Time series extrinsic regression Predicting numeric values from time series data

This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series a...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 35; no. 3; pp. 1032 - 1060
Main Authors Tan, Chang Wei, Bergmeir, Christoph, Petitjean, François, Webb, Geoffrey I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-021-00745-9

Cover

Loading…
Abstract This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines.
AbstractList This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines.
This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines.This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a continuous scalar variable; a task closely related to time series classification (TSC), which aims to learn the relationship between a time series and a categorical class label. This task generalizes time series forecasting, relaxing the requirement that the value predicted be a future value of the input series or primarily depend on more recent values. In this paper, we motivate and study this task, and benchmark existing solutions and adaptations of TSC algorithms on a novel archive of 19 TSER datasets which we have assembled. Our results show that the state-of-the-art TSC algorithm Rocket, when adapted for regression, achieves the highest overall accuracy compared to adaptations of other TSC algorithms and state-of-the-art machine learning (ML) algorithms such as XGBoost, Random Forest and Support Vector Regression. More importantly, we show that much research is needed in this field to improve the accuracy of ML models. We also find evidence that further research has excellent prospects of improving upon these straightforward baselines.
Author Bergmeir, Christoph
Webb, Geoffrey I.
Petitjean, François
Tan, Chang Wei
Author_xml – sequence: 1
  givenname: Chang Wei
  orcidid: 0000-0001-8377-3241
  surname: Tan
  fullname: Tan, Chang Wei
  email: chang.tan@monash.edu
  organization: Faculty of Information Technology, Monash University
– sequence: 2
  givenname: Christoph
  surname: Bergmeir
  fullname: Bergmeir, Christoph
  organization: Faculty of Information Technology, Monash University
– sequence: 3
  givenname: François
  surname: Petitjean
  fullname: Petitjean, François
  organization: Faculty of Information Technology, Monash University
– sequence: 4
  givenname: Geoffrey I.
  surname: Webb
  fullname: Webb, Geoffrey I.
  organization: Faculty of Information Technology, Monash University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33727888$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUrFX_gAfZo5fVSbLZJBdBil8geKngLaxxUlO2WU12Rf-90VZRD54mQ96P4ZmQUegCErJP4YgCyONEoaaqBEbLvFai1BtkmwrJSynqu1F-c1WVQlEYk0lKCwAQjMMWGXMumVRKbZNi5pdYJIweU4GvffQheVtEnEdMyXdhl2y6pk24t5475Pb8bDa9LK9vLq6mp9elrYD1pZMg61oylLZSStsGH5S7V1oKLXNZ7RzTFCw24JzSglfSoVN1VaFGqV3Fd8jJKvdpuF_ig8XQx6Y1T9Evm_hmusab3z_BP5p592KkFpTyj4DDdUDsngdMvVn6ZLFtm4DdkAwTwBjk22iWHvzs-i75wpIFbCWwsUspovuWUDAf7M2KvcnszSd7o7NJ_TFZ3zd9Zpjv9e3_Vr6yptwT5hjNohtiyLz_c70DuR-X9g
CitedBy_id crossref_primary_10_3389_frvir_2023_1307925
crossref_primary_10_1007_s10489_023_04590_9
crossref_primary_10_1093_gji_ggac290
crossref_primary_10_1016_j_rcim_2025_103010
crossref_primary_10_1142_S2196888824500234
crossref_primary_10_1016_j_patcog_2025_111546
crossref_primary_10_1016_j_chaos_2022_112243
crossref_primary_10_3390_s24165203
crossref_primary_10_1109_TNNLS_2023_3287318
crossref_primary_10_1109_TMAG_2023_3299110
crossref_primary_10_1103_PhysRevX_14_031021
crossref_primary_10_1063_5_0255168
crossref_primary_10_1007_s10618_023_00926_8
crossref_primary_10_1007_s10618_021_00782_4
crossref_primary_10_17221_121_2023_AGRICECON
crossref_primary_10_1016_j_smhl_2024_100460
crossref_primary_10_1109_ACCESS_2023_3327015
crossref_primary_10_1016_j_patcog_2023_109333
crossref_primary_10_1186_s13014_024_02532_4
crossref_primary_10_1016_j_jbi_2024_104665
crossref_primary_10_1109_ACCESS_2024_3516215
crossref_primary_10_1016_j_bspc_2024_106788
crossref_primary_10_1007_s00170_024_13543_6
crossref_primary_10_1371_journal_pone_0307136
crossref_primary_10_1063_5_0174860
crossref_primary_10_1007_s12667_024_00667_7
crossref_primary_10_3390_s24134126
crossref_primary_10_1016_j_knosys_2024_112253
crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_1007_s10618_021_00745_9
crossref_primary_10_1109_TCYB_2024_3498100
crossref_primary_10_1007_s10618_024_01027_w
crossref_primary_10_1016_j_apenergy_2024_123776
crossref_primary_10_1007_s10618_024_01022_1
crossref_primary_10_1016_j_mtcomm_2024_110208
crossref_primary_10_1021_acs_est_4c11113
crossref_primary_10_1016_j_autcon_2025_106008
crossref_primary_10_1016_j_chemolab_2021_104442
crossref_primary_10_1007_s10618_022_00844_1
crossref_primary_10_1007_s11270_023_06114_0
crossref_primary_10_1016_j_ipm_2022_103044
crossref_primary_10_1109_TKDE_2024_3475809
crossref_primary_10_1007_s41060_022_00349_6
crossref_primary_10_1088_2632_2153_ad2972
crossref_primary_10_1016_j_engappai_2024_109924
crossref_primary_10_1007_s41060_023_00452_2
crossref_primary_10_3390_eng4010006
crossref_primary_10_1109_TAP_2021_3111516
crossref_primary_10_1007_s10115_022_01827_w
crossref_primary_10_1145_3649448
Cites_doi 10.1109/ICDM.2016.0133
10.1109/JAS.2019.1911747
10.1098/rsif.2013.0048
10.1109/TBME.2016.2613124
10.1007/s10618-019-00619-1
10.1002/for.3980010202
10.1007/s10618-019-00647-x
10.1007/BF00994018
10.1007/978-3-319-18191-2_10
10.1007/s10618-019-00663-x
10.1007/s10618-014-0349-y
10.1007/s10618-020-00710-y
10.1145/2020408.2020587
10.1214/aoms/1177731944
10.1145/3132847.3132980
10.1016/j.rse.2018.04.053
10.1007/s10844-012-0196-5
10.1007/s10618-014-0361-2
10.1007/s10618-016-0455-0
10.1109/IJCNN.2017.7966039
10.1109/TBME.2015.2406332
10.3390/s16010010
10.1007/s10618-019-00617-3
10.1023/A:1010933404324
10.1002/for.3980040103
10.1109/ICDM.2013.52
10.1145/1557019.1557122
10.1016/j.snb.2007.09.060
10.1016/j.ijforecast.2019.04.014
10.1007/s10618-020-00701-z
10.1137/1.9781611972832.74
10.3390/rs11050523
10.1007/978-3-540-71918-2
10.1016/j.ijforecast.2016.09.004
10.3390/s19143079
10.1007/s10618-016-0483-9
10.1016/S0169-2070(00)00057-1
10.1111/insr.12163
10.1145/2623330.2623613
10.1109/TKDE.2015.2416723
10.1145/2339530.2339579
10.1016/j.csda.2013.10.009
10.1016/j.ins.2013.02.030
10.1109/TBME.2014.2359372
10.1016/j.ijforecast.2019.02.011
10.1109/BigData.2018.8621990
10.1145/2939672.2939785
10.23919/EUSIPCO.2017.8081656
10.1016/j.ijforecast.2018.06.001
10.3109/03091902.2011.638965
10.1137/1.9781611975321.26
10.1007/s10618-014-0377-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s10618-021-00745-9
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1060
ExternalDocumentID PMC7951134
33727888
10_1007_s10618_021_00745_9
Genre Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP210100072
– fundername: Asian Office of Aerospace Research and Development (AOARD)
  grantid: FA2386-18-1-4030
– fundername: ;
  grantid: FA2386-18-1-4030
– fundername: ;
  grantid: DP210100072
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
-59
-5G
-BR
-EM
3V.
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
NPM
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
7X8
ABRTQ
5PM
ID FETCH-LOGICAL-c402t-f7076672e7c4889caed8fb8975973726ff2910cea0ff895347fef8644e9e79f43
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Thu Aug 21 14:36:41 EDT 2025
Fri Jul 11 03:56:43 EDT 2025
Wed Feb 19 02:27:05 EST 2025
Tue Jul 01 04:57:18 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Thu Apr 10 07:07:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Regression
Time series
Machine learning
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-f7076672e7c4889caed8fb8975973726ff2910cea0ff895347fef8644e9e79f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Responsible editor: Eamonn Keogh.
ORCID 0000-0001-8377-3241
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7951134
PMID 33727888
PQID 2502208891
PQPubID 23479
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7951134
proquest_miscellaneous_2502208891
pubmed_primary_33727888
crossref_primary_10_1007_s10618_021_00745_9
crossref_citationtrail_10_1007_s10618_021_00745_9
springer_journals_10_1007_s10618_021_00745_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationTitleAlternate Data Min Knowl Discov
PublicationYear 2021
Publisher Springer US
Publisher_xml – name: Springer US
References P Schäfer (745_CR53) 2015; 29
F Pedregosa (745_CR43) 2011; 12
MA Pimentel (745_CR46) 2016; 64
S Makridakis (745_CR37) 2020; 36
Z Zhang (745_CR65) 2015; 62
L Breiman (745_CR5) 2001; 45
BD Fulcher (745_CR20) 2013; 10
Y Kang (745_CR26) 2017; 33
S Salehizadeh (745_CR50) 2016; 16
J Goldsmith (745_CR22) 2014; 70
ES Gardner Jr (745_CR21) 1985; 4
745_CR39
J Lin (745_CR28) 2012; 39
745_CR4
R Hyndman (745_CR25) 2008
J Lines (745_CR29) 2015; 29
H Deng (745_CR13) 2013; 239
745_CR31
745_CR30
S Makridakis (745_CR35) 1982; 1
CW Tan (745_CR61) 2020; 34
A Bagnall (745_CR1) 2015; 27
C Chatfield (745_CR6) 1978; 27
HA Dau (745_CR9) 2019; 6
745_CR7
PT Reiss (745_CR48) 2017; 85
Z Zhang (745_CR66) 2014; 62
745_CR27
HI Fawaz (745_CR17) 2019; 33
C Pelletier (745_CR44) 2019; 11
HI Fawaz (745_CR18) 2020; 34
745_CR24
745_CR23
A Dempster (745_CR11) 2020; 34
745_CR63
745_CR62
745_CR60
MG Baydogan (745_CR3) 2015; 29
B Lucas (745_CR33) 2019; 33
P Montero-Manso (745_CR40) 2020; 36
C Sammut (745_CR51) 2011
A Bagnall (745_CR2) 2017; 31
C Cortes (745_CR8) 1995; 20
S Makridakis (745_CR36) 2018; 34
M Shokoohi-Yekta (745_CR58) 2017; 31
DJ Meredith (745_CR38) 2012; 36
745_CR16
745_CR15
745_CR59
745_CR14
745_CR57
745_CR56
745_CR55
745_CR54
745_CR52
A Reiss (745_CR49) 2019; 19
S De Vito (745_CR10) 2008; 129
CH Lubba (745_CR32) 2019; 33
M Yebra (745_CR64) 2018; 212
J Demšar (745_CR12) 2006; 7
S Makridakis (745_CR34) 2000; 16
745_CR47
745_CR45
745_CR42
745_CR41
M Friedman (745_CR19) 1940; 11
References_xml – ident: 745_CR31
  doi: 10.1109/ICDM.2016.0133
– volume: 6
  start-page: 1293
  issue: 6
  year: 2019
  ident: 745_CR9
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2019.1911747
– volume: 10
  start-page: 20130048
  issue: 83
  year: 2013
  ident: 745_CR20
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2013.0048
– volume: 12
  start-page: 2825
  year: 2011
  ident: 745_CR43
  publication-title: J Mach Learn Res
– volume-title: Encyclopedia of machine learning
  year: 2011
  ident: 745_CR51
– volume: 64
  start-page: 1914
  issue: 8
  year: 2016
  ident: 745_CR46
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2613124
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 745_CR17
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00619-1
– volume: 1
  start-page: 111
  issue: 2
  year: 1982
  ident: 745_CR35
  publication-title: J Forecast
  doi: 10.1002/for.3980010202
– ident: 745_CR60
– volume: 7
  start-page: 1
  year: 2006
  ident: 745_CR12
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 1821
  issue: 6
  year: 2019
  ident: 745_CR32
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00647-x
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 745_CR8
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– ident: 745_CR39
– ident: 745_CR45
  doi: 10.1007/978-3-319-18191-2_10
– volume: 34
  start-page: 231
  issue: 1
  year: 2020
  ident: 745_CR61
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00663-x
– volume: 29
  start-page: 400
  issue: 2
  year: 2015
  ident: 745_CR3
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0349-y
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  ident: 745_CR18
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-020-00710-y
– ident: 745_CR41
  doi: 10.1145/2020408.2020587
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 745_CR19
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
– ident: 745_CR55
  doi: 10.1145/3132847.3132980
– volume: 212
  start-page: 260
  year: 2018
  ident: 745_CR64
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.04.053
– volume: 39
  start-page: 287
  issue: 2
  year: 2012
  ident: 745_CR28
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-012-0196-5
– ident: 745_CR42
– volume: 27
  start-page: 264
  issue: 3
  year: 1978
  ident: 745_CR6
  publication-title: J R Stat Soc Ser C (Appl Stat)
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: 745_CR29
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0361-2
– volume: 31
  start-page: 1
  issue: 1
  year: 2017
  ident: 745_CR58
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0455-0
– ident: 745_CR62
  doi: 10.1109/IJCNN.2017.7966039
– volume: 62
  start-page: 1902
  issue: 8
  year: 2015
  ident: 745_CR65
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2406332
– volume: 16
  start-page: 10
  issue: 1
  year: 2016
  ident: 745_CR50
  publication-title: Sensors
  doi: 10.3390/s16010010
– volume: 33
  start-page: 607
  issue: 3
  year: 2019
  ident: 745_CR33
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00617-3
– ident: 745_CR15
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 745_CR5
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 4
  start-page: 1
  issue: 1
  year: 1985
  ident: 745_CR21
  publication-title: J Forecast
  doi: 10.1002/for.3980040103
– ident: 745_CR57
  doi: 10.1109/ICDM.2013.52
– ident: 745_CR63
  doi: 10.1145/1557019.1557122
– volume: 129
  start-page: 750
  issue: 2
  year: 2008
  ident: 745_CR10
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2007.09.060
– ident: 745_CR4
– volume: 36
  start-page: 54
  issue: 1
  year: 2020
  ident: 745_CR37
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.04.014
– volume: 34
  start-page: 1454
  issue: 5
  year: 2020
  ident: 745_CR11
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-020-00701-z
– ident: 745_CR47
  doi: 10.1137/1.9781611972832.74
– ident: 745_CR24
– volume: 11
  start-page: 523
  issue: 5
  year: 2019
  ident: 745_CR44
  publication-title: Remote Sens
  doi: 10.3390/rs11050523
– volume-title: Forecasting with exponential smoothing: the state space approach
  year: 2008
  ident: 745_CR25
  doi: 10.1007/978-3-540-71918-2
– ident: 745_CR56
– volume: 33
  start-page: 345
  issue: 2
  year: 2017
  ident: 745_CR26
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2016.09.004
– ident: 745_CR14
– volume: 19
  start-page: 3079
  issue: 14
  year: 2019
  ident: 745_CR49
  publication-title: Sensors
  doi: 10.3390/s19143079
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 745_CR2
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0483-9
– volume: 16
  start-page: 451
  issue: 4
  year: 2000
  ident: 745_CR34
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(00)00057-1
– volume: 85
  start-page: 228
  issue: 2
  year: 2017
  ident: 745_CR48
  publication-title: Int Stat Rev
  doi: 10.1111/insr.12163
– ident: 745_CR23
  doi: 10.1145/2623330.2623613
– volume: 27
  start-page: 2522
  issue: 9
  year: 2015
  ident: 745_CR1
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2416723
– ident: 745_CR27
– ident: 745_CR30
  doi: 10.1145/2339530.2339579
– ident: 745_CR54
  doi: 10.1145/3132847.3132980
– volume: 70
  start-page: 362
  year: 2014
  ident: 745_CR22
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.10.009
– volume: 239
  start-page: 142
  year: 2013
  ident: 745_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– volume: 62
  start-page: 522
  issue: 2
  year: 2014
  ident: 745_CR66
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2359372
– volume: 36
  start-page: 86
  issue: 1
  year: 2020
  ident: 745_CR40
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.02.011
– ident: 745_CR16
  doi: 10.1109/BigData.2018.8621990
– ident: 745_CR7
  doi: 10.1145/2939672.2939785
– ident: 745_CR52
  doi: 10.23919/EUSIPCO.2017.8081656
– volume: 34
  start-page: 802
  issue: 4
  year: 2018
  ident: 745_CR36
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2018.06.001
– volume: 36
  start-page: 1
  issue: 1
  year: 2012
  ident: 745_CR38
  publication-title: J Med Eng Technol
  doi: 10.3109/03091902.2011.638965
– ident: 745_CR59
  doi: 10.1137/1.9781611975321.26
– volume: 29
  start-page: 1505
  issue: 6
  year: 2015
  ident: 745_CR53
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0377-7
SSID ssj0005230
Score 2.5308568
Snippet This paper studies time series extrinsic regression (TSER): a regression task of which the aim is to learn the relationship between a time series and a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1032
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Physics
Statistics for Engineering
Subtitle Predicting numeric values from time series data
Title Time series extrinsic regression
URI https://link.springer.com/article/10.1007/s10618-021-00745-9
https://www.ncbi.nlm.nih.gov/pubmed/33727888
https://www.proquest.com/docview/2502208891
https://pubmed.ncbi.nlm.nih.gov/PMC7951134
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5si-CLR73Wo6zgmwa6RzbJY5EeKPhkoT4t2Wyigmyl2_5_J3vU1krB582G3ZlJ5hvyzReA28QoxY30iE4TSkKRSmJFvklXKqVTjRlIFWqfz9FoHD5O6KRqCstrtnt9JFns1CvNbpHHiaUU2LxHiWhAi2LtbuN67PdWiB1B2RvMQ0K5161aZf6eYz0dbWDMTarkr_PSIg0NDmG_wo9ur3T4EezorA0H9d0MbrVU27BbUDtVfgyu7fJwbaTp3MWtGOfFB-5Mv5UU2OwExoP-y8OIVPciEIXV3pwY1mVRxHzNFC4_oaROuUm4YFgcBMyPjPERBCgtu8ZwQYOQGW04Ah8tNBMmDE6hmU0zfQ5uSgNFQyySELUhcOIiZdQILrVvaGIkc8CrzROrSjTc3l3xGf_IHVuTxmjSuDBpLBy4W77zVUpmbB19U1s9xsi2xxUy09NFHiM4833LwvIcOCu9sJwvwP-0xbsDbM0_ywFWNXv9SfbxXqhnM8SUXhA6cF97Mq6Wbb7lMy_-N_wS9vwiyiwz8gqa89lCXyN6mScdaPDBsAOt3vD1qd8pQvcb38znMQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BKwQX9iWsQeIGRs3i2D4iVChbT1QqJytxbECggEh74esZZymUokqc7TjxjD3zJn4zBjhKjFLcxB7RaUJJKNKY2CLfpBUrpVONHkgV1T67UacXXvdpv0oKy2u2e30kWVjqH8lukceJpRRYv0eJmIVmiDE4bUDz7PLhpv2D2hGU2cE8JJR7rSpZ5u9Rxh3SBMqcJEv-OjEtHNHFEvTqKZT8k5fT4SA5VZ-_qjv-d47LsFghU_esXEorMKOzVViqb31wKyOwCnMFaVTla-Da_BHXrmGdu2jk8VXY4H7ox5Jcm61D76J9f94h1Y0LRGEcOSCGtVgUMV8zhRtbqFin3CRcMAw7AuZHxvgIL5SOW8ZwQYOQGW04QiotNBMmDDagkb1legvclAaKhhh-IR5ESMZFyqgRPNa-oYmJmQNeLXapqnLk9laMV_ldSNkKQ6IwZCEMKRw4Hj3zXhbjmNr7sNamxD1jD0LiTL8Nc4mwz_ctv8tzYLPU7mi8AOdpfws4wMb0Pupg63GPt2TPT0VdboZo1QtCB05q5crKIORTPnP7f90PYL5zf3crb6-6Nzuw4BdrxfIvd6Ex-BjqPcRIg2S_2hJfRBAErQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BEYgLS9nCGiRuYLVZHNvHCqjKoooDlXqzEscGJJRWXf6fcZbSAqrEOY6VzIw9b-Q3zwBXiVGKm9gjOk0oCUUaEyvyTZqxUjrVmIFUrvbZjTq98LFP-3Nd_DnbvTqSLHoarEpTNmkMU9OYa3yLPE4svcDmQErEKqzhduxZUlfPb82RPIKiT5iHhHKvWbbN_D3HYmr6hTd_0yZ_nJ3mKam9A1sllnRbhfN3YUVnddiu7mlwy2Vbh_Wc5qnGe-Dajg_XRp0eu7gt47z4wB3pt4IOm-1Dr33_etsh5R0JRGHlNyGGNVkUMV8zhUtRqFin3CRcMCwUAuZHxvgICJSOm8ZwQYOQGW04giAtNBMmDA6glg0yfQRuSgNFQyyYEMEhiOIiZdQIHmvf0MTEzAGvMo9UpYC4vcfiU35LH1uTSjSpzE0qhQPXs3eGhXzG0tGXldUlRrk9uogzPZiOJQI137eMLM-Bw8ILs_kC_E9byDvAFvwzG2AVtBefZB_vuZI2Q3zpBaEDN5UnZbmEx0s-8_h_wy9g4-WuLZ8fuk8nsOnnAWcJk6dQm4ym-gxBzSQ5z-P2C8Qq6-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+extrinsic+regression%3A+Predicting+numeric+values+from+time+series+data&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Tan%2C+Chang+Wei&rft.au=Bergmeir%2C+Christoph&rft.au=Petitjean%2C+Fran%C3%A7ois&rft.au=Webb%2C+Geoffrey+I&rft.date=2021-05-01&rft.issn=1384-5810&rft.volume=35&rft.issue=3&rft.spage=1032&rft_id=info:doi/10.1007%2Fs10618-021-00745-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon