzo, Mario organization: Information Technology Services, University of Naples “L’Orientale” – sequence: 4 givenname: Mario Rosario orcidid: 0000-0003-2870-8134 surname: Guarracino fullname: Guarracino, Mario Rosario organization: Department of Economics and Law, University of Cassino and Southern Lazio |
BookMark | eNp9kMlKBDEQhoMouL6ApwbPrZVlOmlvo7iB4EXPoTrLTLSne0wygm9vxhYED1KECuH_Ksl3SHaHcXCEnFI4pwDyIlEQktXAymoVpbXYIQd0JnkthYTdsgfKaiYE3yeHKb0CQNuo5oBcze2HiwljwL7CnNG8pWocqkXE9bLu3YfrK7fqnLVhWFQrl5ejTZcVVgaTq1Le2M9jsuexT-7kpx-Rl9ub5-v7-vHp7uF6_lgbASzXXjJU6KyDrmmF4lzArLMosbW-4bxT3lvwTHVMzTgyNC1XrZeSGkGpYIIfkbNp7jqO7xuXsn4dN3EoV2rWUsWAcYCSOp9SC-ydDoMfc0RTyrpVMMWaD-V8LmeMtY34BtQEmDimFJ3XJmTMYRwKGHpNQW8V60mxLor1t2K9fRH7g65jWGH8_B_iE5RKeFi4-PuNf6gvhc2Oxw |
CitedBy_id | crossref_primary_10_3389_fmed_2023_1114362 crossref_primary_10_1145_3638057 crossref_primary_10_3390_math11081761 crossref_primary_10_3390_electronics12092132 |
Cites_doi | 10.1145/3447556.3447566 10.1098/rsif.2012.0220 10.1007/s10472-019-09640-y 10.1109/TKDE.2018.2807452 10.1186/s12859-020-03564-9 10.1016/j.socnet.2007.11.001 10.1631/FITEE.2000352 10.1016/0005-2795(75)90109-9 10.1109/ACCESS.2018.2807385 10.1016/j.knosys.2018.03.022 10.1186/s13326-018-0189-6 10.1109/SPW.2018.00016 10.1126/science.1260419 10.1109/TCBB.2021.3078089 10.3390/app9050909 10.1109/ICDM.2005.132 10.1145/3450569.3463560 10.1007/978-3-030-00470-5_23 10.1007/978-3-030-92121-7_19 10.1109/BIBM.2018.8621500 10.1201/9781003202653 10.1086/228631 10.1145/2046684.2046692 10.1007/978-3-030-73241-7_8 10.1007/978-3-031-12515-7_1 10.1021/jm00106a046 10.1609/aaai.v29i1.9491 10.1109/TKDE.2022.3201243 10.1145/3340531.3411866 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2023 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1007/s10472-022-09811-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1573-7470 |
EndPage | 285 |
ExternalDocumentID | A752296400 10_1007_s10472_022_09811_4 |
GrantInformation_xml | – fundername: Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni grantid: project: Computational Intelligence methods for Digital Health funderid: http://dx.doi.org/10.13039/100012740 – fundername: POR Lazio FESR 2014-2020 grantid: project no. H35F21000430002 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c402t-f72a8aede0b694833405bda7a9df633b8ffd0f28b2853a2ac9389f771c4114243 |
IEDL.DBID | U2A |
ISSN | 1012-2443 |
IngestDate | Fri Jul 25 11:12:46 EDT 2025 Tue Jun 10 21:09:25 EDT 2025 Tue Jul 01 03:19:44 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Fri Feb 21 02:43:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | 68T01 Adversarial machine learning Graph embedding Graph neural networks 68T07 Graph classification 68R10 92B20 Adversarial attacks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-f72a8aede0b694833405bda7a9df633b8ffd0f28b2853a2ac9389f771c4114243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9917-7591 0000-0002-0567-4624 0000-0003-2870-8134 0000-0001-8727-9865 |
OpenAccessLink | https://link.springer.com/10.1007/s10472-022-09811-4 |
PQID | 2918202300 |
PQPubID | 2043872 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2918202300 gale_infotracacademiconefile_A752296400 crossref_citationtrail_10_1007_s10472_022_09811_4 crossref_primary_10_1007_s10472_022_09811_4 springer_journals_10_1007_s10472_022_09811_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Annals of mathematics and artificial intelligence |
PublicationTitleAbbrev | Ann Math Artif Intell |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Matthews (CR37) 1975; 405 CR19 CR18 CR17 CR16 CR14 CR36 CR13 CR35 Vlietstra, Vos, Sijbers, van Mulligen, Kors (CR1) 2018; 9 CR12 Granata, Guarracino, Kalyagin, Maddalena, Manipur, Pardalos (CR26) 2020; 88 CR34 CR33 CR10 CR32 CR31 CR30 CR4 Cai, Zheng, Chang (CR7) 2018; 30 Akhtar, Mian (CR11) 2018; 6 Brandes (CR29) 2008; 30 CR6 Manipur, Granata, Maddalena, Guarracino (CR2) 2020; 21 CR28 CR9 CR27 CR25 Thorne, Stumpf (CR3) 2012; 9 CR24 CR23 CR22 CR21 CR20 Chen, Wu, Chen (CR5) 2022; 23 Goyal, Ferrara (CR8) 2018; 151 Jin, Li, Xu, Wang, Ji, Aggarwal, Tang (CR15) 2021; 22 9811_CR33 9811_CR10 W Jin (9811_CR15) 2021; 22 9811_CR32 9811_CR31 9811_CR30 9811_CR19 9811_CR18 9811_CR17 9811_CR16 T Thorne (9811_CR3) 2012; 9 U Brandes (9811_CR29) 2008; 30 9811_CR14 9811_CR36 WJ Vlietstra (9811_CR1) 2018; 9 9811_CR9 9811_CR13 9811_CR35 9811_CR12 9811_CR34 9811_CR4 9811_CR6 H Cai (9811_CR7) 2018; 30 N Akhtar (9811_CR11) 2018; 6 I Granata (9811_CR26) 2020; 88 P Goyal (9811_CR8) 2018; 151 9811_CR22 9811_CR21 9811_CR20 C Chen (9811_CR5) 2022; 23 9811_CR28 9811_CR27 9811_CR25 9811_CR24 9811_CR23 I Manipur (9811_CR2) 2020; 21 BW Matthews (9811_CR37) 1975; 405 |
References_xml | – volume: 22 start-page: 19 issue: 2 year: 2021 end-page: 34 ident: CR15 article-title: Adversarial attacks and defenses on graphs publication-title: SIGKDD Explor. Newsl. doi: 10.1145/3447556.3447566 – ident: CR22 – ident: CR18 – volume: 9 start-page: 2653 issue: 75 year: 2012 end-page: 2666 ident: CR3 article-title: Graph spectral analysis of protein interaction network evolution publication-title: J. R. Soc. Interface. doi: 10.1098/rsif.2012.0220 – volume: 88 start-page: 91 issue: 1 year: 2020 end-page: 104 ident: CR26 article-title: Model simplification for supervised classification of metabolic networks publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-019-09640-y – volume: 30 start-page: 1616 issue: 09 year: 2018 end-page: 1637 ident: CR7 article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2807452 – ident: CR4 – ident: CR14 – ident: CR16 – ident: CR12 – ident: CR30 – ident: CR10 – ident: CR33 – ident: CR35 – volume: 21 start-page: 349 issue: 10 year: 2020 ident: CR2 article-title: Clustering analysis of tumor metabolic networks publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-03564-9 – ident: CR6 – ident: CR25 – ident: CR27 – volume: 30 start-page: 136 issue: 2 year: 2008 end-page: 145 ident: CR29 article-title: On variants of shortest-path betweenness centrality and their generic computation publication-title: Social Networks doi: 10.1016/j.socnet.2007.11.001 – volume: 23 start-page: 86 year: 2022 end-page: 100 ident: CR5 article-title: Dynamic grouping of heterogeneous agents for exploration and strike missions publication-title: Front. Inform. Technol. Electron. Eng. doi: 10.1631/FITEE.2000352 – ident: CR23 – volume: 405 start-page: 442 issue: 2 year: 1975 end-page: 451 ident: CR37 article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme publication-title: Biochimica et Biophysica Acta (BBA) - Protein Structure doi: 10.1016/0005-2795(75)90109-9 – ident: CR21 – ident: CR19 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR9 – ident: CR32 – ident: CR34 – ident: CR36 – volume: 6 start-page: 14410 year: 2018 end-page: 14430 ident: CR11 article-title: Threat of adversarial attacks on deep learning in computer vision: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – volume: 151 start-page: 78 year: 2018 end-page: 94 ident: CR8 article-title: Graph embedding techniques, applications, and performance: A survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.022 – ident: CR28 – ident: CR24 – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 10 ident: CR1 article-title: Using predicate and provenance information from a knowledge graph for drug efficacy screening publication-title: J. Biomed. Semantics doi: 10.1186/s13326-018-0189-6 – ident: CR20 – volume: 23 start-page: 86 year: 2022 ident: 9811_CR5 publication-title: Front. Inform. Technol. Electron. Eng. doi: 10.1631/FITEE.2000352 – ident: 9811_CR13 doi: 10.1109/SPW.2018.00016 – ident: 9811_CR28 doi: 10.1126/science.1260419 – ident: 9811_CR32 doi: 10.1109/TCBB.2021.3078089 – ident: 9811_CR36 – ident: 9811_CR12 doi: 10.3390/app9050909 – ident: 9811_CR24 doi: 10.1109/ICDM.2005.132 – ident: 9811_CR18 – ident: 9811_CR20 doi: 10.1145/3450569.3463560 – volume: 30 start-page: 136 issue: 2 year: 2008 ident: 9811_CR29 publication-title: Social Networks doi: 10.1016/j.socnet.2007.11.001 – volume: 405 start-page: 442 issue: 2 year: 1975 ident: 9811_CR37 publication-title: Biochimica et Biophysica Acta (BBA) - Protein Structure doi: 10.1016/0005-2795(75)90109-9 – volume: 151 start-page: 78 year: 2018 ident: 9811_CR8 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.022 – ident: 9811_CR14 doi: 10.1007/978-3-030-00470-5_23 – ident: 9811_CR21 doi: 10.1007/978-3-030-92121-7_19 – ident: 9811_CR25 doi: 10.1109/BIBM.2018.8621500 – ident: 9811_CR27 doi: 10.1186/s12859-020-03564-9 – ident: 9811_CR33 – volume: 88 start-page: 91 issue: 1 year: 2020 ident: 9811_CR26 publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-019-09640-y – ident: 9811_CR35 – ident: 9811_CR4 doi: 10.1201/9781003202653 – ident: 9811_CR30 doi: 10.1086/228631 – ident: 9811_CR10 doi: 10.1145/2046684.2046692 – volume: 6 start-page: 14410 year: 2018 ident: 9811_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – ident: 9811_CR9 doi: 10.1007/978-3-030-73241-7_8 – ident: 9811_CR16 – ident: 9811_CR22 doi: 10.1007/978-3-031-12515-7_1 – ident: 9811_CR31 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 9811_CR1 publication-title: J. Biomed. Semantics doi: 10.1186/s13326-018-0189-6 – volume: 9 start-page: 2653 issue: 75 year: 2012 ident: 9811_CR3 publication-title: J. R. Soc. Interface. doi: 10.1098/rsif.2012.0220 – ident: 9811_CR23 doi: 10.1021/jm00106a046 – ident: 9811_CR19 – ident: 9811_CR6 doi: 10.1609/aaai.v29i1.9491 – volume: 30 start-page: 1616 issue: 09 year: 2018 ident: 9811_CR7 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2807452 – volume: 21 start-page: 349 issue: 10 year: 2020 ident: 9811_CR2 publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-03564-9 – ident: 9811_CR17 doi: 10.1109/TKDE.2022.3201243 – volume: 22 start-page: 19 issue: 2 year: 2021 ident: 9811_CR15 publication-title: SIGKDD Explor. Newsl. doi: 10.1145/3447556.3447566 – ident: 9811_CR34 doi: 10.1145/3340531.3411866 |
SSID | ssj0009686 |
Score | 2.366027 |
Snippet | As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 259 |
SubjectTerms | Algorithms Analysis Artificial Intelligence Case studies Classification Complex Systems Computational linguistics Computer Science Cybersecurity Embedding Graph representations Language processing Machine learning Mathematics Methods Natural language interfaces Neural networks Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXPTgAzWiaPZg4kE3lm3pw4sRAyEmEGMk4bbZ3W5PCGjr_3embCFq5Nak7baZ2Z1v9jHfB3BlgrawNkk5gpPmxEjH40RkXFjjhQYBP_GpOHk4Cgfj4HnSmbgFt9wdq6xiYhmo07mhNfI7kRDVOCbM3sPig5NqFO2uOgmNbahjCI5x8lXv9kYvr2va3bDUeiQSK45A5ruyGVc8F0SC02l2L4nbOJP6AU2_A_SfndISgPoHsOcyR_a4dPUhbNlZA_YrVQbmBmkDdocrJtb8CLql4nKuqJ8xVRRUUs_mM1YSVfMpHRli9l3blDCMLfWk83ummEF4YyX57DGM-723pwF3ugnc4Gyw4FkkVKxsaj0dJkHs-5iU6VRFKkmz0Pd1nGWpl4lYC8RqJZRJMGvJoqiNjqPCN_8EarP5zJ4CIz0YBDmt01AFylhNFHDWZJglBLYT6Sa0K5NJ40jFSdtiKtd0yGRmiWaWpZll0ISb1TuLJaXGxqevyROSxhu2bJQrG8D_I-Yq-RhRhwoxFDWhVTlLuoGYy3W3acJt5cD17f-_e7a5tXPYoYvlobEW1IrPL3uB6UmhL10f_AYH6N2r priority: 102 providerName: ProQuest |
Title | Adversarial attacks on graph-level embedding methods: a case study |
URI | https://link.springer.com/article/10.1007/s10472-022-09811-4 https://www.proquest.com/docview/2918202300 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTgAzWiSHow8aBNoLvswxsQHtFAjJEET03b7Z4QjLv-f2eWXfCdeOqh3XYzM-03TWe-AbgwbktYG0YcwUlzYqTjQShiLqxpegYBP3QoOXk88UZT93bWnuVJYUkR7V48SWYn9YdkN9cXnKLPm2HQwptPCSpturujFU9FZ0O162X1HYm4iiN4OXmqzM9zfIKjr4fyt9fRDHQG-7Cbe4uss1LvAWzZRRX2ikoMLN-YVdgZr9lXk0PoZlWWE0W2xVSaUho9Wy5YRk7N5xQmxOyzthHhFlvVkE5umGIGIY1lhLNHMB30H3sjntdK4AZvgCmPfaECZSPb1F7oBo6DjpiOlK_CKPYcRwdxHDVjEWiB-KyEMiF6KrHvt1BZlOzmHEN5sVzYE2BUAwaBTevIU64yVhPtmzUxegaubfu6Bq1CZNLkROJUz2IuNxTIJGaJYpaZmKVbg6v1Ny8rGo0_R1-SJiTtMZzZqDxVAP-P2Kpkxycj8vD4qUG9UJbMN18iRUis9Hi3wu7rQoGb7t_XPf3f8DPYpmVWgWN1KKevb_YcXZRUN6AUDIYNqHQG3e6E2uHTXR_bbn9y_4C9Pa_XyKz2HeJ537M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5t4dBygAJFLNDWBxAHapG1QxIjIbSlLMtj9wQSN2M7zgl2gQSh_qn-RmbyYNVW7I1rHk4yHvsbxzPfB7Dpwo7wXqUcwclyYqTjiRIZF94FkUPAV5KKkwfDqH8Vnl3vXbfgT1MLQ2mVzZxYTtTp2NE_8l2hiGocA-bg8P6Bk2oU7a42EhqVW5z738-4ZMsPTn9h_24J0Tu-POrzWlWAO1wrFTyLhUmMT31gIxUmUmLIYlMTG5VmkZQ2ybI0yERiBSKZEcYpxPQsjjv4WVQWJrHdDzAbSqloRCW9kwnJb1QqSxJlFkfYlHWRTl2qF8aCU-58oJIOrtv-AsJ_4eC_fdkS7nqfYb6OU1m3cqxFaPnREiw0GhCsnhKWYG7wyvuaL8PPUt85N-TVzBQFFfCz8YiVtNj8lhKUmL-zPiXEZJV6db7PDHMIpqykuv0CV-9izxWYGY1HfhUYqc8gpFqbRiY0zlsinPMuw5gk9HuxbUOnMZl2NYU5KWnc6gn5MplZo5l1aWYdtmHn9Z77isBj6tXb1BOaRje27ExdpIDvRzxZuhuT-0Y48bVho-ksXQ_7XE-ctA0_mg6cnH77uWvTW_sOH_uXgwt9cTo8X4dPdLBKV9uAmeLxyX_FwKiw30pvZHDz3u7_ApwVGQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9QGJA1i0TsjCDQpVWVpxAImbZTv2CQKi4f-ZcZK2rBJnO3bksf1m5HlvAPZN2BbWphlHcNKcFOl4kgrHhTWtyCDgpwGRk_uDqPcQXj-ePE6w-H22e_0kWXIaSKUpL45fM3c8QXwLY8EpE72VJm2MgqZhBiMV_1DbiTpj2d3I13okESuOQBZUtJmfx_gETV8v6G8vpR6AukuwUHmO7Kw09TJM2XwFFuuqDKw6pCsw3x8psQ5X4dxXXB4q2mdMFQVR6tlLzrxQNX-ilCFmn7XNCMNYWU96eMoUMwhvzIvPrsFD9_K-0-NV3QRuMBosuIuFSpTNbEtHaZgEATplOlOxSjMXBYFOnMtaTiRaIFYroUyKXouL4zYajohvwTo08pfcbgCjejAIclpnkQqVsZok4Kxx6CWE9iTWTWjXSyZNJSpOtS2e5FgOmZZZ4jJLv8wybMLh6JvXUlLjz94HZAlJ5w1HNqqiDeD_kXKVPItpQ0V4FTVhuzaWrA7iUIqUFOoxzsLmo9qA4-bf5938X_c9mL276Mrbq8HNFszRjGU-2TY0ird3u4OeS6F3_eb8AC7L4F8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+attacks+on+graph-level+embedding+methods%3A+a+case+study&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Giordano%2C+Maurizio&rft.au=Maddalena%2C+Lucia&rft.au=Manzo%2C+Mario&rft.au=Guarracino%2C+Mario+Rosario&rft.date=2023-06-01&rft.pub=Springer+International+Publishing&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=91&rft.issue=2-3&rft.spage=259&rft.epage=285&rft_id=info:doi/10.1007%2Fs10472-022-09811-4&rft.externalDocID=10_1007_s10472_022_09811_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |