Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging

Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal mot...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 11; pp. 3523 - 3534
Main Authors Singh, Ayush, Salehi, Seyed Sadegh Mohseni, Gholipour, Ali
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2020.2998600

Cover

Abstract Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. The current process is highly operator-dependent, increases scanner usage and cost, and significantly increases the length of fetal MRI scans which makes them hard to tolerate for pregnant women. To help build automatic MRI motion tracking and navigation systems to overcome the limitations of the current process and improve fetal imaging, we have developed a new real-time image-based motion tracking method based on deep learning that learns to predict fetal motion directly from acquired images. Our method is based on a recurrent neural network, composed of spatial and temporal encoder-decoders, that infers motion parameters from anatomical features extracted from sequences of acquired slices. We compared our trained network on held-out test sets (including data with different characteristics, e.g. different fetuses scanned at different ages, and motion trajectories recorded from volunteer subjects) with networks designed for estimation as well as methods adopted to make predictions. The results show that our method outperformed alternative techniques, and achieved real-time performance with average errors of 3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep predictive motion tracking technique can be used to assess fetal movements, to guide slice acquisitions, and to build navigation systems for fetal MRI.
AbstractList Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. The current process is highly operator-dependent, increases scanner usage and cost, and significantly increases the length of fetal MRI scans which makes them hard to tolerate for pregnant women. To help build automatic MRI motion tracking and navigation systems to overcome the limitations of the current process and improve fetal imaging, we have developed a new real-time image-based motion tracking method based on deep learning that learns to predict fetal motion directly from acquired images. Our method is based on a recurrent neural network, composed of spatial and temporal encoder-decoders, that infers motion parameters from anatomical features extracted from sequences of acquired slices. We compared our trained network on held-out test sets (including data with different characteristics, e.g. different fetuses scanned at different ages, and motion trajectories recorded from volunteer subjects) with networks designed for estimation as well as methods adopted to make predictions. The results show that our method outperformed alternative techniques, and achieved real-time performance with average errors of 3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep predictive motion tracking technique can be used to assess fetal movements, to guide slice acquisitions, and to build navigation systems for fetal MRI.
Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. The current process is highly operator-dependent, increases scanner usage and cost, and significantly increases the length of fetal MRI scans which makes them hard to tolerate for pregnant women. To help build automatic MRI motion tracking and navigation systems to overcome the limitations of the current process and improve fetal imaging, we have developed a new real-time image-based motion tracking method based on deep learning that learns to predict fetal motion directly from acquired images. Our method is based on a recurrent neural network, composed of spatial and temporal encoder-decoders, that infers motion parameters from anatomical features extracted from sequences of acquired slices. We compared our trained network on held-out test sets (including data with different characteristics, e.g. different fetuses scanned at different ages, and motion trajectories recorded from volunteer subjects) with networks designed for estimation as well as methods adopted to make predictions. The results show that our method outperformed alternative techniques, and achieved real-time performance with average errors of 3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep predictive motion tracking technique can be used to assess fetal movements, to guide slice acquisitions, and to build navigation systems for fetal MRI.Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. The current process is highly operator-dependent, increases scanner usage and cost, and significantly increases the length of fetal MRI scans which makes them hard to tolerate for pregnant women. To help build automatic MRI motion tracking and navigation systems to overcome the limitations of the current process and improve fetal imaging, we have developed a new real-time image-based motion tracking method based on deep learning that learns to predict fetal motion directly from acquired images. Our method is based on a recurrent neural network, composed of spatial and temporal encoder-decoders, that infers motion parameters from anatomical features extracted from sequences of acquired slices. We compared our trained network on held-out test sets (including data with different characteristics, e.g. different fetuses scanned at different ages, and motion trajectories recorded from volunteer subjects) with networks designed for estimation as well as methods adopted to make predictions. The results show that our method outperformed alternative techniques, and achieved real-time performance with average errors of 3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep predictive motion tracking technique can be used to assess fetal movements, to guide slice acquisitions, and to build navigation systems for fetal MRI.
Author Singh, Ayush
Salehi, Seyed Sadegh Mohseni
Gholipour, Ali
Author_xml – sequence: 1
  givenname: Ayush
  orcidid: 0000-0002-3795-5623
  surname: Singh
  fullname: Singh, Ayush
  email: ayush.singh@childrens.harvard.edu
  organization: Department of Radiology, Boston Children's Hospital, Boston, MA, USA
– sequence: 2
  givenname: Seyed Sadegh Mohseni
  orcidid: 0000-0001-6085-3580
  surname: Salehi
  fullname: Salehi, Seyed Sadegh Mohseni
  email: sadegh.msalehi@gmail.com
  organization: Hyperfine Research Inc., Guilford, CT, USA
– sequence: 3
  givenname: Ali
  orcidid: 0000-0001-7699-4564
  surname: Gholipour
  fullname: Gholipour, Ali
  email: ali.gholipour@childrens.harvard.edu
  organization: Department of Radiology, Boston Children's Hospital, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746102$$D View this record in MEDLINE/PubMed
BookMark eNp9Uc9rFDEUDlKx29W7IMiAFy-zJi-_Jh4KpVpd6KLICoKHkM28rqmzyTiTLfjfm3a3i_bgJe_w_cj73ndCjmKKSMhzRmeMUfNmuZjPgAKdgTGNovQRmTApmxqk-HZEJhR0U1Oq4JicjOM1pUxIap6QYw5aKEZhQr6_Q-yrzwO2wedwg9Ui5ZBitRyc_xniugqxWrh1xBx89QXHFF30WM03bl3Qt9VZ33fBuztNTtUFZtfdo0_J4yvXjfhsP6fk68X75fnH-vLTh_n52WXtBYVcty2C0oxpwVqvG1CgZCMcd7LRnkmEpuW8MWC8c05yAKE8YyuzMqi5Acan5HTn229XG2w9xjy4zvZD2Ljht00u2H-RGH7YdbqxWjeaGVEMXu8NhvRri2O2mzB67DoXMW1HC4JTrhWUd0pePaBep-0QS7zCkkqCVkIW1su_Nzqscn_3QqA7gh_SOA54daAwam-rtaVae1ut3VdbJOqBxId8d_iSKXT_E77YCQMiHv4xjHJVgv0B0Nyu2Q
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2022_3217725
crossref_primary_10_1016_j_mric_2021_06_007
crossref_primary_10_12998_wjcc_v11_i16_3725
crossref_primary_10_1016_j_bspc_2022_104484
crossref_primary_10_1109_TIP_2023_3333195
crossref_primary_10_1002_nbm_5248
crossref_primary_10_1186_s41747_023_00358_5
crossref_primary_10_1259_bjr_20211205
crossref_primary_10_1109_TMI_2022_3208277
crossref_primary_10_1002_jmri_27759
crossref_primary_10_1109_TBME_2023_3243436
crossref_primary_10_1002_mrm_29803
crossref_primary_10_1002_nano_202200219
crossref_primary_10_1002_mrm_29106
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_3390_biomedicines12122929
crossref_primary_10_1002_jmri_27794
crossref_primary_10_1002_uog_29109
crossref_primary_10_1016_j_neuroimage_2024_120603
crossref_primary_10_3390_diagnostics13142355
Cites_doi 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1007/978-3-030-00928-1_36
10.1038/323533a0
10.1007/978-3-319-46466-4_22
10.1109/ICRA.2017.7989233
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2015.7298758
10.1016/j.neuroimage.2017.04.004
10.1109/TMI.2017.2737081
10.1109/MITS.2014.2357038
10.1109/TMI.2015.2415453
10.1109/CVPR.2018.00762
10.1109/TMI.2020.2974844
10.1109/TMI.2017.2721362
10.1109/TMI.2010.2051680
10.1002/mrm.24314
10.1007/978-3-319-46448-0_45
10.1109/CVPR.2018.00935
10.1109/LRA.2018.2792152
10.1109/IEMBS.2011.6091385
10.1002/mrm.22176
10.1109/CVPR.2017.497
10.1002/mrm.27934
10.1007/978-3-319-46484-8_29
10.3174/ajnr.A5694
10.1016/j.neuroimage.2006.01.015
10.1109/TMI.2018.2798801
10.1016/j.media.2017.04.010
10.1002/cmr.a.21321
10.1109/ISBI.2015.7163836
10.1109/TMI.2018.2866442
10.1007/s10237-015-0738-1
10.1016/j.media.2012.07.004
10.1109/TMI.2016.2555244
10.1097/RMR.0000000000000219
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1016/j.acra.2006.05.003
10.1109/ISCAS.2017.8050867
10.1109/ISBI.2018.8363675
10.1109/CVPR.2018.00542
10.1016/j.neuroimage.2019.116324
10.3174/ajnr.A3128
10.1109/ICCP.2009.5284727
10.1109/ICCV.2015.308
10.1016/j.neuroimage.2017.04.033
10.1109/CVPR.2017.531
10.1109/IVS.2012.6232277
10.1007/978-3-319-66185-8_34
10.1038/s41598-017-00525-w
10.1109/ITSC.2017.8317904
10.1002/mrm.27381
10.1007/3-540-46805-6_19
10.1002/mrm.27705
10.1007/s00247-016-3677-9
10.1016/j.neubiorev.2018.06.001
10.1109/TMI.2007.895456
10.1109/TMI.2009.2030679
10.1002/mrm.27613
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2020.2998600
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 3534
ExternalDocumentID PMC7787194
32746102
10_1109_TMI_2020_2998600
9103624
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Technological Innovations in Neuroscience Award from the McKnight Foundation
  funderid: 10.13039/100005270
– fundername: Department of Radiology at Boston Children’s Hospital
– fundername: National Institutes of Health (NIH)
  grantid: R01 EB018988; R01 NS106030
  funderid: 10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: R01 NS106030
– fundername: NIBIB NIH HHS
  grantid: R01 EB018988
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c402t-dde26711741dc782626584a3a587c15e28d338929caaa532246c11b9b9e739213
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:06:40 EDT 2025
Fri Jul 11 07:25:37 EDT 2025
Mon Jun 30 04:43:07 EDT 2025
Thu Apr 03 06:53:58 EDT 2025
Tue Jul 01 03:16:03 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Wed Aug 27 02:31:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-dde26711741dc782626584a3a587c15e28d338929caaa532246c11b9b9e739213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6085-3580
0000-0002-3795-5623
0000-0001-7699-4564
PMID 32746102
PQID 2456527645
PQPubID 85460
PageCount 12
ParticipantIDs pubmed_primary_32746102
proquest_miscellaneous_2430376230
crossref_citationtrail_10_1109_TMI_2020_2998600
proquest_journals_2456527645
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7787194
crossref_primary_10_1109_TMI_2020_2998600
ieee_primary_9103624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
hochreiter (ref52) 2001
ref17
ref16
ref19
ref18
he (ref51) 2016
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
mahendran (ref31) 2017; 1
ref49
piontelli (ref62) 2014
ref8
ref7
ref9
ref4
ref6
ref5
rumelhart (ref38) 1986; 323
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ondruska (ref41) 2016
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
ref28
ref27
sutskever (ref40) 2014
ref29
(ref3) 2019
ref60
ref61
References_xml – ident: ref4
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– start-page: 630
  year: 2016
  ident: ref51
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comput Vis
– ident: ref20
  doi: 10.1007/978-3-030-00928-1_36
– volume: 323
  start-page: 533
  year: 1986
  ident: ref38
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref27
  doi: 10.1007/978-3-319-46466-4_22
– ident: ref28
  doi: 10.1109/ICRA.2017.7989233
– ident: ref26
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref29
  doi: 10.1109/CVPR.2015.7298758
– start-page: 3104
  year: 2014
  ident: ref40
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1016/j.neuroimage.2017.04.004
– ident: ref18
  doi: 10.1109/TMI.2017.2737081
– ident: ref39
  doi: 10.1109/MITS.2014.2357038
– start-page: 3361
  year: 2016
  ident: ref41
  article-title: Deep tracking: Seeing beyond seeing using recurrent neural networks
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref17
  doi: 10.1109/TMI.2015.2415453
– ident: ref33
  doi: 10.1109/CVPR.2018.00762
– ident: ref57
  doi: 10.1109/TMI.2020.2974844
– ident: ref49
  doi: 10.1109/TMI.2017.2721362
– ident: ref15
  doi: 10.1109/TMI.2010.2051680
– ident: ref6
  doi: 10.1002/mrm.24314
– ident: ref43
  doi: 10.1007/978-3-319-46448-0_45
– ident: ref45
  doi: 10.1109/CVPR.2018.00935
– ident: ref47
  doi: 10.1109/LRA.2018.2792152
– ident: ref55
  doi: 10.1109/IEMBS.2011.6091385
– ident: ref7
  doi: 10.1002/mrm.22176
– ident: ref56
  doi: 10.1109/CVPR.2017.497
– ident: ref8
  doi: 10.1002/mrm.27934
– ident: ref32
  doi: 10.1007/978-3-319-46484-8_29
– ident: ref63
  doi: 10.3174/ajnr.A5694
– ident: ref54
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: ref36
  doi: 10.1109/TMI.2018.2798801
– ident: ref21
  doi: 10.1016/j.media.2017.04.010
– ident: ref11
  doi: 10.1002/cmr.a.21321
– ident: ref22
  doi: 10.1109/ISBI.2015.7163836
– ident: ref25
  doi: 10.1109/TMI.2018.2866442
– ident: ref61
  doi: 10.1007/s10237-015-0738-1
– ident: ref16
  doi: 10.1016/j.media.2012.07.004
– ident: ref37
  doi: 10.1109/TMI.2016.2555244
– ident: ref65
  doi: 10.1097/RMR.0000000000000219
– ident: ref5
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– ident: ref12
  doi: 10.1016/j.acra.2006.05.003
– ident: ref46
  doi: 10.1109/ISCAS.2017.8050867
– ident: ref48
  doi: 10.1109/ISBI.2018.8363675
– year: 2019
  ident: ref3
  publication-title: Partnering With Families to Minimize Exposure to Anesthesia
– ident: ref34
  doi: 10.1109/CVPR.2018.00542
– ident: ref53
  doi: 10.1016/j.neuroimage.2019.116324
– ident: ref1
  doi: 10.3174/ajnr.A3128
– ident: ref59
  doi: 10.1109/ICCP.2009.5284727
– ident: ref30
  doi: 10.1109/ICCV.2015.308
– ident: ref19
  doi: 10.1016/j.neuroimage.2017.04.033
– ident: ref44
  doi: 10.1109/CVPR.2017.531
– ident: ref60
  doi: 10.1109/IVS.2012.6232277
– ident: ref35
  doi: 10.1007/978-3-319-66185-8_34
– ident: ref23
  doi: 10.1038/s41598-017-00525-w
– ident: ref42
  doi: 10.1109/ITSC.2017.8317904
– ident: ref10
  doi: 10.1002/mrm.27381
– ident: ref50
  doi: 10.1007/3-540-46805-6_19
– start-page: 237
  year: 2001
  ident: ref52
  article-title: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
  publication-title: A Field Guide to Dynamical Recurrent Neural Networks
– ident: ref9
  doi: 10.1002/mrm.27705
– volume: 1
  start-page: 4
  year: 2017
  ident: ref31
  article-title: 3D pose regression using convolutional neural networks
  publication-title: Proc IEEE Int Conf Comput Vis Workshops (ICCVW)
– ident: ref2
  doi: 10.1007/s00247-016-3677-9
– year: 2014
  ident: ref62
  publication-title: Development of Normal Fetal Movements
– ident: ref64
  doi: 10.1016/j.neubiorev.2018.06.001
– ident: ref13
  doi: 10.1109/TMI.2007.895456
– ident: ref14
  doi: 10.1109/TMI.2009.2030679
– ident: ref58
  doi: 10.1002/mrm.27613
SSID ssj0014509
Score 2.4702454
Snippet Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3523
SubjectTerms Coders
Convolutional neural network
Diagnostic systems
Dynamics
Encoders-Decoders
Feature extraction
fetal MRI
Fetuses
Head
Image acquisition
Image quality
image registration
long short term memory
Magnetic resonance imaging
Medical imaging
Monitoring
Motion detection
motion tracking
MRI
Navigation systems
Neural networks
Pose estimation
prediction
Predictions
Pregnancy
Real time
recurrent neural network
Recurrent neural networks
Resonance
Test sets
Three-dimensional displays
Tracking
Title Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging
URI https://ieeexplore.ieee.org/document/9103624
https://www.ncbi.nlm.nih.gov/pubmed/32746102
https://www.proquest.com/docview/2456527645
https://www.proquest.com/docview/2430376230
https://pubmed.ncbi.nlm.nih.gov/PMC7787194
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC7Ug6wHn6vGFy14WdjMpDuviTdRBxUiHhSEPYROp2ZX1Ixo5uKvt6rzcBRZvA3pmpBQ1VVfpbq-AjhIJF3HQrpMxeIGEskP6jx0B6iTBE008uz0hvQyOrsJLm7D2xn43fXCIKI9fIY9_mlr-cXYTPhTWZ9CG_nbYBZmyczqXq2uYhCE9XEOxYyxXqTakqSX9K_Tc0oEldcj1zuIuJdtKgTZmSpfwcvPpySnws5wCdL2gevTJve9SZX3zOsnLsfvvtEyLDb4UxzVBrMCM1iuwsIUK-EqzKdNvX0N_pwgPomrZ77AflGkduiPoAhn-Bu7uCtFqv-W3AkpuBLA9B0ozh_t7KNDcfReHhfVWAyRoH67-hNuhqfXx2duM47BNZRkVi45QhXFklIYWRgCFpQKEXrRvg4HsZEhqkFB-S7BLaO1Dn1mqjNS5kmeYEwoTPrrMFeOS9wEUVAMzJWKR95IBYXxtc59zsRyVhPtWwf6rYYy03CV88iMh8zmLF6SkU4zFs0anTrwq_vHU83T8R_ZNdZEJ9cowYGd1giyZiO_ZLYurOIoCB3Y75ZpC3JdRZc4nrAM4QAKKj7deaO2me7ePmX9hFCVA_EHa-oEmN7740p598_SfMdk5DIJtr5-2m34we9Ut0XuwFz1PMFdwkdVvmc3xhvUOAp-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLaASgUOffBo09J2KnFBanYzk9emN9R2tdsS1MMiIfUQTSZeQEAWQfbCr8eePLoghLhFGSdK5Bn783j8GWA3kXQfC-kyFYsbSCQ7qPPQHaBOEjTR1LPdG9LDaHQU_D4Oj5fgW1cLg4j28Bn2-NLm8ouZmfNWWZ9cG9nbYBlekN8Pwrpaq8sZBGF9oEMxZ6wXqTYp6SX9STqmUFB5PTK-g4ir2RackO2q8hjAfHhOcsHxDF9D2n5yfd7kvDev8p65fcDm-Nx_egOvGgQq9usp8xaWsNyA9QVewg14mTYZ90349xPxSvy95htsGUVq2_4I8nGGd9nFWSlSfVJyLaTgXAATeKAYX9ruR9_F_v8EuahmYogE9tvRLTga_pr8GLlNQwbXUJhZuWQKVRRLCmJkYQhaUDBE-EX7OhzERoaoBgVFvAS4jNY69JmrzkiZJ3mCMeEw6W_DSjkr8T2IgrxgrlQ89aYqKIyvde5zLJazmmjlOtBvNZSZhq2cm2ZcZDZq8ZKMdJqxaNbo1IG97omrmqnjCdlN1kQn1yjBgZ12EmTNUr7JbGZYxVEQOvC1G6ZFyJkVXeJszjKEBMit-PTmd_Wc6d7tU9xPGFU5EN-bTZ0AE3zfHynPTi3Rd0zWVCbBh8e_9gusjibpQXYwPvzzEdb4_-oiyR1Yqa7n-InQUpV_tovkDudCDcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Predictive+Motion+Tracking+in+Magnetic+Resonance+Imaging%3A+Application+to+Fetal+Imaging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Singh%2C+Ayush&rft.au=Seyed+Sadegh+Mohseni+Salehi&rft.au=Gholipour%2C+Ali&rft.date=2020-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=11&rft.spage=3523&rft_id=info:doi/10.1109%2FTMI.2020.2998600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon