A law of the iterated logarithm for an estimate of frequency
A form of the law of the iterated logarithm is proved for the estimate of the frequency, ω 0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate, ω , is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is { T...
Saved in:
Published in | Stochastic processes and their applications Vol. 22; no. 1; pp. 103 - 109 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.1986
Elsevier Science Elsevier |
Series | Stochastic Processes and their Applications |
Subjects | |
Online Access | Get full text |
ISSN | 0304-4149 1879-209X |
DOI | 10.1016/0304-4149(86)90117-1 |
Cover
Abstract | A form of the law of the iterated logarithm is proved for the estimate of the frequency,
ω
0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate,
ω
, is the location of the maximum of the periodogram from
T observations. The form of the law is unusual since it is
{
T
3
log log T
}
1/2 (
ω−ω
0
whose limit superior is a.s. finite. |
---|---|
AbstractList | A form of the law of the iterated logarithm is proved for the estimate of the frequency,[omega]0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate,, is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is whose limit superior is a.s. finite. A form of the law of the iterated logarithm is proved for the estimate of the frequency, ω 0, of a sinusoidal oscillation when observed subject to stationary noise. The estimate, ω , is the location of the maximum of the periodogram from T observations. The form of the law is unusual since it is { T 3 log log T } 1/2 ( ω−ω 0 whose limit superior is a.s. finite. |
Author | Mackisack, M. Hannan, E.J. |
Author_xml | – sequence: 1 givenname: E.J. surname: Hannan fullname: Hannan, E.J. – sequence: 2 givenname: M. surname: Mackisack fullname: Mackisack, M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8811262$$DView record in Pascal Francis http://econpapers.repec.org/article/eeespapps/v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103-109.htm$$DView record in RePEc |
BookMark | eNqFkE9P3DAQxS20SN2FfoMecuAAh7SexJvYqEJarfoHhMSFSr1ZE2fMGmWT1Dag_fY4XeDQQzmMnyW_9xvrLdisH3pi7BPwz8Ch-sJLLnIBQp3K6kxxgDqHAzYHWau84Or3jM3fLB_YIoR7zjkUBczZ11XW4VM22CxuKHORPEZqs264Q-_iZpvZwWfYZxSi26anyWk9_Xmg3uyO2aHFLtDHFz1iv75_u13_zK9vflyuV9e5EbyIualks6QaS8srWUsFHK0kJSUqACMU1k0roBIWlDCmQVtLLpu2lEvbNNUSyyN2ted6Gsno0aev-J0mojDiOAb9qEssinTs0oCSVRI3XdOMk_JSA1d6E7cJdrKHjRgMdtZjb1x4g0oJUFRFsp3vbcYPIXiy2riI0Q199Oi6hNNT93oqVk_F6rT1b_caUlj8E37FvxO72McolfnoyOtgXCqaWufJRN0O7v-AZ3rQm5Y |
CODEN | STOPB7 |
CitedBy_id | crossref_primary_10_1007_BF02015141 crossref_primary_10_1017_S0001867800016980 crossref_primary_10_2307_1427391 crossref_primary_10_1016_j_jmva_2019_104563 crossref_primary_10_1111_rssc_12112 crossref_primary_10_1111_j_1467_9892_1993_tb00155_x crossref_primary_10_1214_aop_1022677270 crossref_primary_10_1111_j_1467_9892_1994_tb00216_x |
Cites_doi | 10.1016/0047-259X(83)90017-9 10.1007/BF00533484 10.2307/3212772 10.2307/1426656 |
ContentType | Journal Article |
Copyright | 1986 1986 INIST-CNRS |
Copyright_xml | – notice: 1986 – notice: 1986 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/0304-4149(86)90117-1 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-209X |
EndPage | 109 |
ExternalDocumentID | eeespapps_v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103_109_htm 8811262 10_1016_0304_4149_86_90117_1 0304414986901171 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 5VS 63O 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HX~ HZ~ IHE IXB J1W KOM LY1 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH WH7 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 0R 1 8P ADACO ADALY DKI G- HX HZ IPNFZ K M STF X X2L |
ID | FETCH-LOGICAL-c402t-c68b5e7a3f06878910af8e988a911c49a7bd4164f194ccbaf7808bd385fbb65a3 |
IEDL.DBID | IXB |
ISSN | 0304-4149 |
IngestDate | Wed Aug 18 03:10:07 EDT 2021 Wed Apr 02 07:12:48 EDT 2025 Tue Jul 01 03:23:53 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Fri Feb 23 02:31:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | periodogram weak mixing integrated logarithm oscillatory frequency Stochastic convergence Law of iterated logarithm |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-c68b5e7a3f06878910af8e988a911c49a7bd4164f194ccbaf7808bd385fbb65a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/0304414986901171 |
PageCount | 7 |
ParticipantIDs | repec_primary_eeespapps_v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103_109_htm pascalfrancis_primary_8811262 crossref_citationtrail_10_1016_0304_4149_86_90117_1 crossref_primary_10_1016_0304_4149_86_90117_1 elsevier_sciencedirect_doi_10_1016_0304_4149_86_90117_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1986-05-01 |
PublicationDateYYYYMMDD | 1986-05-01 |
PublicationDate_xml | – month: 05 year: 1986 text: 1986-05-01 day: 01 |
PublicationDecade | 1980 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Stochastic Processes and their Applications |
PublicationTitle | Stochastic processes and their applications |
PublicationYear | 1986 |
Publisher | Elsevier B.V Elsevier Science Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science – name: Elsevier |
References | Gordin (BIB2) 1969; 10 Hannan (BIB4) 1973; 14 Rozanov (BIB6) 1967 Hannan (BIB3) 1973; 10 Zygmund (BIB9) 1968 Walters (BIB8) 1975 Hong-zhi, Zhao-guo, Harman (BIB1) 1983; 13 Stout (BIB7) 1974 Hannan (BIB5) 1978; 10 Gordin (10.1016/0304-4149(86)90117-1_BIB2) 1969; 10 Hannan (10.1016/0304-4149(86)90117-1_BIB5) 1978; 10 Hannan (10.1016/0304-4149(86)90117-1_BIB4) 1973; 14 Rozanov (10.1016/0304-4149(86)90117-1_BIB6) 1967 Walters (10.1016/0304-4149(86)90117-1_BIB8) 1975 Stout (10.1016/0304-4149(86)90117-1_BIB7) 1974 Hong-zhi (10.1016/0304-4149(86)90117-1_BIB1) 1983; 13 Hannan (10.1016/0304-4149(86)90117-1_BIB3) 1973; 10 Zygmund (10.1016/0304-4149(86)90117-1_BIB9) 1968 |
References_xml | – year: 1967 ident: BIB6 article-title: Stationary Random Processes – year: 1975 ident: BIB8 article-title: Ergodic Theory—Introductory Lectures – volume: 10 start-page: 1174 year: 1969 end-page: 1176 ident: BIB2 article-title: The central limit theorem for stationary processes publication-title: Soviet Math. Dokl. – year: 1974 ident: BIB7 article-title: Almost Sure Convergence – volume: 10 start-page: 510 year: 1973 end-page: 519 ident: BIB3 article-title: The estimation of frequency publication-title: J. Appl. Prob. – volume: 13 start-page: 383 year: 1983 end-page: 400 ident: BIB1 article-title: The maximum of the periodogram publication-title: J. Multivar. Analysis – volume: 14 start-page: 157 year: 1973 end-page: 170 ident: BIB4 article-title: Central limit theorems for time series regression publication-title: Z. Wahrsch. Verw. Geb. – volume: 10 start-page: 740 year: 1978 end-page: 743 ident: BIB5 article-title: Rates of convergence for time series regression publication-title: Adv. Appl. Prob. – year: 1968 ident: BIB9 article-title: Trigometric Series – year: 1974 ident: 10.1016/0304-4149(86)90117-1_BIB7 – year: 1975 ident: 10.1016/0304-4149(86)90117-1_BIB8 – year: 1968 ident: 10.1016/0304-4149(86)90117-1_BIB9 – volume: 13 start-page: 383 year: 1983 ident: 10.1016/0304-4149(86)90117-1_BIB1 article-title: The maximum of the periodogram publication-title: J. Multivar. Analysis doi: 10.1016/0047-259X(83)90017-9 – volume: 14 start-page: 157 year: 1973 ident: 10.1016/0304-4149(86)90117-1_BIB4 article-title: Central limit theorems for time series regression publication-title: Z. Wahrsch. Verw. Geb. doi: 10.1007/BF00533484 – volume: 10 start-page: 1174 year: 1969 ident: 10.1016/0304-4149(86)90117-1_BIB2 article-title: The central limit theorem for stationary processes publication-title: Soviet Math. Dokl. – year: 1967 ident: 10.1016/0304-4149(86)90117-1_BIB6 – volume: 10 start-page: 510 year: 1973 ident: 10.1016/0304-4149(86)90117-1_BIB3 article-title: The estimation of frequency publication-title: J. Appl. Prob. doi: 10.2307/3212772 – volume: 10 start-page: 740 year: 1978 ident: 10.1016/0304-4149(86)90117-1_BIB5 article-title: Rates of convergence for time series regression publication-title: Adv. Appl. Prob. doi: 10.2307/1426656 |
SSID | ssj0001221 |
Score | 1.3072304 |
Snippet | A form of the law of the iterated logarithm is proved for the estimate of the frequency,
ω
0, of a sinusoidal oscillation when observed subject to stationary... A form of the law of the iterated logarithm is proved for the estimate of the frequency,[omega]0, of a sinusoidal oscillation when observed subject to... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Exact sciences and technology integrated logarithm integrated logarithm oscillatory frequency periodogram weak mixing Limit theorems Mathematics oscillatory frequency periodogram Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use weak mixing |
Title | A law of the iterated logarithm for an estimate of frequency |
URI | https://dx.doi.org/10.1016/0304-4149(86)90117-1 http://econpapers.repec.org/article/eeespapps/v_3a22_3ay_3a1986_3ai_3a1_3ap_3a103-109.htm |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA9SL4qIn7jVLjl40MOwm8lMJgNe1mKpLnoQi3sLL5kXutBuh91R6X_ve5nZoT1IwUOS4fGSCS_h5RfyPoR4ayHYQueQYSghKzgIJuRUzXVTxmgM1JgMZL-Z07Piy6pc3fCFYbPKQff3Oj1p64EyG6Q5a9frGb_pFYTvU0olldzI2amUffhWH0dlrPLkesXMGXPvveeUmY20d9a8T2Nk6l-n06MWdiSz2Ce7ICC7xRbDjZPo5Il4PEBIuehn-VTcw80z8fDrGH9191x8WMgL-COvoiSi7CMnYyNJz9HVuDu_lARVJWwkh9igPsiccdtbVV-_EGcnn34cn2ZDnoQs0O2vy4KxvsQKdJwbW1kCABAt1tYCabJQ1FD5hnBXEVVdhOAhVnZufaNtGb03JeiX4mBztcFXQipUJo_GgjFV0aDykCttsPZYejBgJ0Lv5ePCEEScc1lcuL21GEvVsVSdNS5J1amJyMZebR9E4w7-ai96d2szONLzd_Q8urVS4--sZV-pfCKO08qNdETccUa1nfvtNOQ5VddUFG0ratb8SaXldq75ud6dd5eH_z2_1-IBD91bTL4RB932Fx4Rqun8VNxfLL__XE4J1y8_T9Mu_gt93_AU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPaQllD7Jtk2rQw_JwezKsmUZeklDw-Z5SmBvYiSPyEKyMbtOS_59Z2yvSQ4l0IMkM4wsMRKjT2geQny3EGymU0gw5JBkHAQTUqomuspjNAZKbA1kL8z0KjuZ5bNHvjBsVtnr_k6nt9q6p4x7aY7r-XzMb3oZ4fs2pZJiN_IXBAYMx88_nv0ctLFKW98r5k6Yfe0-p8x4oO1Zs9_-JFH_Op62a1iR0GKX7YKQ7BJrDI-OoqM34nWPIeVBN823YgMX78Sr8yEA6-q9-HEgb-CPvIuSiLILnYyVJEVHd-Pm-lYSVpWwkBxjg_ogc8ZlZ1b98EFcHf26PJwmfaKEJND1r0mCsT7HAnScGFtYQgAQLZbWAqmykJVQ-IqAVxZVmYXgIRZ2Yn2lbR69Nznoj2JzcbfAHSEVKpNGY8GYIqtQeUiVNlh6zD0YsCOh1_JxoY8izsksbtzaXIyl6liqzhrXStWpkUiGXnUXReMZ_mItevdkNzhS9M_03H2yUsNw1rKzVDoSh-3KDXREXHFKtZX77TSkKVUPVBTtK2rm_Eml5nai-b3eXTe3n_57ft_E1vTy_MydHV-cfhYveZjOfPKL2GyW97hLEKfxX9s9_Bd1UPCc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+law+of+the+iterated+logarithm+for+an+estimate+of+frequency&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Hannan%2C+E.J.&rft.au=Mackisack%2C+M.&rft.date=1986-05-01&rft.issn=0304-4149&rft.volume=22&rft.issue=1&rft.spage=103&rft.epage=109&rft_id=info:doi/10.1016%2F0304-4149%2886%2990117-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0304_4149_86_90117_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon |