A law of the iterated logarithm for an estimate of frequency

A form of the law of the iterated logarithm is proved for the estimate of the frequency, ω 0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate, ω , is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is { T...

Full description

Saved in:
Bibliographic Details
Published inStochastic processes and their applications Vol. 22; no. 1; pp. 103 - 109
Main Authors Hannan, E.J., Mackisack, M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.1986
Elsevier Science
Elsevier
SeriesStochastic Processes and their Applications
Subjects
Online AccessGet full text
ISSN0304-4149
1879-209X
DOI10.1016/0304-4149(86)90117-1

Cover

Abstract A form of the law of the iterated logarithm is proved for the estimate of the frequency, ω 0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate, ω , is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is { T 3 log log T } 1/2 ( ω−ω 0 whose limit superior is a.s. finite.
AbstractList A form of the law of the iterated logarithm is proved for the estimate of the frequency,[omega]0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate,, is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is whose limit superior is a.s. finite.
A form of the law of the iterated logarithm is proved for the estimate of the frequency, ω 0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate, ω , is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is { T 3 log log T } 1/2 ( ω−ω 0 whose limit superior is a.s. finite.
Author Mackisack, M.
Hannan, E.J.
Author_xml – sequence: 1
  givenname: E.J.
  surname: Hannan
  fullname: Hannan, E.J.
– sequence: 2
  givenname: M.
  surname: Mackisack
  fullname: Mackisack, M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8811262$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeespapps/v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103-109.htm$$DView record in RePEc
BookMark eNqFkE9P3DAQxS20SN2FfoMecuAAh7SexJvYqEJarfoHhMSFSr1ZE2fMGmWT1Dag_fY4XeDQQzmMnyW_9xvrLdisH3pi7BPwz8Ch-sJLLnIBQp3K6kxxgDqHAzYHWau84Or3jM3fLB_YIoR7zjkUBczZ11XW4VM22CxuKHORPEZqs264Q-_iZpvZwWfYZxSi26anyWk9_Xmg3uyO2aHFLtDHFz1iv75_u13_zK9vflyuV9e5EbyIualks6QaS8srWUsFHK0kJSUqACMU1k0roBIWlDCmQVtLLpu2lEvbNNUSyyN2ted6Gsno0aev-J0mojDiOAb9qEssinTs0oCSVRI3XdOMk_JSA1d6E7cJdrKHjRgMdtZjb1x4g0oJUFRFsp3vbcYPIXiy2riI0Q199Oi6hNNT93oqVk_F6rT1b_caUlj8E37FvxO72McolfnoyOtgXCqaWufJRN0O7v-AZ3rQm5Y
CODEN STOPB7
CitedBy_id crossref_primary_10_1007_BF02015141
crossref_primary_10_1017_S0001867800016980
crossref_primary_10_2307_1427391
crossref_primary_10_1016_j_jmva_2019_104563
crossref_primary_10_1111_rssc_12112
crossref_primary_10_1111_j_1467_9892_1993_tb00155_x
crossref_primary_10_1214_aop_1022677270
crossref_primary_10_1111_j_1467_9892_1994_tb00216_x
Cites_doi 10.1016/0047-259X(83)90017-9
10.1007/BF00533484
10.2307/3212772
10.2307/1426656
ContentType Journal Article
Copyright 1986
1986 INIST-CNRS
Copyright_xml – notice: 1986
– notice: 1986 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/0304-4149(86)90117-1
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-209X
EndPage 109
ExternalDocumentID eeespapps_v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103_109_htm
8811262
10_1016_0304_4149_86_90117_1
0304414986901171
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
5VS
63O
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
0R
1
8P
ADACO
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c402t-c68b5e7a3f06878910af8e988a911c49a7bd4164f194ccbaf7808bd385fbb65a3
IEDL.DBID IXB
ISSN 0304-4149
IngestDate Wed Aug 18 03:10:07 EDT 2021
Wed Apr 02 07:12:48 EDT 2025
Tue Jul 01 03:23:53 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Fri Feb 23 02:31:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords periodogram
weak mixing
integrated logarithm
oscillatory frequency
Stochastic convergence
Law of iterated logarithm
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-c68b5e7a3f06878910af8e988a911c49a7bd4164f194ccbaf7808bd385fbb65a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/0304414986901171
PageCount 7
ParticipantIDs repec_primary_eeespapps_v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103_109_htm
pascalfrancis_primary_8811262
crossref_citationtrail_10_1016_0304_4149_86_90117_1
crossref_primary_10_1016_0304_4149_86_90117_1
elsevier_sciencedirect_doi_10_1016_0304_4149_86_90117_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1986-05-01
PublicationDateYYYYMMDD 1986-05-01
PublicationDate_xml – month: 05
  year: 1986
  text: 1986-05-01
  day: 01
PublicationDecade 1980
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Stochastic Processes and their Applications
PublicationTitle Stochastic processes and their applications
PublicationYear 1986
Publisher Elsevier B.V
Elsevier Science
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier
References Gordin (BIB2) 1969; 10
Hannan (BIB4) 1973; 14
Rozanov (BIB6) 1967
Hannan (BIB3) 1973; 10
Zygmund (BIB9) 1968
Walters (BIB8) 1975
Hong-zhi, Zhao-guo, Harman (BIB1) 1983; 13
Stout (BIB7) 1974
Hannan (BIB5) 1978; 10
Gordin (10.1016/0304-4149(86)90117-1_BIB2) 1969; 10
Hannan (10.1016/0304-4149(86)90117-1_BIB5) 1978; 10
Hannan (10.1016/0304-4149(86)90117-1_BIB4) 1973; 14
Rozanov (10.1016/0304-4149(86)90117-1_BIB6) 1967
Walters (10.1016/0304-4149(86)90117-1_BIB8) 1975
Stout (10.1016/0304-4149(86)90117-1_BIB7) 1974
Hong-zhi (10.1016/0304-4149(86)90117-1_BIB1) 1983; 13
Hannan (10.1016/0304-4149(86)90117-1_BIB3) 1973; 10
Zygmund (10.1016/0304-4149(86)90117-1_BIB9) 1968
References_xml – year: 1967
  ident: BIB6
  article-title: Stationary Random Processes
– year: 1975
  ident: BIB8
  article-title: Ergodic Theory—Introductory Lectures
– volume: 10
  start-page: 1174
  year: 1969
  end-page: 1176
  ident: BIB2
  article-title: The central limit theorem for stationary processes
  publication-title: Soviet Math. Dokl.
– year: 1974
  ident: BIB7
  article-title: Almost Sure Convergence
– volume: 10
  start-page: 510
  year: 1973
  end-page: 519
  ident: BIB3
  article-title: The estimation of frequency
  publication-title: J. Appl. Prob.
– volume: 13
  start-page: 383
  year: 1983
  end-page: 400
  ident: BIB1
  article-title: The maximum of the periodogram
  publication-title: J. Multivar. Analysis
– volume: 14
  start-page: 157
  year: 1973
  end-page: 170
  ident: BIB4
  article-title: Central limit theorems for time series regression
  publication-title: Z. Wahrsch. Verw. Geb.
– volume: 10
  start-page: 740
  year: 1978
  end-page: 743
  ident: BIB5
  article-title: Rates of convergence for time series regression
  publication-title: Adv. Appl. Prob.
– year: 1968
  ident: BIB9
  article-title: Trigometric Series
– year: 1974
  ident: 10.1016/0304-4149(86)90117-1_BIB7
– year: 1975
  ident: 10.1016/0304-4149(86)90117-1_BIB8
– year: 1968
  ident: 10.1016/0304-4149(86)90117-1_BIB9
– volume: 13
  start-page: 383
  year: 1983
  ident: 10.1016/0304-4149(86)90117-1_BIB1
  article-title: The maximum of the periodogram
  publication-title: J. Multivar. Analysis
  doi: 10.1016/0047-259X(83)90017-9
– volume: 14
  start-page: 157
  year: 1973
  ident: 10.1016/0304-4149(86)90117-1_BIB4
  article-title: Central limit theorems for time series regression
  publication-title: Z. Wahrsch. Verw. Geb.
  doi: 10.1007/BF00533484
– volume: 10
  start-page: 1174
  year: 1969
  ident: 10.1016/0304-4149(86)90117-1_BIB2
  article-title: The central limit theorem for stationary processes
  publication-title: Soviet Math. Dokl.
– year: 1967
  ident: 10.1016/0304-4149(86)90117-1_BIB6
– volume: 10
  start-page: 510
  year: 1973
  ident: 10.1016/0304-4149(86)90117-1_BIB3
  article-title: The estimation of frequency
  publication-title: J. Appl. Prob.
  doi: 10.2307/3212772
– volume: 10
  start-page: 740
  year: 1978
  ident: 10.1016/0304-4149(86)90117-1_BIB5
  article-title: Rates of convergence for time series regression
  publication-title: Adv. Appl. Prob.
  doi: 10.2307/1426656
SSID ssj0001221
Score 1.3072304
Snippet A form of the law of the iterated logarithm is proved for the estimate of the frequency, ω 0, of a sinusoidal oscillation when observed subject to stationary...
A form of the law of the iterated logarithm is proved for the estimate of the frequency,[omega]0, of a sinusoidal oscillation when observed subject to...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Exact sciences and technology
integrated logarithm
integrated logarithm oscillatory frequency periodogram weak mixing
Limit theorems
Mathematics
oscillatory frequency
periodogram
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
weak mixing
Title A law of the iterated logarithm for an estimate of frequency
URI https://dx.doi.org/10.1016/0304-4149(86)90117-1
http://econpapers.repec.org/article/eeespapps/v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103-109.htm
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA9SL4qIn7jVLjl40MOwm8lMJgNe1mKpLnoQi3sLL5kXutBuh91R6X_ve5nZoT1IwUOS4fGSCS_h5RfyPoR4ayHYQueQYSghKzgIJuRUzXVTxmgM1JgMZL-Z07Piy6pc3fCFYbPKQff3Oj1p64EyG6Q5a9frGb_pFYTvU0olldzI2amUffhWH0dlrPLkesXMGXPvveeUmY20d9a8T2Nk6l-n06MWdiSz2Ce7ICC7xRbDjZPo5Il4PEBIuehn-VTcw80z8fDrGH9191x8WMgL-COvoiSi7CMnYyNJz9HVuDu_lARVJWwkh9igPsiccdtbVV-_EGcnn34cn2ZDnoQs0O2vy4KxvsQKdJwbW1kCABAt1tYCabJQ1FD5hnBXEVVdhOAhVnZufaNtGb03JeiX4mBztcFXQipUJo_GgjFV0aDykCttsPZYejBgJ0Lv5ePCEEScc1lcuL21GEvVsVSdNS5J1amJyMZebR9E4w7-ai96d2szONLzd_Q8urVS4--sZV-pfCKO08qNdETccUa1nfvtNOQ5VddUFG0ratb8SaXldq75ud6dd5eH_z2_1-IBD91bTL4RB932Fx4Rqun8VNxfLL__XE4J1y8_T9Mu_gt93_AU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPaQllD7Jtk2rQw_JwezKsmUZeklDw-Z5SmBvYiSPyEKyMbtOS_59Z2yvSQ4l0IMkM4wsMRKjT2geQny3EGymU0gw5JBkHAQTUqomuspjNAZKbA1kL8z0KjuZ5bNHvjBsVtnr_k6nt9q6p4x7aY7r-XzMb3oZ4fs2pZJiN_IXBAYMx88_nv0ctLFKW98r5k6Yfe0-p8x4oO1Zs9_-JFH_Op62a1iR0GKX7YKQ7BJrDI-OoqM34nWPIeVBN823YgMX78Sr8yEA6-q9-HEgb-CPvIuSiLILnYyVJEVHd-Pm-lYSVpWwkBxjg_ogc8ZlZ1b98EFcHf26PJwmfaKEJND1r0mCsT7HAnScGFtYQgAQLZbWAqmykJVQ-IqAVxZVmYXgIRZ2Yn2lbR69Nznoj2JzcbfAHSEVKpNGY8GYIqtQeUiVNlh6zD0YsCOh1_JxoY8izsksbtzaXIyl6liqzhrXStWpkUiGXnUXReMZ_mItevdkNzhS9M_03H2yUsNw1rKzVDoSh-3KDXREXHFKtZX77TSkKVUPVBTtK2rm_Eml5nai-b3eXTe3n_57ft_E1vTy_MydHV-cfhYveZjOfPKL2GyW97hLEKfxX9s9_Bd1UPCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+law+of+the+iterated+logarithm+for+an+estimate+of+frequency&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Hannan%2C+E.J.&rft.au=Mackisack%2C+M.&rft.date=1986-05-01&rft.issn=0304-4149&rft.volume=22&rft.issue=1&rft.spage=103&rft.epage=109&rft_id=info:doi/10.1016%2F0304-4149%2886%2990117-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0304_4149_86_90117_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon