Computation of Extreme Values of Time Averaged Observables in Climate Models with Large Deviation Techniques

One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable o...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical physics Vol. 179; no. 5-6; pp. 1637 - 1665
Main Authors Ragone, Francesco, Bouchet, Freddy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-4715
1572-9613
DOI10.1007/s10955-019-02429-7

Cover

Loading…
Abstract One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable over a long time. The framework of Donsker–Varadhan large deviation theory could therefore be useful for their analysis. In this paper we discuss how concepts and numerical algorithms developed in the context of with large deviation theory can be applied to study extreme, rare fluctuations of time averages of surface temperatures at regional scale with comprehensive numerical climate models. When performing this type of analysis, unless a rigorous study of the convergence to the large deviation limit is performed, it can be easy to be misled in thinking to have reached the asymptotic regime. In this paper we provide a systematic protocol to study the convergence of large deviation functions tailored for applications to climate problems. Referring to the existing literature on the subject, we provide explicit formulas to compute large deviation functions directly from time series of a deterministic dynamical system that can be applied to climate records, and we describe how to study the convergence. We show how using a rare event algorithm applied to a numerical model can improve the efficiency of the computation of the large deviation functions. As a case study we consider the time averaged European surface temperature obtained with the numerical climate model Plasim. We show how a precise analysis of the convergence leads to the conclusion that the large deviation limit is nor properly reached for time scales shorter than a few years, and is therefore of no practical interest to study midlatitude heat waves. Finally we show how, even in a case like this, rare event algorithms developed to study large deviation functions can be used to improve the statistics of events on time scales shorter than the one needed to reach the large deviation asymptotic regime.
AbstractList One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable over a long time. The framework of Donsker–Varadhan large deviation theory could therefore be useful for their analysis. In this paper we discuss how concepts and numerical algorithms developed in the context of with large deviation theory can be applied to study extreme, rare fluctuations of time averages of surface temperatures at regional scale with comprehensive numerical climate models. When performing this type of analysis, unless a rigorous study of the convergence to the large deviation limit is performed, it can be easy to be misled in thinking to have reached the asymptotic regime. In this paper we provide a systematic protocol to study the convergence of large deviation functions tailored for applications to climate problems. Referring to the existing literature on the subject, we provide explicit formulas to compute large deviation functions directly from time series of a deterministic dynamical system that can be applied to climate records, and we describe how to study the convergence. We show how using a rare event algorithm applied to a numerical model can improve the efficiency of the computation of the large deviation functions. As a case study we consider the time averaged European surface temperature obtained with the numerical climate model Plasim. We show how a precise analysis of the convergence leads to the conclusion that the large deviation limit is nor properly reached for time scales shorter than a few years, and is therefore of no practical interest to study midlatitude heat waves. Finally we show how, even in a case like this, rare event algorithms developed to study large deviation functions can be used to improve the statistics of events on time scales shorter than the one needed to reach the large deviation asymptotic regime.
Audience Academic
Author Bouchet, Freddy
Ragone, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0002-2493-7020
  surname: Ragone
  fullname: Ragone, Francesco
  email: francesco.ragone@ens-lyon.fr
  organization: Laboratoire de Physique, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS
– sequence: 2
  givenname: Freddy
  surname: Bouchet
  fullname: Bouchet, Freddy
  organization: Laboratoire de Physique, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS
BookMark eNp9UctOwzAQtBBIlMcPcLLEOeB34mNVnlIRl8LVcpxNMUrjYqcF_h6XICFxQD6svLszo505Qvt96AGhM0ouKCHlZaJES1kQqgvCBNNFuYcmVJas0IryfTQhhLFClFQeoqOUXgkhutJygrpZWK03gx186HFo8fXHEGEF-Nl2G0i7zsLn73QL0S6hwY91gri1dZeHvsezzq_sAPghNNAl_O6HFzy3cQn4CrZ-ZF2Ae-n9W6Y7QQet7RKc_tRj9HRzvZjdFfPH2_vZdF44QdhQOMZ4oyRQqnRTsdbquiyVaEUeKyuhUqpVgnNZC0eaWnDCnWoEVNQ6JWnNj9H5yLuOYac7mNewiX2WNNkcXlHNRJm3Lsatpe3A-L4NQ7QuvwZW3mV_W5_7U8W05JWsWAawEeBiSClCa9Yxnx8_DSVmF4MZYzA5BvMdg9mpVH9Azo92ZzXf_Q_lIzRlnX4J8feMf1BfFvCeGA
CitedBy_id crossref_primary_10_3389_feart_2023_1235579
crossref_primary_10_1103_PhysRevFluids_8_040501
crossref_primary_10_1093_oxfclm_kgae023
crossref_primary_10_1175_JAS_D_20_0279_1
crossref_primary_10_1007_s00382_024_07160_y
crossref_primary_10_1088_1742_5468_ac7aa7
crossref_primary_10_1137_22M1503956
crossref_primary_10_1007_s40766_021_00020_z
crossref_primary_10_1103_PhysRevLett_133_047101
crossref_primary_10_3389_fclim_2022_789641
crossref_primary_10_1017_jfm_2021_957
crossref_primary_10_1088_2752_5295_ad8027
crossref_primary_10_1007_s10955_020_02605_0
crossref_primary_10_1063_5_0240959
crossref_primary_10_1016_j_physd_2025_134598
crossref_primary_10_1029_2020GL091197
crossref_primary_10_1175_MWR_D_21_0024_1
crossref_primary_10_1038_s41612_024_00568_7
crossref_primary_10_1103_PhysRevLett_128_200601
crossref_primary_10_1063_5_0241503
crossref_primary_10_1146_annurev_fluid_030420_032810
Cites_doi 10.1214/105051605000000566
10.1088/1742-5468/ab02e8
10.1007/BF00117978
10.1007/978-1-4757-4078-3
10.1088/1742-5468/aab856
10.1016/j.physrep.2009.05.002
10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2
10.1021/jp102971x
10.1103/PhysRevE.92.052104
10.1088/1742-5468/2007/03/P03004
10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
10.1063/1.4990509
10.1073/pnas.1712645115
10.1127/0941-2948/2005/0043
10.1007/978-1-4684-9393-1
10.1029/2010GL042764
10.1109/TAU.1967.1161901
10.1029/91JD00930
10.1088/1748-9326/7/1/014023
10.1007/s10955-011-0350-4
10.1007/978-1-4471-3675-0
10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2
10.5194/npg-18-295-2011
10.1002/9780470745403
10.3402/tellusa.v41i5.11848
10.1175/JCLI4288.1
10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2
10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
10.1002/9781118632321
10.1177/030913339902300302
10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
10.1029/2009WR008257
10.1103/PhysRevLett.96.120603
10.1090/S0002-9947-1990-1025756-7
10.1002/cpa.3160280102
10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
DOI 10.1007/s10955-019-02429-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
EISSN 1572-9613
EndPage 1665
ExternalDocumentID A629538582
10_1007_s10955_019_02429_7
GrantInformation_xml – fundername: FP7 Ideas: European Research Council
  grantid: 616811
  funderid: http://dx.doi.org/10.13039/100011199
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c402t-c223d65e1169d82fa9b7764f4c406a5e866f64335b4c0db4303c6d4e81ac651b3
IEDL.DBID U2A
ISSN 0022-4715
IngestDate Fri Jul 25 08:56:18 EDT 2025
Tue Jun 10 20:51:11 EDT 2025
Tue Jul 01 00:19:12 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Fri Feb 21 02:26:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Climate extremes
Heat waves
Rare event algorithms
Large deviation theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-c223d65e1169d82fa9b7764f4c406a5e866f64335b4c0db4303c6d4e81ac651b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2493-7020
OpenAccessLink http://hdl.handle.net/2078.1/276347
PQID 2423819247
PQPubID 2043551
PageCount 29
ParticipantIDs proquest_journals_2423819247
gale_infotracacademiconefile_A629538582
crossref_primary_10_1007_s10955_019_02429_7
crossref_citationtrail_10_1007_s10955_019_02429_7
springer_journals_10_1007_s10955_019_02429_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References WelchPDThe use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodogramsIEEE Trans. Audio Electroacoust.1967152707310.1109/TAU.1967.1161901
RagoneFWoutersJBouchetFComputation of extreme heat waves in climate models using a large deviation algorithmProc. Natl. Acad. Sci. USA201811512429374891410.1073/pnas.17126451151416.86013
LecomteVTailleurJA numerical approach to large deviations in continuous timeJ. Stat. Mech.2007200703P0300410.1088/1742-5468/2007/03/P0300407120397
GalfiVMLucariniVWoutersJA large deviation theory-based analysis of heat waves and cold spells in a simplified model of the general circulation of the atmosphereJ. Stat. Mech.201920193033404395288110.1088/1742-5468/ab02e8
Louis, J.F., Tiedke, M., Geleyn, M.: A short history of the PBL parameterisation at ECMWF. In: Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterization. pp. 59–80. Reading (1981)
Eliasen, E., Machenhauer, B., Rasmussen, E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Københavns University, Copenhagen, Technical report, Inst. of Theor. Met. (1970)
KahnHHarrisTEEstimation of particle transmission by random samplingNatl. Bur. Stand. Appl. Math. Ser.1951122730
AilliotPAllardDMonbetVNaveauPStochastic weather generators: an overview of weather type modelsJournal de la Societe Francaise de Statistique2015156110111333382441316.62163
BouchetFMarstonJBTangarifeTFluctuations and large deviations of reynolds stresses in zonal jet dynamicsPhys. Fluids20183010151102018PhFl...30a5110B10.1063/1.4990509
VenezianoDLangousisALeporeCNew asymptotic and preasymptotic results on rainfall maxima from multifractal theoryWater Resour. Res.20094511W114212009WRR....4511421V10.1029/2009WR008257
KuoHLOn formations and intensification of tropical cyclone through latent heat release by cumulus convectionJ. Atmos. Sci.19652240631965JAtS...22...40K10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
YoungLSLarge deviations in dynamical systemsTrans. Am. Math. Soc.199031825255439756890721.58030
SemtnerAJA model for the thermodynamic growth of sea ice in numerical investigations of climateJ. Phys. Oceanogr.1976633793891976JPO.....6..379S10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
StephensGLPaltridgeGWPlattCMRRadiation profiles in extended water clouds. III: observationsJ. Atmos. Sci.19783511213321411978JAtS...35.2133S10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2
OrszagSATransform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equationJ. Atmos. Sci.19702768908951970JAtS...27..890O10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
Del MoralPFeynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications2004New YorkSpringer1130.60003
PohorilleAJarzynskiCChipotCGood practices in free-energy calculationsJ. Phys. Chem. B2010114102351025310.1021/jp102971x
DonskerMDVaradhanSSAsymptotic evaluation of certain markov process expectations for large time, ICommun. Pure Appl. Math.197528114738602410.1002/cpa.3160280102
FischerEMSeneviratneSIVidalePLLuthiDSchaerCSoil moisture–atmosphere interactions during the 2003 european summer heat waveJ. Clim.20072020508150992007JCli...20.5081F10.1175/JCLI4288.1
LorenzRJaegerEBSeneviratneSIPersistence of heat waves and its link to soil moisture memoryGeophys. Res. Lett.2010379L097032010GeoRL..37.9703L10.1029/2010GL042764
LestangTRagoneFBrehierCEHerbertCBouchetFComputing return times or return periods with rare event algorithmsJ. Stat. Mech.201820184043213380196510.1088/1742-5468/aab856
LacisAAHansenJA parameterization for the absorption of solar radiation in the Earth?s atmosphereJ. Atmos. Sci.19743111181331974JAtS...31..118L10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
KiferYLarge deviations in dynamical systems and stochastic processesTrans. Am. Math. Soc.19903212505524102575610.1090/S0002-9947-1990-1025756-7
WilksDWilbyRThe weather generation game: a review of stochastic weather modelsProg. Phys. Geogr.199923332935710.1177/030913339902300302
DemboAZeitouniOLarge Deviations and Applications2001Boca RatonCRC Press1002.60024
BucklewJAAn Introduction to Rare Event Simulation2004New YorkSpringer10.1007/978-1-4757-4078-3
Del MoralPGarnierJGenealogical particle analysis of rare eventsAnn. Appl. Prob.200515424962534218730210.1214/1050516050000005661097.65013
StefanonMD’AndreaFDrobinskiPHeatwave classification over Europe and the Mediterranean regionEnviron. Res. Lett.201270140232012ERL.....7a4023S10.1088/1748-9326/7/1/014023
LaursenLEliasenEOn the effects of the damping mechanisms in an atmospheric general circulation modelTellus19894138540010.3402/tellusa.v41i5.11848
SlingoASlingoJMResponse of the National Center for Atmospheric Research community climate model to improvements in the representation of cloudsJ. Geophys. Res.199196D8153411991JGR....9615341S10.1029/91JD00930
AghaKouchakAExtremes in a Changing Climate Detection, Analysis and Uncertainty2012DordrechtSpringer
FraedrichKJansenHLukschULunkeitFThe planet simulator: towards a user friendly modelMeteorol. Z.20051429930410.1127/0941-2948/2005/0043
GiardinaCKurchanJLecomteVTailleurJSimulating rare events in dynamical processesJ. Stat. Phys.201114547878112011JSP...145..787G286292910.1007/s10955-011-0350-41252.82007
ColesSAn Introduction to Statistical Modeling of Extreme Values2001New YorkSpringer10.1007/978-1-4471-3675-0
GhilMYiouPHallegatteSMalamudBNaveauPSolovievAFriederichsPKeilis-BorokVKondrashovDKossobokovVMestreONicolisCRustHShebalinPVracMWittAZaliapinIExtreme events: dynamics, statistics and predictionNonlinear Process. Geophys.20111832953502011NPGeo..18..295G10.5194/npg-18-295-2011
EllisRSEntropy, Large Deviations, and Statistical Mechanics2007New YorkSpringer
IPCC: Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY (2012)
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013)
LouisJFA parametric model of vertical eddy fluxes in the atmosphereBound. Layer Meteorol.19791721872021979BoLMe..17..187L10.1007/BF00117978
Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M.: Simulation of present day climate with the ECHAM model: impact of model physics and resolution. Technical Report, 93. Technical report, Max Planck Institut für Meteorologie, Hamburg, (1992)
RohwerCMAngelettiFTouchetteHConvergence of large-deviation estimatorsPhys. Rev. E2015920521042015PhRvE..92e2104R10.1103/PhysRevE.92.052104
SasamoriTThe radiative cooling calculation for application to general circulation experimentsJ. Appl. Meteorol.1968757217291968JApMe...7..721S10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2
LucariniVFarandaDFreitasACGMMFreitasJMMHollandMKunaTNicolMToddMVaientiSExtremes and Recurrence in Dynamical Systems2016HobokenWiley10.1002/9781118632321
GiardinaCKurchanJPelitiLDirect evaluation of large-deviation functionsPhys. Rev. Lett.200696121206032006PhRvL..96l0603G10.1103/PhysRevLett.96.120603
RubinoGTuffinBRare Event Simulation Using Monte Carlo Methods2009ChichesterWiley10.1002/9780470745403
TouchetteHThe large deviation approach to statistical mechanicsPhys. Rep.20094781692009PhR...478....1T256041110.1016/j.physrep.2009.05.002
KuoHLFurther studies of the parameterization of the influence of cumulus convection on large-scale flowJ. Atmos. Sci.1974315123212401974JAtS...31.1232K10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
StephensGLAckermanSSmithEAA shortwave parameterization revised to improve cloud absorptionJ. Atmos. Sci.19844146876901984JAtS...41..687S10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2
CM Rohwer (2429_CR36) 2015; 92
A Slingo (2429_CR40) 1991; 96
G Rubino (2429_CR37) 2009
AJ Semtner (2429_CR39) 1976; 6
MD Donsker (2429_CR9) 1975; 28
C Giardina (2429_CR17) 2011; 145
H Touchette (2429_CR44) 2009; 478
SA Orszag (2429_CR32) 1970; 27
D Veneziano (2429_CR45) 2009; 45
A AghaKouchak (2429_CR1) 2012
L Laursen (2429_CR25) 1989; 41
T Sasamori (2429_CR38) 1968; 7
P Del Moral (2429_CR7) 2005; 15
RS Ellis (2429_CR11) 2007
M Ghil (2429_CR15) 2011; 18
GL Stephens (2429_CR43) 1984; 41
PD Welch (2429_CR46) 1967; 15
HL Kuo (2429_CR23) 1974; 31
LS Young (2429_CR48) 1990; 318
S Coles (2429_CR5) 2001
JA Bucklew (2429_CR4) 2004
M Stefanon (2429_CR41) 2012; 7
HL Kuo (2429_CR22) 1965; 22
AA Lacis (2429_CR24) 1974; 31
A Pohorille (2429_CR33) 2010; 114
EM Fischer (2429_CR12) 2007; 20
D Wilks (2429_CR47) 1999; 23
K Fraedrich (2429_CR13) 2005; 14
P Ailliot (2429_CR2) 2015; 156
C Giardina (2429_CR16) 2006; 96
T Lestang (2429_CR27) 2018; 2018
V Lecomte (2429_CR26) 2007; 2007
Y Kifer (2429_CR21) 1990; 321
H Kahn (2429_CR20) 1951; 12
F Bouchet (2429_CR3) 2018; 30
2429_CR30
A Dembo (2429_CR8) 2001
2429_CR10
R Lorenz (2429_CR28) 2010; 37
2429_CR35
P Del Moral (2429_CR6) 2004
V Lucarini (2429_CR31) 2016
VM Galfi (2429_CR14) 2019; 2019
GL Stephens (2429_CR42) 1978; 35
2429_CR19
2429_CR18
F Ragone (2429_CR34) 2018; 115
JF Louis (2429_CR29) 1979; 17
References_xml – reference: KahnHHarrisTEEstimation of particle transmission by random samplingNatl. Bur. Stand. Appl. Math. Ser.1951122730
– reference: WilksDWilbyRThe weather generation game: a review of stochastic weather modelsProg. Phys. Geogr.199923332935710.1177/030913339902300302
– reference: Eliasen, E., Machenhauer, B., Rasmussen, E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Københavns University, Copenhagen, Technical report, Inst. of Theor. Met. (1970)
– reference: KiferYLarge deviations in dynamical systems and stochastic processesTrans. Am. Math. Soc.19903212505524102575610.1090/S0002-9947-1990-1025756-7
– reference: LacisAAHansenJA parameterization for the absorption of solar radiation in the Earth?s atmosphereJ. Atmos. Sci.19743111181331974JAtS...31..118L10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
– reference: Louis, J.F., Tiedke, M., Geleyn, M.: A short history of the PBL parameterisation at ECMWF. In: Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterization. pp. 59–80. Reading (1981)
– reference: WelchPDThe use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodogramsIEEE Trans. Audio Electroacoust.1967152707310.1109/TAU.1967.1161901
– reference: FischerEMSeneviratneSIVidalePLLuthiDSchaerCSoil moisture–atmosphere interactions during the 2003 european summer heat waveJ. Clim.20072020508150992007JCli...20.5081F10.1175/JCLI4288.1
– reference: SasamoriTThe radiative cooling calculation for application to general circulation experimentsJ. Appl. Meteorol.1968757217291968JApMe...7..721S10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2
– reference: StephensGLPaltridgeGWPlattCMRRadiation profiles in extended water clouds. III: observationsJ. Atmos. Sci.19783511213321411978JAtS...35.2133S10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2
– reference: BucklewJAAn Introduction to Rare Event Simulation2004New YorkSpringer10.1007/978-1-4757-4078-3
– reference: GiardinaCKurchanJPelitiLDirect evaluation of large-deviation functionsPhys. Rev. Lett.200696121206032006PhRvL..96l0603G10.1103/PhysRevLett.96.120603
– reference: DemboAZeitouniOLarge Deviations and Applications2001Boca RatonCRC Press1002.60024
– reference: EllisRSEntropy, Large Deviations, and Statistical Mechanics2007New YorkSpringer
– reference: Del MoralPGarnierJGenealogical particle analysis of rare eventsAnn. Appl. Prob.200515424962534218730210.1214/1050516050000005661097.65013
– reference: OrszagSATransform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equationJ. Atmos. Sci.19702768908951970JAtS...27..890O10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
– reference: RagoneFWoutersJBouchetFComputation of extreme heat waves in climate models using a large deviation algorithmProc. Natl. Acad. Sci. USA201811512429374891410.1073/pnas.17126451151416.86013
– reference: TouchetteHThe large deviation approach to statistical mechanicsPhys. Rep.20094781692009PhR...478....1T256041110.1016/j.physrep.2009.05.002
– reference: DonskerMDVaradhanSSAsymptotic evaluation of certain markov process expectations for large time, ICommun. Pure Appl. Math.197528114738602410.1002/cpa.3160280102
– reference: SlingoASlingoJMResponse of the National Center for Atmospheric Research community climate model to improvements in the representation of cloudsJ. Geophys. Res.199196D8153411991JGR....9615341S10.1029/91JD00930
– reference: Del MoralPFeynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications2004New YorkSpringer1130.60003
– reference: RohwerCMAngelettiFTouchetteHConvergence of large-deviation estimatorsPhys. Rev. E2015920521042015PhRvE..92e2104R10.1103/PhysRevE.92.052104
– reference: StephensGLAckermanSSmithEAA shortwave parameterization revised to improve cloud absorptionJ. Atmos. Sci.19844146876901984JAtS...41..687S10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2
– reference: AilliotPAllardDMonbetVNaveauPStochastic weather generators: an overview of weather type modelsJournal de la Societe Francaise de Statistique2015156110111333382441316.62163
– reference: VenezianoDLangousisALeporeCNew asymptotic and preasymptotic results on rainfall maxima from multifractal theoryWater Resour. Res.20094511W114212009WRR....4511421V10.1029/2009WR008257
– reference: LaursenLEliasenEOn the effects of the damping mechanisms in an atmospheric general circulation modelTellus19894138540010.3402/tellusa.v41i5.11848
– reference: FraedrichKJansenHLukschULunkeitFThe planet simulator: towards a user friendly modelMeteorol. Z.20051429930410.1127/0941-2948/2005/0043
– reference: SemtnerAJA model for the thermodynamic growth of sea ice in numerical investigations of climateJ. Phys. Oceanogr.1976633793891976JPO.....6..379S10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
– reference: AghaKouchakAExtremes in a Changing Climate Detection, Analysis and Uncertainty2012DordrechtSpringer
– reference: GalfiVMLucariniVWoutersJA large deviation theory-based analysis of heat waves and cold spells in a simplified model of the general circulation of the atmosphereJ. Stat. Mech.201920193033404395288110.1088/1742-5468/ab02e8
– reference: GhilMYiouPHallegatteSMalamudBNaveauPSolovievAFriederichsPKeilis-BorokVKondrashovDKossobokovVMestreONicolisCRustHShebalinPVracMWittAZaliapinIExtreme events: dynamics, statistics and predictionNonlinear Process. Geophys.20111832953502011NPGeo..18..295G10.5194/npg-18-295-2011
– reference: PohorilleAJarzynskiCChipotCGood practices in free-energy calculationsJ. Phys. Chem. B2010114102351025310.1021/jp102971x
– reference: LecomteVTailleurJA numerical approach to large deviations in continuous timeJ. Stat. Mech.2007200703P0300410.1088/1742-5468/2007/03/P0300407120397
– reference: Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M.: Simulation of present day climate with the ECHAM model: impact of model physics and resolution. Technical Report, 93. Technical report, Max Planck Institut für Meteorologie, Hamburg, (1992)
– reference: LouisJFA parametric model of vertical eddy fluxes in the atmosphereBound. Layer Meteorol.19791721872021979BoLMe..17..187L10.1007/BF00117978
– reference: KuoHLOn formations and intensification of tropical cyclone through latent heat release by cumulus convectionJ. Atmos. Sci.19652240631965JAtS...22...40K10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
– reference: RubinoGTuffinBRare Event Simulation Using Monte Carlo Methods2009ChichesterWiley10.1002/9780470745403
– reference: GiardinaCKurchanJLecomteVTailleurJSimulating rare events in dynamical processesJ. Stat. Phys.201114547878112011JSP...145..787G286292910.1007/s10955-011-0350-41252.82007
– reference: KuoHLFurther studies of the parameterization of the influence of cumulus convection on large-scale flowJ. Atmos. Sci.1974315123212401974JAtS...31.1232K10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
– reference: LorenzRJaegerEBSeneviratneSIPersistence of heat waves and its link to soil moisture memoryGeophys. Res. Lett.2010379L097032010GeoRL..37.9703L10.1029/2010GL042764
– reference: StefanonMD’AndreaFDrobinskiPHeatwave classification over Europe and the Mediterranean regionEnviron. Res. Lett.201270140232012ERL.....7a4023S10.1088/1748-9326/7/1/014023
– reference: LestangTRagoneFBrehierCEHerbertCBouchetFComputing return times or return periods with rare event algorithmsJ. Stat. Mech.201820184043213380196510.1088/1742-5468/aab856
– reference: IPCC: Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY (2012)
– reference: ColesSAn Introduction to Statistical Modeling of Extreme Values2001New YorkSpringer10.1007/978-1-4471-3675-0
– reference: BouchetFMarstonJBTangarifeTFluctuations and large deviations of reynolds stresses in zonal jet dynamicsPhys. Fluids20183010151102018PhFl...30a5110B10.1063/1.4990509
– reference: IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013)
– reference: YoungLSLarge deviations in dynamical systemsTrans. Am. Math. Soc.199031825255439756890721.58030
– reference: LucariniVFarandaDFreitasACGMMFreitasJMMHollandMKunaTNicolMToddMVaientiSExtremes and Recurrence in Dynamical Systems2016HobokenWiley10.1002/9781118632321
– volume: 15
  start-page: 2496
  issue: 4
  year: 2005
  ident: 2429_CR7
  publication-title: Ann. Appl. Prob.
  doi: 10.1214/105051605000000566
– volume: 2019
  start-page: 033404
  issue: 3
  year: 2019
  ident: 2429_CR14
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/ab02e8
– volume: 17
  start-page: 187
  issue: 2
  year: 1979
  ident: 2429_CR29
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/BF00117978
– volume: 156
  start-page: 101
  issue: 1
  year: 2015
  ident: 2429_CR2
  publication-title: Journal de la Societe Francaise de Statistique
– ident: 2429_CR19
– volume-title: An Introduction to Rare Event Simulation
  year: 2004
  ident: 2429_CR4
  doi: 10.1007/978-1-4757-4078-3
– volume: 2018
  start-page: 043213
  issue: 4
  year: 2018
  ident: 2429_CR27
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/aab856
– volume: 478
  start-page: 1
  year: 2009
  ident: 2429_CR44
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.05.002
– volume: 35
  start-page: 2133
  issue: 11
  year: 1978
  ident: 2429_CR42
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2
– volume: 114
  start-page: 10235
  year: 2010
  ident: 2429_CR33
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102971x
– volume: 92
  start-page: 052104
  year: 2015
  ident: 2429_CR36
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.052104
– volume-title: Extremes in a Changing Climate Detection, Analysis and Uncertainty
  year: 2012
  ident: 2429_CR1
– volume: 2007
  start-page: P03004
  issue: 03
  year: 2007
  ident: 2429_CR26
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2007/03/P03004
– volume: 6
  start-page: 379
  issue: 3
  year: 1976
  ident: 2429_CR39
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
– volume: 31
  start-page: 118
  issue: 1
  year: 1974
  ident: 2429_CR24
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
– volume: 30
  start-page: 015110
  issue: 1
  year: 2018
  ident: 2429_CR3
  publication-title: Phys. Fluids
  doi: 10.1063/1.4990509
– volume: 115
  start-page: 24
  issue: 1
  year: 2018
  ident: 2429_CR34
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1712645115
– volume: 14
  start-page: 299
  year: 2005
  ident: 2429_CR13
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2005/0043
– volume-title: Feynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications
  year: 2004
  ident: 2429_CR6
  doi: 10.1007/978-1-4684-9393-1
– volume: 37
  start-page: L09703
  issue: 9
  year: 2010
  ident: 2429_CR28
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL042764
– ident: 2429_CR30
– volume: 15
  start-page: 70
  issue: 2
  year: 1967
  ident: 2429_CR46
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– volume-title: Large Deviations and Applications
  year: 2001
  ident: 2429_CR8
– volume: 96
  start-page: 15341
  issue: D8
  year: 1991
  ident: 2429_CR40
  publication-title: J. Geophys. Res.
  doi: 10.1029/91JD00930
– volume: 7
  start-page: 014023
  year: 2012
  ident: 2429_CR41
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/1/014023
– volume: 145
  start-page: 787
  issue: 4
  year: 2011
  ident: 2429_CR17
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-011-0350-4
– volume-title: An Introduction to Statistical Modeling of Extreme Values
  year: 2001
  ident: 2429_CR5
  doi: 10.1007/978-1-4471-3675-0
– ident: 2429_CR18
– volume: 41
  start-page: 687
  issue: 4
  year: 1984
  ident: 2429_CR43
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2
– ident: 2429_CR35
– volume: 18
  start-page: 295
  issue: 3
  year: 2011
  ident: 2429_CR15
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-18-295-2011
– volume: 318
  start-page: 525
  issue: 2
  year: 1990
  ident: 2429_CR48
  publication-title: Trans. Am. Math. Soc.
– volume: 12
  start-page: 27
  year: 1951
  ident: 2429_CR20
  publication-title: Natl. Bur. Stand. Appl. Math. Ser.
– volume-title: Rare Event Simulation Using Monte Carlo Methods
  year: 2009
  ident: 2429_CR37
  doi: 10.1002/9780470745403
– volume: 41
  start-page: 385
  year: 1989
  ident: 2429_CR25
  publication-title: Tellus
  doi: 10.3402/tellusa.v41i5.11848
– volume: 20
  start-page: 5081
  issue: 20
  year: 2007
  ident: 2429_CR12
  publication-title: J. Clim.
  doi: 10.1175/JCLI4288.1
– volume: 7
  start-page: 721
  issue: 5
  year: 1968
  ident: 2429_CR38
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2
– volume: 31
  start-page: 1232
  issue: 5
  year: 1974
  ident: 2429_CR23
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
– volume-title: Extremes and Recurrence in Dynamical Systems
  year: 2016
  ident: 2429_CR31
  doi: 10.1002/9781118632321
– volume: 23
  start-page: 329
  issue: 3
  year: 1999
  ident: 2429_CR47
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913339902300302
– volume: 22
  start-page: 40
  year: 1965
  ident: 2429_CR22
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
– volume: 45
  start-page: W11421
  issue: 11
  year: 2009
  ident: 2429_CR45
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008257
– volume: 96
  start-page: 120603
  issue: 12
  year: 2006
  ident: 2429_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.120603
– volume: 321
  start-page: 505
  issue: 2
  year: 1990
  ident: 2429_CR21
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1990-1025756-7
– ident: 2429_CR10
– volume: 28
  start-page: 1
  issue: 1
  year: 1975
  ident: 2429_CR9
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160280102
– volume: 27
  start-page: 890
  issue: 6
  year: 1970
  ident: 2429_CR32
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
– volume-title: Entropy, Large Deviations, and Statistical Mechanics
  year: 2007
  ident: 2429_CR11
SSID ssj0009895
Score 2.430753
Snippet One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1637
SubjectTerms Algorithms
Analysis
Anomalies
Asymptotic properties
Climate
Climate models
Convergence
Deviation
Drought
Droughts
Extreme values
Mathematical and Computational Physics
Methods
Numerical models
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Surface temperature
Theoretical
Time
Title Computation of Extreme Values of Time Averaged Observables in Climate Models with Large Deviation Techniques
URI https://link.springer.com/article/10.1007/s10955-019-02429-7
https://www.proquest.com/docview/2423819247
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NKiReEHQgCqzywyQeNktNsJ34MbB2CLbyQid4suKPSJWigkgn7c_nLh8UNkDaU6TYuVg---58vvsdwGdV5COX-MBTP3JcaJvzNAjFZTGKgxfaW0_ZyD-n6nwmLm7kTZsUVnXR7t2VZC2pnyW7aUmBZpqTXtE8WYOexLM7retZnK2gdlMtO4xwFL2yTZV5ncYLdfS3UP7ndrRWOpNt2GqtRZY17N2BD2HRh406atNVfdgkU7FBWv4IZVOgoZ5pdlew8Z8l-f7Yr7zEv9AbSvdgGa5dlCGeXdnaIWtLbJwv2Fk5R-M1MCqOVlaM_LPsB4WJs2-oOxuq1x3ga7ULs8n4-uyct7UUuMMT4pI7NAO8kiGKlPZpXOTaJokShcBmlcuQKlWgcXIirXAjbwVqNqe8CGmUOyUje7IH64u7RdgH5lyEZgXy1hdOuNxppTWeikTsrNfeiQFE3ZQa1wKNU72L0qwgkokNBtlgajaYZABfnr65b2A23u19TJwytAeRMo6hSSXA8RGalclUrCXdeMYDOOqYadrNWRkyIQkHTiChrx2DV81v__fg_7ofwmZMp_PaZ3ME68uH3-ETmjBLO4ReNjk9ndLz--3leFiv4EfUcunA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfgJsRe-BhMHAzIAxIPkOnaJWnzeBo3DnYbL3doPEWNk0oT1Q3RTkL89dj94GB8SHttUtdNnNhx7J8BXpiymGAWoszDBKWyvpB5VEbqcpLGoGzwgbORT07NfKXen-mzPimsHqLdhyvJdqf-JdnNag40s5L1ipXZTdhSdAbXI9iavv10PNuA7eZWDyjhtPnqPlnm71R-U0hXt-U_7kdbtXN0F1YDw120yef9y8bv4_crWI7X_aN7cKe3Q8W0E5z7cCOud-BWGw-K9Q5ssxHaYTg_gKor_dDOobgoxexbw15F8bGoiHt-wokkYkqrgnanID741tXrK2o8X4vD6pzM4ii47FpVC_b8igUHoIs3pJU7qssBSrZ-CKuj2fJwLvsqDRLp7NlIJAMjGB2TxNiQp2VhfZYZVSpqNoWOuTElmT0H2iucBK9IZ6IJKuZJgUYn_mAXRuuLdXwEAjEhg4WkJpSosEBrrKXzlkrRBxtQjSEZpsphD2HOlTQqtwFf5iF1NKSuHVKXjeHVz3e-dAAe_-39kiXA8eomysRDl6RA_DFOlpua1Gq-S03HsDcIieuXfe3YOGWEOUWEXg9zvmn-93cfX6_7c7g9X54s3OLd6fET2E7ZB9B6hvZg1Hy9jE_JUGr8s35d_ADFEwaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIaa-TFBAlA3wAxIPYK1JbSd-rNZWhXWDhxbtzYo_IlWKsopk0v587vJBx6fEa-ycLZ99dz7f_Q7grcqzsUt84KkfOy60zXgahOIyH8fBC-2tp2zkyyu13IhP1_L6XhZ_E-3eP0m2OQ2E0lTWZzufn91LfNOSgs40Jx2jeXIAD1EcRxTUtYmne9jdVMseLxzFsOzSZv5M4yfV9KuA_u2ltFFAi8dw3FmObNqy-gk8COUQHjURnK4awoDMxhZ1-SkUbbGGZtXZTc7mdzX5AdnXrMBR6AulfrAp7mOUJ559to1z1hbYuC3ZebFFQzYwKpRWVIx8tWxFIeNshnq0pbruwV-rZ7BZzNfnS97VVeAOb4s1d2gSeCVDFCnt0zjPtE0SJXKBzSqTIVUqR0NlIq1wY28FajmnvAhplDklIzt5DoflTRleAHMuQhMD-exzJ1zmtNIab0gidtZr78QIon5JjetAx6n2RWH2cMnEBoNsMA0bTDKC9z_-2bWQG__s_Y44Zeg8ImWcQ5tWgPMjZCszVbGW9PoZj-C0Z6bpDmplyJwkTDiBhD70DN43_33cl__X_Q0cfZktzOrj1cUJDGK6tDeunFM4rL_dhldo2dT2dbN5vwPxvu3f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+of+Extreme+Values+of+Time+Averaged+Observables+in+Climate+Models+with+Large+Deviation+Techniques&rft.jtitle=Journal+of+statistical+physics&rft.au=Ragone%2C+Francesco&rft.au=Bouchet%2C+Freddy&rft.date=2020-06-01&rft.pub=Springer+US&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=179&rft.issue=5-6&rft.spage=1637&rft.epage=1665&rft_id=info:doi/10.1007%2Fs10955-019-02429-7&rft.externalDocID=10_1007_s10955_019_02429_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon