Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching

In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 39; no. 1; pp. 154 - 169
Main Authors Wang, Xiaofei, Li, Ruibin, Wang, Chenyang, Li, Xiuhua, Taleb, Tarik, Leung, Victor C. M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies lack consideration of effective cooperation and adaptability to the dynamic network environments. In this article, based on the flexible trilateral cooperation among user equipment, edge base stations and a cloud server, we propose a D2D-assisted heterogeneous collaborative edge caching framework by jointly optimizing the node selection and cache replacement in mobile networks. We formulate the joint optimization problem as a Markov decision process, and use a deep Q-learning network to solve the long-term mixed integer linear programming problem. We further design an attention-weighted federated deep reinforcement learning (AWFDRL) model that uses federated learning to improve the training efficiency of the Q-learning network by considering the limited computing and storage capacity, and incorporates an attention mechanism to optimize the aggregation weights to avoid the imbalance of local model quality. We prove the convergence of the corresponding algorithm, and present simulation results to show the effectiveness of the proposed AWFDRL framework in reducing average delay of content access, improving hit rate and offloading traffic.
AbstractList In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies lack consideration of effective cooperation and adaptability to the dynamic network environments. In this article, based on the flexible trilateral cooperation among user equipment, edge base stations and a cloud server, we propose a D2D-assisted heterogeneous collaborative edge caching framework by jointly optimizing the node selection and cache replacement in mobile networks. We formulate the joint optimization problem as a Markov decision process, and use a deep Q-learning network to solve the long-term mixed integer linear programming problem. We further design an attention-weighted federated deep reinforcement learning (AWFDRL) model that uses federated learning to improve the training efficiency of the Q-learning network by considering the limited computing and storage capacity, and incorporates an attention mechanism to optimize the aggregation weights to avoid the imbalance of local model quality. We prove the convergence of the corresponding algorithm, and present simulation results to show the effectiveness of the proposed AWFDRL framework in reducing average delay of content access, improving hit rate and offloading traffic.
Author Leung, Victor C. M.
Wang, Xiaofei
Li, Xiuhua
Li, Ruibin
Wang, Chenyang
Taleb, Tarik
Author_xml – sequence: 1
  givenname: Xiaofei
  orcidid: 0000-0002-7223-1030
  surname: Wang
  fullname: Wang, Xiaofei
  email: xiaofeiwang@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Ruibin
  orcidid: 0000-0003-0001-9281
  surname: Li
  fullname: Li, Ruibin
  email: leeruibin@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Chenyang
  surname: Wang
  fullname: Wang, Chenyang
  email: chenyangwang@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Xiuhua
  orcidid: 0000-0001-9041-0297
  surname: Li
  fullname: Li, Xiuhua
  email: lixiuhua1988@gmail.com
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, China
– sequence: 5
  givenname: Tarik
  orcidid: 0000-0003-1119-1239
  surname: Taleb
  fullname: Taleb, Tarik
  email: tarik.taleb@aalto.fi
  organization: Department of Communications and Networking, School of Electrical Engineering, Aalto University, Espoo, Finland
– sequence: 6
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
  email: vleung@ieee.org
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kctKAzEUhoMo2KoPIG4GXE89ucxtWcZ6oyCo4HJIJydtSk1qkgqufHUzVFy4cJVD8n__gS9jcmidRULOKUwohebq4XnaThgwmHDgZSPKAzKiRVHnAFAfkhFUnOd1RctjMg5hDUCFqNmIfE1jRBuNs_krmuUqospuUKGXw3SNuM2e0FjtfI9vKZjNUXpr7DJLV-n9w_SYR5fvp2waggkDeYcRvVuiRbcLWes2G7lwqdR8YDZTS8xa2a9SzSk50nIT8OznPCEvN7OX9i6fP97et9N53gtgMcdKLZjWtGaVLhF6QQtYLKCEQgpBhUIllNBcK9X0XHKQWjS0oFrXFdSi5ifkcl-79e59hyF2a7fzNm3smKig5CWnZUpV-1TvXQgeddebKAc50Uuz6Sh0g-xukN0Nsrsf2Ymkf8itN2_Sf_7LXOwZg4i_-YYVrEmf9Q3N_44I
CODEN ISACEM
CitedBy_id crossref_primary_10_1016_j_comcom_2024_06_001
crossref_primary_10_1109_TWC_2023_3329375
crossref_primary_10_1109_JIOT_2021_3063686
crossref_primary_10_1109_TCOMM_2022_3208113
crossref_primary_10_1109_TVT_2023_3345863
crossref_primary_10_1155_2022_3501329
crossref_primary_10_1016_j_future_2024_107704
crossref_primary_10_1109_TSC_2022_3225473
crossref_primary_10_1109_JSTSP_2022_3224591
crossref_primary_10_1109_ACCESS_2023_3253765
crossref_primary_10_1109_TVT_2022_3206876
crossref_primary_10_1016_j_dcan_2022_10_015
crossref_primary_10_1109_TMC_2021_3139995
crossref_primary_10_1016_j_jisa_2023_103608
crossref_primary_10_1109_JIOT_2024_3495693
crossref_primary_10_1109_LCOMM_2024_3427847
crossref_primary_10_1186_s13677_024_00721_w
crossref_primary_10_1109_TSC_2024_3489437
crossref_primary_10_1007_s10489_024_06032_6
crossref_primary_10_1109_TCOMM_2023_3259442
crossref_primary_10_1109_TNSE_2024_3375374
crossref_primary_10_1016_j_vehcom_2024_100844
crossref_primary_10_1109_JIOT_2023_3244621
crossref_primary_10_1109_JIOT_2021_3058363
crossref_primary_10_1109_TNSE_2021_3126021
crossref_primary_10_1109_TPDS_2023_3249797
crossref_primary_10_3390_electronics12091974
crossref_primary_10_1109_MNET_2023_3337245
crossref_primary_10_1109_TMC_2023_3237636
crossref_primary_10_1109_TCCN_2023_3340033
crossref_primary_10_1177_15501329221092932
crossref_primary_10_1109_ACCESS_2023_3302250
crossref_primary_10_1109_ACCESS_2024_3486775
crossref_primary_10_1109_TSC_2023_3247611
crossref_primary_10_1109_TITS_2022_3157056
crossref_primary_10_1109_TNSM_2022_3198074
crossref_primary_10_1109_TWC_2023_3253541
crossref_primary_10_1109_ACCESS_2022_3206020
crossref_primary_10_1109_TWC_2021_3108641
crossref_primary_10_1186_s13677_023_00472_0
crossref_primary_10_1016_j_apenergy_2024_123107
crossref_primary_10_1109_COMST_2024_3353265
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1007_s11276_021_02768_y
crossref_primary_10_1109_TFUZZ_2021_3118733
crossref_primary_10_1109_TNSM_2024_3361796
crossref_primary_10_3390_app13053083
crossref_primary_10_1007_s10586_024_04893_7
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1109_TCE_2023_3327847
crossref_primary_10_1109_TVT_2023_3241959
crossref_primary_10_3390_electronics11091393
crossref_primary_10_1109_TWC_2023_3249756
crossref_primary_10_1145_3685930
crossref_primary_10_3390_electronics11213434
crossref_primary_10_1109_JIOT_2023_3290145
crossref_primary_10_1109_TPDS_2022_3201983
crossref_primary_10_1007_s13042_024_02119_1
crossref_primary_10_1109_TCSVT_2023_3255229
crossref_primary_10_1109_TSUSC_2022_3210564
crossref_primary_10_1109_TPDS_2023_3326187
crossref_primary_10_1109_TSC_2023_3340672
crossref_primary_10_1109_JIOT_2022_3188556
crossref_primary_10_1109_TMC_2024_3382013
crossref_primary_10_1145_3682076
crossref_primary_10_1016_j_apenergy_2021_117754
crossref_primary_10_1109_JIOT_2023_3335968
crossref_primary_10_1002_int_23036
crossref_primary_10_1109_JIOT_2021_3086910
crossref_primary_10_1109_JSAC_2021_3087232
crossref_primary_10_1142_S0218001424390014
crossref_primary_10_1109_JIOT_2023_3234705
crossref_primary_10_23919_ICN_2021_0021
crossref_primary_10_1109_JIOT_2023_3287187
crossref_primary_10_1109_TCOMM_2021_3132048
crossref_primary_10_1109_TMLCN_2023_3283228
crossref_primary_10_1007_s11276_022_03176_6
crossref_primary_10_1109_TCOMM_2023_3327278
crossref_primary_10_1109_JIOT_2021_3081626
crossref_primary_10_1145_3623398
crossref_primary_10_1109_JIOT_2021_3134964
crossref_primary_10_1007_s11280_021_00939_7
crossref_primary_10_1109_TKDE_2023_3332770
crossref_primary_10_1016_j_comnet_2024_110694
crossref_primary_10_1109_TNSE_2021_3076795
crossref_primary_10_1109_JIOT_2024_3470847
crossref_primary_10_1109_TPDS_2023_3264480
crossref_primary_10_1109_TVT_2023_3325036
crossref_primary_10_1016_j_eswa_2023_121982
crossref_primary_10_1088_1742_6596_2504_1_012049
crossref_primary_10_1109_TASE_2022_3221352
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1016_j_sysarc_2024_103090
crossref_primary_10_1109_TNSE_2023_3260882
crossref_primary_10_1109_TWC_2022_3206236
Cites_doi 10.1109/ACCESS.2019.2916314
10.1109/CONFLUENCE.2018.8442697
10.1109/TNET.2008.918081
10.1109/ACCESS.2019.2916178
10.1109/JSAC.2020.2986688
10.1109/IWQoS.2018.8624176
10.1109/GLOCOM.2018.8647616
10.1109/TNNLS.2019.2953131
10.1145/954339.954341
10.1109/JIOT.2019.2945640
10.1109/MNET.2019.1800286
10.1109/ACCESS.2019.2947067
10.1109/JIOT.2020.2986803
10.1109/JSAC.2018.2844658
10.1109/JIOT.2020.2980549
10.1145/346000.346003
10.1145/2517349.2522722
10.1109/MC.2004.1266293
10.1109/COMST.2020.2970550
10.1145/505696.505701
10.1109/TWC.2015.2468725
10.1109/TII.2019.2942179
10.1145/3372025
10.1109/TVT.2020.2973651
10.1109/JIOT.2020.2984887
10.1109/ACCESS.2020.2978082
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2020.3036946
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 169
ExternalDocumentID 10_1109_JSAC_2020_3036946
9252973
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFB2101901; 2018YFC0809803; 2018YFF0214700
– fundername: Chongqing Research Program of Basic Research and Frontier Technology
  grantid: cstc2019jcyj-msxmX0589
  funderid: 10.13039/501100013223
– fundername: National NSFC
  grantid: 62072332; 61902044; 62002260; 61672117; 62072060
  funderid: 10.13039/501100001809
– fundername: Canadian Natural Sciences and Engineering Research Council
  funderid: 10.13039/501100000038
– fundername: Academy of Finland Project CSN
  grantid: 311654
  funderid: 10.13039/501100002341
– fundername: 6Genesis Project
  grantid: 318927
– fundername: Chinese National Engineering Laboratory for Big Data System Computing Technology at Shenzhen University
  funderid: 10.13039/501100009019
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2020CDJQY-A022
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c402t-e7db2ff1827f6e0c4150bb0605a4414ded4d4f3fdd9c3a30af49151ff8708483
IEDL.DBID RIE
ISSN 0733-8716
IngestDate Mon Jun 30 10:12:52 EDT 2025
Tue Jul 01 02:06:30 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Wed Aug 27 02:33:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-e7db2ff1827f6e0c4150bb0605a4414ded4d4f3fdd9c3a30af49151ff8708483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3529-2640
0000-0003-1119-1239
0000-0002-7223-1030
0000-0003-0001-9281
0000-0001-9041-0297
OpenAccessLink https://research.aalto.fi/files/53663390/Wang_Attention_weighed_federated_deep_reinforcement.pdf
PQID 2470636316
PQPubID 85481
PageCount 16
ParticipantIDs proquest_journals_2470636316
ieee_primary_9252973
crossref_citationtrail_10_1109_JSAC_2020_3036946
crossref_primary_10_1109_JSAC_2020_3036946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
li (ref41) 2019
bonawitz (ref28) 2019
bahdanau (ref39) 2014
ref2
xu (ref40) 2015
ref16
ref19
sweeney (ref17) 2000; 671
govier (ref35) 1997
mcmahan (ref18) 2016; 54
li (ref1) 2020
li (ref25) 2018
xie (ref29) 2019
tang (ref9) 2015
van (ref15) 2016
ref24
ref23
ref42
ref22
ref27
vaswani (ref20) 2017
ref8
ref7
li (ref26) 2019
ref4
ref3
kleinberg (ref38) 2004
ref6
ref5
kone?ný (ref21) 2016
References_xml – ident: ref16
  doi: 10.1109/ACCESS.2019.2916314
– ident: ref36
  doi: 10.1109/CONFLUENCE.2018.8442697
– year: 1997
  ident: ref35
  publication-title: McGill-Queen's Press-MQUP
– ident: ref33
  doi: 10.1109/TNET.2008.918081
– ident: ref14
  doi: 10.1109/ACCESS.2019.2916178
– start-page: 2094
  year: 2016
  ident: ref15
  article-title: Deep reinforcement learning with double q-learning
  publication-title: Proc AAAI
– ident: ref4
  doi: 10.1109/JSAC.2020.2986688
– ident: ref13
  doi: 10.1109/IWQoS.2018.8624176
– volume: 671
  start-page: 1
  year: 2000
  ident: ref17
  article-title: Simple demographics often identify people uniquely
  publication-title: Health (San Francisco)
– ident: ref23
  doi: 10.1109/GLOCOM.2018.8647616
– ident: ref30
  doi: 10.1109/TNNLS.2019.2953131
– ident: ref11
  doi: 10.1145/954339.954341
– ident: ref19
  doi: 10.1109/JIOT.2019.2945640
– start-page: 373
  year: 2015
  ident: ref9
  article-title: RIPQ: Advanced photo caching on flash for Facebook
  publication-title: Proc ACM FAST
– year: 2019
  ident: ref26
  article-title: Asynchronous federated learning with differential privacy for edge intelligence
  publication-title: arXiv 1912 07902
– ident: ref24
  doi: 10.1109/MNET.2019.1800286
– ident: ref8
  doi: 10.1109/ACCESS.2019.2947067
– year: 2016
  ident: ref21
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv 1610 05492
– ident: ref37
  doi: 10.1109/JIOT.2020.2986803
– ident: ref34
  doi: 10.1109/JSAC.2018.2844658
– year: 2018
  ident: ref25
  article-title: Federated optimization in heterogeneous networks
  publication-title: arXiv 1812 06127
– start-page: 1
  year: 2020
  ident: ref1
  article-title: Edge caching replacement optimization for D2D wireless networks via weighted distributed DQN
  publication-title: Proc IEEE Wireless Commun Netw Conf (WCNC)
– ident: ref2
  doi: 10.1109/JIOT.2020.2980549
– ident: ref42
  doi: 10.1145/346000.346003
– year: 2019
  ident: ref41
  article-title: On the convergence of FedAvg on non-IID data
  publication-title: arXiv 1907 02189
– ident: ref10
  doi: 10.1145/2517349.2522722
– year: 2019
  ident: ref29
  article-title: Asynchronous federated optimization
  publication-title: arXiv 1903 03934
– ident: ref7
  doi: 10.1109/MC.2004.1266293
– ident: ref3
  doi: 10.1109/COMST.2020.2970550
– year: 2004
  ident: ref38
  publication-title: Algorithm Design
– start-page: 2048
  year: 2015
  ident: ref40
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc ICML
– ident: ref12
  doi: 10.1145/505696.505701
– year: 2019
  ident: ref28
  article-title: Towards federated learning at scale: System design
  publication-title: arXiv 1902 01046
– ident: ref6
  doi: 10.1109/TWC.2015.2468725
– ident: ref27
  doi: 10.1109/TII.2019.2942179
– volume: 54
  start-page: 1273
  year: 2016
  ident: ref18
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc AISTATS
– year: 2014
  ident: ref39
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
– ident: ref22
  doi: 10.1145/3372025
– ident: ref31
  doi: 10.1109/TVT.2020.2973651
– ident: ref5
  doi: 10.1109/JIOT.2020.2984887
– ident: ref32
  doi: 10.1109/ACCESS.2020.2978082
– start-page: 5998
  year: 2017
  ident: ref20
  article-title: Attention is all you need
  publication-title: Proc NIPS
SSID ssj0014482
Score 2.6242814
Snippet In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 154
SubjectTerms Algorithms
attention-weighted federated learning
Caching
Cloud computing
Collaboration
Computational modeling
Cooperation
Data models
Deep learning
deep reinforcement learning
Delays
device to device
Device-to-device communication
Edge caching
Integer programming
Linear programming
Machine learning
Markov processes
Mixed integer
Multimedia
Optimization
Servers
Storage capacity
Training
Wireless networks
Title Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching
URI https://ieeexplore.ieee.org/document/9252973
https://www.proquest.com/docview/2470636316
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB0Bp3IAWkAspZUPPSG8OI43mxxXC6sVEj20oHKL7HjMAbRZQZYDF369M052QS2qerMSW4r0JjPzZsYzAN-0Mj6xfiBTHBBBMUkirdJOepOFECybXL6cfPk9m16bi5vBzRqcrO7CIGIsPsM-L2Mu39fVgkNlp4Ue8KildVgn4tbe1VplDIhmxIzBME0lk4Aug5mo4vTi52hMTFATQSV9XbCv-8YGxaEqf2niaF4m23C5_LC2quSuv2hcv3r-o2fj_375Dmx1fqYYtYLxEdZw9gk233Qf3IWXUdO0xY7yVwyQohcT7i1heXWGOBc_MDZWrWIMUXS9WG8FPaL3rGNkU8t2JQhoFhkvplxhU5NgYr14FONXQXtCce5vUYzbAs49uJqcX42nspvHICtimY3EoXc6BGIkw5Chqsj2K-cUESJLIBuP3ngT0uB9UaU2VTaYghyKEEgn5CZP92FjVs_wAIRL6FiV5Uj4GKdcHizmjlRLZjOrUfdALQEqq65XOY_MuC8jZ1FFyZiWjGnZYdqD49WReduo41-bdxmj1cYOnh4cLaWg7H7lx1KbIblxWZpkh--f-gwfNBe6xLjMEWw0Dwv8Qp5K475GEf0NeuHl3g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAeykepum0BHzghvHUcJ5scV0tXS-n2AIvoLbLjcQ-gTUWzHLjw1zvjZJcKEOJmJbYU6U1m5s2MZwBeaWV8Yn0mU8yIoJgkkVZpJ73JQwiWTS5fTp5f5LNP5uwyu9yCN5u7MIgYi89wyMuYy_dNveJQ2UmpMx61dA_uk93Pku621iZnQEQj5gxGaSqZBvQ5zESVJ2cfxxPigpooKmnskr3dO1YojlX5QxdHAzN9BPP1p3V1JV-Gq9YN6x-_dW38329_DLu9pynGnWg8gS1cPoWdO_0H9-DnuG27ckf5OYZI0Yspd5ewvHqLeC0-YGytWscooui7sV4JekTvWcvItpHdShDULDRezLjGpiHRxGZ1Iya_RO07ilN_hWLSlXA-g8X0dDGZyX4ig6yJZ7YSR97pEIiTjEKOqibrr5xTRIkswWw8euNNSIP3ZZ3aVNlgSnIpQiCtUJgi3YftZbPEAxAuoWN1XiDhY5xyRbBYOFIuuc2tRj0AtQaoqvtu5Tw042sVWYsqK8a0YkyrHtMBvN4cue5adfxr8x5jtNnYwzOA47UUVP3PfFNpMyJHLk-T_PDvp17Cg9lifl6dv7t4fwQPNZe9xCjNMWy331b4nPyW1r2I4noLnfbpJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Weighted+Federated+Deep+Reinforcement+Learning+for+Device-to-Device+Assisted+Heterogeneous+Collaborative+Edge+Caching&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Wang%2C+Xiaofei&rft.au=Li%2C+Ruibin&rft.au=Wang%2C+Chenyang&rft.au=Li%2C+Xiuhua&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=1&rft.spage=154&rft_id=info:doi/10.1109%2FJSAC.2020.3036946&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon