Adversarial attacks on graph-level embedding methods: a case study

As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper expl...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 91; no. 2-3; pp. 259 - 285
Main Authors Giordano, Maurizio, Maddalena, Lucia, Manzo, Mario, Guarracino, Mario Rosario
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1012-2443
1573-7470
DOI10.1007/s10472-022-09811-4

Cover

Loading…
Abstract As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper explores the effects of such attacks on some graph datasets by applying different graph-level embedding techniques. The main attack strategy involves manipulating training data to produce an altered model. In this context, our goal is to go in-depth about methods, resources, experimental settings, and performance results to observe and study all the aspects that derive from the attack stage.
AbstractList As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper explores the effects of such attacks on some graph datasets by applying different graph-level embedding techniques. The main attack strategy involves manipulating training data to produce an altered model. In this context, our goal is to go indepth about methods, resources, experimental settings, and performance results to observe and study all the aspects that derive from the attack stage. Keywords Adversarial attacks * Adversarial machine learning * Graph embedding * Graph neural networks * Graph classification Mathematics subject classification (2010) 68T01 * 68T07 * 68R10 Mathematics subject classification (2020) 68T01 * 68T07 * 92B20 * 68R10
As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data undergo perturbations. This is the case when an external entity maliciously alters training data to invalidate the embedding. This paper explores the effects of such attacks on some graph datasets by applying different graph-level embedding techniques. The main attack strategy involves manipulating training data to produce an altered model. In this context, our goal is to go in-depth about methods, resources, experimental settings, and performance results to observe and study all the aspects that derive from the attack stage.
Audience Academic
Author Maddalena, Lucia
Manzo, Mario
Guarracino, Mario Rosario
Giordano, Maurizio
Author_xml – sequence: 1
  givenname: Maurizio
  orcidid: 0000-0001-9917-7591
  surname: Giordano
  fullname: Giordano, Maurizio
  email: maurizio.giordano@cnr.it
  organization: High Performance Computing and Networking Institute (ICAR), National Research Council (CNR)
– sequence: 2
  givenname: Lucia
  orcidid: 0000-0002-0567-4624
  surname: Maddalena
  fullname: Maddalena, Lucia
  organization: High Performance Computing and Networking Institute (ICAR), National Research Council (CNR)
– sequence: 3
  givenname: Mario
  orcidid: 0000-0001-8727-9865
  surname: Manzo
  fullname: Manzo, Mario
  organization: Information Technology Services, University of Naples “L’Orientale”
– sequence: 4
  givenname: Mario Rosario
  orcidid: 0000-0003-2870-8134
  surname: Guarracino
  fullname: Guarracino, Mario Rosario
  organization: Department of Economics and Law, University of Cassino and Southern Lazio
BookMark eNp9kMlKBDEQhoMouL6ApwbPrZVlOmlvo7iB4EXPoTrLTLSne0wygm9vxhYED1KECuH_Ksl3SHaHcXCEnFI4pwDyIlEQktXAymoVpbXYIQd0JnkthYTdsgfKaiYE3yeHKb0CQNuo5oBcze2HiwljwL7CnNG8pWocqkXE9bLu3YfrK7fqnLVhWFQrl5ejTZcVVgaTq1Le2M9jsuexT-7kpx-Rl9ub5-v7-vHp7uF6_lgbASzXXjJU6KyDrmmF4lzArLMosbW-4bxT3lvwTHVMzTgyNC1XrZeSGkGpYIIfkbNp7jqO7xuXsn4dN3EoV2rWUsWAcYCSOp9SC-ydDoMfc0RTyrpVMMWaD-V8LmeMtY34BtQEmDimFJ3XJmTMYRwKGHpNQW8V60mxLor1t2K9fRH7g65jWGH8_B_iE5RKeFi4-PuNf6gvhc2Oxw
CitedBy_id crossref_primary_10_3389_fmed_2023_1114362
crossref_primary_10_1145_3638057
crossref_primary_10_3390_math11081761
crossref_primary_10_3390_electronics12092132
Cites_doi 10.1145/3447556.3447566
10.1098/rsif.2012.0220
10.1007/s10472-019-09640-y
10.1109/TKDE.2018.2807452
10.1186/s12859-020-03564-9
10.1016/j.socnet.2007.11.001
10.1631/FITEE.2000352
10.1016/0005-2795(75)90109-9
10.1109/ACCESS.2018.2807385
10.1016/j.knosys.2018.03.022
10.1186/s13326-018-0189-6
10.1109/SPW.2018.00016
10.1126/science.1260419
10.1109/TCBB.2021.3078089
10.3390/app9050909
10.1109/ICDM.2005.132
10.1145/3450569.3463560
10.1007/978-3-030-00470-5_23
10.1007/978-3-030-92121-7_19
10.1109/BIBM.2018.8621500
10.1201/9781003202653
10.1086/228631
10.1145/2046684.2046692
10.1007/978-3-030-73241-7_8
10.1007/978-3-031-12515-7_1
10.1021/jm00106a046
10.1609/aaai.v29i1.9491
10.1109/TKDE.2022.3201243
10.1145/3340531.3411866
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2023 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s10472-022-09811-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 285
ExternalDocumentID A752296400
10_1007_s10472_022_09811_4
GrantInformation_xml – fundername: Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
  grantid: project: Computational Intelligence methods for Digital Health
  funderid: http://dx.doi.org/10.13039/100012740
– fundername: POR Lazio FESR 2014-2020
  grantid: project no. H35F21000430002
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c402t-f72a8aede0b694833405bda7a9df633b8ffd0f28b2853a2ac9389f771c4114243
IEDL.DBID U2A
ISSN 1012-2443
IngestDate Fri Jul 25 11:12:46 EDT 2025
Tue Jun 10 21:09:25 EDT 2025
Tue Jul 01 03:19:44 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Fri Feb 21 02:43:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2-3
Keywords 68T01
Adversarial machine learning
Graph embedding
Graph neural networks
68T07
Graph classification
68R10
92B20
Adversarial attacks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-f72a8aede0b694833405bda7a9df633b8ffd0f28b2853a2ac9389f771c4114243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9917-7591
0000-0002-0567-4624
0000-0003-2870-8134
0000-0001-8727-9865
OpenAccessLink https://link.springer.com/10.1007/s10472-022-09811-4
PQID 2918202300
PQPubID 2043872
PageCount 27
ParticipantIDs proquest_journals_2918202300
gale_infotracacademiconefile_A752296400
crossref_citationtrail_10_1007_s10472_022_09811_4
crossref_primary_10_1007_s10472_022_09811_4
springer_journals_10_1007_s10472_022_09811_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Matthews (CR37) 1975; 405
CR19
CR18
CR17
CR16
CR14
CR36
CR13
CR35
Vlietstra, Vos, Sijbers, van Mulligen, Kors (CR1) 2018; 9
CR12
Granata, Guarracino, Kalyagin, Maddalena, Manipur, Pardalos (CR26) 2020; 88
CR34
CR33
CR10
CR32
CR31
CR30
CR4
Cai, Zheng, Chang (CR7) 2018; 30
Akhtar, Mian (CR11) 2018; 6
Brandes (CR29) 2008; 30
CR6
Manipur, Granata, Maddalena, Guarracino (CR2) 2020; 21
CR28
CR9
CR27
CR25
Thorne, Stumpf (CR3) 2012; 9
CR24
CR23
CR22
CR21
CR20
Chen, Wu, Chen (CR5) 2022; 23
Goyal, Ferrara (CR8) 2018; 151
Jin, Li, Xu, Wang, Ji, Aggarwal, Tang (CR15) 2021; 22
9811_CR33
9811_CR10
W Jin (9811_CR15) 2021; 22
9811_CR32
9811_CR31
9811_CR30
9811_CR19
9811_CR18
9811_CR17
9811_CR16
T Thorne (9811_CR3) 2012; 9
U Brandes (9811_CR29) 2008; 30
9811_CR14
9811_CR36
WJ Vlietstra (9811_CR1) 2018; 9
9811_CR9
9811_CR13
9811_CR35
9811_CR12
9811_CR34
9811_CR4
9811_CR6
H Cai (9811_CR7) 2018; 30
N Akhtar (9811_CR11) 2018; 6
I Granata (9811_CR26) 2020; 88
P Goyal (9811_CR8) 2018; 151
9811_CR22
9811_CR21
9811_CR20
C Chen (9811_CR5) 2022; 23
9811_CR28
9811_CR27
9811_CR25
9811_CR24
9811_CR23
I Manipur (9811_CR2) 2020; 21
BW Matthews (9811_CR37) 1975; 405
References_xml – volume: 22
  start-page: 19
  issue: 2
  year: 2021
  end-page: 34
  ident: CR15
  article-title: Adversarial attacks and defenses on graphs
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/3447556.3447566
– ident: CR22
– ident: CR18
– volume: 9
  start-page: 2653
  issue: 75
  year: 2012
  end-page: 2666
  ident: CR3
  article-title: Graph spectral analysis of protein interaction network evolution
  publication-title: J. R. Soc. Interface.
  doi: 10.1098/rsif.2012.0220
– volume: 88
  start-page: 91
  issue: 1
  year: 2020
  end-page: 104
  ident: CR26
  article-title: Model simplification for supervised classification of metabolic networks
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-019-09640-y
– volume: 30
  start-page: 1616
  issue: 09
  year: 2018
  end-page: 1637
  ident: CR7
  article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807452
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR35
– volume: 21
  start-page: 349
  issue: 10
  year: 2020
  ident: CR2
  article-title: Clustering analysis of tumor metabolic networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-03564-9
– ident: CR6
– ident: CR25
– ident: CR27
– volume: 30
  start-page: 136
  issue: 2
  year: 2008
  end-page: 145
  ident: CR29
  article-title: On variants of shortest-path betweenness centrality and their generic computation
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2007.11.001
– volume: 23
  start-page: 86
  year: 2022
  end-page: 100
  ident: CR5
  article-title: Dynamic grouping of heterogeneous agents for exploration and strike missions
  publication-title: Front. Inform. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2000352
– ident: CR23
– volume: 405
  start-page: 442
  issue: 2
  year: 1975
  end-page: 451
  ident: CR37
  article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme
  publication-title: Biochimica et Biophysica Acta (BBA) - Protein Structure
  doi: 10.1016/0005-2795(75)90109-9
– ident: CR21
– ident: CR19
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR9
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 6
  start-page: 14410
  year: 2018
  end-page: 14430
  ident: CR11
  article-title: Threat of adversarial attacks on deep learning in computer vision: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– volume: 151
  start-page: 78
  year: 2018
  end-page: 94
  ident: CR8
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– ident: CR28
– ident: CR24
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  ident: CR1
  article-title: Using predicate and provenance information from a knowledge graph for drug efficacy screening
  publication-title: J. Biomed. Semantics
  doi: 10.1186/s13326-018-0189-6
– ident: CR20
– volume: 23
  start-page: 86
  year: 2022
  ident: 9811_CR5
  publication-title: Front. Inform. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2000352
– ident: 9811_CR13
  doi: 10.1109/SPW.2018.00016
– ident: 9811_CR28
  doi: 10.1126/science.1260419
– ident: 9811_CR32
  doi: 10.1109/TCBB.2021.3078089
– ident: 9811_CR36
– ident: 9811_CR12
  doi: 10.3390/app9050909
– ident: 9811_CR24
  doi: 10.1109/ICDM.2005.132
– ident: 9811_CR18
– ident: 9811_CR20
  doi: 10.1145/3450569.3463560
– volume: 30
  start-page: 136
  issue: 2
  year: 2008
  ident: 9811_CR29
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2007.11.001
– volume: 405
  start-page: 442
  issue: 2
  year: 1975
  ident: 9811_CR37
  publication-title: Biochimica et Biophysica Acta (BBA) - Protein Structure
  doi: 10.1016/0005-2795(75)90109-9
– volume: 151
  start-page: 78
  year: 2018
  ident: 9811_CR8
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– ident: 9811_CR14
  doi: 10.1007/978-3-030-00470-5_23
– ident: 9811_CR21
  doi: 10.1007/978-3-030-92121-7_19
– ident: 9811_CR25
  doi: 10.1109/BIBM.2018.8621500
– ident: 9811_CR27
  doi: 10.1186/s12859-020-03564-9
– ident: 9811_CR33
– volume: 88
  start-page: 91
  issue: 1
  year: 2020
  ident: 9811_CR26
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-019-09640-y
– ident: 9811_CR35
– ident: 9811_CR4
  doi: 10.1201/9781003202653
– ident: 9811_CR30
  doi: 10.1086/228631
– ident: 9811_CR10
  doi: 10.1145/2046684.2046692
– volume: 6
  start-page: 14410
  year: 2018
  ident: 9811_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– ident: 9811_CR9
  doi: 10.1007/978-3-030-73241-7_8
– ident: 9811_CR16
– ident: 9811_CR22
  doi: 10.1007/978-3-031-12515-7_1
– ident: 9811_CR31
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 9811_CR1
  publication-title: J. Biomed. Semantics
  doi: 10.1186/s13326-018-0189-6
– volume: 9
  start-page: 2653
  issue: 75
  year: 2012
  ident: 9811_CR3
  publication-title: J. R. Soc. Interface.
  doi: 10.1098/rsif.2012.0220
– ident: 9811_CR23
  doi: 10.1021/jm00106a046
– ident: 9811_CR19
– ident: 9811_CR6
  doi: 10.1609/aaai.v29i1.9491
– volume: 30
  start-page: 1616
  issue: 09
  year: 2018
  ident: 9811_CR7
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807452
– volume: 21
  start-page: 349
  issue: 10
  year: 2020
  ident: 9811_CR2
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-03564-9
– ident: 9811_CR17
  doi: 10.1109/TKDE.2022.3201243
– volume: 22
  start-page: 19
  issue: 2
  year: 2021
  ident: 9811_CR15
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/3447556.3447566
– ident: 9811_CR34
  doi: 10.1145/3340531.3411866
SSID ssj0009686
Score 2.366027
Snippet As the number of graph-level embedding techniques increases at an unprecedented speed, questions arise about their behavior and performance when training data...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 259
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Case studies
Classification
Complex Systems
Computational linguistics
Computer Science
Cybersecurity
Embedding
Graph representations
Language processing
Machine learning
Mathematics
Methods
Natural language interfaces
Neural networks
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXPTgAzWiaPZg4kE3lm3pw4sRAyEmEGMk4bbZ3W5PCGjr_3embCFq5Nak7baZ2Z1v9jHfB3BlgrawNkk5gpPmxEjH40RkXFjjhQYBP_GpOHk4Cgfj4HnSmbgFt9wdq6xiYhmo07mhNfI7kRDVOCbM3sPig5NqFO2uOgmNbahjCI5x8lXv9kYvr2va3bDUeiQSK45A5ruyGVc8F0SC02l2L4nbOJP6AU2_A_SfndISgPoHsOcyR_a4dPUhbNlZA_YrVQbmBmkDdocrJtb8CLql4nKuqJ8xVRRUUs_mM1YSVfMpHRli9l3blDCMLfWk83ummEF4YyX57DGM-723pwF3ugnc4Gyw4FkkVKxsaj0dJkHs-5iU6VRFKkmz0Pd1nGWpl4lYC8RqJZRJMGvJoqiNjqPCN_8EarP5zJ4CIz0YBDmt01AFylhNFHDWZJglBLYT6Sa0K5NJ40jFSdtiKtd0yGRmiWaWpZll0ISb1TuLJaXGxqevyROSxhu2bJQrG8D_I-Yq-RhRhwoxFDWhVTlLuoGYy3W3acJt5cD17f-_e7a5tXPYoYvlobEW1IrPL3uB6UmhL10f_AYH6N2r
  priority: 102
  providerName: ProQuest
Title Adversarial attacks on graph-level embedding methods: a case study
URI https://link.springer.com/article/10.1007/s10472-022-09811-4
https://www.proquest.com/docview/2918202300
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXPTgAzWiSHow8aBNoLvswxsQHtFAjJEET03b7Z4QjLv-f2eWXfCdeOqh3XYzM-03TWe-AbgwbktYG0YcwUlzYqTjQShiLqxpegYBP3QoOXk88UZT93bWnuVJYUkR7V48SWYn9YdkN9cXnKLPm2HQwptPCSpturujFU9FZ0O162X1HYm4iiN4OXmqzM9zfIKjr4fyt9fRDHQG-7Cbe4uss1LvAWzZRRX2ikoMLN-YVdgZr9lXk0PoZlWWE0W2xVSaUho9Wy5YRk7N5xQmxOyzthHhFlvVkE5umGIGIY1lhLNHMB30H3sjntdK4AZvgCmPfaECZSPb1F7oBo6DjpiOlK_CKPYcRwdxHDVjEWiB-KyEMiF6KrHvt1BZlOzmHEN5sVzYE2BUAwaBTevIU64yVhPtmzUxegaubfu6Bq1CZNLkROJUz2IuNxTIJGaJYpaZmKVbg6v1Ny8rGo0_R1-SJiTtMZzZqDxVAP-P2Kpkxycj8vD4qUG9UJbMN18iRUis9Hi3wu7rQoGb7t_XPf3f8DPYpmVWgWN1KKevb_YcXZRUN6AUDIYNqHQG3e6E2uHTXR_bbn9y_4C9Pa_XyKz2HeJ537M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5t4dBygAJFLNDWBxAHapG1QxIjIbSlLMtj9wQSN2M7zgl2gQSh_qn-RmbyYNVW7I1rHk4yHvsbxzPfB7Dpwo7wXqUcwclyYqTjiRIZF94FkUPAV5KKkwfDqH8Vnl3vXbfgT1MLQ2mVzZxYTtTp2NE_8l2hiGocA-bg8P6Bk2oU7a42EhqVW5z738-4ZMsPTn9h_24J0Tu-POrzWlWAO1wrFTyLhUmMT31gIxUmUmLIYlMTG5VmkZQ2ybI0yERiBSKZEcYpxPQsjjv4WVQWJrHdDzAbSqloRCW9kwnJb1QqSxJlFkfYlHWRTl2qF8aCU-58oJIOrtv-AsJ_4eC_fdkS7nqfYb6OU1m3cqxFaPnREiw0GhCsnhKWYG7wyvuaL8PPUt85N-TVzBQFFfCz8YiVtNj8lhKUmL-zPiXEZJV6db7PDHMIpqykuv0CV-9izxWYGY1HfhUYqc8gpFqbRiY0zlsinPMuw5gk9HuxbUOnMZl2NYU5KWnc6gn5MplZo5l1aWYdtmHn9Z77isBj6tXb1BOaRje27ExdpIDvRzxZuhuT-0Y48bVho-ksXQ_7XE-ctA0_mg6cnH77uWvTW_sOH_uXgwt9cTo8X4dPdLBKV9uAmeLxyX_FwKiw30pvZHDz3u7_ApwVGQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9QGJA1i0TsjCDQpVWVpxAImbZTv2CQKi4f-ZcZK2rBJnO3bksf1m5HlvAPZN2BbWphlHcNKcFOl4kgrHhTWtyCDgpwGRk_uDqPcQXj-ePE6w-H22e_0kWXIaSKUpL45fM3c8QXwLY8EpE72VJm2MgqZhBiMV_1DbiTpj2d3I13okESuOQBZUtJmfx_gETV8v6G8vpR6AukuwUHmO7Kw09TJM2XwFFuuqDKw6pCsw3x8psQ5X4dxXXB4q2mdMFQVR6tlLzrxQNX-ilCFmn7XNCMNYWU96eMoUMwhvzIvPrsFD9_K-0-NV3QRuMBosuIuFSpTNbEtHaZgEATplOlOxSjMXBYFOnMtaTiRaIFYroUyKXouL4zYajohvwTo08pfcbgCjejAIclpnkQqVsZok4Kxx6CWE9iTWTWjXSyZNJSpOtS2e5FgOmZZZ4jJLv8wybMLh6JvXUlLjz94HZAlJ5w1HNqqiDeD_kXKVPItpQ0V4FTVhuzaWrA7iUIqUFOoxzsLmo9qA4-bf5938X_c9mL276Mrbq8HNFszRjGU-2TY0ird3u4OeS6F3_eb8AC7L4F8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+attacks+on+graph-level+embedding+methods%3A+a+case+study&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Giordano%2C+Maurizio&rft.au=Maddalena%2C+Lucia&rft.au=Manzo%2C+Mario&rft.au=Guarracino%2C+Mario+Rosario&rft.date=2023-06-01&rft.pub=Springer+International+Publishing&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=91&rft.issue=2-3&rft.spage=259&rft.epage=285&rft_id=info:doi/10.1007%2Fs10472-022-09811-4&rft.externalDocID=10_1007_s10472_022_09811_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon