Time series extrinsic regression Predicting numeric values from time series data
This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series a...
Saved in:
Published in | Data mining and knowledge discovery Vol. 35; no. 3; pp. 1032 - 1060 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-021-00745-9 |
Cover
Loading…
Abstract | This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines. |
---|---|
AbstractList | This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines. This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines.This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines. |
Author | Bergmeir, Christoph Webb, Geoffrey I. Petitjean, François Tan, Chang Wei |
Author_xml | – sequence: 1 givenname: Chang Wei orcidid: 0000-0001-8377-3241 surname: Tan fullname: Tan, Chang Wei email: chang.tan@monash.edu organization: Faculty of Information Technology, Monash University – sequence: 2 givenname: Christoph surname: Bergmeir fullname: Bergmeir, Christoph organization: Faculty of Information Technology, Monash University – sequence: 3 givenname: François surname: Petitjean fullname: Petitjean, François organization: Faculty of Information Technology, Monash University – sequence: 4 givenname: Geoffrey I. surname: Webb fullname: Webb, Geoffrey I. organization: Faculty of Information Technology, Monash University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33727888$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNUrFX_gAfZo5fVSbLZJBdBil8geKngLaxxUlO2WU12Rf-90VZRD54mQ96P4ZmQUegCErJP4YgCyONEoaaqBEbLvFai1BtkmwrJSynqu1F-c1WVQlEYk0lKCwAQjMMWGXMumVRKbZNi5pdYJIweU4GvffQheVtEnEdMyXdhl2y6pk24t5475Pb8bDa9LK9vLq6mp9elrYD1pZMg61oylLZSStsGH5S7V1oKLXNZ7RzTFCw24JzSglfSoVN1VaFGqV3Fd8jJKvdpuF_ig8XQx6Y1T9Evm_hmusab3z_BP5p592KkFpTyj4DDdUDsngdMvVn6ZLFtm4DdkAwTwBjk22iWHvzs-i75wpIFbCWwsUspovuWUDAf7M2KvcnszSd7o7NJ_TFZ3zd9Zpjv9e3_Vr6yptwT5hjNohtiyLz_c70DuR-X9g |
CitedBy_id | crossref_primary_10_3389_frvir_2023_1307925 crossref_primary_10_1007_s10489_023_04590_9 crossref_primary_10_1093_gji_ggac290 crossref_primary_10_1016_j_rcim_2025_103010 crossref_primary_10_1142_S2196888824500234 crossref_primary_10_1016_j_patcog_2025_111546 crossref_primary_10_1016_j_chaos_2022_112243 crossref_primary_10_3390_s24165203 crossref_primary_10_1109_TNNLS_2023_3287318 crossref_primary_10_1109_TMAG_2023_3299110 crossref_primary_10_1103_PhysRevX_14_031021 crossref_primary_10_1063_5_0255168 crossref_primary_10_1007_s10618_023_00926_8 crossref_primary_10_1007_s10618_021_00782_4 crossref_primary_10_17221_121_2023_AGRICECON crossref_primary_10_1016_j_smhl_2024_100460 crossref_primary_10_1109_ACCESS_2023_3327015 crossref_primary_10_1016_j_patcog_2023_109333 crossref_primary_10_1186_s13014_024_02532_4 crossref_primary_10_1016_j_jbi_2024_104665 crossref_primary_10_1109_ACCESS_2024_3516215 crossref_primary_10_1016_j_bspc_2024_106788 crossref_primary_10_1007_s00170_024_13543_6 crossref_primary_10_1371_journal_pone_0307136 crossref_primary_10_1063_5_0174860 crossref_primary_10_1007_s12667_024_00667_7 crossref_primary_10_3390_s24134126 crossref_primary_10_1016_j_knosys_2024_112253 crossref_primary_10_1109_MGRS_2024_3393010 crossref_primary_10_1007_s10618_021_00745_9 crossref_primary_10_1109_TCYB_2024_3498100 crossref_primary_10_1007_s10618_024_01027_w crossref_primary_10_1016_j_apenergy_2024_123776 crossref_primary_10_1007_s10618_024_01022_1 crossref_primary_10_1016_j_mtcomm_2024_110208 crossref_primary_10_1021_acs_est_4c11113 crossref_primary_10_1016_j_autcon_2025_106008 crossref_primary_10_1016_j_chemolab_2021_104442 crossref_primary_10_1007_s10618_022_00844_1 crossref_primary_10_1007_s11270_023_06114_0 crossref_primary_10_1016_j_ipm_2022_103044 crossref_primary_10_1109_TKDE_2024_3475809 crossref_primary_10_1007_s41060_022_00349_6 crossref_primary_10_1088_2632_2153_ad2972 crossref_primary_10_1016_j_engappai_2024_109924 crossref_primary_10_1007_s41060_023_00452_2 crossref_primary_10_3390_eng4010006 crossref_primary_10_1109_TAP_2021_3111516 crossref_primary_10_1007_s10115_022_01827_w crossref_primary_10_1145_3649448 |
Cites_doi | 10.1109/ICDM.2016.0133 10.1109/JAS.2019.1911747 10.1098/rsif.2013.0048 10.1109/TBME.2016.2613124 10.1007/s10618-019-00619-1 10.1002/for.3980010202 10.1007/s10618-019-00647-x 10.1007/BF00994018 10.1007/978-3-319-18191-2_10 10.1007/s10618-019-00663-x 10.1007/s10618-014-0349-y 10.1007/s10618-020-00710-y 10.1145/2020408.2020587 10.1214/aoms/1177731944 10.1145/3132847.3132980 10.1016/j.rse.2018.04.053 10.1007/s10844-012-0196-5 10.1007/s10618-014-0361-2 10.1007/s10618-016-0455-0 10.1109/IJCNN.2017.7966039 10.1109/TBME.2015.2406332 10.3390/s16010010 10.1007/s10618-019-00617-3 10.1023/A:1010933404324 10.1002/for.3980040103 10.1109/ICDM.2013.52 10.1145/1557019.1557122 10.1016/j.snb.2007.09.060 10.1016/j.ijforecast.2019.04.014 10.1007/s10618-020-00701-z 10.1137/1.9781611972832.74 10.3390/rs11050523 10.1007/978-3-540-71918-2 10.1016/j.ijforecast.2016.09.004 10.3390/s19143079 10.1007/s10618-016-0483-9 10.1016/S0169-2070(00)00057-1 10.1111/insr.12163 10.1145/2623330.2623613 10.1109/TKDE.2015.2416723 10.1145/2339530.2339579 10.1016/j.csda.2013.10.009 10.1016/j.ins.2013.02.030 10.1109/TBME.2014.2359372 10.1016/j.ijforecast.2019.02.011 10.1109/BigData.2018.8621990 10.1145/2939672.2939785 10.23919/EUSIPCO.2017.8081656 10.1016/j.ijforecast.2018.06.001 10.3109/03091902.2011.638965 10.1137/1.9781611975321.26 10.1007/s10618-014-0377-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s10618-021-00745-9 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1060 |
ExternalDocumentID | PMC7951134 33727888 10_1007_s10618_021_00745_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP210100072 – fundername: Asian Office of Aerospace Research and Development (AOARD) grantid: FA2386-18-1-4030 – fundername: ; grantid: FA2386-18-1-4030 – fundername: ; grantid: DP210100072 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP AMVHM ATHPR CITATION PHGZM -59 -5G -BR -EM 3V. ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE M0N NPM Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 7X8 ABRTQ 5PM |
ID | FETCH-LOGICAL-c402t-f7076672e7c4889caed8fb8975973726ff2910cea0ff895347fef8644e9e79f43 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Thu Aug 21 14:36:41 EDT 2025 Fri Jul 11 03:56:43 EDT 2025 Wed Feb 19 02:27:05 EST 2025 Tue Jul 01 04:57:18 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Thu Apr 10 07:07:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Regression Time series Machine learning |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-f7076672e7c4889caed8fb8975973726ff2910cea0ff895347fef8644e9e79f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Responsible editor: Eamonn Keogh. |
ORCID | 0000-0001-8377-3241 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7951134 |
PMID | 33727888 |
PQID | 2502208891 |
PQPubID | 23479 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7951134 proquest_miscellaneous_2502208891 pubmed_primary_33727888 crossref_primary_10_1007_s10618_021_00745_9 crossref_citationtrail_10_1007_s10618_021_00745_9 springer_journals_10_1007_s10618_021_00745_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationTitleAlternate | Data Min Knowl Discov |
PublicationYear | 2021 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | P Schäfer (745_CR53) 2015; 29 F Pedregosa (745_CR43) 2011; 12 MA Pimentel (745_CR46) 2016; 64 S Makridakis (745_CR37) 2020; 36 Z Zhang (745_CR65) 2015; 62 L Breiman (745_CR5) 2001; 45 BD Fulcher (745_CR20) 2013; 10 Y Kang (745_CR26) 2017; 33 S Salehizadeh (745_CR50) 2016; 16 J Goldsmith (745_CR22) 2014; 70 ES Gardner Jr (745_CR21) 1985; 4 745_CR39 J Lin (745_CR28) 2012; 39 745_CR4 R Hyndman (745_CR25) 2008 J Lines (745_CR29) 2015; 29 H Deng (745_CR13) 2013; 239 745_CR31 745_CR30 S Makridakis (745_CR35) 1982; 1 CW Tan (745_CR61) 2020; 34 A Bagnall (745_CR1) 2015; 27 C Chatfield (745_CR6) 1978; 27 HA Dau (745_CR9) 2019; 6 745_CR7 PT Reiss (745_CR48) 2017; 85 Z Zhang (745_CR66) 2014; 62 745_CR27 HI Fawaz (745_CR17) 2019; 33 C Pelletier (745_CR44) 2019; 11 HI Fawaz (745_CR18) 2020; 34 745_CR24 745_CR23 A Dempster (745_CR11) 2020; 34 745_CR63 745_CR62 745_CR60 MG Baydogan (745_CR3) 2015; 29 B Lucas (745_CR33) 2019; 33 P Montero-Manso (745_CR40) 2020; 36 C Sammut (745_CR51) 2011 A Bagnall (745_CR2) 2017; 31 C Cortes (745_CR8) 1995; 20 S Makridakis (745_CR36) 2018; 34 M Shokoohi-Yekta (745_CR58) 2017; 31 DJ Meredith (745_CR38) 2012; 36 745_CR16 745_CR15 745_CR59 745_CR14 745_CR57 745_CR56 745_CR55 745_CR54 745_CR52 A Reiss (745_CR49) 2019; 19 S De Vito (745_CR10) 2008; 129 CH Lubba (745_CR32) 2019; 33 M Yebra (745_CR64) 2018; 212 J Demšar (745_CR12) 2006; 7 S Makridakis (745_CR34) 2000; 16 745_CR47 745_CR45 745_CR42 745_CR41 M Friedman (745_CR19) 1940; 11 |
References_xml | – ident: 745_CR31 doi: 10.1109/ICDM.2016.0133 – volume: 6 start-page: 1293 issue: 6 year: 2019 ident: 745_CR9 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2019.1911747 – volume: 10 start-page: 20130048 issue: 83 year: 2013 ident: 745_CR20 publication-title: J R Soc Interface doi: 10.1098/rsif.2013.0048 – volume: 12 start-page: 2825 year: 2011 ident: 745_CR43 publication-title: J Mach Learn Res – volume-title: Encyclopedia of machine learning year: 2011 ident: 745_CR51 – volume: 64 start-page: 1914 issue: 8 year: 2016 ident: 745_CR46 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2613124 – volume: 33 start-page: 917 issue: 4 year: 2019 ident: 745_CR17 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00619-1 – volume: 1 start-page: 111 issue: 2 year: 1982 ident: 745_CR35 publication-title: J Forecast doi: 10.1002/for.3980010202 – ident: 745_CR60 – volume: 7 start-page: 1 year: 2006 ident: 745_CR12 publication-title: J Mach Learn Res – volume: 33 start-page: 1821 issue: 6 year: 2019 ident: 745_CR32 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00647-x – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 745_CR8 publication-title: Mach Learn doi: 10.1007/BF00994018 – ident: 745_CR39 – ident: 745_CR45 doi: 10.1007/978-3-319-18191-2_10 – volume: 34 start-page: 231 issue: 1 year: 2020 ident: 745_CR61 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00663-x – volume: 29 start-page: 400 issue: 2 year: 2015 ident: 745_CR3 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0349-y – volume: 34 start-page: 1936 issue: 6 year: 2020 ident: 745_CR18 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-020-00710-y – ident: 745_CR41 doi: 10.1145/2020408.2020587 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 745_CR19 publication-title: Ann Math Stat doi: 10.1214/aoms/1177731944 – ident: 745_CR55 doi: 10.1145/3132847.3132980 – volume: 212 start-page: 260 year: 2018 ident: 745_CR64 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.04.053 – volume: 39 start-page: 287 issue: 2 year: 2012 ident: 745_CR28 publication-title: J Intell Inf Syst doi: 10.1007/s10844-012-0196-5 – ident: 745_CR42 – volume: 27 start-page: 264 issue: 3 year: 1978 ident: 745_CR6 publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 29 start-page: 565 issue: 3 year: 2015 ident: 745_CR29 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0361-2 – volume: 31 start-page: 1 issue: 1 year: 2017 ident: 745_CR58 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0455-0 – ident: 745_CR62 doi: 10.1109/IJCNN.2017.7966039 – volume: 62 start-page: 1902 issue: 8 year: 2015 ident: 745_CR65 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2406332 – volume: 16 start-page: 10 issue: 1 year: 2016 ident: 745_CR50 publication-title: Sensors doi: 10.3390/s16010010 – volume: 33 start-page: 607 issue: 3 year: 2019 ident: 745_CR33 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00617-3 – ident: 745_CR15 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 745_CR5 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 4 start-page: 1 issue: 1 year: 1985 ident: 745_CR21 publication-title: J Forecast doi: 10.1002/for.3980040103 – ident: 745_CR57 doi: 10.1109/ICDM.2013.52 – ident: 745_CR63 doi: 10.1145/1557019.1557122 – volume: 129 start-page: 750 issue: 2 year: 2008 ident: 745_CR10 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2007.09.060 – ident: 745_CR4 – volume: 36 start-page: 54 issue: 1 year: 2020 ident: 745_CR37 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2019.04.014 – volume: 34 start-page: 1454 issue: 5 year: 2020 ident: 745_CR11 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-020-00701-z – ident: 745_CR47 doi: 10.1137/1.9781611972832.74 – ident: 745_CR24 – volume: 11 start-page: 523 issue: 5 year: 2019 ident: 745_CR44 publication-title: Remote Sens doi: 10.3390/rs11050523 – volume-title: Forecasting with exponential smoothing: the state space approach year: 2008 ident: 745_CR25 doi: 10.1007/978-3-540-71918-2 – ident: 745_CR56 – volume: 33 start-page: 345 issue: 2 year: 2017 ident: 745_CR26 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2016.09.004 – ident: 745_CR14 – volume: 19 start-page: 3079 issue: 14 year: 2019 ident: 745_CR49 publication-title: Sensors doi: 10.3390/s19143079 – volume: 31 start-page: 606 issue: 3 year: 2017 ident: 745_CR2 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0483-9 – volume: 16 start-page: 451 issue: 4 year: 2000 ident: 745_CR34 publication-title: Int J Forecast doi: 10.1016/S0169-2070(00)00057-1 – volume: 85 start-page: 228 issue: 2 year: 2017 ident: 745_CR48 publication-title: Int Stat Rev doi: 10.1111/insr.12163 – ident: 745_CR23 doi: 10.1145/2623330.2623613 – volume: 27 start-page: 2522 issue: 9 year: 2015 ident: 745_CR1 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2416723 – ident: 745_CR27 – ident: 745_CR30 doi: 10.1145/2339530.2339579 – ident: 745_CR54 doi: 10.1145/3132847.3132980 – volume: 70 start-page: 362 year: 2014 ident: 745_CR22 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.10.009 – volume: 239 start-page: 142 year: 2013 ident: 745_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2013.02.030 – volume: 62 start-page: 522 issue: 2 year: 2014 ident: 745_CR66 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2359372 – volume: 36 start-page: 86 issue: 1 year: 2020 ident: 745_CR40 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2019.02.011 – ident: 745_CR16 doi: 10.1109/BigData.2018.8621990 – ident: 745_CR7 doi: 10.1145/2939672.2939785 – ident: 745_CR52 doi: 10.23919/EUSIPCO.2017.8081656 – volume: 34 start-page: 802 issue: 4 year: 2018 ident: 745_CR36 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2018.06.001 – volume: 36 start-page: 1 issue: 1 year: 2012 ident: 745_CR38 publication-title: J Med Eng Technol doi: 10.3109/03091902.2011.638965 – ident: 745_CR59 doi: 10.1137/1.9781611975321.26 – volume: 29 start-page: 1505 issue: 6 year: 2015 ident: 745_CR53 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0377-7 |
SSID | ssj0005230 |
Score | 2.5308568 |
Snippet | This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1032 |
SubjectTerms | Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Information Storage and Retrieval Physics Statistics for Engineering |
Subtitle | Predicting numeric values from time series data |
Title | Time series extrinsic regression |
URI | https://link.springer.com/article/10.1007/s10618-021-00745-9 https://www.ncbi.nlm.nih.gov/pubmed/33727888 https://www.proquest.com/docview/2502208891 https://pubmed.ncbi.nlm.nih.gov/PMC7951134 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5si-CLR73Wo6zgmwa6RzbJY5EeKPhkoT4t2Wyigmyl2_5_J3vU1krB582G3ZlJ5hvyzReA28QoxY30iE4TSkKRSmJFvklXKqVTjRlIFWqfz9FoHD5O6KRqCstrtnt9JFns1CvNbpHHiaUU2LxHiWhAi2LtbuN67PdWiB1B2RvMQ0K5161aZf6eYz0dbWDMTarkr_PSIg0NDmG_wo9ur3T4EezorA0H9d0MbrVU27BbUDtVfgyu7fJwbaTp3MWtGOfFB-5Mv5UU2OwExoP-y8OIVPciEIXV3pwY1mVRxHzNFC4_oaROuUm4YFgcBMyPjPERBCgtu8ZwQYOQGW04Ah8tNBMmDE6hmU0zfQ5uSgNFQyySELUhcOIiZdQILrVvaGIkc8CrzROrSjTc3l3xGf_IHVuTxmjSuDBpLBy4W77zVUpmbB19U1s9xsi2xxUy09NFHiM4833LwvIcOCu9sJwvwP-0xbsDbM0_ywFWNXv9SfbxXqhnM8SUXhA6cF97Mq6Wbb7lMy_-N_wS9vwiyiwz8gqa89lCXyN6mScdaPDBsAOt3vD1qd8pQvcb38znMQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BKwQX9iWsQeIGRs3i2D4iVChbT1QqJytxbECggEh74esZZymUokqc7TjxjD3zJn4zBjhKjFLcxB7RaUJJKNKY2CLfpBUrpVONHkgV1T67UacXXvdpv0oKy2u2e30kWVjqH8lukceJpRRYv0eJmIVmiDE4bUDz7PLhpv2D2hGU2cE8JJR7rSpZ5u9Rxh3SBMqcJEv-OjEtHNHFEvTqKZT8k5fT4SA5VZ-_qjv-d47LsFghU_esXEorMKOzVViqb31wKyOwCnMFaVTla-Da_BHXrmGdu2jk8VXY4H7ox5Jcm61D76J9f94h1Y0LRGEcOSCGtVgUMV8zhRtbqFin3CRcMAw7AuZHxvgIL5SOW8ZwQYOQGW04QiotNBMmDDagkb1legvclAaKhhh-IR5ESMZFyqgRPNa-oYmJmQNeLXapqnLk9laMV_ldSNkKQ6IwZCEMKRw4Hj3zXhbjmNr7sNamxD1jD0LiTL8Nc4mwz_ctv8tzYLPU7mi8AOdpfws4wMb0Pupg63GPt2TPT0VdboZo1QtCB05q5crKIORTPnP7f90PYL5zf3crb6-6Nzuw4BdrxfIvd6Ex-BjqPcRIg2S_2hJfRBAErQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BEYgLS9nCGiRuYLVZHNvHCqjKoooDlXqzEscGJJRWXf6fcZbSAqrEOY6VzIw9b-Q3zwBXiVGKm9gjOk0oCUUaEyvyTZqxUjrVmIFUrvbZjTq98LFP-3Nd_DnbvTqSLHoarEpTNmkMU9OYa3yLPE4svcDmQErEKqzhduxZUlfPb82RPIKiT5iHhHKvWbbN_D3HYmr6hTd_0yZ_nJ3mKam9A1sllnRbhfN3YUVnddiu7mlwy2Vbh_Wc5qnGe-Dajg_XRp0eu7gt47z4wB3pt4IOm-1Dr33_etsh5R0JRGHlNyGGNVkUMV8zhUtRqFin3CRcMCwUAuZHxvgICJSOm8ZwQYOQGW04giAtNBMmDA6glg0yfQRuSgNFQyyYEMEhiOIiZdQIHmvf0MTEzAGvMo9UpYC4vcfiU35LH1uTSjSpzE0qhQPXs3eGhXzG0tGXldUlRrk9uogzPZiOJQI137eMLM-Bw8ILs_kC_E9byDvAFvwzG2AVtBefZB_vuZI2Q3zpBaEDN5UnZbmEx0s-8_h_wy9g4-WuLZ8fuk8nsOnnAWcJk6dQm4ym-gxBzSQ5z-P2C8Qq6-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+extrinsic+regression%3A+Predicting+numeric+values+from+time+series+data&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Tan%2C+Chang+Wei&rft.au=Bergmeir%2C+Christoph&rft.au=Petitjean%2C+Fran%C3%A7ois&rft.au=Webb%2C+Geoffrey+I&rft.date=2021-05-01&rft.issn=1384-5810&rft.volume=35&rft.issue=3&rft.spage=1032&rft_id=info:doi/10.1007%2Fs10618-021-00745-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |