Identification of Gait Events in Healthy and Parkinson's Disease Subjects Using Inertial Sensors: A Supervised Learning Approach
Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited perfor...
Saved in:
Published in | IEEE sensors journal Vol. 20; no. 24; pp. 14984 - 14993 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited performance detecting phases during impaired gait. In this paper, we proposed one algorithm that used linear classifiers to detect in real-time the transition between consecutive gait phases. Our approach is a generalization of the rule- and threshold-based algorithms for event detection. Linear classifiers are parametric models that require appropriate values in order to perform correct classification of the gait phases. We introduced a modified Support Vector Machine (SVM) to compute such sub-optimal combinations of those values, and a further optimization with a hybrid meta-heuristic approach that integrates a Genetic and a Simulated Annealing Algorithm. We tested our approach on data collected by a single-IMU foot-mounted wearable device during overground and treadmill walking for two groups: one with healthy and one with Parkinson's Disease subjects. The <inline-formula> <tex-math notation="LaTeX">{F}_1 </tex-math></inline-formula>-scores were 0.987 and 0.953 for the two groups, which were comparable with our previously developed threshold-based method, which obtained 0.988 and 0.974, respectively. Our proposed approach achieved similar performance as the threshold-based scheme, with the advantage of not relying on any prior knowledge of specific features for any particular inertial signal. |
---|---|
AbstractList | Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited performance detecting phases during impaired gait. In this paper, we proposed one algorithm that used linear classifiers to detect in real-time the transition between consecutive gait phases. Our approach is a generalization of the rule- and threshold-based algorithms for event detection. Linear classifiers are parametric models that require appropriate values in order to perform correct classification of the gait phases. We introduced a modified Support Vector Machine (SVM) to compute such sub-optimal combinations of those values, and a further optimization with a hybrid meta-heuristic approach that integrates a Genetic and a Simulated Annealing Algorithm. We tested our approach on data collected by a single-IMU foot-mounted wearable device during overground and treadmill walking for two groups: one with healthy and one with Parkinson’s Disease subjects. The [Formula Omitted]-scores were 0.987 and 0.953 for the two groups, which were comparable with our previously developed threshold-based method, which obtained 0.988 and 0.974, respectively. Our proposed approach achieved similar performance as the threshold-based scheme, with the advantage of not relying on any prior knowledge of specific features for any particular inertial signal. Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited performance detecting phases during impaired gait. In this paper, we proposed one algorithm that used linear classifiers to detect in real-time the transition between consecutive gait phases. Our approach is a generalization of the rule- and threshold-based algorithms for event detection. Linear classifiers are parametric models that require appropriate values in order to perform correct classification of the gait phases. We introduced a modified Support Vector Machine (SVM) to compute such sub-optimal combinations of those values, and a further optimization with a hybrid meta-heuristic approach that integrates a Genetic and a Simulated Annealing Algorithm. We tested our approach on data collected by a single-IMU foot-mounted wearable device during overground and treadmill walking for two groups: one with healthy and one with Parkinson's Disease subjects. The <inline-formula> <tex-math notation="LaTeX">{F}_1 </tex-math></inline-formula>-scores were 0.987 and 0.953 for the two groups, which were comparable with our previously developed threshold-based method, which obtained 0.988 and 0.974, respectively. Our proposed approach achieved similar performance as the threshold-based scheme, with the advantage of not relying on any prior knowledge of specific features for any particular inertial signal. |
Author | Siqueira, Adriano A. G. Perez-Ibarra, Juan C. Krebs, Hermano I. |
Author_xml | – sequence: 1 givenname: Juan C. orcidid: 0000-0003-4519-979X surname: Perez-Ibarra fullname: Perez-Ibarra, Juan C. email: jcperezibarra@sc.usp.br organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil – sequence: 2 givenname: Adriano A. G. orcidid: 0000-0003-0663-156X surname: Siqueira fullname: Siqueira, Adriano A. G. email: siqueira@sc.usp.br organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil – sequence: 3 givenname: Hermano I. surname: Krebs fullname: Krebs, Hermano I. email: hikrebs@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA |
BookMark | eNp9kEFLwzAcR4NMUKcfQLwEPHjqTNK0ab2NOedkqDAFbyVN_9HMmc4kG3jzo5s68eDBU0J4Lz94B6hnWwsIHVMyoJSU5zfz8e2AEUYGKaE0Z2IH7dMsKxIqeNHr7ilJeCqe9tCB9wtCaCkysY8-pw3YYLRRMpjW4lbjiTQBjzfx2WNj8TXIZXj5wNI2-F66V2N9a888vjQepAc8X9cLUJF99MY-46kFF4xc4jlE0PkLPIzICtwm8g2egXS244arlWulejlEu1ouPRz9nH30eDV-GF0ns7vJdDScJYoTFpJa5UrRQqdlITkVmYa6LgWoohZNDTnVuc4UoXWmm1LxVBOuZcqIZCKPAaLXR6fbf-Ps-xp8qBbt2tk4WTGeM8Z4KWik6JZSrvXega5WzrxJ91FRUnWhqy501YWufkJHR_xxlAnfNYOTZvmvebI1DQD8LpWU51mWpl_BKY7Q |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3436822 crossref_primary_10_1109_TIM_2025_3538087 crossref_primary_10_1016_j_jbi_2023_104524 crossref_primary_10_1109_JSEN_2022_3177951 crossref_primary_10_1109_JSEN_2023_3343721 crossref_primary_10_1109_LRA_2022_3226034 crossref_primary_10_1109_TNSRE_2022_3197807 crossref_primary_10_3390_electronics12204319 crossref_primary_10_1007_s41870_024_02099_z crossref_primary_10_1016_j_neucom_2021_02_011 crossref_primary_10_1109_JSEN_2021_3072102 crossref_primary_10_1109_JSEN_2022_3188527 crossref_primary_10_1109_TNSRE_2020_3039999 crossref_primary_10_1109_JBHI_2024_3380099 crossref_primary_10_1109_JIOT_2023_3313158 crossref_primary_10_1109_JBHI_2022_3174249 crossref_primary_10_1109_JSEN_2021_3059304 crossref_primary_10_1109_JSEN_2022_3208734 crossref_primary_10_1109_TNSRE_2022_3162035 |
Cites_doi | 10.1016/j.gaitpost.2017.06.019 10.1109/JBHI.2013.2293887 10.1109/TAFFC.2016.2549533 10.1109/JSEN.2016.2616163 10.1016/j.medengphy.2009.10.014 10.1109/TBME.2004.827933 10.1109/JSEN.2019.2951923 10.1109/BIOROB.2018.8487694 10.1016/j.medengphy.2013.10.004 10.7551/mitpress/3927.001.0001 10.1109/TNSRE.2013.2287241 10.1109/LRA.2020.2970656 10.1186/1743-0003-12-1 10.1371/journal.pone.0073152 10.3390/s140406229 10.1109/TNSRE.2013.2282080 10.1109/TNSRE.2007.908933 10.3390/s100605683 10.1016/S0021-9290(02)00008-8 10.1109/TNSRE.2013.2291907 10.1109/JTEHM.2015.2504961 10.1109/EMBC.2019.8856685 10.1007/BF01009452 10.1007/s11517-011-0736-0 10.1002/atr.1274 10.1109/TBME.2012.2227317 10.1109/TBME.2019.2955423 10.1016/j.gaitpost.2012.07.012 10.1109/TNSRE.2013.2268251 10.1016/j.pmr.2015.06.006 10.1016/j.jbiomech.2017.02.016 10.1186/1743-0003-3-4 10.3390/s120202255 10.1109/ACCESS.2016.2633304 10.1007/s41315-017-0042-6 10.1109/TNSRE.2015.2457511 10.1109/LRA.2018.2885165 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.3011627 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 14993 |
ExternalDocumentID | 10_1109_JSEN_2020_3011627 9146553 |
Genre | orig-research |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Łunder Finance Code 001 grantid: PDSE-88881.133763/2016-01 funderid: 10.13039/501100002322 – fundername: São Paulo Research Foundation (FAPESP) grantid: 2019/05937-7 (FAPESP-MIT); 2015/50376-2 funderid: 10.13039/501100001807 – fundername: MIT International Science and Technology Initiatives (MISTI) MIT-Brazil Program |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c402t-bc6cc18f398a4175febb97ec8b7dbe61f6f5c01b5fd9c43f04fa320a2767488f3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:14:46 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Tue Jul 01 03:36:56 EDT 2025 Wed Aug 27 02:29:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-bc6cc18f398a4175febb97ec8b7dbe61f6f5c01b5fd9c43f04fa320a2767488f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4519-979X 0000-0003-0663-156X |
OpenAccessLink | http://dx.doi.org/10.1109/JSEN.2020.3011627 |
PQID | 2462224971 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2020_3011627 ieee_primary_9146553 proquest_journals_2462224971 crossref_citationtrail_10_1109_JSEN_2020_3011627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-15 |
PublicationDateYYYYMMDD | 2020-12-15 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 hausdorff (ref17) 2009; 19 ref32 ref10 ref2 ref1 ref39 ref16 ref19 ref18 mileti (ref25) 2017 gu (ref38) 2012 ref24 ref23 ref26 ref20 ref41 ref22 ref21 (ref34) 2001 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref6 doi: 10.1016/j.gaitpost.2017.06.019 – year: 2012 ident: ref38 article-title: Generalized Fisher score for feature selection publication-title: arXiv 1202 3725 – ident: ref9 doi: 10.1109/JBHI.2013.2293887 – start-page: 402 year: 2017 ident: ref25 article-title: Gait partitioning methods in Parkinson's disease patients with motor fluctuations: A comparative analysis publication-title: Proc IEEE Int Symp Med Meas Appl (MeMeA) – ident: ref24 doi: 10.1109/TAFFC.2016.2549533 – ident: ref8 doi: 10.1109/JSEN.2016.2616163 – ident: ref39 doi: 10.1016/j.medengphy.2009.10.014 – ident: ref18 doi: 10.1109/TBME.2004.827933 – ident: ref31 doi: 10.1109/JSEN.2019.2951923 – ident: ref15 doi: 10.1109/BIOROB.2018.8487694 – ident: ref40 doi: 10.1016/j.medengphy.2013.10.004 – ident: ref36 doi: 10.7551/mitpress/3927.001.0001 – ident: ref16 doi: 10.1109/TNSRE.2013.2287241 – ident: ref27 doi: 10.1109/LRA.2020.2970656 – ident: ref2 doi: 10.1186/1743-0003-12-1 – ident: ref10 doi: 10.1371/journal.pone.0073152 – ident: ref28 doi: 10.3390/s140406229 – ident: ref22 doi: 10.1109/TNSRE.2013.2282080 – volume: 19 year: 2009 ident: ref17 article-title: Gait dynamics in Parkinson's disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling publication-title: Chaos Interdiscipl J Nonlinear Sci – ident: ref14 doi: 10.1109/TNSRE.2007.908933 – ident: ref33 doi: 10.3390/s100605683 – ident: ref12 doi: 10.1016/S0021-9290(02)00008-8 – year: 2001 ident: ref34 publication-title: Observational Gait Analysis – ident: ref5 doi: 10.1109/TNSRE.2013.2291907 – ident: ref20 doi: 10.1109/JTEHM.2015.2504961 – ident: ref26 doi: 10.1109/EMBC.2019.8856685 – ident: ref35 doi: 10.1007/BF01009452 – ident: ref7 doi: 10.1007/s11517-011-0736-0 – ident: ref37 doi: 10.1002/atr.1274 – ident: ref19 doi: 10.1109/TBME.2012.2227317 – ident: ref30 doi: 10.1109/TBME.2019.2955423 – ident: ref11 doi: 10.1016/j.gaitpost.2012.07.012 – ident: ref21 doi: 10.1109/TNSRE.2013.2268251 – ident: ref13 doi: 10.1016/j.pmr.2015.06.006 – ident: ref32 doi: 10.1016/j.jbiomech.2017.02.016 – ident: ref1 doi: 10.1186/1743-0003-3-4 – ident: ref4 doi: 10.3390/s120202255 – ident: ref23 doi: 10.1109/ACCESS.2016.2633304 – ident: ref3 doi: 10.1007/s41315-017-0042-6 – ident: ref29 doi: 10.1109/TNSRE.2015.2457511 – ident: ref41 doi: 10.1109/LRA.2018.2885165 |
SSID | ssj0019757 |
Score | 2.4224806 |
Snippet | Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14984 |
SubjectTerms | Algorithms Classifiers Event detection Foot Gait Gait analysis gait phases Heuristic methods Inertial sensing devices Legged locomotion Loading machine learning meta-heuristics Optimization Parkinson's disease Phases Real-time systems Sensors Simulated annealing Supervised learning Support vector machines Treadmills Walking wearable sensors Wearable technology |
Title | Identification of Gait Events in Healthy and Parkinson's Disease Subjects Using Inertial Sensors: A Supervised Learning Approach |
URI | https://ieeexplore.ieee.org/document/9146553 https://www.proquest.com/docview/2462224971 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bl7YH2kKrLqWVD5UqVWSxE8dOelu1SykSXABpb5E_W1SURSR7gBM_HY_jXaGCqt5yGEeWZjz2zLx5A_ApXDm8sl5mwmDqhlOdKcZ1JnmprEHKtVg9Pz4Rh-f8aFbO1mBv1QvjnIvgMzfGz1jLt3OzwFTZfs2Q7atYh_UQuA29WquKQS0jq2c4wDTjhZylCiaj9f7R6fQkRIJ5CFCx7IADZB7cQXGoyiNPHK-Xg5dwvNzYgCr5M170emxu_-Js_N-dv4LN9M4kk8EwXsOaa7fgxQP2wS14lgag_77ZhruhYdenDB6Ze_JDXfRkinDIjly0ZOhXuiGqtQRbpWPX2OeOfB8qPCR4IEzpdCSCEMjPFgHbYQenIU6eX3dfySSIXKFn6pwlidb1F5kkTvM3cH4wPft2mKXhDJkJIWefaSOMYZUv6krx8AbxTutaOlNpabUTzAtfGsp06W1teOEp96rIqcqRPagK697CRjtv3TsgUucF2pJQwTQKYxWl1tlCKuaocJUYAV2qqzGJuRwHaFw2MYKhdYMablDDTdLwCL6sllwNtB3_Et5Gja0Ek7JGsLu0iSYd7K7JuUDzriXbeXrVe3iO_0bECyt3YaO_XrgP4d3S64_RYO8Bfv3qWA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigcKLRULLTgAxISIls7cZykt1XZsi3dvbSV9hb5CRUoWzXZQznx0_E43lUFCHHLYUYZacYez-sbgLfe5fDSuCIRGlM3nKpEMq6SgufSaIRcC9Xz6UxMrvjZPJ9vwIf1LIy1NjSf2SF-hlq-WeglpsoOK4ZoX9kDeOj9fs76aa11zaAqAq6nP8I04VkxjzVMRqvDs4vxzMeCqQ9RsfCAK2TueaGwVuWPuzg4mJNtmK5E6_tKvg2XnRrqH7-hNv6v7E_hSXxpklFvGs9gwzY78Pge_uAObMUV6F_vduFnP7LrYg6PLBz5JK87MsaGyJZcN6SfWLojsjEEh6XD3Ni7lnzsazzE30GY1GlJaEMgpw22bHsJLnykvLhtj8jIk9zg3dRaQyKw6xcyiqjmz-HqZHx5PEnieoZE-6CzS5QWWrPSZVUpuX-FOKtUVVhdqsIoK5gTLteUqdyZSvPMUe5kllKZIn5Q6fn2YLNZNPYFkEKlGVqTkN44Mm0kpcaarJDMUmFLMQC6UletI3Y5rtD4XocYhlY1arhGDddRwwN4v2a56YE7_kW8ixpbE0ZlDWB_ZRN1PNptnXKBBl4V7OXfud7A1uRyel6fn84-v4JH-B_sf2H5Pmx2t0t74F8xnXodjPcX29btoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Gait+Events+in+Healthy+and+Parkinson%27s+Disease+Subjects+Using+Inertial+Sensors%3A+A+Supervised+Learning+Approach&rft.jtitle=IEEE+sensors+journal&rft.au=Perez-Ibarra%2C+Juan+C.&rft.au=Siqueira%2C+Adriano+A.+G.&rft.au=Krebs%2C+Hermano+I.&rft.date=2020-12-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=24&rft.spage=14984&rft.epage=14993&rft_id=info:doi/10.1109%2FJSEN.2020.3011627&rft.externalDocID=9146553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |