The MinMax k-Means clustering algorithm

Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 47; no. 7; pp. 2505 - 2516
Main Authors Tzortzis, Grigorios, Likas, Aristidis
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2014.01.015

Cover

Loading…
Abstract Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns weights to the clusters relative to their variance and optimizes a weighted version of the k-Means objective. Weights are learned together with the cluster assignments, through an iterative procedure. The proposed weighting scheme limits the emergence of large variance clusters and allows high quality solutions to be systematically uncovered, irrespective of the initialization. Experiments verify the effectiveness of our approach and its robustness over bad initializations, as it compares favorably to both k-Means and other methods from the literature that consider the k-Means initialization problem. •We propose the MinMax k-Means algorithm to minimize the maximum intra-cluster variance objective.•Weights are assigned to the clusters relative to their intra-cluster variance.•Our method prevents the occurrence of clusters with large intra-cluster variances in the solution.•Our method systematically uncovers high quality solutions, irrespective of the initialization.•MinMax k-Means constitutes a sound approach for initializing k-Means.
AbstractList Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns weights to the clusters relative to their variance and optimizes a weighted version of the k-Means objective. Weights are learned together with the cluster assignments, through an iterative procedure. The proposed weighting scheme limits the emergence of large variance clusters and allows high quality solutions to be systematically uncovered, irrespective of the initialization. Experiments verify the effectiveness of our approach and its robustness over bad initializations, as it compares favorably to both k-Means and other methods from the literature that consider the k-Means initialization problem.
Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns weights to the clusters relative to their variance and optimizes a weighted version of the k-Means objective. Weights are learned together with the cluster assignments, through an iterative procedure. The proposed weighting scheme limits the emergence of large variance clusters and allows high quality solutions to be systematically uncovered, irrespective of the initialization. Experiments verify the effectiveness of our approach and its robustness over bad initializations, as it compares favorably to both k-Means and other methods from the literature that consider the k-Means initialization problem. •We propose the MinMax k-Means algorithm to minimize the maximum intra-cluster variance objective.•Weights are assigned to the clusters relative to their intra-cluster variance.•Our method prevents the occurrence of clusters with large intra-cluster variances in the solution.•Our method systematically uncovers high quality solutions, irrespective of the initialization.•MinMax k-Means constitutes a sound approach for initializing k-Means.
Author Tzortzis, Grigorios
Likas, Aristidis
Author_xml – sequence: 1
  givenname: Grigorios
  surname: Tzortzis
  fullname: Tzortzis, Grigorios
  email: gtzortzi@cs.uoi.gr
– sequence: 2
  givenname: Aristidis
  surname: Likas
  fullname: Likas, Aristidis
  email: arly@cs.uoi.gr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28417331$$DView record in Pascal Francis
BookMark eNqFkD1PwzAURS1UJErhHzBkQbAk-MV2kjIgoYovqRVLmS3HeWldUqfYLoJ_T6qUhYFKV3rDO_cO55QMbGuRkAugCVDIblbJRgXdLpKUAk8odBFHZAhFzmIBPB2QIaUMYpZSdkJOvV9RCnn3GJKr-RKjmbEz9RW9xzNU1ke62fqAzthFpJpF60xYrs_Ica0aj-f7OyJvjw_zyXM8fX16mdxPY81pGmKseAmY1kU5rjPgGqEEyHimxLisRU3zcSZ0VhSC05qJSuclzUShylwLLDFjbESu-92Naz-26INcG6-xaZTFdusl5IwCcOD5YVR0GMt5AR16uUeV16qpnbLaeLlxZq3ct0wL3u2yHXfbc9q13juspTZBBdPa4JRpJFC5Ey5Xshcud8IlhS6iK_M_5d_9A7W7voad1k-DTnpt0GqsjEMdZNWa_wd-APpgm-c
CODEN PTNRA8
CitedBy_id crossref_primary_10_1016_j_cie_2020_106290
crossref_primary_10_1109_ACCESS_2024_3350442
crossref_primary_10_1007_s10044_017_0673_0
crossref_primary_10_1002_cpe_8395
crossref_primary_10_1016_j_is_2023_102178
crossref_primary_10_1016_j_eswa_2021_115424
crossref_primary_10_1016_j_eswa_2021_116084
crossref_primary_10_1016_j_jag_2020_102154
crossref_primary_10_3390_ijerph192315509
crossref_primary_10_1080_03610918_2024_2387287
crossref_primary_10_1016_j_ins_2015_03_062
crossref_primary_10_1016_j_asoc_2019_02_038
crossref_primary_10_1016_j_patcog_2016_08_022
crossref_primary_10_1016_j_actamat_2020_05_001
crossref_primary_10_1002_sam_11379
crossref_primary_10_1109_ACCESS_2019_2951373
crossref_primary_10_1109_TNNLS_2023_3282938
crossref_primary_10_1002_ecs2_3143
crossref_primary_10_1016_j_asoc_2021_108005
crossref_primary_10_1049_cmu2_12746
crossref_primary_10_1016_j_patcog_2018_02_015
crossref_primary_10_1016_j_knosys_2018_01_031
crossref_primary_10_1007_s13042_019_01027_z
crossref_primary_10_1109_TKDE_2022_3155450
crossref_primary_10_1007_s42461_020_00226_5
crossref_primary_10_1088_1755_1315_46_1_012029
crossref_primary_10_1109_TIP_2017_2748885
crossref_primary_10_1007_s00521_020_05471_9
crossref_primary_10_1016_j_apacoust_2017_06_009
crossref_primary_10_1016_j_forpol_2024_103208
crossref_primary_10_1007_s41870_022_01088_4
crossref_primary_10_1177_1550147717728627
crossref_primary_10_3390_e21101013
crossref_primary_10_1016_j_ins_2022_09_044
crossref_primary_10_1109_ACCESS_2024_3450965
crossref_primary_10_1155_2016_4606384
crossref_primary_10_55195_jscai_1560068
crossref_primary_10_1007_s00521_024_10706_0
crossref_primary_10_1016_j_eswa_2023_120633
crossref_primary_10_1080_03610926_2021_1872639
crossref_primary_10_1016_j_artmed_2021_102214
crossref_primary_10_1016_j_simpat_2015_03_007
crossref_primary_10_1016_j_chaos_2021_111494
crossref_primary_10_1021_acs_iecr_7b04851
crossref_primary_10_1109_ACCESS_2019_2951596
crossref_primary_10_1016_j_patcog_2024_110639
crossref_primary_10_1109_ACCESS_2020_3007498
crossref_primary_10_1007_s11042_019_7659_4
crossref_primary_10_1016_j_eng_2023_11_026
crossref_primary_10_18697_ajfand_96_19775
crossref_primary_10_1007_s00500_020_04988_4
crossref_primary_10_1002_widm_1275
crossref_primary_10_1080_00949655_2014_1000900
crossref_primary_10_1016_j_asoc_2016_09_001
crossref_primary_10_1080_17538947_2023_2251436
crossref_primary_10_18267_j_aip_223
crossref_primary_10_1007_s11042_018_7100_4
crossref_primary_10_1016_j_artmed_2019_05_002
crossref_primary_10_1111_bmsp_12329
crossref_primary_10_1007_s43684_023_00055_5
crossref_primary_10_1108_JAMR_07_2021_0242
crossref_primary_10_1016_j_neucom_2015_07_096
crossref_primary_10_3934_aci_2023006
crossref_primary_10_1155_2022_5499213
crossref_primary_10_1177_1687814020968323
crossref_primary_10_1016_j_patrec_2017_10_031
crossref_primary_10_1016_j_eswa_2019_07_034
crossref_primary_10_1007_s00357_022_09415_x
crossref_primary_10_4018_IJISMD_2019070101
crossref_primary_10_1364_OE_482003
crossref_primary_10_1016_j_eswa_2024_125714
crossref_primary_10_1016_j_eng_2019_07_005
crossref_primary_10_1016_j_compeleceng_2018_04_023
crossref_primary_10_1007_s11042_019_7183_6
crossref_primary_10_1016_j_ejor_2023_05_020
crossref_primary_10_1016_j_eswa_2016_03_008
crossref_primary_10_20517_jmi_2024_85
crossref_primary_10_1007_s10586_017_0868_6
crossref_primary_10_3390_e22080902
crossref_primary_10_1016_j_neucom_2019_05_056
crossref_primary_10_1007_s11634_018_0337_y
crossref_primary_10_1007_s00180_024_01534_w
crossref_primary_10_1007_s13369_020_04620_5
crossref_primary_10_15407_kvt203_01_077
crossref_primary_10_1007_s00180_024_01459_4
crossref_primary_10_3390_drones9020090
crossref_primary_10_1016_j_jpdc_2018_03_009
crossref_primary_10_1109_TCSVT_2023_3267895
crossref_primary_10_59782_sidr_v4i1_76
crossref_primary_10_1016_j_livsci_2022_104946
crossref_primary_10_1007_s00521_022_07595_6
crossref_primary_10_1016_j_asoc_2016_11_045
crossref_primary_10_1007_s00357_018_9296_4
crossref_primary_10_1016_j_jag_2019_101910
crossref_primary_10_15541_jim20220149
crossref_primary_10_1016_j_egyr_2020_10_020
crossref_primary_10_1016_j_patcog_2016_03_010
crossref_primary_10_1109_ACCESS_2020_2987345
crossref_primary_10_1007_s40745_024_00572_x
crossref_primary_10_1109_ACCESS_2017_2688477
crossref_primary_10_1186_s40064_016_3329_4
crossref_primary_10_3390_s17102226
crossref_primary_10_1007_s10044_021_00981_1
crossref_primary_10_4028_www_scientific_net_AMM_740_624
crossref_primary_10_1109_JIOT_2018_2823498
crossref_primary_10_3390_rs14030642
crossref_primary_10_1016_j_ins_2021_02_061
crossref_primary_10_3233_JCM_204699
crossref_primary_10_1007_s00521_017_3119_0
crossref_primary_10_3390_rs14041042
crossref_primary_10_1051_e3sconf_202126701054
crossref_primary_10_32604_cmc_2024_052114
crossref_primary_10_1155_2021_3248834
crossref_primary_10_32604_iasc_2021_019067
crossref_primary_10_1016_j_dsm_2023_06_005
crossref_primary_10_1051_matecconf_201817601019
crossref_primary_10_5194_amt_8_1951_2015
crossref_primary_10_1155_2022_3278395
crossref_primary_10_4018_IJEHMC_313191
crossref_primary_10_46300_9101_2020_14_20
crossref_primary_10_1155_2015_180749
crossref_primary_10_1109_ACCESS_2019_2943498
crossref_primary_10_1016_j_scriptamat_2024_116240
crossref_primary_10_1007_s11047_016_9542_9
crossref_primary_10_1109_TKDE_2023_3242306
crossref_primary_10_1109_TCYB_2019_2916196
crossref_primary_10_1007_s10044_021_01045_0
crossref_primary_10_1007_s11042_018_6324_7
crossref_primary_10_1016_j_energy_2024_132249
crossref_primary_10_1155_2022_6854344
crossref_primary_10_1109_ACCESS_2024_3461798
crossref_primary_10_1016_j_asoc_2018_07_026
crossref_primary_10_1007_s10489_022_04044_8
crossref_primary_10_1016_j_jhydrol_2024_131161
crossref_primary_10_1109_TNNLS_2023_3300916
crossref_primary_10_1049_iet_ipr_2018_5956
crossref_primary_10_1016_j_ins_2020_04_012
crossref_primary_10_1371_journal_pone_0201874
crossref_primary_10_1007_s12065_019_00221_w
crossref_primary_10_3390_sym15091679
crossref_primary_10_1016_j_eswa_2018_09_047
crossref_primary_10_3389_feart_2022_1076999
crossref_primary_10_1109_TIP_2018_2878959
Cites_doi 10.1162/089976698300017467
10.1016/j.patcog.2008.04.004
10.1023/A:1024016609528
10.1016/j.eswa.2012.07.021
10.1109/TIT.1982.1056489
10.1016/S0167-8655(99)00069-0
10.1023/B:VISI.0000029664.99615.94
10.1016/S0031-3203(02)00060-2
10.1109/NAFIPS.2000.877408
10.1145/1014052.1014118
10.1145/1015330.1015408
10.1109/ICDM.2001.989507
10.1016/j.patcog.2007.05.018
10.1109/TNN.2009.2019722
10.1007/978-3-642-15883-4_29
10.1109/TPAMI.2005.95
10.1109/TNN.2005.845141
10.1109/TNN.2004.824416
10.1016/j.patcog.2010.10.018
10.1126/science.1136800
10.1109/ICDM.2010.57
10.3233/IDA-2007-11402
10.1109/IJCNN.2008.4634069
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2014.01.015
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 2516
ExternalDocumentID 28417331
10_1016_j_patcog_2014_01_015
S0031320314000338
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
BNPGV
IQODW
SSH
7SC
8FD
AFXIZ
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-ed4b1e2f8b9f614ce1b11646a59bf5f07965c688540f35dc7b0658ab7c5ebe633
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Jul 10 23:34:57 EDT 2025
Fri Jul 11 03:19:58 EDT 2025
Wed Apr 02 07:25:04 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Wed Aug 20 07:45:56 EDT 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords k-Means initialization
Balanced clusters
Clustering
k-Means
Performance evaluation
Automatic classification
Weighting
Minimax method
Iterative method
K means algorithm
Robustness
Signal classification
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-ed4b1e2f8b9f614ce1b11646a59bf5f07965c688540f35dc7b0658ab7c5ebe633
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1541437481
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1730114147
proquest_miscellaneous_1541437481
pascalfrancis_primary_28417331
crossref_citationtrail_10_1016_j_patcog_2014_01_015
crossref_primary_10_1016_j_patcog_2014_01_015
elsevier_sciencedirect_doi_10_1016_j_patcog_2014_01_015
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Celebi, Kingravi, Vela (bib7) 2013; 40
P.S. Bradley, U.M. Fayyad, Refining initial points for k-means clustering, in: International Conference on Machine Learning (ICML), 1998, pp. 91–99.
H. Zha, X. He, C.H.Q. Ding, M. Gu, H.D. Simon, Spectral relaxation for k-means clustering, in: Advances in Neural Information Processing Systems (NIPS), 2001, pp. 1057–1064.
C.-D. Wang, J.-H. Lai, J.-Y. Zhu, A conscience on-line learning approach for kernel-based clustering, in: International Conference on Data Mining (ICDM), 2010, pp. 531–540.
Su, Dy (bib12) 2007; 11
Lowe (bib28) 2004; 60
A. Frank, A. Asuncion, UCI machine learning repository, 2010. URL
I.S. Dhillon, Y. Guan, B. Kulis, Kernel k-means, spectral clustering and normalized cuts, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556.
Schölkopf, Smola, Müller (bib4) 1998; 10
Modha, Spangler (bib22) 2003; 52
F. Nie, C.H.Q. Ding, D. Luo, H. Huang, Improved minmax cut graph clustering with nonnegative relaxation, in: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2010, pp. 451–466.
Lloyd (bib3) 1982; 28
Peña, Lozano, Larrañaga (bib6) 1999; 20
Tan, Steinbach, Kumar (bib20) 2005
S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-20), Technical Report CUCS-005-96 1996.
Likas, Vlassis, Verbeek (bib13) 2003; 36
Huang, Ng, Rong, Li (bib21) 2005; 27
Frey, Dueck (bib30) 2007; 315
C.H.Q. Ding, X. He, H. Zha, M. Gu, H.D. Simon, A min-max cut algorithm for graph partitioning and data clustering, in: International Conference on Data Mining (ICDM), 2001, pp. 107–114.
Bagirov, Ugon, Webb (bib15) 2011; 44
A. Kalogeratos, A. Likas, Dip-means: an incremental clustering method for estimating the number of clusters, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 2402–2410.
Xu, Wunsch II (bib1) 2005; 16
Filippone, Camastra, Masulli, Rovetta (bib2) 2008; 41
Tzortzis, Likas (bib17) 2009; 20
Banerjee, Ghosh (bib10) 2004; 15
Bagirov (bib14) 2008; 41
C.H.Q. Ding, X. He, K-means clustering via principal component analysis, in: International Conference on Machine Learning (ICML), 2004, pp. 225–232.
.
A. Keller, Fuzzy clustering with outliers, in: International Conference of the North American Fuzzy Information Processing Society (NAFIPS), 2000, pp. 143–147.
G. Tzortzis, A. Likas, The global kernel k-means clustering algorithm, in: International Joint Conference on Neural Networks (IJCNN), 2008, pp. 1977–1984.
D. Arthur, S. Vassilvitskii, k-Means++: the advantages of careful seeding, in: ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007, pp. 1027–1035.
Tan (10.1016/j.patcog.2014.01.015_bib20) 2005
Tzortzis (10.1016/j.patcog.2014.01.015_bib17) 2009; 20
10.1016/j.patcog.2014.01.015_bib19
Modha (10.1016/j.patcog.2014.01.015_bib22) 2003; 52
10.1016/j.patcog.2014.01.015_bib18
Su (10.1016/j.patcog.2014.01.015_bib12) 2007; 11
Bagirov (10.1016/j.patcog.2014.01.015_bib14) 2008; 41
10.1016/j.patcog.2014.01.015_bib23
10.1016/j.patcog.2014.01.015_bib26
10.1016/j.patcog.2014.01.015_bib27
10.1016/j.patcog.2014.01.015_bib24
10.1016/j.patcog.2014.01.015_bib25
Schölkopf (10.1016/j.patcog.2014.01.015_bib4) 1998; 10
Likas (10.1016/j.patcog.2014.01.015_bib13) 2003; 36
Celebi (10.1016/j.patcog.2014.01.015_bib7) 2013; 40
Huang (10.1016/j.patcog.2014.01.015_bib21) 2005; 27
Peña (10.1016/j.patcog.2014.01.015_bib6) 1999; 20
10.1016/j.patcog.2014.01.015_bib8
10.1016/j.patcog.2014.01.015_bib9
10.1016/j.patcog.2014.01.015_bib29
10.1016/j.patcog.2014.01.015_bib5
Xu (10.1016/j.patcog.2014.01.015_bib1) 2005; 16
10.1016/j.patcog.2014.01.015_bib11
Lloyd (10.1016/j.patcog.2014.01.015_bib3) 1982; 28
Banerjee (10.1016/j.patcog.2014.01.015_bib10) 2004; 15
10.1016/j.patcog.2014.01.015_bib16
Frey (10.1016/j.patcog.2014.01.015_bib30) 2007; 315
Filippone (10.1016/j.patcog.2014.01.015_bib2) 2008; 41
Bagirov (10.1016/j.patcog.2014.01.015_bib15) 2011; 44
Lowe (10.1016/j.patcog.2014.01.015_bib28) 2004; 60
References_xml – volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bib13
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
– reference: H. Zha, X. He, C.H.Q. Ding, M. Gu, H.D. Simon, Spectral relaxation for k-means clustering, in: Advances in Neural Information Processing Systems (NIPS), 2001, pp. 1057–1064.
– reference: A. Keller, Fuzzy clustering with outliers, in: International Conference of the North American Fuzzy Information Processing Society (NAFIPS), 2000, pp. 143–147.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: bib4
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– year: 2005
  ident: bib20
  article-title: Introduction to Data Mining
– reference: A. Kalogeratos, A. Likas, Dip-means: an incremental clustering method for estimating the number of clusters, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 2402–2410.
– volume: 28
  start-page: 129
  year: 1982
  end-page: 136
  ident: bib3
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
– reference: C.H.Q. Ding, X. He, H. Zha, M. Gu, H.D. Simon, A min-max cut algorithm for graph partitioning and data clustering, in: International Conference on Data Mining (ICDM), 2001, pp. 107–114.
– reference: F. Nie, C.H.Q. Ding, D. Luo, H. Huang, Improved minmax cut graph clustering with nonnegative relaxation, in: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2010, pp. 451–466.
– volume: 40
  start-page: 200
  year: 2013
  end-page: 210
  ident: bib7
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 176
  year: 2008
  end-page: 190
  ident: bib2
  article-title: A survey of kernel and spectral methods for clustering
  publication-title: Pattern Recognit.
– volume: 20
  start-page: 1181
  year: 2009
  end-page: 1194
  ident: bib17
  article-title: The global kernel k-means algorithm for clustering in feature space
  publication-title: IEEE Trans. Neural Netw.
– volume: 15
  start-page: 702
  year: 2004
  end-page: 719
  ident: bib10
  article-title: Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres
  publication-title: IEEE Trans. Neural Netw.
– reference: 〉.
– reference: A. Frank, A. Asuncion, UCI machine learning repository, 2010. URL 〈
– volume: 20
  start-page: 1027
  year: 1999
  end-page: 1040
  ident: bib6
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognit. Lett.
– volume: 11
  start-page: 319
  year: 2007
  end-page: 338
  ident: bib12
  article-title: In search of deterministic methods for initializing k-means and gaussian mixture clustering
  publication-title: Intell. Data Anal.
– volume: 41
  start-page: 3192
  year: 2008
  end-page: 3199
  ident: bib14
  article-title: Modified global k-means for minimum sum-of-squares clustering problems
  publication-title: Pattern Recognit.
– volume: 27
  start-page: 657
  year: 2005
  end-page: 668
  ident: bib21
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: I.S. Dhillon, Y. Guan, B. Kulis, Kernel k-means, spectral clustering and normalized cuts, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib28
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib30
  article-title: Clustering by passing messages between data points
  publication-title: Science
– reference: C.-D. Wang, J.-H. Lai, J.-Y. Zhu, A conscience on-line learning approach for kernel-based clustering, in: International Conference on Data Mining (ICDM), 2010, pp. 531–540.
– reference: D. Arthur, S. Vassilvitskii, k-Means++: the advantages of careful seeding, in: ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007, pp. 1027–1035.
– reference: S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-20), Technical Report CUCS-005-96 1996.
– volume: 44
  start-page: 866
  year: 2011
  end-page: 876
  ident: bib15
  article-title: Fast modified global k-means algorithm for incremental cluster construction
  publication-title: Pattern Recognit.
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– reference: P.S. Bradley, U.M. Fayyad, Refining initial points for k-means clustering, in: International Conference on Machine Learning (ICML), 1998, pp. 91–99.
– reference: G. Tzortzis, A. Likas, The global kernel k-means clustering algorithm, in: International Joint Conference on Neural Networks (IJCNN), 2008, pp. 1977–1984.
– reference: C.H.Q. Ding, X. He, K-means clustering via principal component analysis, in: International Conference on Machine Learning (ICML), 2004, pp. 225–232.
– volume: 52
  start-page: 217
  year: 2003
  end-page: 237
  ident: bib22
  article-title: Feature weighting in k-means clustering
  publication-title: Mach. Learn.
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 10.1016/j.patcog.2014.01.015_bib4
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 41
  start-page: 3192
  issue: 10
  year: 2008
  ident: 10.1016/j.patcog.2014.01.015_bib14
  article-title: Modified global k-means for minimum sum-of-squares clustering problems
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.04.004
– volume: 52
  start-page: 217
  issue: 3
  year: 2003
  ident: 10.1016/j.patcog.2014.01.015_bib22
  article-title: Feature weighting in k-means clustering
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024016609528
– volume: 40
  start-page: 200
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2014.01.015_bib7
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.021
– ident: 10.1016/j.patcog.2014.01.015_bib27
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.patcog.2014.01.015_bib3
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 20
  start-page: 1027
  issue: 10
  year: 1999
  ident: 10.1016/j.patcog.2014.01.015_bib6
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00069-0
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2014.01.015_bib28
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 10.1016/j.patcog.2014.01.015_bib29
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  ident: 10.1016/j.patcog.2014.01.015_bib13
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– ident: 10.1016/j.patcog.2014.01.015_bib23
  doi: 10.1109/NAFIPS.2000.877408
– ident: 10.1016/j.patcog.2014.01.015_bib18
– year: 2005
  ident: 10.1016/j.patcog.2014.01.015_bib20
– ident: 10.1016/j.patcog.2014.01.015_bib5
  doi: 10.1145/1014052.1014118
– ident: 10.1016/j.patcog.2014.01.015_bib19
  doi: 10.1145/1015330.1015408
– ident: 10.1016/j.patcog.2014.01.015_bib8
– ident: 10.1016/j.patcog.2014.01.015_bib11
– ident: 10.1016/j.patcog.2014.01.015_bib24
  doi: 10.1109/ICDM.2001.989507
– volume: 41
  start-page: 176
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2014.01.015_bib2
  article-title: A survey of kernel and spectral methods for clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.05.018
– volume: 20
  start-page: 1181
  issue: 7
  year: 2009
  ident: 10.1016/j.patcog.2014.01.015_bib17
  article-title: The global kernel k-means algorithm for clustering in feature space
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2019722
– ident: 10.1016/j.patcog.2014.01.015_bib26
– ident: 10.1016/j.patcog.2014.01.015_bib25
  doi: 10.1007/978-3-642-15883-4_29
– volume: 27
  start-page: 657
  issue: 5
  year: 2005
  ident: 10.1016/j.patcog.2014.01.015_bib21
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.95
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.patcog.2014.01.015_bib1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 15
  start-page: 702
  issue: 3
  year: 2004
  ident: 10.1016/j.patcog.2014.01.015_bib10
  article-title: Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.824416
– volume: 44
  start-page: 866
  issue: 4
  year: 2011
  ident: 10.1016/j.patcog.2014.01.015_bib15
  article-title: Fast modified global k-means algorithm for incremental cluster construction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.10.018
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.patcog.2014.01.015_bib30
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– ident: 10.1016/j.patcog.2014.01.015_bib9
  doi: 10.1109/ICDM.2010.57
– volume: 11
  start-page: 319
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2014.01.015_bib12
  article-title: In search of deterministic methods for initializing k-means and gaussian mixture clustering
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2007-11402
– ident: 10.1016/j.patcog.2014.01.015_bib16
  doi: 10.1109/IJCNN.2008.4634069
SSID ssj0017142
Score 2.5413718
Snippet Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2505
SubjectTerms Algorithms
Applied sciences
Balanced clusters
Cluster analysis
Clustering
Clusters
Emergence
Exact sciences and technology
Information, signal and communications theory
k-Means
k-Means initialization
Pattern recognition
Robustness
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Variance
Weighting
Title The MinMax k-Means clustering algorithm
URI https://dx.doi.org/10.1016/j.patcog.2014.01.015
https://www.proquest.com/docview/1541437481
https://www.proquest.com/docview/1730114147
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iL4L4Lc6PUUHwKa4xTdM-ynBMZT4p7C0kaTqrsytzA5_8273rx0AUB0JfWi5tuFx-d23vfkfIeay1ENpC5Malo4B-IY39JKLagS8M48T3NX7vGDyE_afgbiiGK6Tb1MJgWmWN_RWml2hdX-nU2uwUWYY1vkg7iPTrGNhzLPgNAolWfvm5SPPA_t4VYzhnFKWb8rkyx6sAuJuMMMErKMk7sTnu7-5po9DvoLS06nbxA7hLb9TbJpt1GOldVzPdISsu3yVbTYsGr96xe-QCzMAbZPlAf3ivdODAMXl2PEd2BPBZnh6PJtNs9vy2T556N4_dPq17I1ALb3wz6pLAMHeVRiZOwcNaxwxDqjAtYpOK1JdxKGwYRRCQpVwkVhqMNbSRVsCyhZwfkNV8krtD4gnnc5v4ToZWBgHeKEqYA0nfpAE3rEV4oxJla-Jw7F8xVk2G2IuqFKlQkcpncIgWoYtRRUWcsUReNtpW3wxAAbYvGdn-tjiLx4HnZdiSskXOmtVSsHnwj4jO3WT-rhg2QUcCnr9kSgwEOXn07ykek3U8q9J8T8jqbDp3pxDMzEy7tNY2Wbu-ve8_fAH7JfJO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x9mGT0MYYE2XQZdKkPVnEcxwnj1UFKrTpE0i8WbbjQKGkFbQSfz53-VEJMQ0JKU_JObHOzneX-Px9AL9TY6Q0DjM3oTxD9ItZGuYJMx5jYZzmYWjof0c2jUeX0fmVvNqCYbsXhsoqG-yvMb1C6-bMcePN4-VsRnt8iXaQ6NcpsRfJB-gSO5XsQHdwNh5NN4sJikc1abjgjBq0O-iqMq8lIt7immq8ooq_k_Rx_x2htpfmEf1W1IIXr7C7CkinO_C5ySSDQd3Zr7Dly1340qo0BM1L-w3-4EwIslmZmafgjmUeY1Pg5msiSMCwFZj59eJhtrq534PL05OL4Yg18gjM4Uffivk8stz_LRKbFhhkneeWE1uYkaktZBGqNJYuThLMyQohc6cspRvGKidx5GIhvkOnXJR-HwLpQ-Hy0KvYqSiiGyU592gZ2iISlvdAtC7RruEOJwmLuW6LxG517UhNjtQhx0P2gG1aLWvujDfsVett_WIOaIT3N1r2XwzO5nEYfDmpUvbgVztaGt8fWhQxpV-sHzUnHXTi4PmfTQWDaKcO3t3Fn_BxdJFN9ORsOv4Bn-hKXfV7CJ3Vw9ofYW6zsv1m7j4DTCb0_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MinMax+k-Means+clustering+algorithm&rft.jtitle=Pattern+recognition&rft.au=Tzortzis%2C+Grigorios&rft.au=Likas%2C+Aristidis&rft.date=2014-07-01&rft.issn=0031-3203&rft.volume=47&rft.issue=7&rft.spage=2505&rft.epage=2516&rft_id=info:doi/10.1016%2Fj.patcog.2014.01.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon