A Bigram Based ILP Formulation for Break Minimization in Sports Scheduling Problems

Constructing a suitable schedule for sports competitions is a crucial issue in sports scheduling. The round-robin tournament is a competition adopted in many professional sports. For most round-robin tournaments, it is considered undesirable that a team plays consecutive away or home matches; such a...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E108.D; no. 3; pp. 192 - 200
Main Authors MATSUI, Tomomi, FUJII, Koichi
Format Journal Article
LanguageEnglish
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.03.2025
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2024FCP0003

Cover

Abstract Constructing a suitable schedule for sports competitions is a crucial issue in sports scheduling. The round-robin tournament is a competition adopted in many professional sports. For most round-robin tournaments, it is considered undesirable that a team plays consecutive away or home matches; such an occurrence is called a break. Accordingly, it is preferable to reduce the number of breaks in a tournament. A common approach is to first construct a schedule and then determine a home-away assignment based on the given schedule to minimize the number of breaks (first-schedule-then-break). In this study, we concentrate on the problem that arises at the second stage of the first-schedule-then-break approach, namely, the break minimization problem (BMP). We propose a novel integer linear programming formulation called the “bigram based formulation.” The computational experiments show its effectiveness over the well-known integer linear programming formulation. We also investigate its valid inequalities, which further enhances the computational performance.
AbstractList Constructing a suitable schedule for sports competitions is a crucial issue in sports scheduling. The round-robin tournament is a competition adopted in many professional sports. For most round-robin tournaments, it is considered undesirable that a team plays consecutive away or home matches; such an occurrence is called a break. Accordingly, it is preferable to reduce the number of breaks in a tournament. A common approach is to first construct a schedule and then determine a home-away assignment based on the given schedule to minimize the number of breaks (first-schedule-then-break). In this study, we concentrate on the problem that arises at the second stage of the first-schedule-then-break approach, namely, the break minimization problem (BMP). We propose a novel integer linear programming formulation called the “bigram based formulation.” The computational experiments show its effectiveness over the well-known integer linear programming formulation. We also investigate its valid inequalities, which further enhances the computational performance.
ArticleNumber 2024FCP0003
Author MATSUI, Tomomi
FUJII, Koichi
Author_xml – sequence: 1
  fullname: MATSUI, Tomomi
  organization: Department of Industrial Engineering and Economics at Tokyo Institute Technology University
– sequence: 1
  fullname: FUJII, Koichi
  organization: Department of Industrial Engineering and Economics at Tokyo Institute Technology University
BookMark eNpNkE1PAjEQhhujiYD-Aw9NPC9Ot93u7hFQ1AQjET03ZXcKxd0W2-Wgv14Mfp1mMnmed5K3T46dd0jIBYMhy4r8qgvaRevMMIVUTCdzAOBHpMdykSWMS3ZMelAymRQZT09JP8YNACtSlvXIYkTHdhV0S8c6Yk3vZ3M69aHdNbqz3lHjAx0H1K_0wTrb2o_D2Tq62PrQRbqo1ljvGutWdB78ssE2npETo5uI599zQF6mN8-Tu2T2eHs_Gc2SSkDaJYZrWWNV8yWWqTaYSkRmMNOiBpZjLpnJQC5zk3HDMJMlyqKGWoqSCxSm4ANyecjdBv-2w9ipjd8Ft3-pOCsB8jwFsafEgaqCjzGgUdtgWx3eFQP1VZ_6qU_9q2-vPR20Tez0Cn8lHTpbNfgn3TAo1LXiP8u_kF-4Wuug0PFPDUeEWA
Cites_doi 10.1287/opre.49.1.163.11193
10.1109/SSCI50451.2021.9660171
10.1016/j.orl.2004.06.004
10.1016/j.ejco.2022.100031
10.1371/journal.pone.0266846
10.1007/s10951-021-00717-3
10.1016/S0304-0208(08)73478-9
10.1007/11757375_15
10.1016/j.ejor.2006.12.050
10.1145/3585516
10.1016/j.orl.2007.09.009
10.1007/978-3-540-45157-0_6
10.1090/dimacs/057/07
10.1287/opre.46.1.1
10.1007/3-540-44629-X_15
10.1016/j.disopt.2005.08.009
10.1080/10556788.2017.1335312
10.1016/j.cor.2011.10.004
10.1007/978-3-642-38189-8_18
10.1016/S0167-6377(03)00025-7
10.1007/978-3-540-45157-0_5
10.1016/j.orl.2020.05.005
10.1016/j.ejor.2019.07.023
10.5540/03.2018.006.01.0311
10.1016/j.cor.2004.09.030
10.1145/227683.227684
10.1007/s12532-023-00236-6
ContentType Journal Article
Copyright 2025 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2025
Copyright_xml – notice: 2025 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1587/transinf.2024FCP0003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 200
ExternalDocumentID 10_1587_transinf_2024FCP0003
article_transinf_E108_D_3_E108_D_2024FCP0003_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-f3a6decd3be92afe26ee1fe5a4d017e761f506b7f53f1e569e68d0d64934e4f83
ISSN 0916-8532
IngestDate Mon Jun 30 11:45:58 EDT 2025
Tue Jul 01 05:25:05 EDT 2025
Wed Sep 03 06:30:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-f3a6decd3be92afe26ee1fe5a4d017e761f506b7f53f1e569e68d0d64934e4f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E108.D/3/E108.D_2024FCP0003/_article/-char/en
PQID 3190077204
PQPubID 2048497
PageCount 9
ParticipantIDs proquest_journals_3190077204
crossref_primary_10_1587_transinf_2024FCP0003
jstage_primary_article_transinf_E108_D_3_E108_D_2024FCP0003_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationYear 2025
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References [20] M.X. Goemans and D.P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” Journal of the ACM, vol.42, no.6, pp.1115-1145, 1995. 10.1145/227683.227684
[22] M. Kuramata, R. Katsuki, and K. Nakata, “Solving large break minimization problems in a mirrored double round-robin tournament using quantum annealing,” Plos one, vol.17, no.4, p.e0266846, 2022. 10.1371/journal.pone.0266846
[24] D. Van Bulck, D. Goossens, J. Schönberger, and M. Guajardo, “RobinX: A three-field classification and unified data format for round-robin sports timetabling,” European Journal of Operational Research, vol.280, no.2, pp.568-580, 2020. 10.1016/j.ejor.2019.07.023
[9] R. Miyashiro and T. Matsui, “A polynomial-time algorithm to find an equitable home-away assignment,” Operations Research Letters, vol.33, no.3, pp.235-241, 2005. 10.1016/j.orl.2004.06.004
[12] R.V. Rasmussen and M.A. Trick, “The timetable constrained distance minimization problem,” CPAIOR 2006, Lecture Notes in Computer Science, vol.3990, pp.167-181, Springer, 2006. 10.1007/11757375_15
[21] J.C. Peng, A.D. Clark, and A. Dahbura, “Introducing human corrective multi-team SRR sports scheduling via reinforcement learning,” 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp.1-7, IEEE, 2021. 10.1109/ssci50451.2021.9660171
[27] S. Vigerske and A. Gleixner, “Scip: Global optimization of mixed-integer nonlinear programs in a branch-and-cut framework,” Optimization Methods and Software, vol.33, no.3, pp.563-593, 2018. 10.1080/10556788.2017.1335312
[14] T. Achterberg and R. Wunderling, “Mixed integer programming: Analyzing 12 years of progress,” Facets of combinatorial optimization: Festschrift for Martin Grötschel, pp.449-481, Springer, 2013. 10.1007/978-3-642-38189-8_18
[15] T. Koch, T. Berthold, J. Pedersen, and C. Vanaret, “Progress in mathematical programming solvers from 2001 to 2020,” EURO Journal on Computational Optimization, vol.10, p.100031, 2022. 10.1016/j.ejco.2022.100031
[26] H.L. Urdaneta, J. Yuan, and A.S. Siqueira, “Alternative integer linear and quadratic programming formulations for HA-Assignment problems,” Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol.6, no.1, 2018. 10.5540/03.2018.006.01.0311
[18] J.-C. Régin, “Minimization of the number of breaks in sports scheduling problems using constraint programming,” DIMACS workshop on Constraint Programming and Large Scale Discrete Optimization, pp.115-130, 2000.
[16] D. de Werra, “Scheduling in sports,” Studies on Graphs and Discrete Programming, vol.59, pp.381-395, 1981. 10.1016/s0304-0208(08)73478-9
[2] D. Briskorn, “Feasibility of home-away-pattern sets for round robin tournaments,” Operations Research Letters, vol.36, no.3, pp.283-284, 2008. 10.1016/j.orl.2007.09.009
[1] G.L. Nemhauser and M.A. Trick, “Scheduling a major college basketball conference,” Operations Research, vol.46, no.1, pp.1-8, 1998. 10.1287/opre.46.1.1
[7] D. Van Bulck and D. Goossens, “On the complexity of pattern feasibility problems in time-relaxed sports timetabling,” Operations Research Letters, vol.48, no.4, pp.452-459, 2020. 10.1016/j.orl.2020.05.005
[17] M. Elf, M. Jünger, and G. Rinaldi, “Minimizing breaks by maximizing cuts,” Operations Research Letters, vol.31, no.5, pp.343-349, 2003. 10.1016/s0167-6377(03)00025-7
[10] R. Miyashiro and T. Matsui, “Semidefinite programming based approaches to the break minimization problem,” Computers & Operations Research, vol.33, no.7, pp.1975-1982, 2006. 10.1016/j.cor.2004.09.030
[25] K. Easton, G. Nemhauser, and M. Trick, “Solving the travelling tournament problem: A combined integer programming and constraint programming approach,” PATAT 2002, Lecture Notes in Computer Science, vol.2740, Springer, pp.100-109, 2002. 10.1007/978-3-540-45157-0_6
[19] P. Van Hentenryck and Y. Vergados, “Minimizing breaks in sport scheduling with local search,” ICAPS, pp.22-29, 2005.
[4] M. Henz, “Scheduling a major college basketball conference—revisited,” Operations Research, vol.49, no.1, pp.163-168, 2001. 10.1287/opre.49.1.163.11193
[6] L. Zeng and S. Mizuno, “On the separation in 2-period double round robin tournaments with minimum breaks,” Computers & Operations Research, vol.39, no.7, pp.1692-1700, 2012. 10.1016/j.cor.2011.10.004
[23] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S.J. Maher, F. Matter, E. Mühmer, B. Müller, M.E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig, “Enabling research through the SCIP optimization suite 8.0,” ACM Transactions on Mathematical Software, vol.49, no.2, pp.1-21, 2023. 10.1145/3585516
[3] R. Miyashiro, H. Iwasaki, and T. Matsui, “Characterizing feasible pattern sets with a minimum number of breaks,” PATAT 2002, Lecture Notes in Computer Science, vol.2740, pp.78-99, Springer, 2002. 10.1007/978-3-540-45157-0_5
[8] M.A. Trick, “A schedule-then-break approach to sports timetabling,” PATAT 2000, Lecture Notes in Computer Science, vol.2079, pp.242-253, Springer, 2000. 10.1007/3-540-44629-x_15
[11] G. Post and G.J. Woeginger, “Sports tournaments, home-away assignments, and the break minimization problem,” Discrete Optimization, vol.3, no.2, pp.165-173, 2006. 10.1016/j.disopt.2005.08.009
[5] D. Van Bulck and D. Goossens, “Optimizing rest times and differences in games played: an iterative two-phase approach,” Journal of Scheduling, vol.25, no.3, pp.261-271, 2022. 10.1007/s10951-021-00717-3
[13] R.V. Rasmussen, “Scheduling a triple round robin tournament for the best danish soccer league,” European Journal of Operational Research, vol.185, no.2, pp.795-810, 2008. 10.1016/j.ejor.2006.12.050
[28] D. Rehfeldt, T. Koch, and Y. Shinano, “Faster exact solution of sparse MaxCut and QUBO problems,” Mathematical Programming Computation, vol.15, no.3, pp.445-470, 2023. 10.1007/s12532-023-00236-6
22
23
24
25
26
27
28
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [12] R.V. Rasmussen and M.A. Trick, “The timetable constrained distance minimization problem,” CPAIOR 2006, Lecture Notes in Computer Science, vol.3990, pp.167-181, Springer, 2006. 10.1007/11757375_15
– reference: [2] D. Briskorn, “Feasibility of home-away-pattern sets for round robin tournaments,” Operations Research Letters, vol.36, no.3, pp.283-284, 2008. 10.1016/j.orl.2007.09.009
– reference: [19] P. Van Hentenryck and Y. Vergados, “Minimizing breaks in sport scheduling with local search,” ICAPS, pp.22-29, 2005.
– reference: [3] R. Miyashiro, H. Iwasaki, and T. Matsui, “Characterizing feasible pattern sets with a minimum number of breaks,” PATAT 2002, Lecture Notes in Computer Science, vol.2740, pp.78-99, Springer, 2002. 10.1007/978-3-540-45157-0_5
– reference: [7] D. Van Bulck and D. Goossens, “On the complexity of pattern feasibility problems in time-relaxed sports timetabling,” Operations Research Letters, vol.48, no.4, pp.452-459, 2020. 10.1016/j.orl.2020.05.005
– reference: [18] J.-C. Régin, “Minimization of the number of breaks in sports scheduling problems using constraint programming,” DIMACS workshop on Constraint Programming and Large Scale Discrete Optimization, pp.115-130, 2000.
– reference: [10] R. Miyashiro and T. Matsui, “Semidefinite programming based approaches to the break minimization problem,” Computers & Operations Research, vol.33, no.7, pp.1975-1982, 2006. 10.1016/j.cor.2004.09.030
– reference: [25] K. Easton, G. Nemhauser, and M. Trick, “Solving the travelling tournament problem: A combined integer programming and constraint programming approach,” PATAT 2002, Lecture Notes in Computer Science, vol.2740, Springer, pp.100-109, 2002. 10.1007/978-3-540-45157-0_6
– reference: [1] G.L. Nemhauser and M.A. Trick, “Scheduling a major college basketball conference,” Operations Research, vol.46, no.1, pp.1-8, 1998. 10.1287/opre.46.1.1
– reference: [15] T. Koch, T. Berthold, J. Pedersen, and C. Vanaret, “Progress in mathematical programming solvers from 2001 to 2020,” EURO Journal on Computational Optimization, vol.10, p.100031, 2022. 10.1016/j.ejco.2022.100031
– reference: [9] R. Miyashiro and T. Matsui, “A polynomial-time algorithm to find an equitable home-away assignment,” Operations Research Letters, vol.33, no.3, pp.235-241, 2005. 10.1016/j.orl.2004.06.004
– reference: [4] M. Henz, “Scheduling a major college basketball conference—revisited,” Operations Research, vol.49, no.1, pp.163-168, 2001. 10.1287/opre.49.1.163.11193
– reference: [16] D. de Werra, “Scheduling in sports,” Studies on Graphs and Discrete Programming, vol.59, pp.381-395, 1981. 10.1016/s0304-0208(08)73478-9
– reference: [11] G. Post and G.J. Woeginger, “Sports tournaments, home-away assignments, and the break minimization problem,” Discrete Optimization, vol.3, no.2, pp.165-173, 2006. 10.1016/j.disopt.2005.08.009
– reference: [14] T. Achterberg and R. Wunderling, “Mixed integer programming: Analyzing 12 years of progress,” Facets of combinatorial optimization: Festschrift for Martin Grötschel, pp.449-481, Springer, 2013. 10.1007/978-3-642-38189-8_18
– reference: [8] M.A. Trick, “A schedule-then-break approach to sports timetabling,” PATAT 2000, Lecture Notes in Computer Science, vol.2079, pp.242-253, Springer, 2000. 10.1007/3-540-44629-x_15
– reference: [20] M.X. Goemans and D.P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” Journal of the ACM, vol.42, no.6, pp.1115-1145, 1995. 10.1145/227683.227684
– reference: [24] D. Van Bulck, D. Goossens, J. Schönberger, and M. Guajardo, “RobinX: A three-field classification and unified data format for round-robin sports timetabling,” European Journal of Operational Research, vol.280, no.2, pp.568-580, 2020. 10.1016/j.ejor.2019.07.023
– reference: [26] H.L. Urdaneta, J. Yuan, and A.S. Siqueira, “Alternative integer linear and quadratic programming formulations for HA-Assignment problems,” Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol.6, no.1, 2018. 10.5540/03.2018.006.01.0311
– reference: [6] L. Zeng and S. Mizuno, “On the separation in 2-period double round robin tournaments with minimum breaks,” Computers & Operations Research, vol.39, no.7, pp.1692-1700, 2012. 10.1016/j.cor.2011.10.004
– reference: [17] M. Elf, M. Jünger, and G. Rinaldi, “Minimizing breaks by maximizing cuts,” Operations Research Letters, vol.31, no.5, pp.343-349, 2003. 10.1016/s0167-6377(03)00025-7
– reference: [28] D. Rehfeldt, T. Koch, and Y. Shinano, “Faster exact solution of sparse MaxCut and QUBO problems,” Mathematical Programming Computation, vol.15, no.3, pp.445-470, 2023. 10.1007/s12532-023-00236-6
– reference: [5] D. Van Bulck and D. Goossens, “Optimizing rest times and differences in games played: an iterative two-phase approach,” Journal of Scheduling, vol.25, no.3, pp.261-271, 2022. 10.1007/s10951-021-00717-3
– reference: [13] R.V. Rasmussen, “Scheduling a triple round robin tournament for the best danish soccer league,” European Journal of Operational Research, vol.185, no.2, pp.795-810, 2008. 10.1016/j.ejor.2006.12.050
– reference: [22] M. Kuramata, R. Katsuki, and K. Nakata, “Solving large break minimization problems in a mirrored double round-robin tournament using quantum annealing,” Plos one, vol.17, no.4, p.e0266846, 2022. 10.1371/journal.pone.0266846
– reference: [27] S. Vigerske and A. Gleixner, “Scip: Global optimization of mixed-integer nonlinear programs in a branch-and-cut framework,” Optimization Methods and Software, vol.33, no.3, pp.563-593, 2018. 10.1080/10556788.2017.1335312
– reference: [21] J.C. Peng, A.D. Clark, and A. Dahbura, “Introducing human corrective multi-team SRR sports scheduling via reinforcement learning,” 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp.1-7, IEEE, 2021. 10.1109/ssci50451.2021.9660171
– reference: [23] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S.J. Maher, F. Matter, E. Mühmer, B. Müller, M.E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig, “Enabling research through the SCIP optimization suite 8.0,” ACM Transactions on Mathematical Software, vol.49, no.2, pp.1-21, 2023. 10.1145/3585516
– ident: 4
  doi: 10.1287/opre.49.1.163.11193
– ident: 21
  doi: 10.1109/SSCI50451.2021.9660171
– ident: 9
  doi: 10.1016/j.orl.2004.06.004
– ident: 15
  doi: 10.1016/j.ejco.2022.100031
– ident: 22
  doi: 10.1371/journal.pone.0266846
– ident: 5
  doi: 10.1007/s10951-021-00717-3
– ident: 16
  doi: 10.1016/S0304-0208(08)73478-9
– ident: 12
  doi: 10.1007/11757375_15
– ident: 13
  doi: 10.1016/j.ejor.2006.12.050
– ident: 23
  doi: 10.1145/3585516
– ident: 2
  doi: 10.1016/j.orl.2007.09.009
– ident: 25
  doi: 10.1007/978-3-540-45157-0_6
– ident: 18
  doi: 10.1090/dimacs/057/07
– ident: 1
  doi: 10.1287/opre.46.1.1
– ident: 8
  doi: 10.1007/3-540-44629-X_15
– ident: 11
  doi: 10.1016/j.disopt.2005.08.009
– ident: 19
– ident: 27
  doi: 10.1080/10556788.2017.1335312
– ident: 6
  doi: 10.1016/j.cor.2011.10.004
– ident: 14
  doi: 10.1007/978-3-642-38189-8_18
– ident: 17
  doi: 10.1016/S0167-6377(03)00025-7
– ident: 3
  doi: 10.1007/978-3-540-45157-0_5
– ident: 7
  doi: 10.1016/j.orl.2020.05.005
– ident: 24
  doi: 10.1016/j.ejor.2019.07.023
– ident: 26
  doi: 10.5540/03.2018.006.01.0311
– ident: 10
  doi: 10.1016/j.cor.2004.09.030
– ident: 20
  doi: 10.1145/227683.227684
– ident: 28
  doi: 10.1007/s12532-023-00236-6
SSID ssj0018215
Score 2.3722844
Snippet Constructing a suitable schedule for sports competitions is a crucial issue in sports scheduling. The round-robin tournament is a competition adopted in many...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 192
SubjectTerms Design of experiments
graph theory
integer linear programming
Integer programming
Linear programming
Optimization
round robin
Schedules
Scheduling
sports scheduling
tournament scheduling
Tournaments & championships
Title A Bigram Based ILP Formulation for Break Minimization in Sports Scheduling Problems
URI https://www.jstage.jst.go.jp/article/transinf/E108.D/3/E108.D_2024FCP0003/_article/-char/en
https://www.proquest.com/docview/3190077204
Volume E108.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2025/03/01, Vol.E108.D(3), pp.192-200
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgcIADHwNEYSAfuEUZib-SHNuu1bIxVNRW2i1qEgcCaopoduGv59mOE8MmxLhEkeVYSd7P79PvPYTeURAisfLch2VCfRbL3M8TleATBbwigkSRVMnJFx_F6ZqdXfLLwaers0va_Lj4eWNeyf9QFcaAripL9haU7ReFAbgH-sIVKAzXf6Lx2JvU6nSVNwFZVHrph4U3Bx2068ilTxBOQCn85l3UTb3tMi6Vh2NpAgVLoFh5pRPSF6axzN5VVtNZOp2pJhK2o7gOLXSlVlt7jnnv1DxXQFifpalmH7u6-FL3BB2vlms9vtptd9va9TYQPhy3sm7DUPgg4g0HlYZpRoz7ITVF1S1XnYVBfHziIIg6bDJMiCNxTa3S68ycK3fIXH8ljIMtT9h8ulBW3CC8bMD-D5nWnzRUNg6sk9lVMmeVu-geYFEH988_DbGnmJi-F_ZLu4RLWOX9Te_ym0Jz_yvo9J-vC3atrayeoEedmYHHBjNP0R3ZHKLHtoUH7jj6IXro1KN8hpZjbACFNaAwAAo7gMJAeKwBhV1A4brBBlB4ABS2gHqO1vPZanrqd103_IIFpPUruhGlLEqay4RsKkmElGEl-YaVwL1lJMKKByKPKk6rUHKRSBGXQSlYQplkVUxfoINm18iXCKsoNy02BIYrFiVBXkQhB9ZVUlIIsGxHyLe_LvtuiqtkfyPYCJ2b_9vP7rbeMFvBLjvJqL1xnu4nq3xGYB8jdGSJlHWbep-BRFIVrkjAXt3y5V6jB8OGOUIH7Y8r-QYU1jZ_q_H1C7BQlhU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bigram+Based+ILP+Formulation+for+Break+Minimization+in+Sports+Scheduling+Problems&rft.jtitle=IEICE+transactions+on+information+and+systems&rft.au=FUJII%2C+Koichi&rft.au=MATSUI%2C+Tomomi&rft.date=2025-03-01&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E108.D&rft.issue=3&rft.spage=192&rft.epage=200&rft_id=info:doi/10.1587%2Ftransinf.2024FCP0003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1587_transinf_2024FCP0003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon