Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching
In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 39; no. 1; pp. 154 - 169 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies lack consideration of effective cooperation and adaptability to the dynamic network environments. In this article, based on the flexible trilateral cooperation among user equipment, edge base stations and a cloud server, we propose a D2D-assisted heterogeneous collaborative edge caching framework by jointly optimizing the node selection and cache replacement in mobile networks. We formulate the joint optimization problem as a Markov decision process, and use a deep Q-learning network to solve the long-term mixed integer linear programming problem. We further design an attention-weighted federated deep reinforcement learning (AWFDRL) model that uses federated learning to improve the training efficiency of the Q-learning network by considering the limited computing and storage capacity, and incorporates an attention mechanism to optimize the aggregation weights to avoid the imbalance of local model quality. We prove the convergence of the corresponding algorithm, and present simulation results to show the effectiveness of the proposed AWFDRL framework in reducing average delay of content access, improving hit rate and offloading traffic. |
---|---|
AbstractList | In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D) communication have been regarded as two promising techniques in next generation mobile networks and beyond. However, most existing related studies lack consideration of effective cooperation and adaptability to the dynamic network environments. In this article, based on the flexible trilateral cooperation among user equipment, edge base stations and a cloud server, we propose a D2D-assisted heterogeneous collaborative edge caching framework by jointly optimizing the node selection and cache replacement in mobile networks. We formulate the joint optimization problem as a Markov decision process, and use a deep Q-learning network to solve the long-term mixed integer linear programming problem. We further design an attention-weighted federated deep reinforcement learning (AWFDRL) model that uses federated learning to improve the training efficiency of the Q-learning network by considering the limited computing and storage capacity, and incorporates an attention mechanism to optimize the aggregation weights to avoid the imbalance of local model quality. We prove the convergence of the corresponding algorithm, and present simulation results to show the effectiveness of the proposed AWFDRL framework in reducing average delay of content access, improving hit rate and offloading traffic. |
Author | Leung, Victor C. M. Wang, Xiaofei Li, Xiuhua Li, Ruibin Wang, Chenyang Taleb, Tarik |
Author_xml | – sequence: 1 givenname: Xiaofei orcidid: 0000-0002-7223-1030 surname: Wang fullname: Wang, Xiaofei email: xiaofeiwang@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 2 givenname: Ruibin orcidid: 0000-0003-0001-9281 surname: Li fullname: Li, Ruibin email: leeruibin@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 3 givenname: Chenyang surname: Wang fullname: Wang, Chenyang email: chenyangwang@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 4 givenname: Xiuhua orcidid: 0000-0001-9041-0297 surname: Li fullname: Li, Xiuhua email: lixiuhua1988@gmail.com organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University), Ministry of Education, China – sequence: 5 givenname: Tarik orcidid: 0000-0003-1119-1239 surname: Taleb fullname: Taleb, Tarik email: tarik.taleb@aalto.fi organization: Department of Communications and Networking, School of Electrical Engineering, Aalto University, Espoo, Finland – sequence: 6 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. email: vleung@ieee.org organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
BookMark | eNp9kctKAzEUhoMo2KoPIG4GXE89ucxtWcZ6oyCo4HJIJydtSk1qkgqufHUzVFy4cJVD8n__gS9jcmidRULOKUwohebq4XnaThgwmHDgZSPKAzKiRVHnAFAfkhFUnOd1RctjMg5hDUCFqNmIfE1jRBuNs_krmuUqospuUKGXw3SNuM2e0FjtfI9vKZjNUXpr7DJLV-n9w_SYR5fvp2waggkDeYcRvVuiRbcLWes2G7lwqdR8YDZTS8xa2a9SzSk50nIT8OznPCEvN7OX9i6fP97et9N53gtgMcdKLZjWtGaVLhF6QQtYLKCEQgpBhUIllNBcK9X0XHKQWjS0oFrXFdSi5ifkcl-79e59hyF2a7fzNm3smKig5CWnZUpV-1TvXQgeddebKAc50Uuz6Sh0g-xukN0Nsrsf2Ymkf8itN2_Sf_7LXOwZg4i_-YYVrEmf9Q3N_44I |
CODEN | ISACEM |
CitedBy_id | crossref_primary_10_1016_j_comcom_2024_06_001 crossref_primary_10_1109_TWC_2023_3329375 crossref_primary_10_1109_JIOT_2021_3063686 crossref_primary_10_1109_TCOMM_2022_3208113 crossref_primary_10_1109_TVT_2023_3345863 crossref_primary_10_1155_2022_3501329 crossref_primary_10_1016_j_future_2024_107704 crossref_primary_10_1109_TSC_2022_3225473 crossref_primary_10_1109_JSTSP_2022_3224591 crossref_primary_10_1109_ACCESS_2023_3253765 crossref_primary_10_1109_TVT_2022_3206876 crossref_primary_10_1016_j_dcan_2022_10_015 crossref_primary_10_1109_TMC_2021_3139995 crossref_primary_10_1016_j_jisa_2023_103608 crossref_primary_10_1109_JIOT_2024_3495693 crossref_primary_10_1109_LCOMM_2024_3427847 crossref_primary_10_1186_s13677_024_00721_w crossref_primary_10_1109_TSC_2024_3489437 crossref_primary_10_1007_s10489_024_06032_6 crossref_primary_10_1109_TCOMM_2023_3259442 crossref_primary_10_1109_TNSE_2024_3375374 crossref_primary_10_1016_j_vehcom_2024_100844 crossref_primary_10_1109_JIOT_2023_3244621 crossref_primary_10_1109_JIOT_2021_3058363 crossref_primary_10_1109_TNSE_2021_3126021 crossref_primary_10_1109_TPDS_2023_3249797 crossref_primary_10_3390_electronics12091974 crossref_primary_10_1109_MNET_2023_3337245 crossref_primary_10_1109_TMC_2023_3237636 crossref_primary_10_1109_TCCN_2023_3340033 crossref_primary_10_1177_15501329221092932 crossref_primary_10_1109_ACCESS_2023_3302250 crossref_primary_10_1109_ACCESS_2024_3486775 crossref_primary_10_1109_TSC_2023_3247611 crossref_primary_10_1109_TITS_2022_3157056 crossref_primary_10_1109_TNSM_2022_3198074 crossref_primary_10_1109_TWC_2023_3253541 crossref_primary_10_1109_ACCESS_2022_3206020 crossref_primary_10_1109_TWC_2021_3108641 crossref_primary_10_1186_s13677_023_00472_0 crossref_primary_10_1016_j_apenergy_2024_123107 crossref_primary_10_1109_COMST_2024_3353265 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1007_s11276_021_02768_y crossref_primary_10_1109_TFUZZ_2021_3118733 crossref_primary_10_1109_TNSM_2024_3361796 crossref_primary_10_3390_app13053083 crossref_primary_10_1007_s10586_024_04893_7 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1109_TCE_2023_3327847 crossref_primary_10_1109_TVT_2023_3241959 crossref_primary_10_3390_electronics11091393 crossref_primary_10_1109_TWC_2023_3249756 crossref_primary_10_1145_3685930 crossref_primary_10_3390_electronics11213434 crossref_primary_10_1109_JIOT_2023_3290145 crossref_primary_10_1109_TPDS_2022_3201983 crossref_primary_10_1007_s13042_024_02119_1 crossref_primary_10_1109_TCSVT_2023_3255229 crossref_primary_10_1109_TSUSC_2022_3210564 crossref_primary_10_1109_TPDS_2023_3326187 crossref_primary_10_1109_TSC_2023_3340672 crossref_primary_10_1109_JIOT_2022_3188556 crossref_primary_10_1109_TMC_2024_3382013 crossref_primary_10_1145_3682076 crossref_primary_10_1016_j_apenergy_2021_117754 crossref_primary_10_1109_JIOT_2023_3335968 crossref_primary_10_1002_int_23036 crossref_primary_10_1109_JIOT_2021_3086910 crossref_primary_10_1109_JSAC_2021_3087232 crossref_primary_10_1142_S0218001424390014 crossref_primary_10_1109_JIOT_2023_3234705 crossref_primary_10_23919_ICN_2021_0021 crossref_primary_10_1109_JIOT_2023_3287187 crossref_primary_10_1109_TCOMM_2021_3132048 crossref_primary_10_1109_TMLCN_2023_3283228 crossref_primary_10_1007_s11276_022_03176_6 crossref_primary_10_1109_TCOMM_2023_3327278 crossref_primary_10_1109_JIOT_2021_3081626 crossref_primary_10_1145_3623398 crossref_primary_10_1109_JIOT_2021_3134964 crossref_primary_10_1007_s11280_021_00939_7 crossref_primary_10_1109_TKDE_2023_3332770 crossref_primary_10_1016_j_comnet_2024_110694 crossref_primary_10_1109_TNSE_2021_3076795 crossref_primary_10_1109_JIOT_2024_3470847 crossref_primary_10_1109_TPDS_2023_3264480 crossref_primary_10_1109_TVT_2023_3325036 crossref_primary_10_1016_j_eswa_2023_121982 crossref_primary_10_1088_1742_6596_2504_1_012049 crossref_primary_10_1109_TASE_2022_3221352 crossref_primary_10_1109_COMST_2024_3352910 crossref_primary_10_1016_j_sysarc_2024_103090 crossref_primary_10_1109_TNSE_2023_3260882 crossref_primary_10_1109_TWC_2022_3206236 |
Cites_doi | 10.1109/ACCESS.2019.2916314 10.1109/CONFLUENCE.2018.8442697 10.1109/TNET.2008.918081 10.1109/ACCESS.2019.2916178 10.1109/JSAC.2020.2986688 10.1109/IWQoS.2018.8624176 10.1109/GLOCOM.2018.8647616 10.1109/TNNLS.2019.2953131 10.1145/954339.954341 10.1109/JIOT.2019.2945640 10.1109/MNET.2019.1800286 10.1109/ACCESS.2019.2947067 10.1109/JIOT.2020.2986803 10.1109/JSAC.2018.2844658 10.1109/JIOT.2020.2980549 10.1145/346000.346003 10.1145/2517349.2522722 10.1109/MC.2004.1266293 10.1109/COMST.2020.2970550 10.1145/505696.505701 10.1109/TWC.2015.2468725 10.1109/TII.2019.2942179 10.1145/3372025 10.1109/TVT.2020.2973651 10.1109/JIOT.2020.2984887 10.1109/ACCESS.2020.2978082 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSAC.2020.3036946 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0008 |
EndPage | 169 |
ExternalDocumentID | 10_1109_JSAC_2020_3036946 9252973 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFB2101901; 2018YFC0809803; 2018YFF0214700 – fundername: Chongqing Research Program of Basic Research and Frontier Technology grantid: cstc2019jcyj-msxmX0589 funderid: 10.13039/501100013223 – fundername: National NSFC grantid: 62072332; 61902044; 62002260; 61672117; 62072060 funderid: 10.13039/501100001809 – fundername: Canadian Natural Sciences and Engineering Research Council funderid: 10.13039/501100000038 – fundername: Academy of Finland Project CSN grantid: 311654 funderid: 10.13039/501100002341 – fundername: 6Genesis Project grantid: 318927 – fundername: Chinese National Engineering Laboratory for Big Data System Computing Technology at Shenzhen University funderid: 10.13039/501100009019 – fundername: Fundamental Research Funds for the Central Universities grantid: 2020CDJQY-A022 funderid: 10.13039/501100012226 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c402t-e7db2ff1827f6e0c4150bb0605a4414ded4d4f3fdd9c3a30af49151ff8708483 |
IEDL.DBID | RIE |
ISSN | 0733-8716 |
IngestDate | Mon Jun 30 10:12:52 EDT 2025 Tue Jul 01 02:06:30 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Wed Aug 27 02:33:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-e7db2ff1827f6e0c4150bb0605a4414ded4d4f3fdd9c3a30af49151ff8708483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3529-2640 0000-0003-1119-1239 0000-0002-7223-1030 0000-0003-0001-9281 0000-0001-9041-0297 |
OpenAccessLink | https://research.aalto.fi/files/53663390/Wang_Attention_weighed_federated_deep_reinforcement.pdf |
PQID | 2470636316 |
PQPubID | 85481 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2470636316 ieee_primary_9252973 crossref_citationtrail_10_1109_JSAC_2020_3036946 crossref_primary_10_1109_JSAC_2020_3036946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan. 2021-1-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal on selected areas in communications |
PublicationTitleAbbrev | J-SAC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 li (ref41) 2019 bonawitz (ref28) 2019 bahdanau (ref39) 2014 ref2 xu (ref40) 2015 ref16 ref19 sweeney (ref17) 2000; 671 govier (ref35) 1997 mcmahan (ref18) 2016; 54 li (ref1) 2020 li (ref25) 2018 xie (ref29) 2019 tang (ref9) 2015 van (ref15) 2016 ref24 ref23 ref42 ref22 ref27 vaswani (ref20) 2017 ref8 ref7 li (ref26) 2019 ref4 ref3 kleinberg (ref38) 2004 ref6 ref5 kone?ný (ref21) 2016 |
References_xml | – ident: ref16 doi: 10.1109/ACCESS.2019.2916314 – ident: ref36 doi: 10.1109/CONFLUENCE.2018.8442697 – year: 1997 ident: ref35 publication-title: McGill-Queen's Press-MQUP – ident: ref33 doi: 10.1109/TNET.2008.918081 – ident: ref14 doi: 10.1109/ACCESS.2019.2916178 – start-page: 2094 year: 2016 ident: ref15 article-title: Deep reinforcement learning with double q-learning publication-title: Proc AAAI – ident: ref4 doi: 10.1109/JSAC.2020.2986688 – ident: ref13 doi: 10.1109/IWQoS.2018.8624176 – volume: 671 start-page: 1 year: 2000 ident: ref17 article-title: Simple demographics often identify people uniquely publication-title: Health (San Francisco) – ident: ref23 doi: 10.1109/GLOCOM.2018.8647616 – ident: ref30 doi: 10.1109/TNNLS.2019.2953131 – ident: ref11 doi: 10.1145/954339.954341 – ident: ref19 doi: 10.1109/JIOT.2019.2945640 – start-page: 373 year: 2015 ident: ref9 article-title: RIPQ: Advanced photo caching on flash for Facebook publication-title: Proc ACM FAST – year: 2019 ident: ref26 article-title: Asynchronous federated learning with differential privacy for edge intelligence publication-title: arXiv 1912 07902 – ident: ref24 doi: 10.1109/MNET.2019.1800286 – ident: ref8 doi: 10.1109/ACCESS.2019.2947067 – year: 2016 ident: ref21 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv 1610 05492 – ident: ref37 doi: 10.1109/JIOT.2020.2986803 – ident: ref34 doi: 10.1109/JSAC.2018.2844658 – year: 2018 ident: ref25 article-title: Federated optimization in heterogeneous networks publication-title: arXiv 1812 06127 – start-page: 1 year: 2020 ident: ref1 article-title: Edge caching replacement optimization for D2D wireless networks via weighted distributed DQN publication-title: Proc IEEE Wireless Commun Netw Conf (WCNC) – ident: ref2 doi: 10.1109/JIOT.2020.2980549 – ident: ref42 doi: 10.1145/346000.346003 – year: 2019 ident: ref41 article-title: On the convergence of FedAvg on non-IID data publication-title: arXiv 1907 02189 – ident: ref10 doi: 10.1145/2517349.2522722 – year: 2019 ident: ref29 article-title: Asynchronous federated optimization publication-title: arXiv 1903 03934 – ident: ref7 doi: 10.1109/MC.2004.1266293 – ident: ref3 doi: 10.1109/COMST.2020.2970550 – year: 2004 ident: ref38 publication-title: Algorithm Design – start-page: 2048 year: 2015 ident: ref40 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc ICML – ident: ref12 doi: 10.1145/505696.505701 – year: 2019 ident: ref28 article-title: Towards federated learning at scale: System design publication-title: arXiv 1902 01046 – ident: ref6 doi: 10.1109/TWC.2015.2468725 – ident: ref27 doi: 10.1109/TII.2019.2942179 – volume: 54 start-page: 1273 year: 2016 ident: ref18 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc AISTATS – year: 2014 ident: ref39 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv 1409 0473 – ident: ref22 doi: 10.1145/3372025 – ident: ref31 doi: 10.1109/TVT.2020.2973651 – ident: ref5 doi: 10.1109/JIOT.2020.2984887 – ident: ref32 doi: 10.1109/ACCESS.2020.2978082 – start-page: 5998 year: 2017 ident: ref20 article-title: Attention is all you need publication-title: Proc NIPS |
SSID | ssj0014482 |
Score | 2.6242814 |
Snippet | In order to meet the growing demands for multimedia service access and release the pressure of the core network, edge caching and device-to-device (D2D)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 154 |
SubjectTerms | Algorithms attention-weighted federated learning Caching Cloud computing Collaboration Computational modeling Cooperation Data models Deep learning deep reinforcement learning Delays device to device Device-to-device communication Edge caching Integer programming Linear programming Machine learning Markov processes Mixed integer Multimedia Optimization Servers Storage capacity Training Wireless networks |
Title | Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching |
URI | https://ieeexplore.ieee.org/document/9252973 https://www.proquest.com/docview/2470636316 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB0Bp3IAWkAspZUPPSG8OI43mxxXC6sVEj20oHKL7HjMAbRZQZYDF369M052QS2qerMSW4r0JjPzZsYzAN-0Mj6xfiBTHBBBMUkirdJOepOFECybXL6cfPk9m16bi5vBzRqcrO7CIGIsPsM-L2Mu39fVgkNlp4Ue8KildVgn4tbe1VplDIhmxIzBME0lk4Aug5mo4vTi52hMTFATQSV9XbCv-8YGxaEqf2niaF4m23C5_LC2quSuv2hcv3r-o2fj_375Dmx1fqYYtYLxEdZw9gk233Qf3IWXUdO0xY7yVwyQohcT7i1heXWGOBc_MDZWrWIMUXS9WG8FPaL3rGNkU8t2JQhoFhkvplxhU5NgYr14FONXQXtCce5vUYzbAs49uJqcX42nspvHICtimY3EoXc6BGIkw5Chqsj2K-cUESJLIBuP3ngT0uB9UaU2VTaYghyKEEgn5CZP92FjVs_wAIRL6FiV5Uj4GKdcHizmjlRLZjOrUfdALQEqq65XOY_MuC8jZ1FFyZiWjGnZYdqD49WReduo41-bdxmj1cYOnh4cLaWg7H7lx1KbIblxWZpkh--f-gwfNBe6xLjMEWw0Dwv8Qp5K475GEf0NeuHl3g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAeykepum0BHzghvHUcJ5scV0tXS-n2AIvoLbLjcQ-gTUWzHLjw1zvjZJcKEOJmJbYU6U1m5s2MZwBeaWV8Yn0mU8yIoJgkkVZpJ73JQwiWTS5fTp5f5LNP5uwyu9yCN5u7MIgYi89wyMuYy_dNveJQ2UmpMx61dA_uk93Pku621iZnQEQj5gxGaSqZBvQ5zESVJ2cfxxPigpooKmnskr3dO1YojlX5QxdHAzN9BPP1p3V1JV-Gq9YN6x-_dW38329_DLu9pynGnWg8gS1cPoWdO_0H9-DnuG27ckf5OYZI0Yspd5ewvHqLeC0-YGytWscooui7sV4JekTvWcvItpHdShDULDRezLjGpiHRxGZ1Iya_RO07ilN_hWLSlXA-g8X0dDGZyX4ig6yJZ7YSR97pEIiTjEKOqibrr5xTRIkswWw8euNNSIP3ZZ3aVNlgSnIpQiCtUJgi3YftZbPEAxAuoWN1XiDhY5xyRbBYOFIuuc2tRj0AtQaoqvtu5Tw042sVWYsqK8a0YkyrHtMBvN4cue5adfxr8x5jtNnYwzOA47UUVP3PfFNpMyJHLk-T_PDvp17Cg9lifl6dv7t4fwQPNZe9xCjNMWy331b4nPyW1r2I4noLnfbpJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Weighted+Federated+Deep+Reinforcement+Learning+for+Device-to-Device+Assisted+Heterogeneous+Collaborative+Edge+Caching&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Wang%2C+Xiaofei&rft.au=Li%2C+Ruibin&rft.au=Wang%2C+Chenyang&rft.au=Li%2C+Xiuhua&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=1&rft.spage=154&rft_id=info:doi/10.1109%2FJSAC.2020.3036946&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |