Computation of Extreme Values of Time Averaged Observables in Climate Models with Large Deviation Techniques
One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable o...
Saved in:
Published in | Journal of statistical physics Vol. 179; no. 5-6; pp. 1637 - 1665 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-4715 1572-9613 |
DOI | 10.1007/s10955-019-02429-7 |
Cover
Loading…
Abstract | One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable over a long time. The framework of Donsker–Varadhan large deviation theory could therefore be useful for their analysis. In this paper we discuss how concepts and numerical algorithms developed in the context of with large deviation theory can be applied to study extreme, rare fluctuations of time averages of surface temperatures at regional scale with comprehensive numerical climate models. When performing this type of analysis, unless a rigorous study of the convergence to the large deviation limit is performed, it can be easy to be misled in thinking to have reached the asymptotic regime. In this paper we provide a systematic protocol to study the convergence of large deviation functions tailored for applications to climate problems. Referring to the existing literature on the subject, we provide explicit formulas to compute large deviation functions directly from time series of a deterministic dynamical system that can be applied to climate records, and we describe how to study the convergence. We show how using a rare event algorithm applied to a numerical model can improve the efficiency of the computation of the large deviation functions. As a case study we consider the time averaged European surface temperature obtained with the numerical climate model Plasim. We show how a precise analysis of the convergence leads to the conclusion that the large deviation limit is nor properly reached for time scales shorter than a few years, and is therefore of no practical interest to study midlatitude heat waves. Finally we show how, even in a case like this, rare event algorithms developed to study large deviation functions can be used to improve the statistics of events on time scales shorter than the one needed to reach the large deviation asymptotic regime. |
---|---|
AbstractList | One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme events like heat waves, droughts, or floods due to persisting rains are characterized by large anomalies of the time average of an observable over a long time. The framework of Donsker–Varadhan large deviation theory could therefore be useful for their analysis. In this paper we discuss how concepts and numerical algorithms developed in the context of with large deviation theory can be applied to study extreme, rare fluctuations of time averages of surface temperatures at regional scale with comprehensive numerical climate models. When performing this type of analysis, unless a rigorous study of the convergence to the large deviation limit is performed, it can be easy to be misled in thinking to have reached the asymptotic regime. In this paper we provide a systematic protocol to study the convergence of large deviation functions tailored for applications to climate problems. Referring to the existing literature on the subject, we provide explicit formulas to compute large deviation functions directly from time series of a deterministic dynamical system that can be applied to climate records, and we describe how to study the convergence. We show how using a rare event algorithm applied to a numerical model can improve the efficiency of the computation of the large deviation functions. As a case study we consider the time averaged European surface temperature obtained with the numerical climate model Plasim. We show how a precise analysis of the convergence leads to the conclusion that the large deviation limit is nor properly reached for time scales shorter than a few years, and is therefore of no practical interest to study midlatitude heat waves. Finally we show how, even in a case like this, rare event algorithms developed to study large deviation functions can be used to improve the statistics of events on time scales shorter than the one needed to reach the large deviation asymptotic regime. |
Audience | Academic |
Author | Bouchet, Freddy Ragone, Francesco |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0002-2493-7020 surname: Ragone fullname: Ragone, Francesco email: francesco.ragone@ens-lyon.fr organization: Laboratoire de Physique, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS – sequence: 2 givenname: Freddy surname: Bouchet fullname: Bouchet, Freddy organization: Laboratoire de Physique, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS |
BookMark | eNp9UctOwzAQtBBIlMcPcLLEOeB34mNVnlIRl8LVcpxNMUrjYqcF_h6XICFxQD6svLszo505Qvt96AGhM0ouKCHlZaJES1kQqgvCBNNFuYcmVJas0IryfTQhhLFClFQeoqOUXgkhutJygrpZWK03gx186HFo8fXHEGEF-Nl2G0i7zsLn73QL0S6hwY91gri1dZeHvsezzq_sAPghNNAl_O6HFzy3cQn4CrZ-ZF2Ae-n9W6Y7QQet7RKc_tRj9HRzvZjdFfPH2_vZdF44QdhQOMZ4oyRQqnRTsdbquiyVaEUeKyuhUqpVgnNZC0eaWnDCnWoEVNQ6JWnNj9H5yLuOYac7mNewiX2WNNkcXlHNRJm3Lsatpe3A-L4NQ7QuvwZW3mV_W5_7U8W05JWsWAawEeBiSClCa9Yxnx8_DSVmF4MZYzA5BvMdg9mpVH9Azo92ZzXf_Q_lIzRlnX4J8feMf1BfFvCeGA |
CitedBy_id | crossref_primary_10_3389_feart_2023_1235579 crossref_primary_10_1103_PhysRevFluids_8_040501 crossref_primary_10_1093_oxfclm_kgae023 crossref_primary_10_1175_JAS_D_20_0279_1 crossref_primary_10_1007_s00382_024_07160_y crossref_primary_10_1088_1742_5468_ac7aa7 crossref_primary_10_1137_22M1503956 crossref_primary_10_1007_s40766_021_00020_z crossref_primary_10_1103_PhysRevLett_133_047101 crossref_primary_10_3389_fclim_2022_789641 crossref_primary_10_1017_jfm_2021_957 crossref_primary_10_1088_2752_5295_ad8027 crossref_primary_10_1007_s10955_020_02605_0 crossref_primary_10_1063_5_0240959 crossref_primary_10_1016_j_physd_2025_134598 crossref_primary_10_1029_2020GL091197 crossref_primary_10_1175_MWR_D_21_0024_1 crossref_primary_10_1038_s41612_024_00568_7 crossref_primary_10_1103_PhysRevLett_128_200601 crossref_primary_10_1063_5_0241503 crossref_primary_10_1146_annurev_fluid_030420_032810 |
Cites_doi | 10.1214/105051605000000566 10.1088/1742-5468/ab02e8 10.1007/BF00117978 10.1007/978-1-4757-4078-3 10.1088/1742-5468/aab856 10.1016/j.physrep.2009.05.002 10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2 10.1021/jp102971x 10.1103/PhysRevE.92.052104 10.1088/1742-5468/2007/03/P03004 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2 10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 10.1063/1.4990509 10.1073/pnas.1712645115 10.1127/0941-2948/2005/0043 10.1007/978-1-4684-9393-1 10.1029/2010GL042764 10.1109/TAU.1967.1161901 10.1029/91JD00930 10.1088/1748-9326/7/1/014023 10.1007/s10955-011-0350-4 10.1007/978-1-4471-3675-0 10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2 10.5194/npg-18-295-2011 10.1002/9780470745403 10.3402/tellusa.v41i5.11848 10.1175/JCLI4288.1 10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 10.1002/9781118632321 10.1177/030913339902300302 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2 10.1029/2009WR008257 10.1103/PhysRevLett.96.120603 10.1090/S0002-9947-1990-1025756-7 10.1002/cpa.3160280102 10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10955-019-02429-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
EndPage | 1665 |
ExternalDocumentID | A629538582 10_1007_s10955_019_02429_7 |
GrantInformation_xml | – fundername: FP7 Ideas: European Research Council grantid: 616811 funderid: http://dx.doi.org/10.13039/100011199 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c402t-c223d65e1169d82fa9b7764f4c406a5e866f64335b4c0db4303c6d4e81ac651b3 |
IEDL.DBID | U2A |
ISSN | 0022-4715 |
IngestDate | Fri Jul 25 08:56:18 EDT 2025 Tue Jun 10 20:51:11 EDT 2025 Tue Jul 01 00:19:12 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Fri Feb 21 02:26:58 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Climate extremes Heat waves Rare event algorithms Large deviation theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-c223d65e1169d82fa9b7764f4c406a5e866f64335b4c0db4303c6d4e81ac651b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2493-7020 |
OpenAccessLink | http://hdl.handle.net/2078.1/276347 |
PQID | 2423819247 |
PQPubID | 2043551 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2423819247 gale_infotracacademiconefile_A629538582 crossref_primary_10_1007_s10955_019_02429_7 crossref_citationtrail_10_1007_s10955_019_02429_7 springer_journals_10_1007_s10955_019_02429_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | WelchPDThe use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodogramsIEEE Trans. Audio Electroacoust.1967152707310.1109/TAU.1967.1161901 RagoneFWoutersJBouchetFComputation of extreme heat waves in climate models using a large deviation algorithmProc. Natl. Acad. Sci. USA201811512429374891410.1073/pnas.17126451151416.86013 LecomteVTailleurJA numerical approach to large deviations in continuous timeJ. Stat. Mech.2007200703P0300410.1088/1742-5468/2007/03/P0300407120397 GalfiVMLucariniVWoutersJA large deviation theory-based analysis of heat waves and cold spells in a simplified model of the general circulation of the atmosphereJ. Stat. Mech.201920193033404395288110.1088/1742-5468/ab02e8 Louis, J.F., Tiedke, M., Geleyn, M.: A short history of the PBL parameterisation at ECMWF. In: Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterization. pp. 59–80. Reading (1981) Eliasen, E., Machenhauer, B., Rasmussen, E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Københavns University, Copenhagen, Technical report, Inst. of Theor. Met. (1970) KahnHHarrisTEEstimation of particle transmission by random samplingNatl. Bur. Stand. Appl. Math. Ser.1951122730 AilliotPAllardDMonbetVNaveauPStochastic weather generators: an overview of weather type modelsJournal de la Societe Francaise de Statistique2015156110111333382441316.62163 BouchetFMarstonJBTangarifeTFluctuations and large deviations of reynolds stresses in zonal jet dynamicsPhys. Fluids20183010151102018PhFl...30a5110B10.1063/1.4990509 VenezianoDLangousisALeporeCNew asymptotic and preasymptotic results on rainfall maxima from multifractal theoryWater Resour. Res.20094511W114212009WRR....4511421V10.1029/2009WR008257 KuoHLOn formations and intensification of tropical cyclone through latent heat release by cumulus convectionJ. Atmos. Sci.19652240631965JAtS...22...40K10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2 YoungLSLarge deviations in dynamical systemsTrans. Am. Math. Soc.199031825255439756890721.58030 SemtnerAJA model for the thermodynamic growth of sea ice in numerical investigations of climateJ. Phys. Oceanogr.1976633793891976JPO.....6..379S10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2 StephensGLPaltridgeGWPlattCMRRadiation profiles in extended water clouds. III: observationsJ. Atmos. Sci.19783511213321411978JAtS...35.2133S10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2 OrszagSATransform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equationJ. Atmos. Sci.19702768908951970JAtS...27..890O10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2 Del MoralPFeynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications2004New YorkSpringer1130.60003 PohorilleAJarzynskiCChipotCGood practices in free-energy calculationsJ. Phys. Chem. B2010114102351025310.1021/jp102971x DonskerMDVaradhanSSAsymptotic evaluation of certain markov process expectations for large time, ICommun. Pure Appl. Math.197528114738602410.1002/cpa.3160280102 FischerEMSeneviratneSIVidalePLLuthiDSchaerCSoil moisture–atmosphere interactions during the 2003 european summer heat waveJ. Clim.20072020508150992007JCli...20.5081F10.1175/JCLI4288.1 LorenzRJaegerEBSeneviratneSIPersistence of heat waves and its link to soil moisture memoryGeophys. Res. Lett.2010379L097032010GeoRL..37.9703L10.1029/2010GL042764 LestangTRagoneFBrehierCEHerbertCBouchetFComputing return times or return periods with rare event algorithmsJ. Stat. Mech.201820184043213380196510.1088/1742-5468/aab856 LacisAAHansenJA parameterization for the absorption of solar radiation in the Earth?s atmosphereJ. Atmos. Sci.19743111181331974JAtS...31..118L10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 KiferYLarge deviations in dynamical systems and stochastic processesTrans. Am. Math. Soc.19903212505524102575610.1090/S0002-9947-1990-1025756-7 WilksDWilbyRThe weather generation game: a review of stochastic weather modelsProg. Phys. Geogr.199923332935710.1177/030913339902300302 DemboAZeitouniOLarge Deviations and Applications2001Boca RatonCRC Press1002.60024 BucklewJAAn Introduction to Rare Event Simulation2004New YorkSpringer10.1007/978-1-4757-4078-3 Del MoralPGarnierJGenealogical particle analysis of rare eventsAnn. Appl. Prob.200515424962534218730210.1214/1050516050000005661097.65013 StefanonMD’AndreaFDrobinskiPHeatwave classification over Europe and the Mediterranean regionEnviron. Res. Lett.201270140232012ERL.....7a4023S10.1088/1748-9326/7/1/014023 LaursenLEliasenEOn the effects of the damping mechanisms in an atmospheric general circulation modelTellus19894138540010.3402/tellusa.v41i5.11848 SlingoASlingoJMResponse of the National Center for Atmospheric Research community climate model to improvements in the representation of cloudsJ. Geophys. Res.199196D8153411991JGR....9615341S10.1029/91JD00930 AghaKouchakAExtremes in a Changing Climate Detection, Analysis and Uncertainty2012DordrechtSpringer FraedrichKJansenHLukschULunkeitFThe planet simulator: towards a user friendly modelMeteorol. Z.20051429930410.1127/0941-2948/2005/0043 GiardinaCKurchanJLecomteVTailleurJSimulating rare events in dynamical processesJ. Stat. Phys.201114547878112011JSP...145..787G286292910.1007/s10955-011-0350-41252.82007 ColesSAn Introduction to Statistical Modeling of Extreme Values2001New YorkSpringer10.1007/978-1-4471-3675-0 GhilMYiouPHallegatteSMalamudBNaveauPSolovievAFriederichsPKeilis-BorokVKondrashovDKossobokovVMestreONicolisCRustHShebalinPVracMWittAZaliapinIExtreme events: dynamics, statistics and predictionNonlinear Process. Geophys.20111832953502011NPGeo..18..295G10.5194/npg-18-295-2011 EllisRSEntropy, Large Deviations, and Statistical Mechanics2007New YorkSpringer IPCC: Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY (2012) IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013) LouisJFA parametric model of vertical eddy fluxes in the atmosphereBound. Layer Meteorol.19791721872021979BoLMe..17..187L10.1007/BF00117978 Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M.: Simulation of present day climate with the ECHAM model: impact of model physics and resolution. Technical Report, 93. Technical report, Max Planck Institut für Meteorologie, Hamburg, (1992) RohwerCMAngelettiFTouchetteHConvergence of large-deviation estimatorsPhys. Rev. E2015920521042015PhRvE..92e2104R10.1103/PhysRevE.92.052104 SasamoriTThe radiative cooling calculation for application to general circulation experimentsJ. Appl. Meteorol.1968757217291968JApMe...7..721S10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2 LucariniVFarandaDFreitasACGMMFreitasJMMHollandMKunaTNicolMToddMVaientiSExtremes and Recurrence in Dynamical Systems2016HobokenWiley10.1002/9781118632321 GiardinaCKurchanJPelitiLDirect evaluation of large-deviation functionsPhys. Rev. Lett.200696121206032006PhRvL..96l0603G10.1103/PhysRevLett.96.120603 RubinoGTuffinBRare Event Simulation Using Monte Carlo Methods2009ChichesterWiley10.1002/9780470745403 TouchetteHThe large deviation approach to statistical mechanicsPhys. Rep.20094781692009PhR...478....1T256041110.1016/j.physrep.2009.05.002 KuoHLFurther studies of the parameterization of the influence of cumulus convection on large-scale flowJ. Atmos. Sci.1974315123212401974JAtS...31.1232K10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 StephensGLAckermanSSmithEAA shortwave parameterization revised to improve cloud absorptionJ. Atmos. Sci.19844146876901984JAtS...41..687S10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2 CM Rohwer (2429_CR36) 2015; 92 A Slingo (2429_CR40) 1991; 96 G Rubino (2429_CR37) 2009 AJ Semtner (2429_CR39) 1976; 6 MD Donsker (2429_CR9) 1975; 28 C Giardina (2429_CR17) 2011; 145 H Touchette (2429_CR44) 2009; 478 SA Orszag (2429_CR32) 1970; 27 D Veneziano (2429_CR45) 2009; 45 A AghaKouchak (2429_CR1) 2012 L Laursen (2429_CR25) 1989; 41 T Sasamori (2429_CR38) 1968; 7 P Del Moral (2429_CR7) 2005; 15 RS Ellis (2429_CR11) 2007 M Ghil (2429_CR15) 2011; 18 GL Stephens (2429_CR43) 1984; 41 PD Welch (2429_CR46) 1967; 15 HL Kuo (2429_CR23) 1974; 31 LS Young (2429_CR48) 1990; 318 S Coles (2429_CR5) 2001 JA Bucklew (2429_CR4) 2004 M Stefanon (2429_CR41) 2012; 7 HL Kuo (2429_CR22) 1965; 22 AA Lacis (2429_CR24) 1974; 31 A Pohorille (2429_CR33) 2010; 114 EM Fischer (2429_CR12) 2007; 20 D Wilks (2429_CR47) 1999; 23 K Fraedrich (2429_CR13) 2005; 14 P Ailliot (2429_CR2) 2015; 156 C Giardina (2429_CR16) 2006; 96 T Lestang (2429_CR27) 2018; 2018 V Lecomte (2429_CR26) 2007; 2007 Y Kifer (2429_CR21) 1990; 321 H Kahn (2429_CR20) 1951; 12 F Bouchet (2429_CR3) 2018; 30 2429_CR30 A Dembo (2429_CR8) 2001 2429_CR10 R Lorenz (2429_CR28) 2010; 37 2429_CR35 P Del Moral (2429_CR6) 2004 V Lucarini (2429_CR31) 2016 VM Galfi (2429_CR14) 2019; 2019 GL Stephens (2429_CR42) 1978; 35 2429_CR19 2429_CR18 F Ragone (2429_CR34) 2018; 115 JF Louis (2429_CR29) 1979; 17 |
References_xml | – reference: KahnHHarrisTEEstimation of particle transmission by random samplingNatl. Bur. Stand. Appl. Math. Ser.1951122730 – reference: WilksDWilbyRThe weather generation game: a review of stochastic weather modelsProg. Phys. Geogr.199923332935710.1177/030913339902300302 – reference: Eliasen, E., Machenhauer, B., Rasmussen, E.: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Københavns University, Copenhagen, Technical report, Inst. of Theor. Met. (1970) – reference: KiferYLarge deviations in dynamical systems and stochastic processesTrans. Am. Math. Soc.19903212505524102575610.1090/S0002-9947-1990-1025756-7 – reference: LacisAAHansenJA parameterization for the absorption of solar radiation in the Earth?s atmosphereJ. Atmos. Sci.19743111181331974JAtS...31..118L10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 – reference: Louis, J.F., Tiedke, M., Geleyn, M.: A short history of the PBL parameterisation at ECMWF. In: Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterization. pp. 59–80. Reading (1981) – reference: WelchPDThe use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodogramsIEEE Trans. Audio Electroacoust.1967152707310.1109/TAU.1967.1161901 – reference: FischerEMSeneviratneSIVidalePLLuthiDSchaerCSoil moisture–atmosphere interactions during the 2003 european summer heat waveJ. Clim.20072020508150992007JCli...20.5081F10.1175/JCLI4288.1 – reference: SasamoriTThe radiative cooling calculation for application to general circulation experimentsJ. Appl. Meteorol.1968757217291968JApMe...7..721S10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2 – reference: StephensGLPaltridgeGWPlattCMRRadiation profiles in extended water clouds. III: observationsJ. Atmos. Sci.19783511213321411978JAtS...35.2133S10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2 – reference: BucklewJAAn Introduction to Rare Event Simulation2004New YorkSpringer10.1007/978-1-4757-4078-3 – reference: GiardinaCKurchanJPelitiLDirect evaluation of large-deviation functionsPhys. Rev. Lett.200696121206032006PhRvL..96l0603G10.1103/PhysRevLett.96.120603 – reference: DemboAZeitouniOLarge Deviations and Applications2001Boca RatonCRC Press1002.60024 – reference: EllisRSEntropy, Large Deviations, and Statistical Mechanics2007New YorkSpringer – reference: Del MoralPGarnierJGenealogical particle analysis of rare eventsAnn. Appl. Prob.200515424962534218730210.1214/1050516050000005661097.65013 – reference: OrszagSATransform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equationJ. Atmos. Sci.19702768908951970JAtS...27..890O10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2 – reference: RagoneFWoutersJBouchetFComputation of extreme heat waves in climate models using a large deviation algorithmProc. Natl. Acad. Sci. USA201811512429374891410.1073/pnas.17126451151416.86013 – reference: TouchetteHThe large deviation approach to statistical mechanicsPhys. Rep.20094781692009PhR...478....1T256041110.1016/j.physrep.2009.05.002 – reference: DonskerMDVaradhanSSAsymptotic evaluation of certain markov process expectations for large time, ICommun. Pure Appl. Math.197528114738602410.1002/cpa.3160280102 – reference: SlingoASlingoJMResponse of the National Center for Atmospheric Research community climate model to improvements in the representation of cloudsJ. Geophys. Res.199196D8153411991JGR....9615341S10.1029/91JD00930 – reference: Del MoralPFeynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications2004New YorkSpringer1130.60003 – reference: RohwerCMAngelettiFTouchetteHConvergence of large-deviation estimatorsPhys. Rev. E2015920521042015PhRvE..92e2104R10.1103/PhysRevE.92.052104 – reference: StephensGLAckermanSSmithEAA shortwave parameterization revised to improve cloud absorptionJ. Atmos. Sci.19844146876901984JAtS...41..687S10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2 – reference: AilliotPAllardDMonbetVNaveauPStochastic weather generators: an overview of weather type modelsJournal de la Societe Francaise de Statistique2015156110111333382441316.62163 – reference: VenezianoDLangousisALeporeCNew asymptotic and preasymptotic results on rainfall maxima from multifractal theoryWater Resour. Res.20094511W114212009WRR....4511421V10.1029/2009WR008257 – reference: LaursenLEliasenEOn the effects of the damping mechanisms in an atmospheric general circulation modelTellus19894138540010.3402/tellusa.v41i5.11848 – reference: FraedrichKJansenHLukschULunkeitFThe planet simulator: towards a user friendly modelMeteorol. Z.20051429930410.1127/0941-2948/2005/0043 – reference: SemtnerAJA model for the thermodynamic growth of sea ice in numerical investigations of climateJ. Phys. Oceanogr.1976633793891976JPO.....6..379S10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2 – reference: AghaKouchakAExtremes in a Changing Climate Detection, Analysis and Uncertainty2012DordrechtSpringer – reference: GalfiVMLucariniVWoutersJA large deviation theory-based analysis of heat waves and cold spells in a simplified model of the general circulation of the atmosphereJ. Stat. Mech.201920193033404395288110.1088/1742-5468/ab02e8 – reference: GhilMYiouPHallegatteSMalamudBNaveauPSolovievAFriederichsPKeilis-BorokVKondrashovDKossobokovVMestreONicolisCRustHShebalinPVracMWittAZaliapinIExtreme events: dynamics, statistics and predictionNonlinear Process. Geophys.20111832953502011NPGeo..18..295G10.5194/npg-18-295-2011 – reference: PohorilleAJarzynskiCChipotCGood practices in free-energy calculationsJ. Phys. Chem. B2010114102351025310.1021/jp102971x – reference: LecomteVTailleurJA numerical approach to large deviations in continuous timeJ. Stat. Mech.2007200703P0300410.1088/1742-5468/2007/03/P0300407120397 – reference: Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., Windelband, M.: Simulation of present day climate with the ECHAM model: impact of model physics and resolution. Technical Report, 93. Technical report, Max Planck Institut für Meteorologie, Hamburg, (1992) – reference: LouisJFA parametric model of vertical eddy fluxes in the atmosphereBound. Layer Meteorol.19791721872021979BoLMe..17..187L10.1007/BF00117978 – reference: KuoHLOn formations and intensification of tropical cyclone through latent heat release by cumulus convectionJ. Atmos. Sci.19652240631965JAtS...22...40K10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2 – reference: RubinoGTuffinBRare Event Simulation Using Monte Carlo Methods2009ChichesterWiley10.1002/9780470745403 – reference: GiardinaCKurchanJLecomteVTailleurJSimulating rare events in dynamical processesJ. Stat. Phys.201114547878112011JSP...145..787G286292910.1007/s10955-011-0350-41252.82007 – reference: KuoHLFurther studies of the parameterization of the influence of cumulus convection on large-scale flowJ. Atmos. Sci.1974315123212401974JAtS...31.1232K10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 – reference: LorenzRJaegerEBSeneviratneSIPersistence of heat waves and its link to soil moisture memoryGeophys. Res. Lett.2010379L097032010GeoRL..37.9703L10.1029/2010GL042764 – reference: StefanonMD’AndreaFDrobinskiPHeatwave classification over Europe and the Mediterranean regionEnviron. Res. Lett.201270140232012ERL.....7a4023S10.1088/1748-9326/7/1/014023 – reference: LestangTRagoneFBrehierCEHerbertCBouchetFComputing return times or return periods with rare event algorithmsJ. Stat. Mech.201820184043213380196510.1088/1742-5468/aab856 – reference: IPCC: Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY (2012) – reference: ColesSAn Introduction to Statistical Modeling of Extreme Values2001New YorkSpringer10.1007/978-1-4471-3675-0 – reference: BouchetFMarstonJBTangarifeTFluctuations and large deviations of reynolds stresses in zonal jet dynamicsPhys. Fluids20183010151102018PhFl...30a5110B10.1063/1.4990509 – reference: IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013) – reference: YoungLSLarge deviations in dynamical systemsTrans. Am. Math. Soc.199031825255439756890721.58030 – reference: LucariniVFarandaDFreitasACGMMFreitasJMMHollandMKunaTNicolMToddMVaientiSExtremes and Recurrence in Dynamical Systems2016HobokenWiley10.1002/9781118632321 – volume: 15 start-page: 2496 issue: 4 year: 2005 ident: 2429_CR7 publication-title: Ann. Appl. Prob. doi: 10.1214/105051605000000566 – volume: 2019 start-page: 033404 issue: 3 year: 2019 ident: 2429_CR14 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/ab02e8 – volume: 17 start-page: 187 issue: 2 year: 1979 ident: 2429_CR29 publication-title: Bound. Layer Meteorol. doi: 10.1007/BF00117978 – volume: 156 start-page: 101 issue: 1 year: 2015 ident: 2429_CR2 publication-title: Journal de la Societe Francaise de Statistique – ident: 2429_CR19 – volume-title: An Introduction to Rare Event Simulation year: 2004 ident: 2429_CR4 doi: 10.1007/978-1-4757-4078-3 – volume: 2018 start-page: 043213 issue: 4 year: 2018 ident: 2429_CR27 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/aab856 – volume: 478 start-page: 1 year: 2009 ident: 2429_CR44 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.05.002 – volume: 35 start-page: 2133 issue: 11 year: 1978 ident: 2429_CR42 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1978)035<2133:RPIEWC>2.0.CO;2 – volume: 114 start-page: 10235 year: 2010 ident: 2429_CR33 publication-title: J. Phys. Chem. B doi: 10.1021/jp102971x – volume: 92 start-page: 052104 year: 2015 ident: 2429_CR36 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.052104 – volume-title: Extremes in a Changing Climate Detection, Analysis and Uncertainty year: 2012 ident: 2429_CR1 – volume: 2007 start-page: P03004 issue: 03 year: 2007 ident: 2429_CR26 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2007/03/P03004 – volume: 6 start-page: 379 issue: 3 year: 1976 ident: 2429_CR39 publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2 – volume: 31 start-page: 118 issue: 1 year: 1974 ident: 2429_CR24 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2 – volume: 30 start-page: 015110 issue: 1 year: 2018 ident: 2429_CR3 publication-title: Phys. Fluids doi: 10.1063/1.4990509 – volume: 115 start-page: 24 issue: 1 year: 2018 ident: 2429_CR34 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1712645115 – volume: 14 start-page: 299 year: 2005 ident: 2429_CR13 publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2005/0043 – volume-title: Feynman–Kac Formulae Genealogical and Interacting Particle Systems with Applications year: 2004 ident: 2429_CR6 doi: 10.1007/978-1-4684-9393-1 – volume: 37 start-page: L09703 issue: 9 year: 2010 ident: 2429_CR28 publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL042764 – ident: 2429_CR30 – volume: 15 start-page: 70 issue: 2 year: 1967 ident: 2429_CR46 publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume-title: Large Deviations and Applications year: 2001 ident: 2429_CR8 – volume: 96 start-page: 15341 issue: D8 year: 1991 ident: 2429_CR40 publication-title: J. Geophys. Res. doi: 10.1029/91JD00930 – volume: 7 start-page: 014023 year: 2012 ident: 2429_CR41 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/1/014023 – volume: 145 start-page: 787 issue: 4 year: 2011 ident: 2429_CR17 publication-title: J. Stat. Phys. doi: 10.1007/s10955-011-0350-4 – volume-title: An Introduction to Statistical Modeling of Extreme Values year: 2001 ident: 2429_CR5 doi: 10.1007/978-1-4471-3675-0 – ident: 2429_CR18 – volume: 41 start-page: 687 issue: 4 year: 1984 ident: 2429_CR43 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2 – ident: 2429_CR35 – volume: 18 start-page: 295 issue: 3 year: 2011 ident: 2429_CR15 publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-18-295-2011 – volume: 318 start-page: 525 issue: 2 year: 1990 ident: 2429_CR48 publication-title: Trans. Am. Math. Soc. – volume: 12 start-page: 27 year: 1951 ident: 2429_CR20 publication-title: Natl. Bur. Stand. Appl. Math. Ser. – volume-title: Rare Event Simulation Using Monte Carlo Methods year: 2009 ident: 2429_CR37 doi: 10.1002/9780470745403 – volume: 41 start-page: 385 year: 1989 ident: 2429_CR25 publication-title: Tellus doi: 10.3402/tellusa.v41i5.11848 – volume: 20 start-page: 5081 issue: 20 year: 2007 ident: 2429_CR12 publication-title: J. Clim. doi: 10.1175/JCLI4288.1 – volume: 7 start-page: 721 issue: 5 year: 1968 ident: 2429_CR38 publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2 – volume: 31 start-page: 1232 issue: 5 year: 1974 ident: 2429_CR23 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 – volume-title: Extremes and Recurrence in Dynamical Systems year: 2016 ident: 2429_CR31 doi: 10.1002/9781118632321 – volume: 23 start-page: 329 issue: 3 year: 1999 ident: 2429_CR47 publication-title: Prog. Phys. Geogr. doi: 10.1177/030913339902300302 – volume: 22 start-page: 40 year: 1965 ident: 2429_CR22 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2 – volume: 45 start-page: W11421 issue: 11 year: 2009 ident: 2429_CR45 publication-title: Water Resour. Res. doi: 10.1029/2009WR008257 – volume: 96 start-page: 120603 issue: 12 year: 2006 ident: 2429_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.120603 – volume: 321 start-page: 505 issue: 2 year: 1990 ident: 2429_CR21 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1990-1025756-7 – ident: 2429_CR10 – volume: 28 start-page: 1 issue: 1 year: 1975 ident: 2429_CR9 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160280102 – volume: 27 start-page: 890 issue: 6 year: 1970 ident: 2429_CR32 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2 – volume-title: Entropy, Large Deviations, and Statistical Mechanics year: 2007 ident: 2429_CR11 |
SSID | ssj0009895 |
Score | 2.430753 |
Snippet | One of the goals of climate science is to characterize the statistics of extreme and potentially dangerous events in the present and future climate. Extreme... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1637 |
SubjectTerms | Algorithms Analysis Anomalies Asymptotic properties Climate Climate models Convergence Deviation Drought Droughts Extreme values Mathematical and Computational Physics Methods Numerical models Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Surface temperature Theoretical Time |
Title | Computation of Extreme Values of Time Averaged Observables in Climate Models with Large Deviation Techniques |
URI | https://link.springer.com/article/10.1007/s10955-019-02429-7 https://www.proquest.com/docview/2423819247 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NKiReEHQgCqzywyQeNktNsJ34MbB2CLbyQid4suKPSJWigkgn7c_nLh8UNkDaU6TYuVg---58vvsdwGdV5COX-MBTP3JcaJvzNAjFZTGKgxfaW0_ZyD-n6nwmLm7kTZsUVnXR7t2VZC2pnyW7aUmBZpqTXtE8WYOexLM7retZnK2gdlMtO4xwFL2yTZV5ncYLdfS3UP7ndrRWOpNt2GqtRZY17N2BD2HRh406atNVfdgkU7FBWv4IZVOgoZ5pdlew8Z8l-f7Yr7zEv9AbSvdgGa5dlCGeXdnaIWtLbJwv2Fk5R-M1MCqOVlaM_LPsB4WJs2-oOxuq1x3ga7ULs8n4-uyct7UUuMMT4pI7NAO8kiGKlPZpXOTaJokShcBmlcuQKlWgcXIirXAjbwVqNqe8CGmUOyUje7IH64u7RdgH5lyEZgXy1hdOuNxppTWeikTsrNfeiQFE3ZQa1wKNU72L0qwgkokNBtlgajaYZABfnr65b2A23u19TJwytAeRMo6hSSXA8RGalclUrCXdeMYDOOqYadrNWRkyIQkHTiChrx2DV81v__fg_7ofwmZMp_PaZ3ME68uH3-ETmjBLO4ReNjk9ndLz--3leFiv4EfUcunA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfgJsRe-BhMHAzIAxIPkOnaJWnzeBo3DnYbL3doPEWNk0oT1Q3RTkL89dj94GB8SHttUtdNnNhx7J8BXpiymGAWoszDBKWyvpB5VEbqcpLGoGzwgbORT07NfKXen-mzPimsHqLdhyvJdqf-JdnNag40s5L1ipXZTdhSdAbXI9iavv10PNuA7eZWDyjhtPnqPlnm71R-U0hXt-U_7kdbtXN0F1YDw120yef9y8bv4_crWI7X_aN7cKe3Q8W0E5z7cCOud-BWGw-K9Q5ssxHaYTg_gKor_dDOobgoxexbw15F8bGoiHt-wokkYkqrgnanID741tXrK2o8X4vD6pzM4ii47FpVC_b8igUHoIs3pJU7qssBSrZ-CKuj2fJwLvsqDRLp7NlIJAMjGB2TxNiQp2VhfZYZVSpqNoWOuTElmT0H2iucBK9IZ6IJKuZJgUYn_mAXRuuLdXwEAjEhg4WkJpSosEBrrKXzlkrRBxtQjSEZpsphD2HOlTQqtwFf5iF1NKSuHVKXjeHVz3e-dAAe_-39kiXA8eomysRDl6RA_DFOlpua1Gq-S03HsDcIieuXfe3YOGWEOUWEXg9zvmn-93cfX6_7c7g9X54s3OLd6fET2E7ZB9B6hvZg1Hy9jE_JUGr8s35d_ADFEwaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xIaa-TFBAlA3wAxIPYK1JbSd-rNZWhXWDhxbtzYo_IlWKsopk0v587vJBx6fEa-ycLZ99dz7f_Q7grcqzsUt84KkfOy60zXgahOIyH8fBC-2tp2zkyyu13IhP1_L6XhZ_E-3eP0m2OQ2E0lTWZzufn91LfNOSgs40Jx2jeXIAD1EcRxTUtYmne9jdVMseLxzFsOzSZv5M4yfV9KuA_u2ltFFAi8dw3FmObNqy-gk8COUQHjURnK4awoDMxhZ1-SkUbbGGZtXZTc7mdzX5AdnXrMBR6AulfrAp7mOUJ559to1z1hbYuC3ZebFFQzYwKpRWVIx8tWxFIeNshnq0pbruwV-rZ7BZzNfnS97VVeAOb4s1d2gSeCVDFCnt0zjPtE0SJXKBzSqTIVUqR0NlIq1wY28FajmnvAhplDklIzt5DoflTRleAHMuQhMD-exzJ1zmtNIab0gidtZr78QIon5JjetAx6n2RWH2cMnEBoNsMA0bTDKC9z_-2bWQG__s_Y44Zeg8ImWcQ5tWgPMjZCszVbGW9PoZj-C0Z6bpDmplyJwkTDiBhD70DN43_33cl__X_Q0cfZktzOrj1cUJDGK6tDeunFM4rL_dhldo2dT2dbN5vwPxvu3f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computation+of+Extreme+Values+of+Time+Averaged+Observables+in+Climate+Models+with+Large+Deviation+Techniques&rft.jtitle=Journal+of+statistical+physics&rft.au=Ragone%2C+Francesco&rft.au=Bouchet%2C+Freddy&rft.date=2020-06-01&rft.pub=Springer+US&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=179&rft.issue=5-6&rft.spage=1637&rft.epage=1665&rft_id=info:doi/10.1007%2Fs10955-019-02429-7&rft.externalDocID=10_1007_s10955_019_02429_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |