Human-in-the-loop machine learning: a state of the art

Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machi...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 56; no. 4; pp. 3005 - 3054
Main Authors Mosqueira-Rey, Eduardo, Hernández-Pereira, Elena, Alonso-Ríos, David, Bobes-Bascarán, José, Fernández-Leal, Ángel
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0269-2821
1573-7462
DOI10.1007/s10462-022-10246-w

Cover

Loading…
Abstract Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machine learning, in which there is a closer interaction between users and learning systems; and machine teaching, where human domain experts have control over the learning process. Aside from control, humans can also be involved in the learning process in other ways. In curriculum learning human domain experts try to impose some structure on the examples presented to improve the learning; in explainable AI the focus is on the ability of the model to explain to humans why a given solution was chosen. This collaboration between AI models and humans should not be limited only to the learning process; if we go further, we can see other terms that arise such as Usable and Useful AI. In this paper we review the state of the art of the techniques involved in the new forms of relationship between humans and ML algorithms. Our contribution is not merely listing the different approaches, but to provide definitions clarifying confusing, varied and sometimes contradictory terms; to elucidate and determine the boundaries between the different methods; and to correlate all the techniques searching for the connections and influences between them.
AbstractList Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machine learning, in which there is a closer interaction between users and learning systems; and machine teaching, where human domain experts have control over the learning process. Aside from control, humans can also be involved in the learning process in other ways. In curriculum learning human domain experts try to impose some structure on the examples presented to improve the learning; in explainable AI the focus is on the ability of the model to explain to humans why a given solution was chosen. This collaboration between AI models and humans should not be limited only to the learning process; if we go further, we can see other terms that arise such as Usable and Useful AI. In this paper we review the state of the art of the techniques involved in the new forms of relationship between humans and ML algorithms. Our contribution is not merely listing the different approaches, but to provide definitions clarifying confusing, varied and sometimes contradictory terms; to elucidate and determine the boundaries between the different methods; and to correlate all the techniques searching for the connections and influences between them.
Audience Academic
Author Hernández-Pereira, Elena
Alonso-Ríos, David
Bobes-Bascarán, José
Mosqueira-Rey, Eduardo
Fernández-Leal, Ángel
Author_xml – sequence: 1
  givenname: Eduardo
  orcidid: 0000-0002-4894-1067
  surname: Mosqueira-Rey
  fullname: Mosqueira-Rey, Eduardo
  email: eduardo@udc.es
  organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC)
– sequence: 2
  givenname: Elena
  surname: Hernández-Pereira
  fullname: Hernández-Pereira, Elena
  organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC)
– sequence: 3
  givenname: David
  surname: Alonso-Ríos
  fullname: Alonso-Ríos, David
  organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC)
– sequence: 4
  givenname: José
  surname: Bobes-Bascarán
  fullname: Bobes-Bascarán, José
  organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC)
– sequence: 5
  givenname: Ángel
  surname: Fernández-Leal
  fullname: Fernández-Leal, Ángel
  organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC)
BookMark eNp9kF1LwzAUhoMouKl_wKuC19FzkrZpvRvDLxh4o9chTZMZ6ZKZdAz_vdEKghcjkMDhffJynjk59sEbQi4RrhFA3CSEsmYUGKMIrKzp_ojMsBKcijw_JjNgdUtZw_CUzFN6B4CKlXxG6sfdRnnqPB3fDB1C2BYbpd-cN8VgVPTOr28LVaRRjaYItsipQsXxnJxYNSRz8fuekdf7u5flI109PzwtFyuqS2AjtRXniJXuGxCd7aArgYvWVi3rRQfKGI1Gd70RqufYtVh3ykDf9KgtWoGan5Gr6d9tDB87k0b5HnbR50rJRFO1Dc93Tl1PqbUajHTehjEqnU9vNk5nU9bl-UKUCLwWWGaATYCOIaVorNxGt1HxUyLIb6FyEiqzUPkjVO4z1PyDtMtaXPC5zQ2HUT6hKff4tYl_axygvgA15Yvc
CitedBy_id crossref_primary_10_3390_app132413262
crossref_primary_10_3390_healthcare12191964
crossref_primary_10_3390_ai4030033
crossref_primary_10_1016_j_engappai_2023_106803
crossref_primary_10_1145_3649457
crossref_primary_10_1038_s41591_024_03416_6
crossref_primary_10_1016_j_csi_2024_103895
crossref_primary_10_1038_s44168_023_00056_3
crossref_primary_10_1038_s41598_024_59100_9
crossref_primary_10_18231_j_ijashnb_2024_020
crossref_primary_10_7759_cureus_80494
crossref_primary_10_1039_D4CY01525H
crossref_primary_10_1016_j_compind_2024_104187
crossref_primary_10_1016_j_tele_2024_102135
crossref_primary_10_1080_10447318_2024_2413293
crossref_primary_10_1007_s00146_024_02076_x
crossref_primary_10_1111_jels_12396
crossref_primary_10_1016_j_ifacol_2024_07_363
crossref_primary_10_1186_s12987_024_00554_4
crossref_primary_10_1080_14498596_2024_2337747
crossref_primary_10_1142_S021812662550207X
crossref_primary_10_3390_eng6020031
crossref_primary_10_1080_10447318_2025_2450411
crossref_primary_10_1007_s11042_023_17666_y
crossref_primary_10_1038_s41467_024_45563_x
crossref_primary_10_1007_s00432_025_06134_9
crossref_primary_10_1515_cclm_2023_1058
crossref_primary_10_1080_10630732_2024_2402676
crossref_primary_10_1007_s10676_024_09771_9
crossref_primary_10_1109_ACCESS_2024_3504735
crossref_primary_10_1109_LRA_2025_3544083
crossref_primary_10_20517_2394_5079_2024_126
crossref_primary_10_1016_j_earscirev_2023_104509
crossref_primary_10_1007_s10676_024_09746_w
crossref_primary_10_1109_ACCESS_2025_3536639
crossref_primary_10_1080_17538947_2024_2422984
crossref_primary_10_3390_heritage7020038
crossref_primary_10_1016_j_chpulm_2024_100079
crossref_primary_10_1038_s41746_024_01318_y
crossref_primary_10_1038_s41562_023_01527_7
crossref_primary_10_1148_ryai_230115
crossref_primary_10_1109_TICPS_2023_3283230
crossref_primary_10_1007_s10462_023_10413_7
crossref_primary_10_46245_ijorer_v5i4_619
crossref_primary_10_1016_j_csbj_2024_05_004
crossref_primary_10_1002_adma_202413430
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_1371_journal_pdig_0000521
crossref_primary_10_3389_fdata_2024_1467222
crossref_primary_10_1183_16000617_0251_2023
crossref_primary_10_3390_bioengineering12010028
crossref_primary_10_1016_j_exis_2024_101440
crossref_primary_10_1016_j_engappai_2024_108589
crossref_primary_10_1080_10447318_2025_2476715
crossref_primary_10_3389_fcomp_2024_1444549
crossref_primary_10_1257_mic_20220248
crossref_primary_10_3390_info15110728
crossref_primary_10_1016_j_compbiomed_2024_108908
crossref_primary_10_1016_j_epsr_2024_110415
crossref_primary_10_3390_math12071024
crossref_primary_10_1093_bib_bbae035
crossref_primary_10_51867_ajernet_5_4_86
crossref_primary_10_1016_j_ijforecast_2024_09_007
crossref_primary_10_1177_19322968241304434
crossref_primary_10_1109_RBME_2024_3496744
crossref_primary_10_1007_s13752_024_00483_3
crossref_primary_10_1039_D4DD00016A
crossref_primary_10_1177_10547738241227699
crossref_primary_10_1016_j_procir_2024_08_260
crossref_primary_10_1108_GKMC_06_2023_0216
crossref_primary_10_1145_3664522
crossref_primary_10_1111_nbu_12729
crossref_primary_10_1007_s43681_024_00587_3
crossref_primary_10_3389_frai_2023_1272823
crossref_primary_10_1007_s10643_024_01690_0
crossref_primary_10_1186_s13321_024_00924_y
crossref_primary_10_1016_j_chbr_2024_100550
crossref_primary_10_1038_s44184_024_00067_w
crossref_primary_10_1016_j_eclinm_2024_102580
crossref_primary_10_1002_aisy_202400178
crossref_primary_10_3389_frobt_2024_1434351
crossref_primary_10_1039_D3NJ05784D
crossref_primary_10_1186_s13059_024_03445_x
crossref_primary_10_1016_j_eswa_2024_126136
crossref_primary_10_1109_TAI_2024_3444742
crossref_primary_10_1016_j_quaint_2024_11_003
crossref_primary_10_1088_1742_6596_2867_1_012024
crossref_primary_10_1145_3575637_3575650
crossref_primary_10_1093_iwc_iwae007
crossref_primary_10_1016_j_jii_2025_100827
crossref_primary_10_1038_s41524_024_01261_2
crossref_primary_10_55612_s_5002_059_003
crossref_primary_10_1016_j_envsci_2024_103885
crossref_primary_10_1007_s10877_024_01157_y
crossref_primary_10_1007_s10489_024_05509_8
crossref_primary_10_1007_s00521_023_09197_2
crossref_primary_10_3390_jcm13175231
crossref_primary_10_1145_3663485
crossref_primary_10_3390_polym15051324
crossref_primary_10_1016_j_caeai_2023_100146
crossref_primary_10_3389_frai_2024_1329605
crossref_primary_10_59717_j_xinn_geo_2024_100122
crossref_primary_10_32387_prokla_v54i217_2167
crossref_primary_10_3390_math12121898
crossref_primary_10_3389_fonc_2022_1061024
crossref_primary_10_1007_s44223_024_00055_2
crossref_primary_10_7717_peerj_cs_2401
crossref_primary_10_1109_ACCESS_2024_3450970
crossref_primary_10_1177_00472816241260033
crossref_primary_10_3390_arts13050138
crossref_primary_10_1080_2573234X_2024_2436578
crossref_primary_10_1016_j_cirp_2024_06_003
crossref_primary_10_1016_j_ecolind_2024_112932
crossref_primary_10_1002_jcad_12543
crossref_primary_10_2196_57852
crossref_primary_10_3390_a18020089
crossref_primary_10_1016_j_matt_2024_01_005
crossref_primary_10_12688_openreseurope_19612_1
crossref_primary_10_1007_s43681_024_00428_3
crossref_primary_10_1177_18747655241301199
crossref_primary_10_1016_j_bushor_2024_03_001
crossref_primary_10_1145_3708497
crossref_primary_10_3390_e25101443
crossref_primary_10_1007_s10845_025_02568_7
crossref_primary_10_1038_s41598_025_89743_1
crossref_primary_10_1021_acs_jchemed_4c00130
crossref_primary_10_1177_21695067231192886
crossref_primary_10_1016_j_birob_2025_100215
crossref_primary_10_1016_j_jafr_2024_101179
crossref_primary_10_1061_JCCEE5_CPENG_5939
crossref_primary_10_1039_D3SC01303K
crossref_primary_10_2196_53008
crossref_primary_10_1007_s00521_024_10799_7
crossref_primary_10_1109_ACCESS_2024_3401547
crossref_primary_10_1016_j_procs_2023_10_302
crossref_primary_10_1038_s41746_025_01503_7
crossref_primary_10_1016_j_apjo_2024_100091
crossref_primary_10_1016_j_ensm_2024_103785
crossref_primary_10_1007_s13198_024_02535_0
crossref_primary_10_1039_D4DD00320A
crossref_primary_10_1007_s12599_025_00935_5
crossref_primary_10_1016_j_engappai_2024_109771
crossref_primary_10_1177_10664807241282331
crossref_primary_10_1016_j_infoandorg_2024_100528
crossref_primary_10_1016_j_eswa_2023_120216
crossref_primary_10_1109_ACCESS_2024_3450629
crossref_primary_10_1016_j_ress_2024_110632
crossref_primary_10_1038_s41551_024_01223_5
crossref_primary_10_1515_zwf_2023_1148
crossref_primary_10_1016_j_cobeha_2025_101482
crossref_primary_10_1016_j_eswa_2024_125559
crossref_primary_10_1016_j_asoc_2023_111170
crossref_primary_10_1016_j_ecoinf_2025_103026
crossref_primary_10_1016_j_jbi_2024_104673
crossref_primary_10_1016_j_ymeth_2023_12_009
crossref_primary_10_1109_ACCESS_2025_3536095
crossref_primary_10_1007_s12652_023_04750_2
crossref_primary_10_1038_s41746_024_01190_w
crossref_primary_10_1080_08940886_2024_2391258
crossref_primary_10_3390_a17070316
crossref_primary_10_1109_ACCESS_2025_3532853
crossref_primary_10_3389_fninf_2024_1379932
crossref_primary_10_1038_s41598_025_87588_2
crossref_primary_10_1108_JICES_11_2023_0137
crossref_primary_10_1186_s13321_024_00892_3
crossref_primary_10_1016_j_artint_2023_104057
crossref_primary_10_1007_s42001_025_00372_0
crossref_primary_10_3390_app14083254
crossref_primary_10_1109_TFUZZ_2024_3365722
crossref_primary_10_1016_j_mlwa_2024_100584
crossref_primary_10_1177_20539517221131290
crossref_primary_10_1016_j_jmsy_2024_04_021
crossref_primary_10_1038_s44401_024_00009_w
crossref_primary_10_1109_MGRS_2024_3403423
crossref_primary_10_3390_technologies12120259
crossref_primary_10_3847_1538_3881_ada14c
crossref_primary_10_1016_j_ijar_2024_109212
crossref_primary_10_1615_IntJInnovOnlineEdu_2023051048
crossref_primary_10_1038_s41598_024_76943_4
crossref_primary_10_1145_3653708
crossref_primary_10_1007_s00477_024_02898_7
crossref_primary_10_1016_j_laheal_2023_09_002
crossref_primary_10_1109_ACCESS_2025_3537649
crossref_primary_10_1016_j_compag_2024_109755
crossref_primary_10_1145_3665245
crossref_primary_10_2196_69504
crossref_primary_10_1016_j_mlwa_2025_100630
crossref_primary_10_1115_1_4066600
crossref_primary_10_1177_03400352251315845
crossref_primary_10_3389_fmed_2023_1337335
crossref_primary_10_1007_s00521_022_07995_8
crossref_primary_10_1016_j_eswa_2024_124912
crossref_primary_10_1080_21642583_2025_2467083
crossref_primary_10_1016_j_ijmedinf_2024_105626
crossref_primary_10_2196_58726
crossref_primary_10_1002_advs_202307647
crossref_primary_10_4271_12_08_04_0031
crossref_primary_10_1145_3700749
Cites_doi 10.5555/3157382.3157477
10.1063/1.5023802
10.1145/2598153.2598189
10.1109/TPAMI.2021.3069908
10.1177/0278364919884623
10.1109/TVCG.2012.277
10.1145/3274566
10.1007/978-3-030-55789-8_30
10.1109/CVPR.2015.7299155
10.18653/v1/N19-1119
10.1038/nmeth.2281
10.1016/j.inffus.2019.12.012
10.5114/wo.2014.47136
10.1007/978-3-662-43968-5_1
10.1145/3282860
10.5555/1622737.1622744
10.1609/aaai.v29i1.9474
10.18653/v1/N19-1208
10.1109/WACV45572.2020.9093408
10.1609/aimag.v38i3.2741
10.1136/amiajnl-2013-002516
10.1109/ACCESS.2019.2949286
10.3233/978-1-61499-609-5-101
10.1145/3185517
10.1145/3241379
10.1145/1753326.1753529
10.1609/aaai.v29i1.9569
10.1145/3377325.3377483
10.1145/1357054.1357061
10.1109/ICPR.2004.1334570
10.1186/s40537-016-0043-6
10.1109/ICCV.2011.6126474
10.1145/3313831.3376226
10.1145/3173574.3174156
10.1109/CVPR.2016.237
10.1016/j.caeai.2021.100008
10.1007/s12650-018-0531-1
10.1145/1143844.1143897
10.24963/ijcai.2020/367
10.1109/PerComWorkshops48775.2020.9156175
10.1016/j.media.2015.06.008
10.1145/1968.1972
10.1145/3274568
10.1186/s12859-021-04047-1
10.1145/966389.966390
10.1016/j.cell.2018.02.052
10.3390/s22031184
10.24963/ijcai.2018/587
10.1006/ijhc.2001.0499
10.1007/BF00993277
10.18653/v1/N19-1189
10.1016/j.procs.2021.08.057
10.1016/0890-5401(87)90052-6
10.1007/s40708-016-0042-6
10.1145/1753846.1753889
10.18653/v1/W17-5221
10.1007/s10489-018-1361-5
10.1007/s10462-021-10088-y
10.1109/ICMLA.2015.152
10.1145/3196709.3196729
10.5555/2886521.2886696
10.1109/ICCV.2019.00512
10.1162/tacl\_a_00399
10.1145/2110363.2110464
10.1109/ICCV.2017.74
10.1016/j.knosys.2020.106660
10.1080/10580530.2020.1849465
10.1007/978-3-030-45439-5_46
10.1145/1518701.1518895
10.1145/3328485
10.1145/2723162
10.1016/0010-0277(93)90058-4
10.1145/3306618.3314293
10.1016/j.patcog.2016.11.008
10.1109/TKDE.2007.190610
10.1201/b17320
10.1016/j.tics.2014.10.004
10.1111/2041-210X.13489
10.1109/JPROC.2020.3004555
10.1007/978-3-030-29387-1_34
10.1145/253671.253680
10.1016/j.media.2021.102062
10.1109/ACCESS.2018.2870052
10.1145/604045.604056
10.1080/07370024.2020.1734931
10.1109/ICRA.2018.8461194
10.1007/978-1-4899-7637-6_24
10.5555/2145432.2145597
10.1007/978-3-642-04174-7_3
10.1109/CVPR.2017.354
10.5772/9156
10.1145/1978942.1978965
10.1145/3448888
10.1007/978-3-030-72116-9_27
10.1145/1553374.1553380
10.1080/10447318.2020.1741118
10.18653/v1/2020.acl-main.620
10.1145/3281764
10.1109/CVPR.2015.7298877
10.1016/S0020-7373(87)80013-5
10.18653/v1/2020.acl-main.542
10.1016/j.artmed.2007.07.008
10.1109/RoEduNet.2013.6511736
10.1145/3448248
10.1007/978-3-319-10590-1_53
10.1145/3236386.3241340
10.1007/BF00168958
10.1609/aaai.v29i1.9761
10.1109/MCSE.2013.74
10.2139/ssrn.3403301
10.1109/ITRE.2006.381526
10.1145/1458082.1458165
10.1016/j.knosys.2020.106622
10.1145/985692.985733
10.1109/TCSVT.2018.2884173
10.1145/3477314.3507310
10.1109/CVPR.2016.319
10.1609/aimag.v35i4.2513
10.1109/TNNLS.2019.2934906
10.1007/978-3-319-90403-0_17
10.1038/s41592-019-0582-9
10.1038/nature14539
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2023 Springer
Copyright Springer Nature B.V. Apr 2023
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2023 Springer
– notice: Copyright Springer Nature B.V. Apr 2023
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-022-10246-w
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Library Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef


ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 3054
ExternalDocumentID A741036714
10_1007_s10462_022_10246_w
GrantInformation_xml – fundername: Universidade da Coruña
– fundername: Xunta de Galicia
  grantid: ED431C 2022/44
  funderid: http://dx.doi.org/10.13039/501100010801
– fundername: Agencia Estatal de Investigación
  grantid: (PID2019-107194GB-I00 / AEI / 10.13039/501100011033)
  funderid: http://dx.doi.org/10.13039/501100011033
– fundername: CITIC with ERDF funds
  grantid: ED431G 2019/01
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c402t-f533115cd807bfb0b40379f592d7b0aeec1ecbde7ad31b916bae0d8d1cf1f71c3
IEDL.DBID U2A
ISSN 0269-2821
IngestDate Wed Aug 13 10:36:33 EDT 2025
Tue Jun 10 21:13:07 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Tue Jul 01 01:23:26 EDT 2025
Fri Feb 21 02:45:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human-in-the-loop machine learning
Curriculum learning
Explainable AI
Active learning
Machine teaching
Interactive machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-f533115cd807bfb0b40379f592d7b0aeec1ecbde7ad31b916bae0d8d1cf1f71c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4894-1067
OpenAccessLink https://link.springer.com/10.1007/s10462-022-10246-w
PQID 2785983785
PQPubID 36790
PageCount 50
ParticipantIDs proquest_journals_2785983785
gale_infotracacademiconefile_A741036714
crossref_primary_10_1007_s10462_022_10246_w
crossref_citationtrail_10_1007_s10462_022_10246_w
springer_journals_10_1007_s10462_022_10246_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References LiptonZCThe mythos of model interpretability: in machine learning, the concept of interpretability is both important and slipperyQueue2018163315710.1145/3236386.3241340
WareMFrankEHolmesGInteractive machine learning: letting users build classifiersInt J Hum Comput Stud200155328129210.1006/ijhc.2001.04990972.68599
van AllenPPrototyping ways of prototyping AIInteractions2018256465110.1145/3274566
JamiesonKGJainLFernandezCCortesCLawrenceNLeeDNext: a system for real-world development, evaluation, and application of active learningAdvances in neural information processing systems2015Red HookCurran Associates Inc
Simard PY, Amershi S, Chickering DM et al (2017) Machine teaching: A new paradigm for building machine learning systems. arXiv e-prints arxiv:1707.06742
AdadiABerradaMPeeking inside the black-box: a survey on explainable artificial intelligence (XAI)IEEE Access2018652,13852,16010.1109/ACCESS.2018.2870052
Carlson G (2015) What eactly is complex data? https://www.ayasdi.com/exactly-complex-data/. Accessed on 04 Mar 2021
Platanios EA, Stretcu O, Neubig G et al (2019) Competence-based curriculum learning for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 1162–1172, https://doi.org/10.18653/v1/N19-1119, https://www.aclweb.org/anthology/N19-1119
Hoi SCH, Jin R, Zhu J et al (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML ’06, 417-424, https://doi.org/10.1145/1143844.1143897
KellenbergerBTuiaDMorrisDAide: accelerating image-based ecological surveys with interactive machine learningMethods Ecol Evol202011121716172710.1111/2041-210X.13489
ZbyszynskiMTanakaAVisiFSilvaHInteractive machine learning: strategies for live performance using electromyographyOpen source biomedical engineering2020BerlinSpringer
PenhaGHauffCJoseJMYilmazEMagalhãesJCurriculum learning strategies for IREuropean conference on information retrieval: advances in information retrieval2020ChamSpringer69971310.1007/978-3-030-45439-5_46
SmithJSNebgenBLubbersNLess is more: sampling chemical space with active learningJ Chem Phys201814824241,73310.1063/1.5023802
MunroRHuman-in-the-loop machine learning2020Shelter IslandManning Publications
NguyenDHMPatrickJDSupervised machine learning and active learning in classification of radiology reportsJ Am Med Inform Assoc201421589390110.1136/amiajnl-2013-002516
Settles B (2011) From theories to queries: Active learning in practice. In: Guyon I, Cawley G, Dror G et al (eds) Active learning and experimental design workshop In conjunction with AISTATS 2010, proceedings of machine learning research, vol 16. JMLR workshop and conference proceedings, Sardinia, Italy, 1–18, http://proceedings.mlr.press/v16/settles11a.html
Abiteboul S, Buneman P, Suciu D (2000) Data on the web: from relations to semistructured data and XML. Morgan Kaufmann, Data Management Systems Series
HeXZhaoKChuXAutoML: a survey of the state-of-the-artKnowl Based Syst202121210662210.1016/j.knosys.2020.106622
RubensNElahiMSugiyamaMRicciFRokachLShapiraBActive learning in recommender systemsRecommender systems handbook2015BostonSpringer80984610.1007/978-1-4899-7637-6_24
Donadello I, Kessler F, Dragoni M et al (2019) Persuasive explanation of reasoning inferences on dietary data. In: Joint proceedings of the 6th international workshop on dataset profilling and search and the 1st workshop on semantic explainability co-located with the 18th international semantic web conference (ISWC 2019)
KoestenLSimperlEUx of data: making data available doesn’t make it usableInteractions2021282979910.1145/3448888
XuWToward human-centered AI: a perspective from human–computer interactionInteractions2019264424610.1145/3328485
MontavonGLapuschkinSBinderAExplaining nonlinear classification decisions with deep Taylor decompositionPattern Recognit20176521122210.1016/j.patcog.2016.11.008
HolzingerAInteractive machine learning for health informatics: when do we need the human-in-the-loop?Brain Inform20163211913110.1007/s40708-016-0042-6
Laws F, Scheible C, Schütze H (2011) Active Learning with Amazon Mechanical Turk. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, USA, EMNLP ’11, 1546-1556, https://doi.org/10.5555/2145432.2145597
Leslie D (2019) Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of ai systems in the public sector. 10.5281/zenodo.3240529
Fiebrink RA (2011) Real-time human interaction with supervised learning algorithms for music composition and performance. PhD thesis, Computer Science Dept. Princeton University, Princeton, NJ, USA, https://dl.acm.org/doi/book/10.5555/2125776
Holzinger A, Biemann C, Pattichis CS, et al (2017) What do we need to build explainable AI systems for the medical domain? arXiv e-prints arxiv:1712.09923 [cs.AI]
BlumbergRAtreSThe problem with unstructured dataDM Rev20031342–4962
Luo T, Kramer K, Samson S et al (2004) Active learning to recognize multiple types of plankton. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., 478–481 Vol.3, https://doi.org/10.1109/ICPR.2004.1334570
Fadhil A, Wang Y (2018) Towards automatic & personalised mobile health interventions: an interactive machine learning perspective. arXiv e-prints arxiv:1803.01842 [cs.CY]
Chen Y, Singla A, Aodha OM et al (2018) Understanding the role of adaptivity in machine teaching: The case of version space learners. In: Proceedings of the 32nd international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’18, 1483-1493, https://dl.acm.org/doi/abs/10.5555/3326943.3327079
MuirBMTrust between humans and machines, and the design of decision aidsInt J Man-Mach Stud198727552753910.1016/S0020-7373(87)80013-5
ZhuangFQiZDuanKA comprehensive survey on transfer learningProc IEEE20211091437610.1109/JPROC.2020.3004555
Xu B, Zhang L, Mao Z et al (2020) Curriculum learning for natural language understanding. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6095–6104, https://doi.org/10.18653/v1/2020.acl-main.542, https://www.aclweb.org/anthology/2020.acl-main.542
Fiebrink R, Cook PR (2010) The wekinator: a system for real-time, interactive machine learning in music. In: Proceedings of The Eleventh International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht
Donmez P, Carbonell JG (2008) Proactive learning: Cost-sensitive active learning with multiple imperfect oracles. In: Proceedings of the 17th ACM conference on information and knowledge management. Association for Computing Machinery, New York, NY, USA, CIKM ’08, 619–628, https://doi.org/10.1145/1458082.1458165
KumarMPackerBKollerDLaffertyJWilliamsCShawe-TaylorJSelf-paced learning for latent variable modelsAdvances in neural information processing systems2010Red HookCurran Associates Inc11891197
DudleyJJKristenssonPOA review of user interface design for interactive machine learningACM Trans Interact Intell Syst201810.1145/3185517
AngluinDLearning regular sets from queries and counterexamplesInf Comput19877528710691636010.1016/0890-5401(87)90052-60636.68112
ShneidermanBHuman-centered artificial intelligence: reliable, safe & trustworthyInt J Hum Comput Interact202036649550410.1080/10447318.2020.1741118
KabraMRobieAARivera-AlbaMJaaba: interactive machine learning for automatic annotation of animal behaviorNat Methods2013101646710.1038/nmeth.2281
Soviany P, Ardei C, Ionescu RT et al (2020) Image difficulty curriculum for generative adversarial networks (cugan). In: 2020 IEEE winter conference on applications of computer vision (WACV), 3452–3461, https://doi.org/10.1109/WACV45572.2020.9093408
LopesMMeloFMontesanoLActive learning for reward estimation in inverse reinforcement learningJoint European conference on machine learning and knowledge discovery in databases2009Berlin HeidelbergSpringer314610.1007/978-3-642-04174-7_3
NwanaHSIntelligent tutoring systems: an overviewArtif Intell Rev19904425127710.1007/BF00168958
Zhang X, Shapiro P, Kumar G et al (2019b) Curriculum learning for domain adaptation in neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 1903–1915, https://doi.org/10.18653/v1/N19-1189, https://www.aclweb.org/anthology/N19-1189
GaonkarBShinoharaTRDavatzikosCInterpreting support vector machine models for multivariate group wise analysis in neuroimagingMed Image Anal201524119020410.1016/j.media.2015.06.008
Zhang X, Kumar G, Khayrallah H et al (2018) An empirical exploration of curriculum learning for neural machine translation. arXiv e-prints arxiv:1811.00739 [cs.CL]
Ionescu RT, Alexe B, Leordeanu M et al (2016) How hard can it be? estimating the difficulty of visual search in an image. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2157–2166, https://doi.org/10.1109/CVPR.2016.237
Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), 5188–5196, https://doi.org/10.1109/CVPR.2015.7299155, https://ieeexplore.ieee.org/document/7299155
YangSJOgataHMatsuiTHuman-centered artificial intelligence in education: seeing the invisible through the visibleComput Educ2021210000810.1016/j.caeai.2021.100008
KosmynaNTarpin-BernardFRivetBAdding human learning in brain-computer interfaces (b
A Holzinger (10246_CR63) 2014
A Adadi (10246_CR3) 2018; 6
N Boukhelifa (10246_CR22) 2018
10246_CR108
10246_CR111
R Blumberg (10246_CR20) 2003; 13
10246_CR114
10246_CR116
JS Smith (10246_CR132) 2018; 148
10246_CR24
10246_CR21
O Reyes (10246_CR118) 2016; 17
10246_CR27
DHM Nguyen (10246_CR107) 2014; 21
10246_CR25
10246_CR110
10246_CR26
F Zhuang (10246_CR171) 2021; 109
N Kosmyna (10246_CR77) 2015
S Amershi (10246_CR8) 2014; 35
B Gaonkar (10246_CR51) 2015; 24
A Holzinger (10246_CR62) 2016; 3
Z Liu (10246_CR86) 2021; 213
A Barredo Arrieta (10246_CR13) 2020; 58
B Shneiderman (10246_CR128) 2020; 36
K Tomczak (10246_CR140) 2015; 19
IM El-Hasnony (10246_CR42) 2022
10246_CR93
10246_CR100
10246_CR1
10246_CR90
10246_CR2
10246_CR7
10246_CR96
C Sammut (10246_CR122) 1986
10246_CR104
10246_CR94
A Sena (10246_CR124) 2020; 39
10246_CR98
10246_CR11
TT Hills (10246_CR58) 2015; 19
10246_CR99
10246_CR16
10246_CR17
M Zbyszynski (10246_CR160) 2020
10246_CR14
10246_CR15
C Meske (10246_CR97) 2022; 39
G Ramos (10246_CR117) 2020; 35
J Liu (10246_CR87) 2018; 173
JM Wing (10246_CR154) 2021; 64
F Heimerl (10246_CR57) 2012; 18
10246_CR134
E Diamant (10246_CR37) 2009
10246_CR133
10246_CR136
B Peng (10246_CR112) 2021; 9
10246_CR138
10246_CR137
10246_CR40
10246_CR139
10246_CR45
10246_CR46
10246_CR44
A Holzinger (10246_CR64) 2019; 49
Z Chen (10246_CR28) 2007; 41
10246_CR49
10246_CR130
SJ Yang (10246_CR158) 2021; 2
10246_CR47
10246_CR48
B Kellenberger (10246_CR74) 2020; 11
10246_CR131
MD Zeiler (10246_CR161) 2014
10246_CR29
10246_CR119
KG Jamieson (10246_CR68) 2015
P van Allen (10246_CR6) 2018; 25
10246_CR123
10246_CR125
Y LeCun (10246_CR82) 2015; 521
10246_CR30
10246_CR127
JL Elman (10246_CR43) 1993; 48
10246_CR126
10246_CR129
H Berghel (10246_CR19) 1997; 40
10246_CR35
10246_CR32
BM Muir (10246_CR105) 1987; 27
10246_CR38
10246_CR39
10246_CR36
10246_CR121
S Budd (10246_CR23) 2021; 71
G Montavon (10246_CR102) 2017; 65
Y Zhao (10246_CR166) 2020
FG Visi (10246_CR143) 2021
DA Cohn (10246_CR34) 1996; 4
B Goodman (10246_CR52) 2017; 38
T Matiisen (10246_CR95) 2020; 31
10246_CR60
EF Churchill (10246_CR31) 2018; 25
10246_CR157
10246_CR159
10246_CR61
D Minh (10246_CR101) 2021
10246_CR67
D Cohn (10246_CR33) 1994; 15
10246_CR65
10246_CR150
10246_CR66
D Zhang (10246_CR163) 2019; 29
10246_CR151
10246_CR153
S Berg (10246_CR18) 2019; 16
10246_CR145
L Koesten (10246_CR76) 2021; 28
O Loyola-González (10246_CR92) 2019; 7
10246_CR147
M Lindvall (10246_CR84) 2018; 25
R Porter (10246_CR115) 2013; 15
10246_CR53
E Mosqueira-Rey (10246_CR103) 2021; 192
10246_CR148
10246_CR50
NH Barakat (10246_CR12) 2007; 19
10246_CR54
LG Valiant (10246_CR142) 1984; 27
10246_CR55
M Lopes (10246_CR91) 2009
K De Angeli (10246_CR9) 2021; 22
M Kumar (10246_CR79) 2010
M Ware (10246_CR149) 2001; 55
10246_CR59
L Jiang (10246_CR69) 2019; 22
M Treveil (10246_CR141) 2020
ZC Lipton (10246_CR85) 2018; 16
CC Aggarwal (10246_CR4) 2014
HS Nwana (10246_CR109) 1990; 4
E Wall (10246_CR144) 2019
10246_CR81
10246_CR80
J Šavelka (10246_CR174) 2015
D Angluin (10246_CR10) 1987; 75
10246_CR83
X He (10246_CR56) 2021; 212
10246_CR89
K Weiss (10246_CR152) 2016; 3
10246_CR170
10246_CR172
10246_CR88
10246_CR173
L von Ahn (10246_CR5) 2004; 47
JJ Dudley (10246_CR41) 2018
JS Wong (10246_CR155) 2018; 25
10246_CR70
W Xu (10246_CR156) 2019; 26
10246_CR167
10246_CR71
M Kabra (10246_CR72) 2013; 10
10246_CR169
10246_CR168
G Penha (10246_CR113) 2020
10246_CR75
X Wang (10246_CR146) 2021
10246_CR73
10246_CR78
J Suh (10246_CR135) 2019
R Munro (10246_CR106) 2020
10246_CR162
10246_CR165
N Rubens (10246_CR120) 2015
10246_CR164
References_xml – reference: Wang Y, Gan W, Yang J et al (2019) Dynamic curriculum learning for imbalanced data classification. In: 2019 IEEE/CVF international conference on computer vision (ICCV), 5016–5025, https://doi.org/10.1109/ICCV.2019.00512
– reference: Das A, Rad P (2020) Opportunities and challenges in explainable artificial intelligence (XAI): a survey. arXiv e-prints arxiv:2006.11371 [cs.CV]
– reference: Kim B, Patel K, Rostamizadeh A et al (2015) Scalable and interpretable data representation for high-dimensional, complex data. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Austin, Texas USA, 1763–1769, https://ojs.aaai.org/index.php/AAAI/article/view/9474
– reference: KumarMPackerBKollerDLaffertyJWilliamsCShawe-TaylorJSelf-paced learning for latent variable modelsAdvances in neural information processing systems2010Red HookCurran Associates Inc11891197
– reference: PorterRTheilerJHushDInteractive machine learning in data exploitationComput Sci Eng2013155122010.1109/MCSE.2013.74
– reference: ŠavelkaJTrivediGAshleyKDRotoloAApplying an interactive machine learning approach to statutory analysisLegal knowledge and information systems, frontiers in artificial intelligence and applications2015AmsterdamIOS Press10111010.3233/978-1-61499-609-5-101
– reference: Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), 5188–5196, https://doi.org/10.1109/CVPR.2015.7299155, https://ieeexplore.ieee.org/document/7299155
– reference: Ishibashi T, Nakao Y, Sugano Y (2020) Investigating audio data visualization for interactive sound recognition. In: Proceedings of the 25th international conference on intelligent user interfaces. Association for Computing Machinery, New York, NY, USA, IUI ’20, 67–77, https://doi.org/10.1145/3377325.3377483
– reference: Liu W, Dai B, Humayun A et al (2017) Iterative machine teaching. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, proceedings of machine learning research, vol 70. PMLR, 2149–2158, https://proceedings.mlr.press/v70/liu17b.html
– reference: ZeilerMDFergusRFleetDPajdlaTSchieleBVisualizing and understanding convolutional networksEuropean conference on computer vision2014ChamSpringer81883310.1007/978-3-319-10590-1_53
– reference: Holmberg L, Davidsson P, Linde P (2020) A feature space focus in machine teaching. In: 2020 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), 1–2, https://doi.org/10.1109/PerComWorkshops48775.2020.9156175
– reference: Teso S, Kersting K (2019) Explanatory interactive machine learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery, New York, NY, USA, AIES ’19, 239–245, https://doi.org/10.1145/3306618.3314293
– reference: Zeiler MD, Taylor GW, Fergus R (2011) Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International conference on computer vision, 2018–2025, https://doi.org/10.1109/ICCV.2011.6126474, https://ieeexplore.ieee.org/document/6126474
– reference: Zhou Y, Yang B, Wong DF et al (2020) Uncertainty-aware curriculum learning for neural machine translation. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6934–6944, https://doi.org/10.18653/v1/2020.acl-main.620, https://www.aclweb.org/anthology/2020.acl-main.620
– reference: ZhuangFQiZDuanKA comprehensive survey on transfer learningProc IEEE20211091437610.1109/JPROC.2020.3004555
– reference: Liu C, He S, Liu K et al (2018a) Curriculum learning for natural answer generation. In: Proceedings of the 27th international joint conference on artificial intelligence. AAAI Press, IJCAI’18, 4223-4229, https://doi.org/10.24963/ijcai.2018/587
– reference: Bonwell CC, Eison JA (1991) Active learning: creating excitement in the classroom. 1991 ASHE-ERIC higher education reports. ERIC Clearinghouse on Higher Education, The George Washington University, One Dupont Circle, Suite 630, Washington, DC 20036-1183
– reference: Platanios EA, Stretcu O, Neubig G et al (2019) Competence-based curriculum learning for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 1162–1172, https://doi.org/10.18653/v1/N19-1119, https://www.aclweb.org/anthology/N19-1119
– reference: WallEGhorashiSRamosGLamasDLoizidesFNackeLUsing expert patterns in assisted interactive machine learning: a study in machine teachingHuman-computer interaction—INTERACT 20192019BerlinSpringer57859910.1007/978-3-030-29387-1_34
– reference: HolzingerAPlassMKickmeier-RustMInteractive machine learning: experimental evidence for the human in the algorithmic loopAppl Intell20194972401241410.1007/s10489-018-1361-5
– reference: ZbyszynskiMTanakaAVisiFSilvaHInteractive machine learning: strategies for live performance using electromyographyOpen source biomedical engineering2020BerlinSpringer
– reference: RubensNElahiMSugiyamaMRicciFRokachLShapiraBActive learning in recommender systemsRecommender systems handbook2015BostonSpringer80984610.1007/978-1-4899-7637-6_24
– reference: KellenbergerBTuiaDMorrisDAide: accelerating image-based ecological surveys with interactive machine learningMethods Ecol Evol202011121716172710.1111/2041-210X.13489
– reference: Sint R, Schaffert S, Stroka S et al (2009) Combining unstructured, fully structured and semi-structured information in semantic wikis. In: 4th semantic wiki workshop (SemWiki 2009) at the 6th European semantic web conference (ESWC 2009), Hersonissos, Greece, 73–87, http://ceur-ws.org/Vol-464/paper-14.pdf
– reference: Fogarty J, Tan D, Kapoor A et al (2008) Cueflik: Interactive concept learning in image search. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’08, 29–38, https://doi.org/10.1145/1357054.1357061
– reference: WangXChenYZhuWA survey on curriculum learningIEEE Trans Pattern Anal Mach Intell202110.1109/TPAMI.2021.3069908
– reference: Hara S, Hayashi K (2018) Making tree ensembles interpretable: A bayesian model selection approach. In: Storkey A, Perez-Cruz F (eds) Proceedings of the twenty-first international conference on artificial intelligence and statistics, proceedings of machine learning research, vol 84. PMLR, 77–85, https://proceedings.mlr.press/v84/hara18a.html
– reference: ReyesOPérezEdel CarmenRodrıguez-Hernández MJclal: a java framework for active learningJ Mach Learn Res2016171535435011367.68237
– reference: AdadiABerradaMPeeking inside the black-box: a survey on explainable artificial intelligence (XAI)IEEE Access2018652,13852,16010.1109/ACCESS.2018.2870052
– reference: Weimer M (2010) Machine teaching: a machine learning approach to technology enhanced learning. PhD thesis, Darmstadt University of Technology, http://tuprints.ulb.tu-darmstadt.de/2109/
– reference: Krakovna V, Doshi-Velez F (2016) Increasing the interpretability of recurrent neural networks using hidden markov models. arXiv e-prints arxiv:1606.0532 [cond-mat.soft]
– reference: El-HasnonyIMElzekiOMAlshehriAMulti-label active learning-based machine learning model for heart disease predictionSensors202210.3390/s22031184
– reference: Wallace BC, Small K, Brodley CE et al (2012) Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. Association for Computing Machinery, New York, NY, USA, IHI ’12, 819–824, https://doi.org/10.1145/2110363.2110464
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: Kumar G, Foster G, Cherry C et al (2019) Reinforcement learning based curriculum optimization for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 2054–2061, https://doi.org/10.18653/v1/N19-1208, https://www.aclweb.org/anthology/N19-1208
– reference: Laws F, Scheible C, Schütze H (2011) Active Learning with Amazon Mechanical Turk. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, USA, EMNLP ’11, 1546-1556, https://doi.org/10.5555/2145432.2145597
– reference: Ribeiro M, Grolinger K, Capretz MA (2015) MLaaS: Machine learning as a service. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), 896–902, https://doi.org/10.1109/ICMLA.2015.152
– reference: Mosqueira-ReyEAlonso-RíosDBaamonde-LozanoAIntegrating iterative machine teaching and active learning into the machine learning loopProcedia Comput Sci202119255356210.1016/j.procs.2021.08.057
– reference: LindvallMMolinJLöwgrenJFrom machine learning to machine teaching: the importance of UXInteractions2018256525710.1145/3282860
– reference: Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D et al (2022) A classification and review of tools for developing and interacting with machine learning systems. In: Proceedings of the 37th annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, 1083–1092, https://doi.org/10.1145/3477314.3507310
– reference: Xu B, Zhang L, Mao Z et al (2020) Curriculum learning for natural language understanding. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6095–6104, https://doi.org/10.18653/v1/2020.acl-main.542, https://www.aclweb.org/anthology/2020.acl-main.542
– reference: HeXZhaoKChuXAutoML: a survey of the state-of-the-artKnowl Based Syst202121210662210.1016/j.knosys.2020.106622
– reference: Weinshall D, Cohen G, Amir D (2018) Curriculum learning by transfer learning: Theory and experiments with deep networks. In: Proceedings of the 35th annual international conference on machine learning, 5235–5243, http://proceedings.mlr.press/v80/weinshall18a.html
– reference: Choi E, Bahadori T, Schuetz A et al (2016) Retain: Interpretable predictive model in healthcare using reverse time attention mechanism. In: Proceedings of the 30th international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’16, 3512-3520
– reference: Weitekamp D, Harpstead E, Koedinger KR (2020) An interaction design for machine teaching to develop AI tutors. In: Proceedings of the 2020 CHI conference on human factors in computing systems, 1–11, https://doi.org/10.1145/3313831.3376226
– reference: Yang Q, Suh J, Chen NC et al (2018) Grounding interactive machine learning tool design in how non-experts actually build models. In: Proceedings of the 2018 designing interactive systems conference. Association for Computing Machinery, New York, NY, USA, DIS ’18, 573–584, https://doi.org/10.1145/3196709.3196729
– reference: Ionescu RT, Alexe B, Leordeanu M et al (2016) How hard can it be? estimating the difficulty of visual search in an image. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2157–2166, https://doi.org/10.1109/CVPR.2016.237
– reference: Jiang L, Meng D, Zhao Q et al (2015) Self-paced curriculum learning. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, AAAI’15, 2694-2700, https://doi.org/10.5555/2886521.2886696
– reference: Fiebrink R, Cook PR, Trueman D (2011) Human model evaluation in interactive supervised learning. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’11, 147–156, https://doi.org/10.1145/1978942.1978965
– reference: Traoré R, Caselles-Dupré ea (2019) Discorl: continual reinforcement learning via policy distillation. arXiv e-prints arxiv:1907.05855 [cs.LG]
– reference: BoukhelifaNBezerianosALuttonEZhouJChenFEvaluation of interactive machine learning systemsHuman and machine learning: visible, explainable, trustworthy and transparent2018ChamSpringer34136010.1007/978-3-319-90403-0_17
– reference: d’Avila Garcez A, Gori M, Lamb LC et al (2019) Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. arXiv e-prints arxiv:1905.06088 [cs.AI]
– reference: PengBLiCLiJSoloist: building task bots at scale with transfer learning and machine teachingTrans Assoc Comput Linguist2021980782410.1162/tacl\_a_00399
– reference: JiangLLiuSChenCRecent research advances on interactive machine learningJ Vis201922240141710.1007/s12650-018-0531-1
– reference: Microsoft (2022) Qna maker. https://www.qnamaker.ai/. Accessed on 23 Mar 2022
– reference: NwanaHSIntelligent tutoring systems: an overviewArtif Intell Rev19904425127710.1007/BF00168958
– reference: Selvaraju RR, Cogswell M, Das A et al (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV), 618–626, https://doi.org/10.1109/ICCV.2017.74, https://ieeexplore.ieee.org/document/8237336
– reference: MuirBMTrust between humans and machines, and the design of decision aidsInt J Man-Mach Stud198727552753910.1016/S0020-7373(87)80013-5
– reference: AmershiSCakmakMKnoxWBPower to the people: the role of humans in interactive machine learningAI Magazine201435410512010.1609/aimag.v35i4.2513
– reference: Fadhil A, Wang Y (2018) Towards automatic & personalised mobile health interventions: an interactive machine learning perspective. arXiv e-prints arxiv:1803.01842 [cs.CY]
– reference: ZhaoYProsperiMLyuTFujitaHFournier-VigerPAliMIntegrating crowdsourcing and active learning for classification of work-life events from tweetsTrends in artificial intelligence theory and applications. Artificial intelligence practices2020ChamSpringer33334410.1007/978-3-030-55789-8_30
– reference: Bengio Y, Louradour J, Collobert R et al (2009) Curriculum learning. In: Proceedings of the 26th annual international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML ’09, 41-48, https://doi.org/10.1145/1553374.1553380
– reference: ElmanJLLearning and development in neural networks: the importance of starting smallCognition1993481719910.1016/0010-0277(93)90058-4
– reference: Rusu O, Halcu I, Grigoriu O et al (2013) Converting unstructured and semi-structured data into knowledge. In: 013 11th RoEduNet international conference, 1–4, https://doi.org/10.1109/RoEduNet.2013.6511736
– reference: Zhang X, Kumar G, Khayrallah H et al (2018) An empirical exploration of curriculum learning for neural machine translation. arXiv e-prints arxiv:1811.00739 [cs.CL]
– reference: BerghelHCyberspace 2000: dealing with information overloadCommun ACM1997402192410.1145/253671.253680
– reference: MontavonGLapuschkinSBinderAExplaining nonlinear classification decisions with deep Taylor decompositionPattern Recognit20176521122210.1016/j.patcog.2016.11.008
– reference: YangSJOgataHMatsuiTHuman-centered artificial intelligence in education: seeing the invisible through the visibleComput Educ2021210000810.1016/j.caeai.2021.100008
– reference: ChenZLiJWeiLA multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissueArtif Intell Med200741216117510.1016/j.artmed.2007.07.008
– reference: Diamant E (2006) Learning to understand image content: Machine learning versus machine teaching alternative. In: 2006 International conference on information technology: research and education, 26–29, https://doi.org/10.1109/ITRE.2006.381526
– reference: CohnDAtlasLLadnerRImproving generalization with active learningMach Learn199415220122110.1007/BF00993277
– reference: Amazon (2022) Amazon mechanical turk. https://www.mturk.com/. Accessed on 23 Mar 2022
– reference: KabraMRobieAARivera-AlbaMJaaba: interactive machine learning for automatic annotation of animal behaviorNat Methods2013101646710.1038/nmeth.2281
– reference: Mei S, Zhu X (2015) Using machine teaching to identify optimal training-set attacks on machine learners. In: Proc. of the 29th AAAI conference on artificial intelligence, 2871–2877, https://ojs.aaai.org/index.php/AAAI/article/view/9569
– reference: O’Malley J (2018) Captcha if you can: how you’ve been training ai for years without realising it. https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it
– reference: Castle E (2017) 7 signs you’re dealing with complex data. https://www.sisense.com/blog/7-signs-youre-dealing-with-complex-data/. Accessed on 04 Mar 2022
– reference: Settles B (2011) From theories to queries: Active learning in practice. In: Guyon I, Cawley G, Dror G et al (eds) Active learning and experimental design workshop In conjunction with AISTATS 2010, proceedings of machine learning research, vol 16. JMLR workshop and conference proceedings, Sardinia, Italy, 1–18, http://proceedings.mlr.press/v16/settles11a.html
– reference: SuhJGhorashiSRamosGAnchorviz: facilitating semantic data exploration and concept discovery for interactive machine learningACM Trans Interact Intell Syst201910.1145/3241379
– reference: Talbot J, Lee B, Kapoor A et al (2009) Ensemblematrix: Interactive visualization to support machine learning with multiple classifiers. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’09, 1283-1292, https://doi.org/10.1145/1518701.1518895
– reference: Hipke K, Toomim M, Fiebrink R et al (2014) Beatbox: End-user interactive definition and training of recognizers for percussive vocalizations. In: Proceedings of the 2014 international working conference on advanced visual interfaces. Association for Computing Machinery, New York, NY, USA, AVI ’14, 121–124, https://doi.org/10.1145/2598153.2598189
– reference: Olsson F (2009) A literature survey of active machine learning in the context of natural language processing. Tech. rep., Swedish Institute of Computer Science, http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-23510
– reference: LiuJLichtenbergTHoadleyKAAn integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analyticsCell20181732400416.e1110.1016/j.cell.2018.02.052
– reference: DudleyJJKristenssonPOA review of user interface design for interactive machine learningACM Trans Interact Intell Syst201810.1145/3185517
– reference: HolzingerAJurisicaIHolzingerAJurisicaIKnowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutionsInteractive knowledge discovery and data mining in biomedical informatics: state-of-the-art and future challenges2014Berlin, HeidelbergSpringer11810.1007/978-3-662-43968-5_1
– reference: Meza Martínez MA, Nadj M, Maedche A (2019) Towards an integrative theoretical framework of interactive machine learning systems. In: Proceedings of the 27th European conference on information systems (ECIS), Stockholm & Uppsala, Sweden, https://aisel.aisnet.org/ecis2019_rp/172
– reference: SammutCBanerjiRBMichalskiRSCarbonellJMitchellTLearning concepts by asking questionsMachine learning: an artificial intelligence approach1986BurlingtonMorgan Kaufmann167192
– reference: LiptonZCThe mythos of model interpretability: in machine learning, the concept of interpretability is both important and slipperyQueue2018163315710.1145/3236386.3241340
– reference: NguyenDHMPatrickJDSupervised machine learning and active learning in classification of radiology reportsJ Am Med Inform Assoc201421589390110.1136/amiajnl-2013-002516
– reference: ChurchillEFvan AllenPKuniavskyMDesigning AIInteractions2018256343710.1145/3281764
– reference: WareMFrankEHolmesGInteractive machine learning: letting users build classifiersInt J Hum Comput Stud200155328129210.1006/ijhc.2001.04990972.68599
– reference: Holzinger A, Biemann C, Pattichis CS, et al (2017) What do we need to build explainable AI systems for the medical domain? arXiv e-prints arxiv:1712.09923 [cs.AI]
– reference: Sena A, Zhao Y, Howard MJ (2018) Teaching human teachers to teach robot learners. In: 2018 IEEE international conference on robotics and automation (ICRA), 5675–5681, https://doi.org/10.1109/ICRA.2018.8461194
– reference: Che Z, Purushotham S, Khemani R et al (2015) Distilling knowledge from deep networks with applications to healthcare domain. arXiv e-prints arxiv:1512.03542 [stat.ML]
– reference: Fiebrink RA (2011) Real-time human interaction with supervised learning algorithms for music composition and performance. PhD thesis, Computer Science Dept. Princeton University, Princeton, NJ, USA, https://dl.acm.org/doi/book/10.5555/2125776
– reference: KoestenLSimperlEUx of data: making data available doesn’t make it usableInteractions2021282979910.1145/3448888
– reference: MeskeCBundeESchneiderJExplainable artificial intelligence: objectives, stakeholders, and future research opportunitiesInf Syst Manag2022391536310.1080/10580530.2020.1849465
– reference: Donadello I, Kessler F, Dragoni M et al (2019) Persuasive explanation of reasoning inferences on dietary data. In: Joint proceedings of the 6th international workshop on dataset profilling and search and the 1st workshop on semantic explainability co-located with the 18th international semantic web conference (ISWC 2019)
– reference: Cirik V, Hovy E, Morency LP (2016) Visualizing and understanding curriculum learning for long short-term memory networks. arXiv e-prints arxiv:1611.06204 [cs.CL]
– reference: Soviany P, Ardei C, Ionescu RT et al (2020) Image difficulty curriculum for generative adversarial networks (cugan). In: 2020 IEEE winter conference on applications of computer vision (WACV), 3452–3461, https://doi.org/10.1109/WACV45572.2020.9093408
– reference: Wang X, Pham H, Michel P et al (2020) Optimizing data usage via differentiable rewards. In: III HD, Singh A (eds) Proceedings of the 37th international conference on machine learning, proceedings of machine learning research, vol 119. PMLR, 9983–9995, https://proceedings.mlr.press/v119/wang20p.html
– reference: Simard PY, Amershi S, Chickering DM et al (2017) Machine teaching: A new paradigm for building machine learning systems. arXiv e-prints arxiv:1707.06742
– reference: Arras GL, Montavon, Müller KR, Samek W (2017) Explaining recurrent neural network predictions in sentiment analysis. In: EMNLP’17 workshop on computational approaches to subjectivity, sentiment and social media analysis, https://doi.org/10.18653/v1/W17-5221
– reference: Kapoor A, Lee B, Tan D et al (2010) Interactive optimization for steering machine classification. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’10, 1343–1352, https://doi.org/10.1145/1753326.1753529
– reference: SmithJSNebgenBLubbersNLess is more: sampling chemical space with active learningJ Chem Phys201814824241,73310.1063/1.5023802
– reference: Johns E, Mac Aodha O, Brostow GJ (2015) Becoming the expert-interactive multi-class machine teaching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2616–2624, https://doi.org/10.1109/CVPR.2015.7298877
– reference: MinhDWangHXLiYFExplainable artificial intelligence: a comprehensive reviewArtif Intell Rev202110.1007/s10462-021-10088-y
– reference: BarakatNHBradleyAPRule extraction from support vector machines: a sequential covering approachIEEE Trans Knowl Data Eng200719672974110.1109/TKDE.2007.190610
– reference: Abiteboul S, Buneman P, Suciu D (2000) Data on the web: from relations to semistructured data and XML. Morgan Kaufmann, Data Management Systems Series
– reference: De AngeliKGaoSAlawadMDeep active learning for classifying cancer pathology reportsBMC Bioinform202122112510.1186/s12859-021-04047-1
– reference: WingJMTrustworthy AICommun ACM20216410647110.1145/3448248
– reference: Zhu X (2015) Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, AAAI’15, 4083–4087, https://ojs.aaai.org/index.php/AAAI/article/view/9761
– reference: AngluinDLearning regular sets from queries and counterexamplesInf Comput19877528710691636010.1016/0890-5401(87)90052-60636.68112
– reference: HeimerlFKochSBoschHVisual classifier training for text document retrievalIEEE Trans Vis Comput Graphics201218122839284810.1109/TVCG.2012.277
– reference: LiuZFengXWangYSelf-paced learning enhanced neural matrix factorization for noise-aware recommendationKnowl Based Syst202121310666010.1016/j.knosys.2020.106660
– reference: Florensa C, Held D, Wulfmeier M et al (2017) Reverse curriculum generation for reinforcement learning. In: Levine S, Vanhoucke V, Goldberg K (eds) Proceedings of the 1st annual conference on robot learning, proceedings of machine learning research, vol 78. PMLR, 482–495, http://proceedings.mlr.press/v78/florensa17a.html
– reference: van AllenPPrototyping ways of prototyping AIInteractions2018256465110.1145/3274566
– reference: Singla A, Bogunovic I, Bartók G et al (2014) Near-optimally teaching the crowd to classify. In: Xing EP, Jebara T (eds) Proceedings of the 31st international conference on machine learning. PMLR, Bejing, China, proceedings of machine learning research, 154–162, http://proceedings.mlr.press/v32/singla14.pdf
– reference: von AhnLBlumMLangfordJTelling humans and computers apart automaticallyCommun ACM2004472566010.1145/966389.966390
– reference: Abdul A, Vermeulen J, Wang D et al (2018) Trends and trajectories for explainable, accountable and intelligible systems: an hci research agenda. In: Proceedings of the 2018 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’18, pp 1–18, https://doi.org/10.1145/3173574.3174156
– reference: Leslie D (2019) Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of ai systems in the public sector. 10.5281/zenodo.3240529
– reference: PenhaGHauffCJoseJMYilmazEMagalhãesJCurriculum learning strategies for IREuropean conference on information retrieval: advances in information retrieval2020ChamSpringer69971310.1007/978-3-030-45439-5_46
– reference: WeissKKhoshgoftaarTMWangDA survey of transfer learningJ Big data20163114010.1186/s40537-016-0043-6
– reference: Carlson G (2015) What eactly is complex data? https://www.ayasdi.com/exactly-complex-data/. Accessed on 04 Mar 2021
– reference: Barredo ArrietaADíaz-RodríguezNDel SerJExplainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible AIInf Fusion2020588211510.1016/j.inffus.2019.12.012
– reference: Donmez P, Carbonell JG (2008) Proactive learning: Cost-sensitive active learning with multiple imperfect oracles. In: Proceedings of the 17th ACM conference on information and knowledge management. Association for Computing Machinery, New York, NY, USA, CIKM ’08, 619–628, https://doi.org/10.1145/1458082.1458165
– reference: ZhangDHanJGuoGLearning object detectors with semi-annotated weak labelsIEEE Trans Circuits Syst Video Technol201929123622363510.1109/TCSVT.2018.2884173
– reference: Bennetot A, Laurent JL, Chatila R et al (2019) Towards explainable neural-symbolic visual reasoning. arxiv:1909.09065
– reference: XuWToward human-centered AI: a perspective from human–computer interactionInteractions2019264424610.1145/3328485
– reference: MatiisenTOliverACohenTTeacher-student curriculum learningIEEE Trans Neural Netw Learn Syst20203193732374010.1109/TNNLS.2019.2934906
– reference: Zhu X, Singla A, Zilles S et al (2018) An overview of machine teaching. arXiv e-prints arxiv:1801.05927
– reference: CohnDAGhahramaniZJordanMIActive learning with statistical modelsJ Artif Intell Res19964112914510.5555/1622737.16227440900.68366
– reference: DiamantEZhangYMachine learning: When and where the horses went astray?Machine learning2009LondonInTech11810.5772/9156
– reference: ValiantLGA theory of the learnableCommun ACM198427111134114210.1145/1968.19720587.68077
– reference: WongJSDesign and fiction: imagining civic AIInteractions2018256424510.1145/3274568
– reference: TreveilMOmontNStenacCIntroducing MLOps2020SebastopolO’Reilly Media
– reference: AggarwalCCKongXGuQActive learning: a surveyData classification: algorithms and applications2014Boca RatonChapman and Hall/CRC59963410.1201/b17320
– reference: Tolls V (2018) An event-based approach to modeling complex data in critical care. PhD thesis, Queen’s University (Canada), https://qspace.library.queensu.ca/bitstream/handle/1974/24489/Tolls_Victoria_J_201809_MSC.pdf
– reference: Bau D, Zhou B, Khosla A et al (2017) Network dissection: Quantifying interpretability of deep visual representations. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), 3319–3327, https://doi.org/10.1109/CVPR.2017.354, https://ieeexplore.ieee.org/document/8099837
– reference: Hoi SCH, Jin R, Zhu J et al (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML ’06, 417-424, https://doi.org/10.1145/1143844.1143897
– reference: VisiFGTanakaAMirandaERInteractive machine learning of musical gestureHandbook of artificial intelligence for music: foundations, advanced approaches, and developments for creativity2021ChamSpringer77179810.1007/978-3-030-72116-9_27
– reference: Chen Y, Singla A, Aodha OM et al (2018) Understanding the role of adaptivity in machine teaching: The case of version space learners. In: Proceedings of the 32nd international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’18, 1483-1493, https://dl.acm.org/doi/abs/10.5555/3326943.3327079
– reference: RamosGMeekCSimardPInteractive machine teaching: a human-centered approach to building machine-learned modelsHum Comput Interact2020355–641345110.1080/07370024.2020.1734931
– reference: TomczakKCzerwińskaPWiznerowiczMThe cancer genome atlas (TCGA): an immeasurable source of knowledgeContemp Oncol2015191A687710.5114/wo.2014.47136
– reference: KosmynaNTarpin-BernardFRivetBAdding human learning in brain-computer interfaces (bcis): towards a practical control modalityACM Trans Comput-Hum Interact201510.1145/2723162
– reference: Zhang X, Shapiro P, Kumar G et al (2019b) Curriculum learning for domain adaptation in neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 1903–1915, https://doi.org/10.18653/v1/N19-1189, https://www.aclweb.org/anthology/N19-1189
– reference: Hacohen G, Weinshall D (2019) On the power of curriculum learning in training deep networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning Research, vol 97. PMLR, 2535–2544, http://proceedings.mlr.press/v97/hacohen19a.html
– reference: GaonkarBShinoharaTRDavatzikosCInterpreting support vector machine models for multivariate group wise analysis in neuroimagingMed Image Anal201524119020410.1016/j.media.2015.06.008
– reference: Settles B (2009) Active learning literature survey. Tech. rep., University of Wisconsin-Madison. Department of Computer Sciences, https://minds.wisconsin.edu/handle/1793/60660
– reference: Spitkovsky VI, Alshawi H, Jurafsky D (2010) From baby steps to leapfrog: How “less is more” in unsupervised dependency parsing. In: Human language technologies: the 2010 annual conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Los Angeles, California, 751–759, https://www.aclweb.org/anthology/N10-1116
– reference: BergSKutraDKroegerTIlastik: interactive machine learning for (bio)image analysisNat Methods201916121226123210.1038/s41592-019-0582-9
– reference: Zhou B, Khosla A, Lapedriza A et al (2016) Learning deep features for discriminative localization. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), 2921–2929, https://doi.org/10.1109/CVPR.2016.319, https://ieeexplore.ieee.org/document/7780688
– reference: Loyola-GonzálezOBlack-box vs. white-box: understanding their advantages and weaknesses from a practical point of viewIEEE Access2019715409615411310.1109/ACCESS.2019.2949286
– reference: Gunning D (2017) Explainable artificial intelligence (xAI). Tech. rep., Defense Advanced Research Projects Agency (DARPA), https://www.darpa.mil/program/explainable-artificial-intelligence
– reference: LopesMMeloFMontesanoLActive learning for reward estimation in inverse reinforcement learningJoint European conference on machine learning and knowledge discovery in databases2009Berlin HeidelbergSpringer314610.1007/978-3-642-04174-7_3
– reference: Begeja L, Renger B, Gibbon D et al (2004) Interactive machine learning techniques for improving SLU models. In: Proceedings of the HLT-NAACL 2004 workshop on spoken language understanding for conversational systems and higher level linguistic information for speech processing. Association for Computational Linguistics, Boston, Massachusetts, USA, 10–16, https://aclanthology.org/W04-3003
– reference: Tang YP, Li GX, Huang SJ (2019) ALiPy: Active learning in python. Tech. rep., Nanjing University of Aeronautics and Astronautics, https://github.com/NUAA-AL/ALiPy, available as arXiv preprint arxiv:1901.03802
– reference: BlumbergRAtreSThe problem with unstructured dataDM Rev20031342–4962
– reference: Fiebrink R, Cook PR (2010) The wekinator: a system for real-time, interactive machine learning in music. In: Proceedings of The Eleventh International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht
– reference: HolzingerAInteractive machine learning for health informatics: when do we need the human-in-the-loop?Brain Inform20163211913110.1007/s40708-016-0042-6
– reference: Che Z, Purushotham S, Khemani R et al (2017) Interpretable deep models for ICU outcome prediction. In: AMIA annual symposium proceedings, 371–380, https://pubmed.ncbi.nlm.nih.gov/28269832/
– reference: Michael CJ, Acklin D, Scheuerman J (2020) On interactive machine learning and the potential of cognitive feedback. arXiv e-prints arxiv:2003.10365 [cs.HC]
– reference: SenaAHowardMQuantifying teaching behavior in robot learning from demonstrationInt J Robot Res2020391547210.1177/0278364919884623
– reference: Liu W, Dai B, Li X et al (2018c) Towards black-box iterative machine teaching. In: Dy J, Krause A (eds) Proceedings of the 35th international conference on machine learning, proceedings of machine learning research, vol 80. PMLR, 3141–3149, https://proceedings.mlr.press/v80/liu18b.html
– reference: Devidze R, Mansouri F, Haug L et al (2020) Understanding the power and limitations of teaching with imperfect knowledge. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20. International Joint Conferences on Artificial Intelligence Organization, 2647–2654, https://doi.org/10.24963/ijcai.2020/367
– reference: von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, NY, USA, CHI ’04, 319–326, https://doi.org/10.1145/985692.985733
– reference: HillsTTToddPMLazerDExploration versus exploitation in space, mind, and societyTrends Cogn Sci2015191465410.1016/j.tics.2014.10.004
– reference: Nguyen A, Dosovitskiy A, Yosinski J et al (2016) Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Proceedings of the 30th international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’16, 3395-3403, https://doi.org/10.5555/3157382.3157477
– reference: JamiesonKGJainLFernandezCCortesCLawrenceNLeeDNext: a system for real-world development, evaluation, and application of active learningAdvances in neural information processing systems2015Red HookCurran Associates Inc
– reference: Luo T, Kramer K, Samson S et al (2004) Active learning to recognize multiple types of plankton. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., 478–481 Vol.3, https://doi.org/10.1109/ICPR.2004.1334570
– reference: Fails JA, Olsen DR (2003) Interactive machine learning. In: Proceedings of the 8th international conference on intelligent user interfaces. Association for Computing Machinery, New York, NY, USA, IUI ’03, 39–45, https://doi.org/10.1145/604045.604056
– reference: ShneidermanBHuman-centered artificial intelligence: reliable, safe & trustworthyInt J Hum Comput Interact202036649550410.1080/10447318.2020.1741118
– reference: BuddSRobinsonECKainzBA survey on active learning and human-in-the-loop deep learning for medical image analysisMed Image Anal20217110206210.1016/j.media.2021.102062
– reference: GoodmanBFlaxmanSEuropean union regulations on algorithmic decision-making and a "right to explanation."AI Mag2017383505710.1609/aimag.v38i3.2741
– reference: MunroRHuman-in-the-loop machine learning2020Shelter IslandManning Publications
– ident: 10246_CR108
  doi: 10.5555/3157382.3157477
– volume: 148
  start-page: 241,733
  issue: 24
  year: 2018
  ident: 10246_CR132
  publication-title: J Chem Phys
  doi: 10.1063/1.5023802
– ident: 10246_CR59
  doi: 10.1145/2598153.2598189
– year: 2021
  ident: 10246_CR146
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3069908
– volume: 39
  start-page: 54
  issue: 1
  year: 2020
  ident: 10246_CR124
  publication-title: Int J Robot Res
  doi: 10.1177/0278364919884623
– volume: 18
  start-page: 2839
  issue: 12
  year: 2012
  ident: 10246_CR57
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2012.277
– start-page: 167
  volume-title: Machine learning: an artificial intelligence approach
  year: 1986
  ident: 10246_CR122
– volume: 25
  start-page: 46
  issue: 6
  year: 2018
  ident: 10246_CR6
  publication-title: Interactions
  doi: 10.1145/3274566
– start-page: 333
  volume-title: Trends in artificial intelligence theory and applications. Artificial intelligence practices
  year: 2020
  ident: 10246_CR166
  doi: 10.1007/978-3-030-55789-8_30
– ident: 10246_CR24
– ident: 10246_CR7
– ident: 10246_CR147
– ident: 10246_CR94
  doi: 10.1109/CVPR.2015.7299155
– ident: 10246_CR114
  doi: 10.18653/v1/N19-1119
– volume: 10
  start-page: 64
  issue: 1
  year: 2013
  ident: 10246_CR72
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2281
– ident: 10246_CR150
– volume: 58
  start-page: 82
  year: 2020
  ident: 10246_CR13
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 19
  start-page: 68
  issue: 1A
  year: 2015
  ident: 10246_CR140
  publication-title: Contemp Oncol
  doi: 10.5114/wo.2014.47136
– start-page: 1
  volume-title: Interactive knowledge discovery and data mining in biomedical informatics: state-of-the-art and future challenges
  year: 2014
  ident: 10246_CR63
  doi: 10.1007/978-3-662-43968-5_1
– volume: 25
  start-page: 52
  issue: 6
  year: 2018
  ident: 10246_CR84
  publication-title: Interactions
  doi: 10.1145/3282860
– volume: 4
  start-page: 129
  issue: 1
  year: 1996
  ident: 10246_CR34
  publication-title: J Artif Intell Res
  doi: 10.5555/1622737.1622744
– volume: 13
  start-page: 62
  issue: 42–49
  year: 2003
  ident: 10246_CR20
  publication-title: DM Rev
– ident: 10246_CR65
– ident: 10246_CR75
  doi: 10.1609/aaai.v29i1.9474
– ident: 10246_CR80
  doi: 10.18653/v1/N19-1208
– ident: 10246_CR133
  doi: 10.1109/WACV45572.2020.9093408
– volume: 38
  start-page: 50
  issue: 3
  year: 2017
  ident: 10246_CR52
  publication-title: AI Mag
  doi: 10.1609/aimag.v38i3.2741
– volume: 21
  start-page: 893
  issue: 5
  year: 2014
  ident: 10246_CR107
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002516
– volume: 7
  start-page: 154096
  year: 2019
  ident: 10246_CR92
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949286
– start-page: 101
  volume-title: Legal knowledge and information systems, frontiers in artificial intelligence and applications
  year: 2015
  ident: 10246_CR174
  doi: 10.3233/978-1-61499-609-5-101
– ident: 10246_CR44
– ident: 10246_CR27
– year: 2018
  ident: 10246_CR41
  publication-title: ACM Trans Interact Intell Syst
  doi: 10.1145/3185517
– year: 2019
  ident: 10246_CR135
  publication-title: ACM Trans Interact Intell Syst
  doi: 10.1145/3241379
– ident: 10246_CR127
– ident: 10246_CR2
– ident: 10246_CR73
  doi: 10.1145/1753326.1753529
– ident: 10246_CR130
– ident: 10246_CR96
  doi: 10.1609/aaai.v29i1.9569
– ident: 10246_CR30
– ident: 10246_CR67
  doi: 10.1145/3377325.3377483
– ident: 10246_CR39
– ident: 10246_CR50
  doi: 10.1145/1357054.1357061
– volume: 17
  start-page: 1
  year: 2016
  ident: 10246_CR118
  publication-title: J Mach Learn Res
– start-page: 1189
  volume-title: Advances in neural information processing systems
  year: 2010
  ident: 10246_CR79
– ident: 10246_CR93
  doi: 10.1109/ICPR.2004.1334570
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10246_CR152
  publication-title: J Big data
  doi: 10.1186/s40537-016-0043-6
– ident: 10246_CR162
  doi: 10.1109/ICCV.2011.6126474
– ident: 10246_CR153
  doi: 10.1145/3313831.3376226
– volume-title: Advances in neural information processing systems
  year: 2015
  ident: 10246_CR68
– ident: 10246_CR1
  doi: 10.1145/3173574.3174156
– ident: 10246_CR126
– ident: 10246_CR66
  doi: 10.1109/CVPR.2016.237
– volume: 2
  start-page: 008
  issue: 100
  year: 2021
  ident: 10246_CR158
  publication-title: Comput Educ
  doi: 10.1016/j.caeai.2021.100008
– volume: 22
  start-page: 401
  issue: 2
  year: 2019
  ident: 10246_CR69
  publication-title: J Vis
  doi: 10.1007/s12650-018-0531-1
– ident: 10246_CR60
  doi: 10.1145/1143844.1143897
– ident: 10246_CR36
  doi: 10.24963/ijcai.2020/367
– ident: 10246_CR61
  doi: 10.1109/PerComWorkshops48775.2020.9156175
– ident: 10246_CR90
– ident: 10246_CR110
– volume: 24
  start-page: 190
  issue: 1
  year: 2015
  ident: 10246_CR51
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.06.008
– volume: 27
  start-page: 1134
  issue: 11
  year: 1984
  ident: 10246_CR142
  publication-title: Commun ACM
  doi: 10.1145/1968.1972
– volume: 25
  start-page: 42
  issue: 6
  year: 2018
  ident: 10246_CR155
  publication-title: Interactions
  doi: 10.1145/3274568
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: 10246_CR9
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-021-04047-1
– volume: 47
  start-page: 56
  issue: 2
  year: 2004
  ident: 10246_CR5
  publication-title: Commun ACM
  doi: 10.1145/966389.966390
– volume: 173
  start-page: 400
  issue: 2
  year: 2018
  ident: 10246_CR87
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– year: 2022
  ident: 10246_CR42
  publication-title: Sensors
  doi: 10.3390/s22031184
– ident: 10246_CR88
  doi: 10.24963/ijcai.2018/587
– volume: 55
  start-page: 281
  issue: 3
  year: 2001
  ident: 10246_CR149
  publication-title: Int J Hum Comput Stud
  doi: 10.1006/ijhc.2001.0499
– ident: 10246_CR25
– ident: 10246_CR53
– volume: 15
  start-page: 201
  issue: 2
  year: 1994
  ident: 10246_CR33
  publication-title: Mach Learn
  doi: 10.1007/BF00993277
– ident: 10246_CR165
  doi: 10.18653/v1/N19-1189
– ident: 10246_CR78
– volume: 192
  start-page: 553
  year: 2021
  ident: 10246_CR103
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2021.08.057
– volume: 75
  start-page: 87
  issue: 2
  year: 1987
  ident: 10246_CR10
  publication-title: Inf Comput
  doi: 10.1016/0890-5401(87)90052-6
– ident: 10246_CR129
– volume: 3
  start-page: 119
  issue: 2
  year: 2016
  ident: 10246_CR62
  publication-title: Brain Inform
  doi: 10.1007/s40708-016-0042-6
– ident: 10246_CR48
  doi: 10.1145/1753846.1753889
– ident: 10246_CR11
  doi: 10.18653/v1/W17-5221
– ident: 10246_CR111
– volume: 49
  start-page: 2401
  issue: 7
  year: 2019
  ident: 10246_CR64
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1361-5
– ident: 10246_CR89
– year: 2021
  ident: 10246_CR101
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10088-y
– ident: 10246_CR134
– volume-title: Open source biomedical engineering
  year: 2020
  ident: 10246_CR160
– ident: 10246_CR119
  doi: 10.1109/ICMLA.2015.152
– ident: 10246_CR159
  doi: 10.1145/3196709.3196729
– ident: 10246_CR70
  doi: 10.5555/2886521.2886696
– ident: 10246_CR148
  doi: 10.1109/ICCV.2019.00512
– volume: 9
  start-page: 807
  year: 2021
  ident: 10246_CR112
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl\_a_00399
– ident: 10246_CR145
  doi: 10.1145/2110363.2110464
– ident: 10246_CR123
  doi: 10.1109/ICCV.2017.74
– volume: 213
  start-page: 660
  issue: 106
  year: 2021
  ident: 10246_CR86
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106660
– ident: 10246_CR98
– volume: 39
  start-page: 53
  issue: 1
  year: 2022
  ident: 10246_CR97
  publication-title: Inf Syst Manag
  doi: 10.1080/10580530.2020.1849465
– start-page: 699
  volume-title: European conference on information retrieval: advances in information retrieval
  year: 2020
  ident: 10246_CR113
  doi: 10.1007/978-3-030-45439-5_46
– ident: 10246_CR136
  doi: 10.1145/1518701.1518895
– volume: 26
  start-page: 42
  issue: 4
  year: 2019
  ident: 10246_CR156
  publication-title: Interactions
  doi: 10.1145/3328485
– year: 2015
  ident: 10246_CR77
  publication-title: ACM Trans Comput-Hum Interact
  doi: 10.1145/2723162
– volume: 48
  start-page: 71
  issue: 1
  year: 1993
  ident: 10246_CR43
  publication-title: Cognition
  doi: 10.1016/0010-0277(93)90058-4
– ident: 10246_CR138
  doi: 10.1145/3306618.3314293
– volume-title: Human-in-the-loop machine learning
  year: 2020
  ident: 10246_CR106
– volume: 65
  start-page: 211
  year: 2017
  ident: 10246_CR102
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.11.008
– ident: 10246_CR137
– volume: 19
  start-page: 729
  issue: 6
  year: 2007
  ident: 10246_CR12
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.190610
– start-page: 599
  volume-title: Data classification: algorithms and applications
  year: 2014
  ident: 10246_CR4
  doi: 10.1201/b17320
– volume: 19
  start-page: 46
  issue: 1
  year: 2015
  ident: 10246_CR58
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2014.10.004
– volume: 11
  start-page: 1716
  issue: 12
  year: 2020
  ident: 10246_CR74
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13489
– volume: 109
  start-page: 43
  issue: 1
  year: 2021
  ident: 10246_CR171
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2020.3004555
– start-page: 578
  volume-title: Human-computer interaction—INTERACT 2019
  year: 2019
  ident: 10246_CR144
  doi: 10.1007/978-3-030-29387-1_34
– ident: 10246_CR172
– volume: 40
  start-page: 19
  issue: 2
  year: 1997
  ident: 10246_CR19
  publication-title: Commun ACM
  doi: 10.1145/253671.253680
– volume: 71
  start-page: 062
  issue: 102
  year: 2021
  ident: 10246_CR23
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102062
– volume: 6
  start-page: 52,138
  year: 2018
  ident: 10246_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: 10246_CR45
  doi: 10.1145/604045.604056
– volume: 35
  start-page: 413
  issue: 5–6
  year: 2020
  ident: 10246_CR117
  publication-title: Hum Comput Interact
  doi: 10.1080/07370024.2020.1734931
– ident: 10246_CR125
  doi: 10.1109/ICRA.2018.8461194
– ident: 10246_CR151
– start-page: 809
  volume-title: Recommender systems handbook
  year: 2015
  ident: 10246_CR120
  doi: 10.1007/978-1-4899-7637-6_24
– ident: 10246_CR55
– ident: 10246_CR17
– ident: 10246_CR81
  doi: 10.5555/2145432.2145597
– start-page: 31
  volume-title: Joint European conference on machine learning and knowledge discovery in databases
  year: 2009
  ident: 10246_CR91
  doi: 10.1007/978-3-642-04174-7_3
– ident: 10246_CR14
  doi: 10.1109/CVPR.2017.354
– start-page: 1
  volume-title: Machine learning
  year: 2009
  ident: 10246_CR37
  doi: 10.5772/9156
– ident: 10246_CR47
  doi: 10.1145/1978942.1978965
– volume: 28
  start-page: 97
  issue: 2
  year: 2021
  ident: 10246_CR76
  publication-title: Interactions
  doi: 10.1145/3448888
– start-page: 771
  volume-title: Handbook of artificial intelligence for music: foundations, advanced approaches, and developments for creativity
  year: 2021
  ident: 10246_CR143
  doi: 10.1007/978-3-030-72116-9_27
– ident: 10246_CR16
  doi: 10.1145/1553374.1553380
– ident: 10246_CR26
– volume: 36
  start-page: 495
  issue: 6
  year: 2020
  ident: 10246_CR128
  publication-title: Int J Hum Comput Interact
  doi: 10.1080/10447318.2020.1741118
– ident: 10246_CR168
  doi: 10.18653/v1/2020.acl-main.620
– volume: 25
  start-page: 34
  issue: 6
  year: 2018
  ident: 10246_CR31
  publication-title: Interactions
  doi: 10.1145/3281764
– ident: 10246_CR54
– ident: 10246_CR49
– ident: 10246_CR71
  doi: 10.1109/CVPR.2015.7298877
– volume: 27
  start-page: 527
  issue: 5
  year: 1987
  ident: 10246_CR105
  publication-title: Int J Man-Mach Stud
  doi: 10.1016/S0020-7373(87)80013-5
– ident: 10246_CR116
– ident: 10246_CR157
  doi: 10.18653/v1/2020.acl-main.542
– volume-title: Introducing MLOps
  year: 2020
  ident: 10246_CR141
– ident: 10246_CR164
– volume: 41
  start-page: 161
  issue: 2
  year: 2007
  ident: 10246_CR28
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.07.008
– ident: 10246_CR121
  doi: 10.1109/RoEduNet.2013.6511736
– ident: 10246_CR35
– volume: 64
  start-page: 64
  issue: 10
  year: 2021
  ident: 10246_CR154
  publication-title: Commun ACM
  doi: 10.1145/3448248
– start-page: 818
  volume-title: European conference on computer vision
  year: 2014
  ident: 10246_CR161
  doi: 10.1007/978-3-319-10590-1_53
– volume: 16
  start-page: 31
  issue: 3
  year: 2018
  ident: 10246_CR85
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– volume: 4
  start-page: 251
  issue: 4
  year: 1990
  ident: 10246_CR109
  publication-title: Artif Intell Rev
  doi: 10.1007/BF00168958
– ident: 10246_CR169
  doi: 10.1609/aaai.v29i1.9761
– volume: 15
  start-page: 12
  issue: 5
  year: 2013
  ident: 10246_CR115
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2013.74
– ident: 10246_CR131
– ident: 10246_CR83
  doi: 10.2139/ssrn.3403301
– ident: 10246_CR46
– ident: 10246_CR21
– ident: 10246_CR38
  doi: 10.1109/ITRE.2006.381526
– ident: 10246_CR139
– ident: 10246_CR40
  doi: 10.1145/1458082.1458165
– volume: 212
  start-page: 622
  issue: 106
  year: 2021
  ident: 10246_CR56
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106622
– ident: 10246_CR173
  doi: 10.1145/985692.985733
– volume: 29
  start-page: 3622
  issue: 12
  year: 2019
  ident: 10246_CR163
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2018.2884173
– ident: 10246_CR29
– ident: 10246_CR100
– ident: 10246_CR104
  doi: 10.1145/3477314.3507310
– ident: 10246_CR167
  doi: 10.1109/CVPR.2016.319
– ident: 10246_CR170
– ident: 10246_CR99
– volume: 35
  start-page: 105
  issue: 4
  year: 2014
  ident: 10246_CR8
  publication-title: AI Magazine
  doi: 10.1609/aimag.v35i4.2513
– volume: 31
  start-page: 3732
  issue: 9
  year: 2020
  ident: 10246_CR95
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2934906
– start-page: 341
  volume-title: Human and machine learning: visible, explainable, trustworthy and transparent
  year: 2018
  ident: 10246_CR22
  doi: 10.1007/978-3-319-90403-0_17
– volume: 16
  start-page: 1226
  issue: 12
  year: 2019
  ident: 10246_CR18
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10246_CR82
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10246_CR15
– ident: 10246_CR32
SSID ssj0005243
Score 2.7082508
Snippet Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3005
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Computer Science
Data mining
Domains
Interactive control
Machine learning
State-of-the-art reviews
Subject specialists
Teaching
Teaching machines
SummonAdditionalLinks – databaseName: Library Science Database
  dbid: M1O
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWFh4IwoFeUBiAJc4dV4sqEJUiAEWKrFZfiJEaQoUIfHrOScO5SEYmOM4Ts6--2J_9x3AnuPc6NQqiughotzIjCquYiq76AwLpRCjVwTZy_R8wC9ukpuw4fYcaJWNT6wctSm13yM_irM8Kbz6eXIyfqS-apQ_XQ0lNGZhnvlQ76l77OoTxaNmzcVpQfHXgoWkmZA6x9OYei47hlie0tcvgem7e_5xTlqFn_4SiGbgNevkvvMyUR399k3T8f9vtgyLAZmSXj2VVmDGjlZhqan6QIITWIO02vendyOK2JEOy3JMHipGpiWhBMXtMZGkylQipSPYiuD8XIdB_-z69JyG6gtU4z_lhDoEgggXtcmjTDkVKR51s8IlRWwyFUlrNbNaGZtJ02UKUaaSNjK5YdoxlzHd3YC5UTmym0By7vJYxpHTWnOtbJFbneReiS6SXgK_Baz59EIHaXJfIWMopqLK3lwCzSUqc4nXFhx83DOuhTn-bL3vLSr8qsWetQzJBzg-r38legisMJZnjLeg3VhJhOX8LKYmasFhMxGml39_7tbfvW3Dgi9fXzOB2jA3eXqxOwhyJmq3msnvFh74XA
  priority: 102
  providerName: ProQuest
Title Human-in-the-loop machine learning: a state of the art
URI https://link.springer.com/article/10.1007/s10462-022-10246-w
https://www.proquest.com/docview/2785983785
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0BvXBhR5Sl8gGJA1iKU2fjVkoXsRQEVIKTZTs2QiotgiJ-n3HqsIPEJT7EcaLxMs_xmzcA25bzXMdGUUQPAeW5TKjiKqSyjothphRi9IIg24u7fX50HV37oLCnku1eHkkWK_WHYDceh9Sxz9Ep8pi-TEMlwr27G9f9sPGB2DHhyoVxRnFDwXyozM9tfHJHXxflb6ejhdNpL8CcR4ukMeneRZgywyWYLzMxED8xlyEu_sXTuyFFPEcHo9EDuS9Ykob4tBC3-0SSInqIjCzBWgTHzAr0262rZpf6jAhU4z5vTC2CM4RwOk-DRFkVKB7Uk8xGWZgnKpDGaGa0yk0i8zpTiPyUNEGe5kxbZhOm66swMxwNzRqQlNs0lGFgtdZcK5OlRkepU4cLpJOlrwIrDSO0lwt3WSsG4l3o2BlToDFFYUzxUoXdt2ceJmIZf9becfYWbiZhy1r6gAD8PqdJJRoIdtC_JoxXYbPsEuGn2JMIkzTKnBx-VIW9spveb__-3vX_Vd-AWZdifsLW2YSZ8eOz2UIgMlY1mE7bnRpUGoenJ5eu7Nwct7A8aPXOL_BuM27i9ZSd1YoR-grexNn3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXaKFVF5bWBxAHsJo4zqsSqla0y5aWnrpSb66fCKkkC7toxZ_iN3acOF0e6t72nMSJxuOZz_E38wG8cpwbnVlFET1ElBuZU8UVozLBYFgqhRi9IcheZKMx_3SVXq3B764WxtMqu5jYBGpTa_-P_IDlRVr67ufp0eQ79apR_nS1k9Bo3eLM_prjlm36_vQY5_c1Y8OTyw8jGlQFqMa90ow6BDgIg7Qpolw5FSkeJXnp0pKZXEXSWh1brYzNpUlihehJSRuZwsTaxS6PdYLjPoANniSlpxAWw49_UEpalh7LSopbmTgU6YRSPZ4x6rnzmNJ5Rud_JcJ_08F_57JNuhtuwuOAU8mgdawtWLPVU3jSaUCQEBKeQdacAtCvFUUkSW_qekK-NfxMS4IgxZdDIklTt0RqR_Augt66DeOVWG0H1qu6srtACu4KJlnktNZcK1sWVqeF70sXSd8QvwdxZxihQ6Nyr5dxIxYtlr0xBRpTNMYU8x68vXtm0rbpWHr3G29v4dcwjqxlKEXA7_PdsMQAYRZm9jzmPeh3UyLC4p6KhSv24F03TYvL97_3-fLR9uHh6PLzuTg_vTh7AY-8sH3LEerD-uzHT_sS4c9M7TU-R-B61U5-C1QjFG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVkJcgPKhbinUBxAHsOo4TuwgIVS1XVqKKg5U6s34EyGVzZYuWvHX-HWME4elRe2t5yRONB7PPMdv5gE8j0J4VwdLET0wKryR1ArLqSkxGDbWIkbvCLJH9f6x-HBSnSzB76EWJtEqh5jYBWrfuvSPfItLVTWp-3m1FTMt4tPu-N30jCYFqXTSOshp9C5yGH7Ncft2_vZgF-f6Befjvc87-zQrDFCH-6YZjQh2EBI5r5i00TIrWCmbWDXcS8tMCK4IzvogjS8Li0jKmsC88oWLRZSFK3HcW7AiS8WSeoIav_-HXtIz9njdUNzWFLlgJ5ftiZrTxKPH9C5qOr-QFC-nhv_OaLvUN74PdzNmJdu9k63CUpg8gHuDHgTJ4eEh1N2JAP02oYgq6WnbTsn3jqsZSBan-PqGGNLVMJE2EryLoOc-guMbsdpjWJ60k7AGRImouOEsOueEs6FRwVUq9ahjJjXHH0ExGEa73LQ8aWec6kW75WRMjcbUnTH1fASv_j4z7Vt2XHv3y2RvndYzjuxMLkvA70udsfQ2Qi7M8rIQI9gYpkTnhX6uF245gtfDNC0uX_3e9etH24Tb6N7648HR4RO4kzTue7rQBizPfvwMTxEJzeyzzuUIfLlpH_8DEZ4Ymw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-in-the-loop+machine+learning%3A+a+state+of+the+art&rft.jtitle=The+Artificial+intelligence+review&rft.au=Mosqueira-Rey%2C+Eduardo&rft.au=Hern%C3%A1ndez-Pereira%2C+Elena&rft.au=Alonso-R%C3%ADos%2C+David&rft.au=Bobes-Bascar%C3%A1n%2C+Jos%C3%A9&rft.date=2023-04-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=4&rft.spage=3005&rft.epage=3054&rft_id=info:doi/10.1007%2Fs10462-022-10246-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_022_10246_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon