Human-in-the-loop machine learning: a state of the art
Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machi...
Saved in:
Published in | The Artificial intelligence review Vol. 56; no. 4; pp. 3005 - 3054 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0269-2821 1573-7462 |
DOI | 10.1007/s10462-022-10246-w |
Cover
Loading…
Abstract | Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machine learning, in which there is a closer interaction between users and learning systems; and machine teaching, where human domain experts have control over the learning process. Aside from control, humans can also be involved in the learning process in other ways. In curriculum learning human domain experts try to impose some structure on the examples presented to improve the learning; in explainable AI the focus is on the ability of the model to explain to humans why a given solution was chosen. This collaboration between AI models and humans should not be limited only to the learning process; if we go further, we can see other terms that arise such as Usable and Useful AI. In this paper we review the state of the art of the techniques involved in the new forms of relationship between humans and ML algorithms. Our contribution is not merely listing the different approaches, but to provide definitions clarifying confusing, varied and sometimes contradictory terms; to elucidate and determine the boundaries between the different methods; and to correlate all the techniques searching for the connections and influences between them. |
---|---|
AbstractList | Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning. Depending on who is in control of the learning process, we can identify: active learning, in which the system remains in control; interactive machine learning, in which there is a closer interaction between users and learning systems; and machine teaching, where human domain experts have control over the learning process. Aside from control, humans can also be involved in the learning process in other ways. In curriculum learning human domain experts try to impose some structure on the examples presented to improve the learning; in explainable AI the focus is on the ability of the model to explain to humans why a given solution was chosen. This collaboration between AI models and humans should not be limited only to the learning process; if we go further, we can see other terms that arise such as Usable and Useful AI. In this paper we review the state of the art of the techniques involved in the new forms of relationship between humans and ML algorithms. Our contribution is not merely listing the different approaches, but to provide definitions clarifying confusing, varied and sometimes contradictory terms; to elucidate and determine the boundaries between the different methods; and to correlate all the techniques searching for the connections and influences between them. |
Audience | Academic |
Author | Hernández-Pereira, Elena Alonso-Ríos, David Bobes-Bascarán, José Mosqueira-Rey, Eduardo Fernández-Leal, Ángel |
Author_xml | – sequence: 1 givenname: Eduardo orcidid: 0000-0002-4894-1067 surname: Mosqueira-Rey fullname: Mosqueira-Rey, Eduardo email: eduardo@udc.es organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC) – sequence: 2 givenname: Elena surname: Hernández-Pereira fullname: Hernández-Pereira, Elena organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC) – sequence: 3 givenname: David surname: Alonso-Ríos fullname: Alonso-Ríos, David organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC) – sequence: 4 givenname: José surname: Bobes-Bascarán fullname: Bobes-Bascarán, José organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC) – sequence: 5 givenname: Ángel surname: Fernández-Leal fullname: Fernández-Leal, Ángel organization: Department of Computer Science and Information Technologies, Universidade da Coruña (CITIC) |
BookMark | eNp9kF1LwzAUhoMouKl_wKuC19FzkrZpvRvDLxh4o9chTZMZ6ZKZdAz_vdEKghcjkMDhffJynjk59sEbQi4RrhFA3CSEsmYUGKMIrKzp_ojMsBKcijw_JjNgdUtZw_CUzFN6B4CKlXxG6sfdRnnqPB3fDB1C2BYbpd-cN8VgVPTOr28LVaRRjaYItsipQsXxnJxYNSRz8fuekdf7u5flI109PzwtFyuqS2AjtRXniJXuGxCd7aArgYvWVi3rRQfKGI1Gd70RqufYtVh3ykDf9KgtWoGan5Gr6d9tDB87k0b5HnbR50rJRFO1Dc93Tl1PqbUajHTehjEqnU9vNk5nU9bl-UKUCLwWWGaATYCOIaVorNxGt1HxUyLIb6FyEiqzUPkjVO4z1PyDtMtaXPC5zQ2HUT6hKff4tYl_axygvgA15Yvc |
CitedBy_id | crossref_primary_10_3390_app132413262 crossref_primary_10_3390_healthcare12191964 crossref_primary_10_3390_ai4030033 crossref_primary_10_1016_j_engappai_2023_106803 crossref_primary_10_1145_3649457 crossref_primary_10_1038_s41591_024_03416_6 crossref_primary_10_1016_j_csi_2024_103895 crossref_primary_10_1038_s44168_023_00056_3 crossref_primary_10_1038_s41598_024_59100_9 crossref_primary_10_18231_j_ijashnb_2024_020 crossref_primary_10_7759_cureus_80494 crossref_primary_10_1039_D4CY01525H crossref_primary_10_1016_j_compind_2024_104187 crossref_primary_10_1016_j_tele_2024_102135 crossref_primary_10_1080_10447318_2024_2413293 crossref_primary_10_1007_s00146_024_02076_x crossref_primary_10_1111_jels_12396 crossref_primary_10_1016_j_ifacol_2024_07_363 crossref_primary_10_1186_s12987_024_00554_4 crossref_primary_10_1080_14498596_2024_2337747 crossref_primary_10_1142_S021812662550207X crossref_primary_10_3390_eng6020031 crossref_primary_10_1080_10447318_2025_2450411 crossref_primary_10_1007_s11042_023_17666_y crossref_primary_10_1038_s41467_024_45563_x crossref_primary_10_1007_s00432_025_06134_9 crossref_primary_10_1515_cclm_2023_1058 crossref_primary_10_1080_10630732_2024_2402676 crossref_primary_10_1007_s10676_024_09771_9 crossref_primary_10_1109_ACCESS_2024_3504735 crossref_primary_10_1109_LRA_2025_3544083 crossref_primary_10_20517_2394_5079_2024_126 crossref_primary_10_1016_j_earscirev_2023_104509 crossref_primary_10_1007_s10676_024_09746_w crossref_primary_10_1109_ACCESS_2025_3536639 crossref_primary_10_1080_17538947_2024_2422984 crossref_primary_10_3390_heritage7020038 crossref_primary_10_1016_j_chpulm_2024_100079 crossref_primary_10_1038_s41746_024_01318_y crossref_primary_10_1038_s41562_023_01527_7 crossref_primary_10_1148_ryai_230115 crossref_primary_10_1109_TICPS_2023_3283230 crossref_primary_10_1007_s10462_023_10413_7 crossref_primary_10_46245_ijorer_v5i4_619 crossref_primary_10_1016_j_csbj_2024_05_004 crossref_primary_10_1002_adma_202413430 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_1371_journal_pdig_0000521 crossref_primary_10_3389_fdata_2024_1467222 crossref_primary_10_1183_16000617_0251_2023 crossref_primary_10_3390_bioengineering12010028 crossref_primary_10_1016_j_exis_2024_101440 crossref_primary_10_1016_j_engappai_2024_108589 crossref_primary_10_1080_10447318_2025_2476715 crossref_primary_10_3389_fcomp_2024_1444549 crossref_primary_10_1257_mic_20220248 crossref_primary_10_3390_info15110728 crossref_primary_10_1016_j_compbiomed_2024_108908 crossref_primary_10_1016_j_epsr_2024_110415 crossref_primary_10_3390_math12071024 crossref_primary_10_1093_bib_bbae035 crossref_primary_10_51867_ajernet_5_4_86 crossref_primary_10_1016_j_ijforecast_2024_09_007 crossref_primary_10_1177_19322968241304434 crossref_primary_10_1109_RBME_2024_3496744 crossref_primary_10_1007_s13752_024_00483_3 crossref_primary_10_1039_D4DD00016A crossref_primary_10_1177_10547738241227699 crossref_primary_10_1016_j_procir_2024_08_260 crossref_primary_10_1108_GKMC_06_2023_0216 crossref_primary_10_1145_3664522 crossref_primary_10_1111_nbu_12729 crossref_primary_10_1007_s43681_024_00587_3 crossref_primary_10_3389_frai_2023_1272823 crossref_primary_10_1007_s10643_024_01690_0 crossref_primary_10_1186_s13321_024_00924_y crossref_primary_10_1016_j_chbr_2024_100550 crossref_primary_10_1038_s44184_024_00067_w crossref_primary_10_1016_j_eclinm_2024_102580 crossref_primary_10_1002_aisy_202400178 crossref_primary_10_3389_frobt_2024_1434351 crossref_primary_10_1039_D3NJ05784D crossref_primary_10_1186_s13059_024_03445_x crossref_primary_10_1016_j_eswa_2024_126136 crossref_primary_10_1109_TAI_2024_3444742 crossref_primary_10_1016_j_quaint_2024_11_003 crossref_primary_10_1088_1742_6596_2867_1_012024 crossref_primary_10_1145_3575637_3575650 crossref_primary_10_1093_iwc_iwae007 crossref_primary_10_1016_j_jii_2025_100827 crossref_primary_10_1038_s41524_024_01261_2 crossref_primary_10_55612_s_5002_059_003 crossref_primary_10_1016_j_envsci_2024_103885 crossref_primary_10_1007_s10877_024_01157_y crossref_primary_10_1007_s10489_024_05509_8 crossref_primary_10_1007_s00521_023_09197_2 crossref_primary_10_3390_jcm13175231 crossref_primary_10_1145_3663485 crossref_primary_10_3390_polym15051324 crossref_primary_10_1016_j_caeai_2023_100146 crossref_primary_10_3389_frai_2024_1329605 crossref_primary_10_59717_j_xinn_geo_2024_100122 crossref_primary_10_32387_prokla_v54i217_2167 crossref_primary_10_3390_math12121898 crossref_primary_10_3389_fonc_2022_1061024 crossref_primary_10_1007_s44223_024_00055_2 crossref_primary_10_7717_peerj_cs_2401 crossref_primary_10_1109_ACCESS_2024_3450970 crossref_primary_10_1177_00472816241260033 crossref_primary_10_3390_arts13050138 crossref_primary_10_1080_2573234X_2024_2436578 crossref_primary_10_1016_j_cirp_2024_06_003 crossref_primary_10_1016_j_ecolind_2024_112932 crossref_primary_10_1002_jcad_12543 crossref_primary_10_2196_57852 crossref_primary_10_3390_a18020089 crossref_primary_10_1016_j_matt_2024_01_005 crossref_primary_10_12688_openreseurope_19612_1 crossref_primary_10_1007_s43681_024_00428_3 crossref_primary_10_1177_18747655241301199 crossref_primary_10_1016_j_bushor_2024_03_001 crossref_primary_10_1145_3708497 crossref_primary_10_3390_e25101443 crossref_primary_10_1007_s10845_025_02568_7 crossref_primary_10_1038_s41598_025_89743_1 crossref_primary_10_1021_acs_jchemed_4c00130 crossref_primary_10_1177_21695067231192886 crossref_primary_10_1016_j_birob_2025_100215 crossref_primary_10_1016_j_jafr_2024_101179 crossref_primary_10_1061_JCCEE5_CPENG_5939 crossref_primary_10_1039_D3SC01303K crossref_primary_10_2196_53008 crossref_primary_10_1007_s00521_024_10799_7 crossref_primary_10_1109_ACCESS_2024_3401547 crossref_primary_10_1016_j_procs_2023_10_302 crossref_primary_10_1038_s41746_025_01503_7 crossref_primary_10_1016_j_apjo_2024_100091 crossref_primary_10_1016_j_ensm_2024_103785 crossref_primary_10_1007_s13198_024_02535_0 crossref_primary_10_1039_D4DD00320A crossref_primary_10_1007_s12599_025_00935_5 crossref_primary_10_1016_j_engappai_2024_109771 crossref_primary_10_1177_10664807241282331 crossref_primary_10_1016_j_infoandorg_2024_100528 crossref_primary_10_1016_j_eswa_2023_120216 crossref_primary_10_1109_ACCESS_2024_3450629 crossref_primary_10_1016_j_ress_2024_110632 crossref_primary_10_1038_s41551_024_01223_5 crossref_primary_10_1515_zwf_2023_1148 crossref_primary_10_1016_j_cobeha_2025_101482 crossref_primary_10_1016_j_eswa_2024_125559 crossref_primary_10_1016_j_asoc_2023_111170 crossref_primary_10_1016_j_ecoinf_2025_103026 crossref_primary_10_1016_j_jbi_2024_104673 crossref_primary_10_1016_j_ymeth_2023_12_009 crossref_primary_10_1109_ACCESS_2025_3536095 crossref_primary_10_1007_s12652_023_04750_2 crossref_primary_10_1038_s41746_024_01190_w crossref_primary_10_1080_08940886_2024_2391258 crossref_primary_10_3390_a17070316 crossref_primary_10_1109_ACCESS_2025_3532853 crossref_primary_10_3389_fninf_2024_1379932 crossref_primary_10_1038_s41598_025_87588_2 crossref_primary_10_1108_JICES_11_2023_0137 crossref_primary_10_1186_s13321_024_00892_3 crossref_primary_10_1016_j_artint_2023_104057 crossref_primary_10_1007_s42001_025_00372_0 crossref_primary_10_3390_app14083254 crossref_primary_10_1109_TFUZZ_2024_3365722 crossref_primary_10_1016_j_mlwa_2024_100584 crossref_primary_10_1177_20539517221131290 crossref_primary_10_1016_j_jmsy_2024_04_021 crossref_primary_10_1038_s44401_024_00009_w crossref_primary_10_1109_MGRS_2024_3403423 crossref_primary_10_3390_technologies12120259 crossref_primary_10_3847_1538_3881_ada14c crossref_primary_10_1016_j_ijar_2024_109212 crossref_primary_10_1615_IntJInnovOnlineEdu_2023051048 crossref_primary_10_1038_s41598_024_76943_4 crossref_primary_10_1145_3653708 crossref_primary_10_1007_s00477_024_02898_7 crossref_primary_10_1016_j_laheal_2023_09_002 crossref_primary_10_1109_ACCESS_2025_3537649 crossref_primary_10_1016_j_compag_2024_109755 crossref_primary_10_1145_3665245 crossref_primary_10_2196_69504 crossref_primary_10_1016_j_mlwa_2025_100630 crossref_primary_10_1115_1_4066600 crossref_primary_10_1177_03400352251315845 crossref_primary_10_3389_fmed_2023_1337335 crossref_primary_10_1007_s00521_022_07995_8 crossref_primary_10_1016_j_eswa_2024_124912 crossref_primary_10_1080_21642583_2025_2467083 crossref_primary_10_1016_j_ijmedinf_2024_105626 crossref_primary_10_2196_58726 crossref_primary_10_1002_advs_202307647 crossref_primary_10_4271_12_08_04_0031 crossref_primary_10_1145_3700749 |
Cites_doi | 10.5555/3157382.3157477 10.1063/1.5023802 10.1145/2598153.2598189 10.1109/TPAMI.2021.3069908 10.1177/0278364919884623 10.1109/TVCG.2012.277 10.1145/3274566 10.1007/978-3-030-55789-8_30 10.1109/CVPR.2015.7299155 10.18653/v1/N19-1119 10.1038/nmeth.2281 10.1016/j.inffus.2019.12.012 10.5114/wo.2014.47136 10.1007/978-3-662-43968-5_1 10.1145/3282860 10.5555/1622737.1622744 10.1609/aaai.v29i1.9474 10.18653/v1/N19-1208 10.1109/WACV45572.2020.9093408 10.1609/aimag.v38i3.2741 10.1136/amiajnl-2013-002516 10.1109/ACCESS.2019.2949286 10.3233/978-1-61499-609-5-101 10.1145/3185517 10.1145/3241379 10.1145/1753326.1753529 10.1609/aaai.v29i1.9569 10.1145/3377325.3377483 10.1145/1357054.1357061 10.1109/ICPR.2004.1334570 10.1186/s40537-016-0043-6 10.1109/ICCV.2011.6126474 10.1145/3313831.3376226 10.1145/3173574.3174156 10.1109/CVPR.2016.237 10.1016/j.caeai.2021.100008 10.1007/s12650-018-0531-1 10.1145/1143844.1143897 10.24963/ijcai.2020/367 10.1109/PerComWorkshops48775.2020.9156175 10.1016/j.media.2015.06.008 10.1145/1968.1972 10.1145/3274568 10.1186/s12859-021-04047-1 10.1145/966389.966390 10.1016/j.cell.2018.02.052 10.3390/s22031184 10.24963/ijcai.2018/587 10.1006/ijhc.2001.0499 10.1007/BF00993277 10.18653/v1/N19-1189 10.1016/j.procs.2021.08.057 10.1016/0890-5401(87)90052-6 10.1007/s40708-016-0042-6 10.1145/1753846.1753889 10.18653/v1/W17-5221 10.1007/s10489-018-1361-5 10.1007/s10462-021-10088-y 10.1109/ICMLA.2015.152 10.1145/3196709.3196729 10.5555/2886521.2886696 10.1109/ICCV.2019.00512 10.1162/tacl\_a_00399 10.1145/2110363.2110464 10.1109/ICCV.2017.74 10.1016/j.knosys.2020.106660 10.1080/10580530.2020.1849465 10.1007/978-3-030-45439-5_46 10.1145/1518701.1518895 10.1145/3328485 10.1145/2723162 10.1016/0010-0277(93)90058-4 10.1145/3306618.3314293 10.1016/j.patcog.2016.11.008 10.1109/TKDE.2007.190610 10.1201/b17320 10.1016/j.tics.2014.10.004 10.1111/2041-210X.13489 10.1109/JPROC.2020.3004555 10.1007/978-3-030-29387-1_34 10.1145/253671.253680 10.1016/j.media.2021.102062 10.1109/ACCESS.2018.2870052 10.1145/604045.604056 10.1080/07370024.2020.1734931 10.1109/ICRA.2018.8461194 10.1007/978-1-4899-7637-6_24 10.5555/2145432.2145597 10.1007/978-3-642-04174-7_3 10.1109/CVPR.2017.354 10.5772/9156 10.1145/1978942.1978965 10.1145/3448888 10.1007/978-3-030-72116-9_27 10.1145/1553374.1553380 10.1080/10447318.2020.1741118 10.18653/v1/2020.acl-main.620 10.1145/3281764 10.1109/CVPR.2015.7298877 10.1016/S0020-7373(87)80013-5 10.18653/v1/2020.acl-main.542 10.1016/j.artmed.2007.07.008 10.1109/RoEduNet.2013.6511736 10.1145/3448248 10.1007/978-3-319-10590-1_53 10.1145/3236386.3241340 10.1007/BF00168958 10.1609/aaai.v29i1.9761 10.1109/MCSE.2013.74 10.2139/ssrn.3403301 10.1109/ITRE.2006.381526 10.1145/1458082.1458165 10.1016/j.knosys.2020.106622 10.1145/985692.985733 10.1109/TCSVT.2018.2884173 10.1145/3477314.3507310 10.1109/CVPR.2016.319 10.1609/aimag.v35i4.2513 10.1109/TNNLS.2019.2934906 10.1007/978-3-319-90403-0_17 10.1038/s41592-019-0582-9 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2023 Springer Copyright Springer Nature B.V. Apr 2023 |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2023 Springer – notice: Copyright Springer Nature B.V. Apr 2023 |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
DOI | 10.1007/s10462-022-10246-w |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Library Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7462 |
EndPage | 3054 |
ExternalDocumentID | A741036714 10_1007_s10462_022_10246_w |
GrantInformation_xml | – fundername: Universidade da Coruña – fundername: Xunta de Galicia grantid: ED431C 2022/44 funderid: http://dx.doi.org/10.13039/501100010801 – fundername: Agencia Estatal de Investigación grantid: (PID2019-107194GB-I00 / AEI / 10.13039/501100011033) funderid: http://dx.doi.org/10.13039/501100011033 – fundername: CITIC with ERDF funds grantid: ED431G 2019/01 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PRQQA Q9U |
ID | FETCH-LOGICAL-c402t-f533115cd807bfb0b40379f592d7b0aeec1ecbde7ad31b916bae0d8d1cf1f71c3 |
IEDL.DBID | U2A |
ISSN | 0269-2821 |
IngestDate | Wed Aug 13 10:36:33 EDT 2025 Tue Jun 10 21:13:07 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Tue Jul 01 01:23:26 EDT 2025 Fri Feb 21 02:45:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human-in-the-loop machine learning Curriculum learning Explainable AI Active learning Machine teaching Interactive machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-f533115cd807bfb0b40379f592d7b0aeec1ecbde7ad31b916bae0d8d1cf1f71c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4894-1067 |
OpenAccessLink | https://link.springer.com/10.1007/s10462-022-10246-w |
PQID | 2785983785 |
PQPubID | 36790 |
PageCount | 50 |
ParticipantIDs | proquest_journals_2785983785 gale_infotracacademiconefile_A741036714 crossref_primary_10_1007_s10462_022_10246_w crossref_citationtrail_10_1007_s10462_022_10246_w springer_journals_10_1007_s10462_022_10246_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230400 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Science and Engineering Journal |
PublicationTitle | The Artificial intelligence review |
PublicationTitleAbbrev | Artif Intell Rev |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | LiptonZCThe mythos of model interpretability: in machine learning, the concept of interpretability is both important and slipperyQueue2018163315710.1145/3236386.3241340 WareMFrankEHolmesGInteractive machine learning: letting users build classifiersInt J Hum Comput Stud200155328129210.1006/ijhc.2001.04990972.68599 van AllenPPrototyping ways of prototyping AIInteractions2018256465110.1145/3274566 JamiesonKGJainLFernandezCCortesCLawrenceNLeeDNext: a system for real-world development, evaluation, and application of active learningAdvances in neural information processing systems2015Red HookCurran Associates Inc Simard PY, Amershi S, Chickering DM et al (2017) Machine teaching: A new paradigm for building machine learning systems. arXiv e-prints arxiv:1707.06742 AdadiABerradaMPeeking inside the black-box: a survey on explainable artificial intelligence (XAI)IEEE Access2018652,13852,16010.1109/ACCESS.2018.2870052 Carlson G (2015) What eactly is complex data? https://www.ayasdi.com/exactly-complex-data/. Accessed on 04 Mar 2021 Platanios EA, Stretcu O, Neubig G et al (2019) Competence-based curriculum learning for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 1162–1172, https://doi.org/10.18653/v1/N19-1119, https://www.aclweb.org/anthology/N19-1119 Hoi SCH, Jin R, Zhu J et al (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML ’06, 417-424, https://doi.org/10.1145/1143844.1143897 KellenbergerBTuiaDMorrisDAide: accelerating image-based ecological surveys with interactive machine learningMethods Ecol Evol202011121716172710.1111/2041-210X.13489 ZbyszynskiMTanakaAVisiFSilvaHInteractive machine learning: strategies for live performance using electromyographyOpen source biomedical engineering2020BerlinSpringer PenhaGHauffCJoseJMYilmazEMagalhãesJCurriculum learning strategies for IREuropean conference on information retrieval: advances in information retrieval2020ChamSpringer69971310.1007/978-3-030-45439-5_46 SmithJSNebgenBLubbersNLess is more: sampling chemical space with active learningJ Chem Phys201814824241,73310.1063/1.5023802 MunroRHuman-in-the-loop machine learning2020Shelter IslandManning Publications NguyenDHMPatrickJDSupervised machine learning and active learning in classification of radiology reportsJ Am Med Inform Assoc201421589390110.1136/amiajnl-2013-002516 Settles B (2011) From theories to queries: Active learning in practice. In: Guyon I, Cawley G, Dror G et al (eds) Active learning and experimental design workshop In conjunction with AISTATS 2010, proceedings of machine learning research, vol 16. JMLR workshop and conference proceedings, Sardinia, Italy, 1–18, http://proceedings.mlr.press/v16/settles11a.html Abiteboul S, Buneman P, Suciu D (2000) Data on the web: from relations to semistructured data and XML. Morgan Kaufmann, Data Management Systems Series HeXZhaoKChuXAutoML: a survey of the state-of-the-artKnowl Based Syst202121210662210.1016/j.knosys.2020.106622 RubensNElahiMSugiyamaMRicciFRokachLShapiraBActive learning in recommender systemsRecommender systems handbook2015BostonSpringer80984610.1007/978-1-4899-7637-6_24 Donadello I, Kessler F, Dragoni M et al (2019) Persuasive explanation of reasoning inferences on dietary data. In: Joint proceedings of the 6th international workshop on dataset profilling and search and the 1st workshop on semantic explainability co-located with the 18th international semantic web conference (ISWC 2019) KoestenLSimperlEUx of data: making data available doesn’t make it usableInteractions2021282979910.1145/3448888 XuWToward human-centered AI: a perspective from human–computer interactionInteractions2019264424610.1145/3328485 MontavonGLapuschkinSBinderAExplaining nonlinear classification decisions with deep Taylor decompositionPattern Recognit20176521122210.1016/j.patcog.2016.11.008 HolzingerAInteractive machine learning for health informatics: when do we need the human-in-the-loop?Brain Inform20163211913110.1007/s40708-016-0042-6 Laws F, Scheible C, Schütze H (2011) Active Learning with Amazon Mechanical Turk. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, USA, EMNLP ’11, 1546-1556, https://doi.org/10.5555/2145432.2145597 Leslie D (2019) Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of ai systems in the public sector. 10.5281/zenodo.3240529 Fiebrink RA (2011) Real-time human interaction with supervised learning algorithms for music composition and performance. PhD thesis, Computer Science Dept. Princeton University, Princeton, NJ, USA, https://dl.acm.org/doi/book/10.5555/2125776 Holzinger A, Biemann C, Pattichis CS, et al (2017) What do we need to build explainable AI systems for the medical domain? arXiv e-prints arxiv:1712.09923 [cs.AI] BlumbergRAtreSThe problem with unstructured dataDM Rev20031342–4962 Luo T, Kramer K, Samson S et al (2004) Active learning to recognize multiple types of plankton. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., 478–481 Vol.3, https://doi.org/10.1109/ICPR.2004.1334570 Fadhil A, Wang Y (2018) Towards automatic & personalised mobile health interventions: an interactive machine learning perspective. arXiv e-prints arxiv:1803.01842 [cs.CY] Chen Y, Singla A, Aodha OM et al (2018) Understanding the role of adaptivity in machine teaching: The case of version space learners. In: Proceedings of the 32nd international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’18, 1483-1493, https://dl.acm.org/doi/abs/10.5555/3326943.3327079 MuirBMTrust between humans and machines, and the design of decision aidsInt J Man-Mach Stud198727552753910.1016/S0020-7373(87)80013-5 ZhuangFQiZDuanKA comprehensive survey on transfer learningProc IEEE20211091437610.1109/JPROC.2020.3004555 Xu B, Zhang L, Mao Z et al (2020) Curriculum learning for natural language understanding. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6095–6104, https://doi.org/10.18653/v1/2020.acl-main.542, https://www.aclweb.org/anthology/2020.acl-main.542 Fiebrink R, Cook PR (2010) The wekinator: a system for real-time, interactive machine learning in music. In: Proceedings of The Eleventh International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht Donmez P, Carbonell JG (2008) Proactive learning: Cost-sensitive active learning with multiple imperfect oracles. In: Proceedings of the 17th ACM conference on information and knowledge management. Association for Computing Machinery, New York, NY, USA, CIKM ’08, 619–628, https://doi.org/10.1145/1458082.1458165 KumarMPackerBKollerDLaffertyJWilliamsCShawe-TaylorJSelf-paced learning for latent variable modelsAdvances in neural information processing systems2010Red HookCurran Associates Inc11891197 DudleyJJKristenssonPOA review of user interface design for interactive machine learningACM Trans Interact Intell Syst201810.1145/3185517 AngluinDLearning regular sets from queries and counterexamplesInf Comput19877528710691636010.1016/0890-5401(87)90052-60636.68112 ShneidermanBHuman-centered artificial intelligence: reliable, safe & trustworthyInt J Hum Comput Interact202036649550410.1080/10447318.2020.1741118 KabraMRobieAARivera-AlbaMJaaba: interactive machine learning for automatic annotation of animal behaviorNat Methods2013101646710.1038/nmeth.2281 Soviany P, Ardei C, Ionescu RT et al (2020) Image difficulty curriculum for generative adversarial networks (cugan). In: 2020 IEEE winter conference on applications of computer vision (WACV), 3452–3461, https://doi.org/10.1109/WACV45572.2020.9093408 LopesMMeloFMontesanoLActive learning for reward estimation in inverse reinforcement learningJoint European conference on machine learning and knowledge discovery in databases2009Berlin HeidelbergSpringer314610.1007/978-3-642-04174-7_3 NwanaHSIntelligent tutoring systems: an overviewArtif Intell Rev19904425127710.1007/BF00168958 Zhang X, Shapiro P, Kumar G et al (2019b) Curriculum learning for domain adaptation in neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 1903–1915, https://doi.org/10.18653/v1/N19-1189, https://www.aclweb.org/anthology/N19-1189 GaonkarBShinoharaTRDavatzikosCInterpreting support vector machine models for multivariate group wise analysis in neuroimagingMed Image Anal201524119020410.1016/j.media.2015.06.008 Zhang X, Kumar G, Khayrallah H et al (2018) An empirical exploration of curriculum learning for neural machine translation. arXiv e-prints arxiv:1811.00739 [cs.CL] Ionescu RT, Alexe B, Leordeanu M et al (2016) How hard can it be? estimating the difficulty of visual search in an image. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2157–2166, https://doi.org/10.1109/CVPR.2016.237 Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), 5188–5196, https://doi.org/10.1109/CVPR.2015.7299155, https://ieeexplore.ieee.org/document/7299155 YangSJOgataHMatsuiTHuman-centered artificial intelligence in education: seeing the invisible through the visibleComput Educ2021210000810.1016/j.caeai.2021.100008 KosmynaNTarpin-BernardFRivetBAdding human learning in brain-computer interfaces (b A Holzinger (10246_CR63) 2014 A Adadi (10246_CR3) 2018; 6 N Boukhelifa (10246_CR22) 2018 10246_CR108 10246_CR111 R Blumberg (10246_CR20) 2003; 13 10246_CR114 10246_CR116 JS Smith (10246_CR132) 2018; 148 10246_CR24 10246_CR21 O Reyes (10246_CR118) 2016; 17 10246_CR27 DHM Nguyen (10246_CR107) 2014; 21 10246_CR25 10246_CR110 10246_CR26 F Zhuang (10246_CR171) 2021; 109 N Kosmyna (10246_CR77) 2015 S Amershi (10246_CR8) 2014; 35 B Gaonkar (10246_CR51) 2015; 24 A Holzinger (10246_CR62) 2016; 3 Z Liu (10246_CR86) 2021; 213 A Barredo Arrieta (10246_CR13) 2020; 58 B Shneiderman (10246_CR128) 2020; 36 K Tomczak (10246_CR140) 2015; 19 IM El-Hasnony (10246_CR42) 2022 10246_CR93 10246_CR100 10246_CR1 10246_CR90 10246_CR2 10246_CR7 10246_CR96 C Sammut (10246_CR122) 1986 10246_CR104 10246_CR94 A Sena (10246_CR124) 2020; 39 10246_CR98 10246_CR11 TT Hills (10246_CR58) 2015; 19 10246_CR99 10246_CR16 10246_CR17 M Zbyszynski (10246_CR160) 2020 10246_CR14 10246_CR15 C Meske (10246_CR97) 2022; 39 G Ramos (10246_CR117) 2020; 35 J Liu (10246_CR87) 2018; 173 JM Wing (10246_CR154) 2021; 64 F Heimerl (10246_CR57) 2012; 18 10246_CR134 E Diamant (10246_CR37) 2009 10246_CR133 10246_CR136 B Peng (10246_CR112) 2021; 9 10246_CR138 10246_CR137 10246_CR40 10246_CR139 10246_CR45 10246_CR46 10246_CR44 A Holzinger (10246_CR64) 2019; 49 Z Chen (10246_CR28) 2007; 41 10246_CR49 10246_CR130 SJ Yang (10246_CR158) 2021; 2 10246_CR47 10246_CR48 B Kellenberger (10246_CR74) 2020; 11 10246_CR131 MD Zeiler (10246_CR161) 2014 10246_CR29 10246_CR119 KG Jamieson (10246_CR68) 2015 P van Allen (10246_CR6) 2018; 25 10246_CR123 10246_CR125 Y LeCun (10246_CR82) 2015; 521 10246_CR30 10246_CR127 JL Elman (10246_CR43) 1993; 48 10246_CR126 10246_CR129 H Berghel (10246_CR19) 1997; 40 10246_CR35 10246_CR32 BM Muir (10246_CR105) 1987; 27 10246_CR38 10246_CR39 10246_CR36 10246_CR121 S Budd (10246_CR23) 2021; 71 G Montavon (10246_CR102) 2017; 65 Y Zhao (10246_CR166) 2020 FG Visi (10246_CR143) 2021 DA Cohn (10246_CR34) 1996; 4 B Goodman (10246_CR52) 2017; 38 T Matiisen (10246_CR95) 2020; 31 10246_CR60 EF Churchill (10246_CR31) 2018; 25 10246_CR157 10246_CR159 10246_CR61 D Minh (10246_CR101) 2021 10246_CR67 D Cohn (10246_CR33) 1994; 15 10246_CR65 10246_CR150 10246_CR66 D Zhang (10246_CR163) 2019; 29 10246_CR151 10246_CR153 S Berg (10246_CR18) 2019; 16 10246_CR145 L Koesten (10246_CR76) 2021; 28 O Loyola-González (10246_CR92) 2019; 7 10246_CR147 M Lindvall (10246_CR84) 2018; 25 R Porter (10246_CR115) 2013; 15 10246_CR53 E Mosqueira-Rey (10246_CR103) 2021; 192 10246_CR148 10246_CR50 NH Barakat (10246_CR12) 2007; 19 10246_CR54 LG Valiant (10246_CR142) 1984; 27 10246_CR55 M Lopes (10246_CR91) 2009 K De Angeli (10246_CR9) 2021; 22 M Kumar (10246_CR79) 2010 M Ware (10246_CR149) 2001; 55 10246_CR59 L Jiang (10246_CR69) 2019; 22 M Treveil (10246_CR141) 2020 ZC Lipton (10246_CR85) 2018; 16 CC Aggarwal (10246_CR4) 2014 HS Nwana (10246_CR109) 1990; 4 E Wall (10246_CR144) 2019 10246_CR81 10246_CR80 J Šavelka (10246_CR174) 2015 D Angluin (10246_CR10) 1987; 75 10246_CR83 X He (10246_CR56) 2021; 212 10246_CR89 K Weiss (10246_CR152) 2016; 3 10246_CR170 10246_CR172 10246_CR88 10246_CR173 L von Ahn (10246_CR5) 2004; 47 JJ Dudley (10246_CR41) 2018 JS Wong (10246_CR155) 2018; 25 10246_CR70 W Xu (10246_CR156) 2019; 26 10246_CR167 10246_CR71 M Kabra (10246_CR72) 2013; 10 10246_CR169 10246_CR168 G Penha (10246_CR113) 2020 10246_CR75 X Wang (10246_CR146) 2021 10246_CR73 10246_CR78 J Suh (10246_CR135) 2019 R Munro (10246_CR106) 2020 10246_CR162 10246_CR165 N Rubens (10246_CR120) 2015 10246_CR164 |
References_xml | – reference: Wang Y, Gan W, Yang J et al (2019) Dynamic curriculum learning for imbalanced data classification. In: 2019 IEEE/CVF international conference on computer vision (ICCV), 5016–5025, https://doi.org/10.1109/ICCV.2019.00512 – reference: Das A, Rad P (2020) Opportunities and challenges in explainable artificial intelligence (XAI): a survey. arXiv e-prints arxiv:2006.11371 [cs.CV] – reference: Kim B, Patel K, Rostamizadeh A et al (2015) Scalable and interpretable data representation for high-dimensional, complex data. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Austin, Texas USA, 1763–1769, https://ojs.aaai.org/index.php/AAAI/article/view/9474 – reference: KumarMPackerBKollerDLaffertyJWilliamsCShawe-TaylorJSelf-paced learning for latent variable modelsAdvances in neural information processing systems2010Red HookCurran Associates Inc11891197 – reference: PorterRTheilerJHushDInteractive machine learning in data exploitationComput Sci Eng2013155122010.1109/MCSE.2013.74 – reference: ŠavelkaJTrivediGAshleyKDRotoloAApplying an interactive machine learning approach to statutory analysisLegal knowledge and information systems, frontiers in artificial intelligence and applications2015AmsterdamIOS Press10111010.3233/978-1-61499-609-5-101 – reference: Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), 5188–5196, https://doi.org/10.1109/CVPR.2015.7299155, https://ieeexplore.ieee.org/document/7299155 – reference: Ishibashi T, Nakao Y, Sugano Y (2020) Investigating audio data visualization for interactive sound recognition. In: Proceedings of the 25th international conference on intelligent user interfaces. Association for Computing Machinery, New York, NY, USA, IUI ’20, 67–77, https://doi.org/10.1145/3377325.3377483 – reference: Liu W, Dai B, Humayun A et al (2017) Iterative machine teaching. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, proceedings of machine learning research, vol 70. PMLR, 2149–2158, https://proceedings.mlr.press/v70/liu17b.html – reference: ZeilerMDFergusRFleetDPajdlaTSchieleBVisualizing and understanding convolutional networksEuropean conference on computer vision2014ChamSpringer81883310.1007/978-3-319-10590-1_53 – reference: Holmberg L, Davidsson P, Linde P (2020) A feature space focus in machine teaching. In: 2020 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), 1–2, https://doi.org/10.1109/PerComWorkshops48775.2020.9156175 – reference: Teso S, Kersting K (2019) Explanatory interactive machine learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery, New York, NY, USA, AIES ’19, 239–245, https://doi.org/10.1145/3306618.3314293 – reference: Zeiler MD, Taylor GW, Fergus R (2011) Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International conference on computer vision, 2018–2025, https://doi.org/10.1109/ICCV.2011.6126474, https://ieeexplore.ieee.org/document/6126474 – reference: Zhou Y, Yang B, Wong DF et al (2020) Uncertainty-aware curriculum learning for neural machine translation. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6934–6944, https://doi.org/10.18653/v1/2020.acl-main.620, https://www.aclweb.org/anthology/2020.acl-main.620 – reference: ZhuangFQiZDuanKA comprehensive survey on transfer learningProc IEEE20211091437610.1109/JPROC.2020.3004555 – reference: Liu C, He S, Liu K et al (2018a) Curriculum learning for natural answer generation. In: Proceedings of the 27th international joint conference on artificial intelligence. AAAI Press, IJCAI’18, 4223-4229, https://doi.org/10.24963/ijcai.2018/587 – reference: Bonwell CC, Eison JA (1991) Active learning: creating excitement in the classroom. 1991 ASHE-ERIC higher education reports. ERIC Clearinghouse on Higher Education, The George Washington University, One Dupont Circle, Suite 630, Washington, DC 20036-1183 – reference: Platanios EA, Stretcu O, Neubig G et al (2019) Competence-based curriculum learning for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 1162–1172, https://doi.org/10.18653/v1/N19-1119, https://www.aclweb.org/anthology/N19-1119 – reference: WallEGhorashiSRamosGLamasDLoizidesFNackeLUsing expert patterns in assisted interactive machine learning: a study in machine teachingHuman-computer interaction—INTERACT 20192019BerlinSpringer57859910.1007/978-3-030-29387-1_34 – reference: HolzingerAPlassMKickmeier-RustMInteractive machine learning: experimental evidence for the human in the algorithmic loopAppl Intell20194972401241410.1007/s10489-018-1361-5 – reference: ZbyszynskiMTanakaAVisiFSilvaHInteractive machine learning: strategies for live performance using electromyographyOpen source biomedical engineering2020BerlinSpringer – reference: RubensNElahiMSugiyamaMRicciFRokachLShapiraBActive learning in recommender systemsRecommender systems handbook2015BostonSpringer80984610.1007/978-1-4899-7637-6_24 – reference: KellenbergerBTuiaDMorrisDAide: accelerating image-based ecological surveys with interactive machine learningMethods Ecol Evol202011121716172710.1111/2041-210X.13489 – reference: Sint R, Schaffert S, Stroka S et al (2009) Combining unstructured, fully structured and semi-structured information in semantic wikis. In: 4th semantic wiki workshop (SemWiki 2009) at the 6th European semantic web conference (ESWC 2009), Hersonissos, Greece, 73–87, http://ceur-ws.org/Vol-464/paper-14.pdf – reference: Fogarty J, Tan D, Kapoor A et al (2008) Cueflik: Interactive concept learning in image search. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’08, 29–38, https://doi.org/10.1145/1357054.1357061 – reference: WangXChenYZhuWA survey on curriculum learningIEEE Trans Pattern Anal Mach Intell202110.1109/TPAMI.2021.3069908 – reference: Hara S, Hayashi K (2018) Making tree ensembles interpretable: A bayesian model selection approach. In: Storkey A, Perez-Cruz F (eds) Proceedings of the twenty-first international conference on artificial intelligence and statistics, proceedings of machine learning research, vol 84. PMLR, 77–85, https://proceedings.mlr.press/v84/hara18a.html – reference: ReyesOPérezEdel CarmenRodrıguez-Hernández MJclal: a java framework for active learningJ Mach Learn Res2016171535435011367.68237 – reference: AdadiABerradaMPeeking inside the black-box: a survey on explainable artificial intelligence (XAI)IEEE Access2018652,13852,16010.1109/ACCESS.2018.2870052 – reference: Weimer M (2010) Machine teaching: a machine learning approach to technology enhanced learning. PhD thesis, Darmstadt University of Technology, http://tuprints.ulb.tu-darmstadt.de/2109/ – reference: Krakovna V, Doshi-Velez F (2016) Increasing the interpretability of recurrent neural networks using hidden markov models. arXiv e-prints arxiv:1606.0532 [cond-mat.soft] – reference: El-HasnonyIMElzekiOMAlshehriAMulti-label active learning-based machine learning model for heart disease predictionSensors202210.3390/s22031184 – reference: Wallace BC, Small K, Brodley CE et al (2012) Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. Association for Computing Machinery, New York, NY, USA, IHI ’12, 819–824, https://doi.org/10.1145/2110363.2110464 – reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 – reference: Kumar G, Foster G, Cherry C et al (2019) Reinforcement learning based curriculum optimization for neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 2054–2061, https://doi.org/10.18653/v1/N19-1208, https://www.aclweb.org/anthology/N19-1208 – reference: Laws F, Scheible C, Schütze H (2011) Active Learning with Amazon Mechanical Turk. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, USA, EMNLP ’11, 1546-1556, https://doi.org/10.5555/2145432.2145597 – reference: Ribeiro M, Grolinger K, Capretz MA (2015) MLaaS: Machine learning as a service. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), 896–902, https://doi.org/10.1109/ICMLA.2015.152 – reference: Mosqueira-ReyEAlonso-RíosDBaamonde-LozanoAIntegrating iterative machine teaching and active learning into the machine learning loopProcedia Comput Sci202119255356210.1016/j.procs.2021.08.057 – reference: LindvallMMolinJLöwgrenJFrom machine learning to machine teaching: the importance of UXInteractions2018256525710.1145/3282860 – reference: Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D et al (2022) A classification and review of tools for developing and interacting with machine learning systems. In: Proceedings of the 37th annual ACM symposium on applied computing. Association for Computing Machinery, New York, NY, USA, 1083–1092, https://doi.org/10.1145/3477314.3507310 – reference: Xu B, Zhang L, Mao Z et al (2020) Curriculum learning for natural language understanding. In: Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6095–6104, https://doi.org/10.18653/v1/2020.acl-main.542, https://www.aclweb.org/anthology/2020.acl-main.542 – reference: HeXZhaoKChuXAutoML: a survey of the state-of-the-artKnowl Based Syst202121210662210.1016/j.knosys.2020.106622 – reference: Weinshall D, Cohen G, Amir D (2018) Curriculum learning by transfer learning: Theory and experiments with deep networks. In: Proceedings of the 35th annual international conference on machine learning, 5235–5243, http://proceedings.mlr.press/v80/weinshall18a.html – reference: Choi E, Bahadori T, Schuetz A et al (2016) Retain: Interpretable predictive model in healthcare using reverse time attention mechanism. In: Proceedings of the 30th international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’16, 3512-3520 – reference: Weitekamp D, Harpstead E, Koedinger KR (2020) An interaction design for machine teaching to develop AI tutors. In: Proceedings of the 2020 CHI conference on human factors in computing systems, 1–11, https://doi.org/10.1145/3313831.3376226 – reference: Yang Q, Suh J, Chen NC et al (2018) Grounding interactive machine learning tool design in how non-experts actually build models. In: Proceedings of the 2018 designing interactive systems conference. Association for Computing Machinery, New York, NY, USA, DIS ’18, 573–584, https://doi.org/10.1145/3196709.3196729 – reference: Ionescu RT, Alexe B, Leordeanu M et al (2016) How hard can it be? estimating the difficulty of visual search in an image. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2157–2166, https://doi.org/10.1109/CVPR.2016.237 – reference: Jiang L, Meng D, Zhao Q et al (2015) Self-paced curriculum learning. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, AAAI’15, 2694-2700, https://doi.org/10.5555/2886521.2886696 – reference: Fiebrink R, Cook PR, Trueman D (2011) Human model evaluation in interactive supervised learning. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’11, 147–156, https://doi.org/10.1145/1978942.1978965 – reference: Traoré R, Caselles-Dupré ea (2019) Discorl: continual reinforcement learning via policy distillation. arXiv e-prints arxiv:1907.05855 [cs.LG] – reference: BoukhelifaNBezerianosALuttonEZhouJChenFEvaluation of interactive machine learning systemsHuman and machine learning: visible, explainable, trustworthy and transparent2018ChamSpringer34136010.1007/978-3-319-90403-0_17 – reference: d’Avila Garcez A, Gori M, Lamb LC et al (2019) Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. arXiv e-prints arxiv:1905.06088 [cs.AI] – reference: PengBLiCLiJSoloist: building task bots at scale with transfer learning and machine teachingTrans Assoc Comput Linguist2021980782410.1162/tacl\_a_00399 – reference: JiangLLiuSChenCRecent research advances on interactive machine learningJ Vis201922240141710.1007/s12650-018-0531-1 – reference: Microsoft (2022) Qna maker. https://www.qnamaker.ai/. Accessed on 23 Mar 2022 – reference: NwanaHSIntelligent tutoring systems: an overviewArtif Intell Rev19904425127710.1007/BF00168958 – reference: Selvaraju RR, Cogswell M, Das A et al (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV), 618–626, https://doi.org/10.1109/ICCV.2017.74, https://ieeexplore.ieee.org/document/8237336 – reference: MuirBMTrust between humans and machines, and the design of decision aidsInt J Man-Mach Stud198727552753910.1016/S0020-7373(87)80013-5 – reference: AmershiSCakmakMKnoxWBPower to the people: the role of humans in interactive machine learningAI Magazine201435410512010.1609/aimag.v35i4.2513 – reference: Fadhil A, Wang Y (2018) Towards automatic & personalised mobile health interventions: an interactive machine learning perspective. arXiv e-prints arxiv:1803.01842 [cs.CY] – reference: ZhaoYProsperiMLyuTFujitaHFournier-VigerPAliMIntegrating crowdsourcing and active learning for classification of work-life events from tweetsTrends in artificial intelligence theory and applications. Artificial intelligence practices2020ChamSpringer33334410.1007/978-3-030-55789-8_30 – reference: Bengio Y, Louradour J, Collobert R et al (2009) Curriculum learning. In: Proceedings of the 26th annual international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML ’09, 41-48, https://doi.org/10.1145/1553374.1553380 – reference: ElmanJLLearning and development in neural networks: the importance of starting smallCognition1993481719910.1016/0010-0277(93)90058-4 – reference: Rusu O, Halcu I, Grigoriu O et al (2013) Converting unstructured and semi-structured data into knowledge. In: 013 11th RoEduNet international conference, 1–4, https://doi.org/10.1109/RoEduNet.2013.6511736 – reference: Zhang X, Kumar G, Khayrallah H et al (2018) An empirical exploration of curriculum learning for neural machine translation. arXiv e-prints arxiv:1811.00739 [cs.CL] – reference: BerghelHCyberspace 2000: dealing with information overloadCommun ACM1997402192410.1145/253671.253680 – reference: MontavonGLapuschkinSBinderAExplaining nonlinear classification decisions with deep Taylor decompositionPattern Recognit20176521122210.1016/j.patcog.2016.11.008 – reference: YangSJOgataHMatsuiTHuman-centered artificial intelligence in education: seeing the invisible through the visibleComput Educ2021210000810.1016/j.caeai.2021.100008 – reference: ChenZLiJWeiLA multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissueArtif Intell Med200741216117510.1016/j.artmed.2007.07.008 – reference: Diamant E (2006) Learning to understand image content: Machine learning versus machine teaching alternative. In: 2006 International conference on information technology: research and education, 26–29, https://doi.org/10.1109/ITRE.2006.381526 – reference: CohnDAtlasLLadnerRImproving generalization with active learningMach Learn199415220122110.1007/BF00993277 – reference: Amazon (2022) Amazon mechanical turk. https://www.mturk.com/. Accessed on 23 Mar 2022 – reference: KabraMRobieAARivera-AlbaMJaaba: interactive machine learning for automatic annotation of animal behaviorNat Methods2013101646710.1038/nmeth.2281 – reference: Mei S, Zhu X (2015) Using machine teaching to identify optimal training-set attacks on machine learners. In: Proc. of the 29th AAAI conference on artificial intelligence, 2871–2877, https://ojs.aaai.org/index.php/AAAI/article/view/9569 – reference: O’Malley J (2018) Captcha if you can: how you’ve been training ai for years without realising it. https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it – reference: Castle E (2017) 7 signs you’re dealing with complex data. https://www.sisense.com/blog/7-signs-youre-dealing-with-complex-data/. Accessed on 04 Mar 2022 – reference: Settles B (2011) From theories to queries: Active learning in practice. In: Guyon I, Cawley G, Dror G et al (eds) Active learning and experimental design workshop In conjunction with AISTATS 2010, proceedings of machine learning research, vol 16. JMLR workshop and conference proceedings, Sardinia, Italy, 1–18, http://proceedings.mlr.press/v16/settles11a.html – reference: SuhJGhorashiSRamosGAnchorviz: facilitating semantic data exploration and concept discovery for interactive machine learningACM Trans Interact Intell Syst201910.1145/3241379 – reference: Talbot J, Lee B, Kapoor A et al (2009) Ensemblematrix: Interactive visualization to support machine learning with multiple classifiers. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’09, 1283-1292, https://doi.org/10.1145/1518701.1518895 – reference: Hipke K, Toomim M, Fiebrink R et al (2014) Beatbox: End-user interactive definition and training of recognizers for percussive vocalizations. In: Proceedings of the 2014 international working conference on advanced visual interfaces. Association for Computing Machinery, New York, NY, USA, AVI ’14, 121–124, https://doi.org/10.1145/2598153.2598189 – reference: Olsson F (2009) A literature survey of active machine learning in the context of natural language processing. Tech. rep., Swedish Institute of Computer Science, http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-23510 – reference: LiuJLichtenbergTHoadleyKAAn integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analyticsCell20181732400416.e1110.1016/j.cell.2018.02.052 – reference: DudleyJJKristenssonPOA review of user interface design for interactive machine learningACM Trans Interact Intell Syst201810.1145/3185517 – reference: HolzingerAJurisicaIHolzingerAJurisicaIKnowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutionsInteractive knowledge discovery and data mining in biomedical informatics: state-of-the-art and future challenges2014Berlin, HeidelbergSpringer11810.1007/978-3-662-43968-5_1 – reference: Meza Martínez MA, Nadj M, Maedche A (2019) Towards an integrative theoretical framework of interactive machine learning systems. In: Proceedings of the 27th European conference on information systems (ECIS), Stockholm & Uppsala, Sweden, https://aisel.aisnet.org/ecis2019_rp/172 – reference: SammutCBanerjiRBMichalskiRSCarbonellJMitchellTLearning concepts by asking questionsMachine learning: an artificial intelligence approach1986BurlingtonMorgan Kaufmann167192 – reference: LiptonZCThe mythos of model interpretability: in machine learning, the concept of interpretability is both important and slipperyQueue2018163315710.1145/3236386.3241340 – reference: NguyenDHMPatrickJDSupervised machine learning and active learning in classification of radiology reportsJ Am Med Inform Assoc201421589390110.1136/amiajnl-2013-002516 – reference: ChurchillEFvan AllenPKuniavskyMDesigning AIInteractions2018256343710.1145/3281764 – reference: WareMFrankEHolmesGInteractive machine learning: letting users build classifiersInt J Hum Comput Stud200155328129210.1006/ijhc.2001.04990972.68599 – reference: Holzinger A, Biemann C, Pattichis CS, et al (2017) What do we need to build explainable AI systems for the medical domain? arXiv e-prints arxiv:1712.09923 [cs.AI] – reference: Sena A, Zhao Y, Howard MJ (2018) Teaching human teachers to teach robot learners. In: 2018 IEEE international conference on robotics and automation (ICRA), 5675–5681, https://doi.org/10.1109/ICRA.2018.8461194 – reference: Che Z, Purushotham S, Khemani R et al (2015) Distilling knowledge from deep networks with applications to healthcare domain. arXiv e-prints arxiv:1512.03542 [stat.ML] – reference: Fiebrink RA (2011) Real-time human interaction with supervised learning algorithms for music composition and performance. PhD thesis, Computer Science Dept. Princeton University, Princeton, NJ, USA, https://dl.acm.org/doi/book/10.5555/2125776 – reference: KoestenLSimperlEUx of data: making data available doesn’t make it usableInteractions2021282979910.1145/3448888 – reference: MeskeCBundeESchneiderJExplainable artificial intelligence: objectives, stakeholders, and future research opportunitiesInf Syst Manag2022391536310.1080/10580530.2020.1849465 – reference: Donadello I, Kessler F, Dragoni M et al (2019) Persuasive explanation of reasoning inferences on dietary data. In: Joint proceedings of the 6th international workshop on dataset profilling and search and the 1st workshop on semantic explainability co-located with the 18th international semantic web conference (ISWC 2019) – reference: Cirik V, Hovy E, Morency LP (2016) Visualizing and understanding curriculum learning for long short-term memory networks. arXiv e-prints arxiv:1611.06204 [cs.CL] – reference: Soviany P, Ardei C, Ionescu RT et al (2020) Image difficulty curriculum for generative adversarial networks (cugan). In: 2020 IEEE winter conference on applications of computer vision (WACV), 3452–3461, https://doi.org/10.1109/WACV45572.2020.9093408 – reference: Wang X, Pham H, Michel P et al (2020) Optimizing data usage via differentiable rewards. In: III HD, Singh A (eds) Proceedings of the 37th international conference on machine learning, proceedings of machine learning research, vol 119. PMLR, 9983–9995, https://proceedings.mlr.press/v119/wang20p.html – reference: Simard PY, Amershi S, Chickering DM et al (2017) Machine teaching: A new paradigm for building machine learning systems. arXiv e-prints arxiv:1707.06742 – reference: Arras GL, Montavon, Müller KR, Samek W (2017) Explaining recurrent neural network predictions in sentiment analysis. In: EMNLP’17 workshop on computational approaches to subjectivity, sentiment and social media analysis, https://doi.org/10.18653/v1/W17-5221 – reference: Kapoor A, Lee B, Tan D et al (2010) Interactive optimization for steering machine classification. In: Proceedings of the SIGCHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’10, 1343–1352, https://doi.org/10.1145/1753326.1753529 – reference: SmithJSNebgenBLubbersNLess is more: sampling chemical space with active learningJ Chem Phys201814824241,73310.1063/1.5023802 – reference: Johns E, Mac Aodha O, Brostow GJ (2015) Becoming the expert-interactive multi-class machine teaching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2616–2624, https://doi.org/10.1109/CVPR.2015.7298877 – reference: MinhDWangHXLiYFExplainable artificial intelligence: a comprehensive reviewArtif Intell Rev202110.1007/s10462-021-10088-y – reference: BarakatNHBradleyAPRule extraction from support vector machines: a sequential covering approachIEEE Trans Knowl Data Eng200719672974110.1109/TKDE.2007.190610 – reference: Abiteboul S, Buneman P, Suciu D (2000) Data on the web: from relations to semistructured data and XML. Morgan Kaufmann, Data Management Systems Series – reference: De AngeliKGaoSAlawadMDeep active learning for classifying cancer pathology reportsBMC Bioinform202122112510.1186/s12859-021-04047-1 – reference: WingJMTrustworthy AICommun ACM20216410647110.1145/3448248 – reference: Zhu X (2015) Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, AAAI’15, 4083–4087, https://ojs.aaai.org/index.php/AAAI/article/view/9761 – reference: AngluinDLearning regular sets from queries and counterexamplesInf Comput19877528710691636010.1016/0890-5401(87)90052-60636.68112 – reference: HeimerlFKochSBoschHVisual classifier training for text document retrievalIEEE Trans Vis Comput Graphics201218122839284810.1109/TVCG.2012.277 – reference: LiuZFengXWangYSelf-paced learning enhanced neural matrix factorization for noise-aware recommendationKnowl Based Syst202121310666010.1016/j.knosys.2020.106660 – reference: Florensa C, Held D, Wulfmeier M et al (2017) Reverse curriculum generation for reinforcement learning. In: Levine S, Vanhoucke V, Goldberg K (eds) Proceedings of the 1st annual conference on robot learning, proceedings of machine learning research, vol 78. PMLR, 482–495, http://proceedings.mlr.press/v78/florensa17a.html – reference: van AllenPPrototyping ways of prototyping AIInteractions2018256465110.1145/3274566 – reference: Singla A, Bogunovic I, Bartók G et al (2014) Near-optimally teaching the crowd to classify. In: Xing EP, Jebara T (eds) Proceedings of the 31st international conference on machine learning. PMLR, Bejing, China, proceedings of machine learning research, 154–162, http://proceedings.mlr.press/v32/singla14.pdf – reference: von AhnLBlumMLangfordJTelling humans and computers apart automaticallyCommun ACM2004472566010.1145/966389.966390 – reference: Abdul A, Vermeulen J, Wang D et al (2018) Trends and trajectories for explainable, accountable and intelligible systems: an hci research agenda. In: Proceedings of the 2018 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, CHI ’18, pp 1–18, https://doi.org/10.1145/3173574.3174156 – reference: Leslie D (2019) Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of ai systems in the public sector. 10.5281/zenodo.3240529 – reference: PenhaGHauffCJoseJMYilmazEMagalhãesJCurriculum learning strategies for IREuropean conference on information retrieval: advances in information retrieval2020ChamSpringer69971310.1007/978-3-030-45439-5_46 – reference: WeissKKhoshgoftaarTMWangDA survey of transfer learningJ Big data20163114010.1186/s40537-016-0043-6 – reference: Carlson G (2015) What eactly is complex data? https://www.ayasdi.com/exactly-complex-data/. Accessed on 04 Mar 2021 – reference: Barredo ArrietaADíaz-RodríguezNDel SerJExplainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible AIInf Fusion2020588211510.1016/j.inffus.2019.12.012 – reference: Donmez P, Carbonell JG (2008) Proactive learning: Cost-sensitive active learning with multiple imperfect oracles. In: Proceedings of the 17th ACM conference on information and knowledge management. Association for Computing Machinery, New York, NY, USA, CIKM ’08, 619–628, https://doi.org/10.1145/1458082.1458165 – reference: ZhangDHanJGuoGLearning object detectors with semi-annotated weak labelsIEEE Trans Circuits Syst Video Technol201929123622363510.1109/TCSVT.2018.2884173 – reference: Bennetot A, Laurent JL, Chatila R et al (2019) Towards explainable neural-symbolic visual reasoning. arxiv:1909.09065 – reference: XuWToward human-centered AI: a perspective from human–computer interactionInteractions2019264424610.1145/3328485 – reference: MatiisenTOliverACohenTTeacher-student curriculum learningIEEE Trans Neural Netw Learn Syst20203193732374010.1109/TNNLS.2019.2934906 – reference: Zhu X, Singla A, Zilles S et al (2018) An overview of machine teaching. arXiv e-prints arxiv:1801.05927 – reference: CohnDAGhahramaniZJordanMIActive learning with statistical modelsJ Artif Intell Res19964112914510.5555/1622737.16227440900.68366 – reference: DiamantEZhangYMachine learning: When and where the horses went astray?Machine learning2009LondonInTech11810.5772/9156 – reference: ValiantLGA theory of the learnableCommun ACM198427111134114210.1145/1968.19720587.68077 – reference: WongJSDesign and fiction: imagining civic AIInteractions2018256424510.1145/3274568 – reference: TreveilMOmontNStenacCIntroducing MLOps2020SebastopolO’Reilly Media – reference: AggarwalCCKongXGuQActive learning: a surveyData classification: algorithms and applications2014Boca RatonChapman and Hall/CRC59963410.1201/b17320 – reference: Tolls V (2018) An event-based approach to modeling complex data in critical care. PhD thesis, Queen’s University (Canada), https://qspace.library.queensu.ca/bitstream/handle/1974/24489/Tolls_Victoria_J_201809_MSC.pdf – reference: Bau D, Zhou B, Khosla A et al (2017) Network dissection: Quantifying interpretability of deep visual representations. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), 3319–3327, https://doi.org/10.1109/CVPR.2017.354, https://ieeexplore.ieee.org/document/8099837 – reference: Hoi SCH, Jin R, Zhu J et al (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd international conference on machine learning. Association for Computing Machinery, New York, NY, USA, ICML ’06, 417-424, https://doi.org/10.1145/1143844.1143897 – reference: VisiFGTanakaAMirandaERInteractive machine learning of musical gestureHandbook of artificial intelligence for music: foundations, advanced approaches, and developments for creativity2021ChamSpringer77179810.1007/978-3-030-72116-9_27 – reference: Chen Y, Singla A, Aodha OM et al (2018) Understanding the role of adaptivity in machine teaching: The case of version space learners. In: Proceedings of the 32nd international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’18, 1483-1493, https://dl.acm.org/doi/abs/10.5555/3326943.3327079 – reference: RamosGMeekCSimardPInteractive machine teaching: a human-centered approach to building machine-learned modelsHum Comput Interact2020355–641345110.1080/07370024.2020.1734931 – reference: TomczakKCzerwińskaPWiznerowiczMThe cancer genome atlas (TCGA): an immeasurable source of knowledgeContemp Oncol2015191A687710.5114/wo.2014.47136 – reference: KosmynaNTarpin-BernardFRivetBAdding human learning in brain-computer interfaces (bcis): towards a practical control modalityACM Trans Comput-Hum Interact201510.1145/2723162 – reference: Zhang X, Shapiro P, Kumar G et al (2019b) Curriculum learning for domain adaptation in neural machine translation. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 1903–1915, https://doi.org/10.18653/v1/N19-1189, https://www.aclweb.org/anthology/N19-1189 – reference: Hacohen G, Weinshall D (2019) On the power of curriculum learning in training deep networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning Research, vol 97. PMLR, 2535–2544, http://proceedings.mlr.press/v97/hacohen19a.html – reference: GaonkarBShinoharaTRDavatzikosCInterpreting support vector machine models for multivariate group wise analysis in neuroimagingMed Image Anal201524119020410.1016/j.media.2015.06.008 – reference: Settles B (2009) Active learning literature survey. Tech. rep., University of Wisconsin-Madison. Department of Computer Sciences, https://minds.wisconsin.edu/handle/1793/60660 – reference: Spitkovsky VI, Alshawi H, Jurafsky D (2010) From baby steps to leapfrog: How “less is more” in unsupervised dependency parsing. In: Human language technologies: the 2010 annual conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Los Angeles, California, 751–759, https://www.aclweb.org/anthology/N10-1116 – reference: BergSKutraDKroegerTIlastik: interactive machine learning for (bio)image analysisNat Methods201916121226123210.1038/s41592-019-0582-9 – reference: Zhou B, Khosla A, Lapedriza A et al (2016) Learning deep features for discriminative localization. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), 2921–2929, https://doi.org/10.1109/CVPR.2016.319, https://ieeexplore.ieee.org/document/7780688 – reference: Loyola-GonzálezOBlack-box vs. white-box: understanding their advantages and weaknesses from a practical point of viewIEEE Access2019715409615411310.1109/ACCESS.2019.2949286 – reference: Gunning D (2017) Explainable artificial intelligence (xAI). Tech. rep., Defense Advanced Research Projects Agency (DARPA), https://www.darpa.mil/program/explainable-artificial-intelligence – reference: LopesMMeloFMontesanoLActive learning for reward estimation in inverse reinforcement learningJoint European conference on machine learning and knowledge discovery in databases2009Berlin HeidelbergSpringer314610.1007/978-3-642-04174-7_3 – reference: Begeja L, Renger B, Gibbon D et al (2004) Interactive machine learning techniques for improving SLU models. In: Proceedings of the HLT-NAACL 2004 workshop on spoken language understanding for conversational systems and higher level linguistic information for speech processing. Association for Computational Linguistics, Boston, Massachusetts, USA, 10–16, https://aclanthology.org/W04-3003 – reference: Tang YP, Li GX, Huang SJ (2019) ALiPy: Active learning in python. Tech. rep., Nanjing University of Aeronautics and Astronautics, https://github.com/NUAA-AL/ALiPy, available as arXiv preprint arxiv:1901.03802 – reference: BlumbergRAtreSThe problem with unstructured dataDM Rev20031342–4962 – reference: Fiebrink R, Cook PR (2010) The wekinator: a system for real-time, interactive machine learning in music. In: Proceedings of The Eleventh International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht – reference: HolzingerAInteractive machine learning for health informatics: when do we need the human-in-the-loop?Brain Inform20163211913110.1007/s40708-016-0042-6 – reference: Che Z, Purushotham S, Khemani R et al (2017) Interpretable deep models for ICU outcome prediction. In: AMIA annual symposium proceedings, 371–380, https://pubmed.ncbi.nlm.nih.gov/28269832/ – reference: Michael CJ, Acklin D, Scheuerman J (2020) On interactive machine learning and the potential of cognitive feedback. arXiv e-prints arxiv:2003.10365 [cs.HC] – reference: SenaAHowardMQuantifying teaching behavior in robot learning from demonstrationInt J Robot Res2020391547210.1177/0278364919884623 – reference: Liu W, Dai B, Li X et al (2018c) Towards black-box iterative machine teaching. In: Dy J, Krause A (eds) Proceedings of the 35th international conference on machine learning, proceedings of machine learning research, vol 80. PMLR, 3141–3149, https://proceedings.mlr.press/v80/liu18b.html – reference: Devidze R, Mansouri F, Haug L et al (2020) Understanding the power and limitations of teaching with imperfect knowledge. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20. International Joint Conferences on Artificial Intelligence Organization, 2647–2654, https://doi.org/10.24963/ijcai.2020/367 – reference: von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, NY, USA, CHI ’04, 319–326, https://doi.org/10.1145/985692.985733 – reference: HillsTTToddPMLazerDExploration versus exploitation in space, mind, and societyTrends Cogn Sci2015191465410.1016/j.tics.2014.10.004 – reference: Nguyen A, Dosovitskiy A, Yosinski J et al (2016) Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Proceedings of the 30th international conference on neural information processing systems. Curran Associates Inc., Red Hook, NY, USA, NIPS’16, 3395-3403, https://doi.org/10.5555/3157382.3157477 – reference: JamiesonKGJainLFernandezCCortesCLawrenceNLeeDNext: a system for real-world development, evaluation, and application of active learningAdvances in neural information processing systems2015Red HookCurran Associates Inc – reference: Luo T, Kramer K, Samson S et al (2004) Active learning to recognize multiple types of plankton. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., 478–481 Vol.3, https://doi.org/10.1109/ICPR.2004.1334570 – reference: Fails JA, Olsen DR (2003) Interactive machine learning. In: Proceedings of the 8th international conference on intelligent user interfaces. Association for Computing Machinery, New York, NY, USA, IUI ’03, 39–45, https://doi.org/10.1145/604045.604056 – reference: ShneidermanBHuman-centered artificial intelligence: reliable, safe & trustworthyInt J Hum Comput Interact202036649550410.1080/10447318.2020.1741118 – reference: BuddSRobinsonECKainzBA survey on active learning and human-in-the-loop deep learning for medical image analysisMed Image Anal20217110206210.1016/j.media.2021.102062 – reference: GoodmanBFlaxmanSEuropean union regulations on algorithmic decision-making and a "right to explanation."AI Mag2017383505710.1609/aimag.v38i3.2741 – reference: MunroRHuman-in-the-loop machine learning2020Shelter IslandManning Publications – ident: 10246_CR108 doi: 10.5555/3157382.3157477 – volume: 148 start-page: 241,733 issue: 24 year: 2018 ident: 10246_CR132 publication-title: J Chem Phys doi: 10.1063/1.5023802 – ident: 10246_CR59 doi: 10.1145/2598153.2598189 – year: 2021 ident: 10246_CR146 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3069908 – volume: 39 start-page: 54 issue: 1 year: 2020 ident: 10246_CR124 publication-title: Int J Robot Res doi: 10.1177/0278364919884623 – volume: 18 start-page: 2839 issue: 12 year: 2012 ident: 10246_CR57 publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2012.277 – start-page: 167 volume-title: Machine learning: an artificial intelligence approach year: 1986 ident: 10246_CR122 – volume: 25 start-page: 46 issue: 6 year: 2018 ident: 10246_CR6 publication-title: Interactions doi: 10.1145/3274566 – start-page: 333 volume-title: Trends in artificial intelligence theory and applications. Artificial intelligence practices year: 2020 ident: 10246_CR166 doi: 10.1007/978-3-030-55789-8_30 – ident: 10246_CR24 – ident: 10246_CR7 – ident: 10246_CR147 – ident: 10246_CR94 doi: 10.1109/CVPR.2015.7299155 – ident: 10246_CR114 doi: 10.18653/v1/N19-1119 – volume: 10 start-page: 64 issue: 1 year: 2013 ident: 10246_CR72 publication-title: Nat Methods doi: 10.1038/nmeth.2281 – ident: 10246_CR150 – volume: 58 start-page: 82 year: 2020 ident: 10246_CR13 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 19 start-page: 68 issue: 1A year: 2015 ident: 10246_CR140 publication-title: Contemp Oncol doi: 10.5114/wo.2014.47136 – start-page: 1 volume-title: Interactive knowledge discovery and data mining in biomedical informatics: state-of-the-art and future challenges year: 2014 ident: 10246_CR63 doi: 10.1007/978-3-662-43968-5_1 – volume: 25 start-page: 52 issue: 6 year: 2018 ident: 10246_CR84 publication-title: Interactions doi: 10.1145/3282860 – volume: 4 start-page: 129 issue: 1 year: 1996 ident: 10246_CR34 publication-title: J Artif Intell Res doi: 10.5555/1622737.1622744 – volume: 13 start-page: 62 issue: 42–49 year: 2003 ident: 10246_CR20 publication-title: DM Rev – ident: 10246_CR65 – ident: 10246_CR75 doi: 10.1609/aaai.v29i1.9474 – ident: 10246_CR80 doi: 10.18653/v1/N19-1208 – ident: 10246_CR133 doi: 10.1109/WACV45572.2020.9093408 – volume: 38 start-page: 50 issue: 3 year: 2017 ident: 10246_CR52 publication-title: AI Mag doi: 10.1609/aimag.v38i3.2741 – volume: 21 start-page: 893 issue: 5 year: 2014 ident: 10246_CR107 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002516 – volume: 7 start-page: 154096 year: 2019 ident: 10246_CR92 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949286 – start-page: 101 volume-title: Legal knowledge and information systems, frontiers in artificial intelligence and applications year: 2015 ident: 10246_CR174 doi: 10.3233/978-1-61499-609-5-101 – ident: 10246_CR44 – ident: 10246_CR27 – year: 2018 ident: 10246_CR41 publication-title: ACM Trans Interact Intell Syst doi: 10.1145/3185517 – year: 2019 ident: 10246_CR135 publication-title: ACM Trans Interact Intell Syst doi: 10.1145/3241379 – ident: 10246_CR127 – ident: 10246_CR2 – ident: 10246_CR73 doi: 10.1145/1753326.1753529 – ident: 10246_CR130 – ident: 10246_CR96 doi: 10.1609/aaai.v29i1.9569 – ident: 10246_CR30 – ident: 10246_CR67 doi: 10.1145/3377325.3377483 – ident: 10246_CR39 – ident: 10246_CR50 doi: 10.1145/1357054.1357061 – volume: 17 start-page: 1 year: 2016 ident: 10246_CR118 publication-title: J Mach Learn Res – start-page: 1189 volume-title: Advances in neural information processing systems year: 2010 ident: 10246_CR79 – ident: 10246_CR93 doi: 10.1109/ICPR.2004.1334570 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10246_CR152 publication-title: J Big data doi: 10.1186/s40537-016-0043-6 – ident: 10246_CR162 doi: 10.1109/ICCV.2011.6126474 – ident: 10246_CR153 doi: 10.1145/3313831.3376226 – volume-title: Advances in neural information processing systems year: 2015 ident: 10246_CR68 – ident: 10246_CR1 doi: 10.1145/3173574.3174156 – ident: 10246_CR126 – ident: 10246_CR66 doi: 10.1109/CVPR.2016.237 – volume: 2 start-page: 008 issue: 100 year: 2021 ident: 10246_CR158 publication-title: Comput Educ doi: 10.1016/j.caeai.2021.100008 – volume: 22 start-page: 401 issue: 2 year: 2019 ident: 10246_CR69 publication-title: J Vis doi: 10.1007/s12650-018-0531-1 – ident: 10246_CR60 doi: 10.1145/1143844.1143897 – ident: 10246_CR36 doi: 10.24963/ijcai.2020/367 – ident: 10246_CR61 doi: 10.1109/PerComWorkshops48775.2020.9156175 – ident: 10246_CR90 – ident: 10246_CR110 – volume: 24 start-page: 190 issue: 1 year: 2015 ident: 10246_CR51 publication-title: Med Image Anal doi: 10.1016/j.media.2015.06.008 – volume: 27 start-page: 1134 issue: 11 year: 1984 ident: 10246_CR142 publication-title: Commun ACM doi: 10.1145/1968.1972 – volume: 25 start-page: 42 issue: 6 year: 2018 ident: 10246_CR155 publication-title: Interactions doi: 10.1145/3274568 – volume: 22 start-page: 1 issue: 1 year: 2021 ident: 10246_CR9 publication-title: BMC Bioinform doi: 10.1186/s12859-021-04047-1 – volume: 47 start-page: 56 issue: 2 year: 2004 ident: 10246_CR5 publication-title: Commun ACM doi: 10.1145/966389.966390 – volume: 173 start-page: 400 issue: 2 year: 2018 ident: 10246_CR87 publication-title: Cell doi: 10.1016/j.cell.2018.02.052 – year: 2022 ident: 10246_CR42 publication-title: Sensors doi: 10.3390/s22031184 – ident: 10246_CR88 doi: 10.24963/ijcai.2018/587 – volume: 55 start-page: 281 issue: 3 year: 2001 ident: 10246_CR149 publication-title: Int J Hum Comput Stud doi: 10.1006/ijhc.2001.0499 – ident: 10246_CR25 – ident: 10246_CR53 – volume: 15 start-page: 201 issue: 2 year: 1994 ident: 10246_CR33 publication-title: Mach Learn doi: 10.1007/BF00993277 – ident: 10246_CR165 doi: 10.18653/v1/N19-1189 – ident: 10246_CR78 – volume: 192 start-page: 553 year: 2021 ident: 10246_CR103 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2021.08.057 – volume: 75 start-page: 87 issue: 2 year: 1987 ident: 10246_CR10 publication-title: Inf Comput doi: 10.1016/0890-5401(87)90052-6 – ident: 10246_CR129 – volume: 3 start-page: 119 issue: 2 year: 2016 ident: 10246_CR62 publication-title: Brain Inform doi: 10.1007/s40708-016-0042-6 – ident: 10246_CR48 doi: 10.1145/1753846.1753889 – ident: 10246_CR11 doi: 10.18653/v1/W17-5221 – ident: 10246_CR111 – volume: 49 start-page: 2401 issue: 7 year: 2019 ident: 10246_CR64 publication-title: Appl Intell doi: 10.1007/s10489-018-1361-5 – ident: 10246_CR89 – year: 2021 ident: 10246_CR101 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10088-y – ident: 10246_CR134 – volume-title: Open source biomedical engineering year: 2020 ident: 10246_CR160 – ident: 10246_CR119 doi: 10.1109/ICMLA.2015.152 – ident: 10246_CR159 doi: 10.1145/3196709.3196729 – ident: 10246_CR70 doi: 10.5555/2886521.2886696 – ident: 10246_CR148 doi: 10.1109/ICCV.2019.00512 – volume: 9 start-page: 807 year: 2021 ident: 10246_CR112 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl\_a_00399 – ident: 10246_CR145 doi: 10.1145/2110363.2110464 – ident: 10246_CR123 doi: 10.1109/ICCV.2017.74 – volume: 213 start-page: 660 issue: 106 year: 2021 ident: 10246_CR86 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.106660 – ident: 10246_CR98 – volume: 39 start-page: 53 issue: 1 year: 2022 ident: 10246_CR97 publication-title: Inf Syst Manag doi: 10.1080/10580530.2020.1849465 – start-page: 699 volume-title: European conference on information retrieval: advances in information retrieval year: 2020 ident: 10246_CR113 doi: 10.1007/978-3-030-45439-5_46 – ident: 10246_CR136 doi: 10.1145/1518701.1518895 – volume: 26 start-page: 42 issue: 4 year: 2019 ident: 10246_CR156 publication-title: Interactions doi: 10.1145/3328485 – year: 2015 ident: 10246_CR77 publication-title: ACM Trans Comput-Hum Interact doi: 10.1145/2723162 – volume: 48 start-page: 71 issue: 1 year: 1993 ident: 10246_CR43 publication-title: Cognition doi: 10.1016/0010-0277(93)90058-4 – ident: 10246_CR138 doi: 10.1145/3306618.3314293 – volume-title: Human-in-the-loop machine learning year: 2020 ident: 10246_CR106 – volume: 65 start-page: 211 year: 2017 ident: 10246_CR102 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.11.008 – ident: 10246_CR137 – volume: 19 start-page: 729 issue: 6 year: 2007 ident: 10246_CR12 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.190610 – start-page: 599 volume-title: Data classification: algorithms and applications year: 2014 ident: 10246_CR4 doi: 10.1201/b17320 – volume: 19 start-page: 46 issue: 1 year: 2015 ident: 10246_CR58 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2014.10.004 – volume: 11 start-page: 1716 issue: 12 year: 2020 ident: 10246_CR74 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13489 – volume: 109 start-page: 43 issue: 1 year: 2021 ident: 10246_CR171 publication-title: Proc IEEE doi: 10.1109/JPROC.2020.3004555 – start-page: 578 volume-title: Human-computer interaction—INTERACT 2019 year: 2019 ident: 10246_CR144 doi: 10.1007/978-3-030-29387-1_34 – ident: 10246_CR172 – volume: 40 start-page: 19 issue: 2 year: 1997 ident: 10246_CR19 publication-title: Commun ACM doi: 10.1145/253671.253680 – volume: 71 start-page: 062 issue: 102 year: 2021 ident: 10246_CR23 publication-title: Med Image Anal doi: 10.1016/j.media.2021.102062 – volume: 6 start-page: 52,138 year: 2018 ident: 10246_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: 10246_CR45 doi: 10.1145/604045.604056 – volume: 35 start-page: 413 issue: 5–6 year: 2020 ident: 10246_CR117 publication-title: Hum Comput Interact doi: 10.1080/07370024.2020.1734931 – ident: 10246_CR125 doi: 10.1109/ICRA.2018.8461194 – ident: 10246_CR151 – start-page: 809 volume-title: Recommender systems handbook year: 2015 ident: 10246_CR120 doi: 10.1007/978-1-4899-7637-6_24 – ident: 10246_CR55 – ident: 10246_CR17 – ident: 10246_CR81 doi: 10.5555/2145432.2145597 – start-page: 31 volume-title: Joint European conference on machine learning and knowledge discovery in databases year: 2009 ident: 10246_CR91 doi: 10.1007/978-3-642-04174-7_3 – ident: 10246_CR14 doi: 10.1109/CVPR.2017.354 – start-page: 1 volume-title: Machine learning year: 2009 ident: 10246_CR37 doi: 10.5772/9156 – ident: 10246_CR47 doi: 10.1145/1978942.1978965 – volume: 28 start-page: 97 issue: 2 year: 2021 ident: 10246_CR76 publication-title: Interactions doi: 10.1145/3448888 – start-page: 771 volume-title: Handbook of artificial intelligence for music: foundations, advanced approaches, and developments for creativity year: 2021 ident: 10246_CR143 doi: 10.1007/978-3-030-72116-9_27 – ident: 10246_CR16 doi: 10.1145/1553374.1553380 – ident: 10246_CR26 – volume: 36 start-page: 495 issue: 6 year: 2020 ident: 10246_CR128 publication-title: Int J Hum Comput Interact doi: 10.1080/10447318.2020.1741118 – ident: 10246_CR168 doi: 10.18653/v1/2020.acl-main.620 – volume: 25 start-page: 34 issue: 6 year: 2018 ident: 10246_CR31 publication-title: Interactions doi: 10.1145/3281764 – ident: 10246_CR54 – ident: 10246_CR49 – ident: 10246_CR71 doi: 10.1109/CVPR.2015.7298877 – volume: 27 start-page: 527 issue: 5 year: 1987 ident: 10246_CR105 publication-title: Int J Man-Mach Stud doi: 10.1016/S0020-7373(87)80013-5 – ident: 10246_CR116 – ident: 10246_CR157 doi: 10.18653/v1/2020.acl-main.542 – volume-title: Introducing MLOps year: 2020 ident: 10246_CR141 – ident: 10246_CR164 – volume: 41 start-page: 161 issue: 2 year: 2007 ident: 10246_CR28 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.07.008 – ident: 10246_CR121 doi: 10.1109/RoEduNet.2013.6511736 – ident: 10246_CR35 – volume: 64 start-page: 64 issue: 10 year: 2021 ident: 10246_CR154 publication-title: Commun ACM doi: 10.1145/3448248 – start-page: 818 volume-title: European conference on computer vision year: 2014 ident: 10246_CR161 doi: 10.1007/978-3-319-10590-1_53 – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 10246_CR85 publication-title: Queue doi: 10.1145/3236386.3241340 – volume: 4 start-page: 251 issue: 4 year: 1990 ident: 10246_CR109 publication-title: Artif Intell Rev doi: 10.1007/BF00168958 – ident: 10246_CR169 doi: 10.1609/aaai.v29i1.9761 – volume: 15 start-page: 12 issue: 5 year: 2013 ident: 10246_CR115 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2013.74 – ident: 10246_CR131 – ident: 10246_CR83 doi: 10.2139/ssrn.3403301 – ident: 10246_CR46 – ident: 10246_CR21 – ident: 10246_CR38 doi: 10.1109/ITRE.2006.381526 – ident: 10246_CR139 – ident: 10246_CR40 doi: 10.1145/1458082.1458165 – volume: 212 start-page: 622 issue: 106 year: 2021 ident: 10246_CR56 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.106622 – ident: 10246_CR173 doi: 10.1145/985692.985733 – volume: 29 start-page: 3622 issue: 12 year: 2019 ident: 10246_CR163 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2018.2884173 – ident: 10246_CR29 – ident: 10246_CR100 – ident: 10246_CR104 doi: 10.1145/3477314.3507310 – ident: 10246_CR167 doi: 10.1109/CVPR.2016.319 – ident: 10246_CR170 – ident: 10246_CR99 – volume: 35 start-page: 105 issue: 4 year: 2014 ident: 10246_CR8 publication-title: AI Magazine doi: 10.1609/aimag.v35i4.2513 – volume: 31 start-page: 3732 issue: 9 year: 2020 ident: 10246_CR95 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2934906 – start-page: 341 volume-title: Human and machine learning: visible, explainable, trustworthy and transparent year: 2018 ident: 10246_CR22 doi: 10.1007/978-3-319-90403-0_17 – volume: 16 start-page: 1226 issue: 12 year: 2019 ident: 10246_CR18 publication-title: Nat Methods doi: 10.1038/s41592-019-0582-9 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10246_CR82 publication-title: Nature doi: 10.1038/nature14539 – ident: 10246_CR15 – ident: 10246_CR32 |
SSID | ssj0005243 |
Score | 2.7082508 |
Snippet | Researchers are defining new types of interactions between humans and machine learning algorithms generically called human-in-the-loop machine learning.... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3005 |
SubjectTerms | Algorithms Analysis Artificial Intelligence Computer Science Data mining Domains Interactive control Machine learning State-of-the-art reviews Subject specialists Teaching Teaching machines |
SummonAdditionalLinks | – databaseName: Library Science Database dbid: M1O link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWFh4IwoFeUBiAJc4dV4sqEJUiAEWKrFZfiJEaQoUIfHrOScO5SEYmOM4Ts6--2J_9x3AnuPc6NQqiughotzIjCquYiq76AwLpRCjVwTZy_R8wC9ukpuw4fYcaJWNT6wctSm13yM_irM8Kbz6eXIyfqS-apQ_XQ0lNGZhnvlQ76l77OoTxaNmzcVpQfHXgoWkmZA6x9OYei47hlie0tcvgem7e_5xTlqFn_4SiGbgNevkvvMyUR399k3T8f9vtgyLAZmSXj2VVmDGjlZhqan6QIITWIO02vendyOK2JEOy3JMHipGpiWhBMXtMZGkylQipSPYiuD8XIdB_-z69JyG6gtU4z_lhDoEgggXtcmjTDkVKR51s8IlRWwyFUlrNbNaGZtJ02UKUaaSNjK5YdoxlzHd3YC5UTmym0By7vJYxpHTWnOtbJFbneReiS6SXgK_Baz59EIHaXJfIWMopqLK3lwCzSUqc4nXFhx83DOuhTn-bL3vLSr8qsWetQzJBzg-r38legisMJZnjLeg3VhJhOX8LKYmasFhMxGml39_7tbfvW3Dgi9fXzOB2jA3eXqxOwhyJmq3msnvFh74XA priority: 102 providerName: ProQuest |
Title | Human-in-the-loop machine learning: a state of the art |
URI | https://link.springer.com/article/10.1007/s10462-022-10246-w https://www.proquest.com/docview/2785983785 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0BvXBhR5Sl8gGJA1iKU2fjVkoXsRQEVIKTZTs2QiotgiJ-n3HqsIPEJT7EcaLxMs_xmzcA25bzXMdGUUQPAeW5TKjiKqSyjothphRi9IIg24u7fX50HV37oLCnku1eHkkWK_WHYDceh9Sxz9Ep8pi-TEMlwr27G9f9sPGB2DHhyoVxRnFDwXyozM9tfHJHXxflb6ejhdNpL8CcR4ukMeneRZgywyWYLzMxED8xlyEu_sXTuyFFPEcHo9EDuS9Ykob4tBC3-0SSInqIjCzBWgTHzAr0262rZpf6jAhU4z5vTC2CM4RwOk-DRFkVKB7Uk8xGWZgnKpDGaGa0yk0i8zpTiPyUNEGe5kxbZhOm66swMxwNzRqQlNs0lGFgtdZcK5OlRkepU4cLpJOlrwIrDSO0lwt3WSsG4l3o2BlToDFFYUzxUoXdt2ceJmIZf9becfYWbiZhy1r6gAD8PqdJJRoIdtC_JoxXYbPsEuGn2JMIkzTKnBx-VIW9spveb__-3vX_Vd-AWZdifsLW2YSZ8eOz2UIgMlY1mE7bnRpUGoenJ5eu7Nwct7A8aPXOL_BuM27i9ZSd1YoR-grexNn3 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXaKFVF5bWBxAHsJo4zqsSqla0y5aWnrpSb66fCKkkC7toxZ_iN3acOF0e6t72nMSJxuOZz_E38wG8cpwbnVlFET1ElBuZU8UVozLBYFgqhRi9IcheZKMx_3SVXq3B764WxtMqu5jYBGpTa_-P_IDlRVr67ufp0eQ79apR_nS1k9Bo3eLM_prjlm36_vQY5_c1Y8OTyw8jGlQFqMa90ow6BDgIg7Qpolw5FSkeJXnp0pKZXEXSWh1brYzNpUlihehJSRuZwsTaxS6PdYLjPoANniSlpxAWw49_UEpalh7LSopbmTgU6YRSPZ4x6rnzmNJ5Rud_JcJ_08F_57JNuhtuwuOAU8mgdawtWLPVU3jSaUCQEBKeQdacAtCvFUUkSW_qekK-NfxMS4IgxZdDIklTt0RqR_Augt66DeOVWG0H1qu6srtACu4KJlnktNZcK1sWVqeF70sXSd8QvwdxZxihQ6Nyr5dxIxYtlr0xBRpTNMYU8x68vXtm0rbpWHr3G29v4dcwjqxlKEXA7_PdsMQAYRZm9jzmPeh3UyLC4p6KhSv24F03TYvL97_3-fLR9uHh6PLzuTg_vTh7AY-8sH3LEerD-uzHT_sS4c9M7TU-R-B61U5-C1QjFG4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVkJcgPKhbinUBxAHsOo4TuwgIVS1XVqKKg5U6s34EyGVzZYuWvHX-HWME4elRe2t5yRONB7PPMdv5gE8j0J4VwdLET0wKryR1ArLqSkxGDbWIkbvCLJH9f6x-HBSnSzB76EWJtEqh5jYBWrfuvSPfItLVTWp-3m1FTMt4tPu-N30jCYFqXTSOshp9C5yGH7Ncft2_vZgF-f6Befjvc87-zQrDFCH-6YZjQh2EBI5r5i00TIrWCmbWDXcS8tMCK4IzvogjS8Li0jKmsC88oWLRZSFK3HcW7AiS8WSeoIav_-HXtIz9njdUNzWFLlgJ5ftiZrTxKPH9C5qOr-QFC-nhv_OaLvUN74PdzNmJdu9k63CUpg8gHuDHgTJ4eEh1N2JAP02oYgq6WnbTsn3jqsZSBan-PqGGNLVMJE2EryLoOc-guMbsdpjWJ60k7AGRImouOEsOueEs6FRwVUq9ahjJjXHH0ExGEa73LQ8aWec6kW75WRMjcbUnTH1fASv_j4z7Vt2XHv3y2RvndYzjuxMLkvA70udsfQ2Qi7M8rIQI9gYpkTnhX6uF245gtfDNC0uX_3e9etH24Tb6N7648HR4RO4kzTue7rQBizPfvwMTxEJzeyzzuUIfLlpH_8DEZ4Ymw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-in-the-loop+machine+learning%3A+a+state+of+the+art&rft.jtitle=The+Artificial+intelligence+review&rft.au=Mosqueira-Rey%2C+Eduardo&rft.au=Hern%C3%A1ndez-Pereira%2C+Elena&rft.au=Alonso-R%C3%ADos%2C+David&rft.au=Bobes-Bascar%C3%A1n%2C+Jos%C3%A9&rft.date=2023-04-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=4&rft.spage=3005&rft.epage=3054&rft_id=info:doi/10.1007%2Fs10462-022-10246-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_022_10246_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |