A NOVEL 3D INTELLIGENT FUZZY ALGORITHM BASED ON MINKOWSKI-CLUSTERING

Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29...

Full description

Saved in:
Bibliographic Details
Published inInternational archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLII-4/W4; pp. 293 - 297
Main Authors Toori, S., Esmaeily, A.
Format Journal Article
LanguageEnglish
Published Copernicus Publications 27.09.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29 years using remote sensing technology. The main purpose of this research is to evaluate the changes in vegetation mass using a new process by combination of intelligent NDVI fuzzy clustering and Minkowski distance operation. The dataset includes the images of Landsat8 and Landsat TM, from 1989 to 2016. For each year three images of three continuous days were used to identify vegetation impact and recovery. The result was a 3D NDVI image, with one dimension for each day NDVI. The next step was the classification procedure which is a complicated process of categorizing pixels into a finite number of separate classes, based on their data values. If a pixel satisfies a certain set of standards, the pixel is allocated to the class that corresponds to those criteria. This method is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. The result was a fuzzy one dimensional image. This image was also computed for the next 28 years. The classification was done in both specified urban and natural park areas of Tehran. Experiments showed that our method worked better in classifying image pixels in comparison with the standard classification methods.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLII-4-W4-293-2017