Identification of Gait Events in Healthy and Parkinson's Disease Subjects Using Inertial Sensors: A Supervised Learning Approach

Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited perfor...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 20; no. 24; pp. 14984 - 14993
Main Authors Perez-Ibarra, Juan C., Siqueira, Adriano A. G., Krebs, Hermano I.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited performance detecting phases during impaired gait. In this paper, we proposed one algorithm that used linear classifiers to detect in real-time the transition between consecutive gait phases. Our approach is a generalization of the rule- and threshold-based algorithms for event detection. Linear classifiers are parametric models that require appropriate values in order to perform correct classification of the gait phases. We introduced a modified Support Vector Machine (SVM) to compute such sub-optimal combinations of those values, and a further optimization with a hybrid meta-heuristic approach that integrates a Genetic and a Simulated Annealing Algorithm. We tested our approach on data collected by a single-IMU foot-mounted wearable device during overground and treadmill walking for two groups: one with healthy and one with Parkinson's Disease subjects. The <inline-formula> <tex-math notation="LaTeX">{F}_1 </tex-math></inline-formula>-scores were 0.987 and 0.953 for the two groups, which were comparable with our previously developed threshold-based method, which obtained 0.988 and 0.974, respectively. Our proposed approach achieved similar performance as the threshold-based scheme, with the advantage of not relying on any prior knowledge of specific features for any particular inertial signal.
AbstractList Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited performance detecting phases during impaired gait. In this paper, we proposed one algorithm that used linear classifiers to detect in real-time the transition between consecutive gait phases. Our approach is a generalization of the rule- and threshold-based algorithms for event detection. Linear classifiers are parametric models that require appropriate values in order to perform correct classification of the gait phases. We introduced a modified Support Vector Machine (SVM) to compute such sub-optimal combinations of those values, and a further optimization with a hybrid meta-heuristic approach that integrates a Genetic and a Simulated Annealing Algorithm. We tested our approach on data collected by a single-IMU foot-mounted wearable device during overground and treadmill walking for two groups: one with healthy and one with Parkinson’s Disease subjects. The [Formula Omitted]-scores were 0.987 and 0.953 for the two groups, which were comparable with our previously developed threshold-based method, which obtained 0.988 and 0.974, respectively. Our proposed approach achieved similar performance as the threshold-based scheme, with the advantage of not relying on any prior knowledge of specific features for any particular inertial signal.
Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy subjects. However, gait patterns among subjects with impairments are not as consistent and most of the existing algorithms have limited performance detecting phases during impaired gait. In this paper, we proposed one algorithm that used linear classifiers to detect in real-time the transition between consecutive gait phases. Our approach is a generalization of the rule- and threshold-based algorithms for event detection. Linear classifiers are parametric models that require appropriate values in order to perform correct classification of the gait phases. We introduced a modified Support Vector Machine (SVM) to compute such sub-optimal combinations of those values, and a further optimization with a hybrid meta-heuristic approach that integrates a Genetic and a Simulated Annealing Algorithm. We tested our approach on data collected by a single-IMU foot-mounted wearable device during overground and treadmill walking for two groups: one with healthy and one with Parkinson's Disease subjects. The <inline-formula> <tex-math notation="LaTeX">{F}_1 </tex-math></inline-formula>-scores were 0.987 and 0.953 for the two groups, which were comparable with our previously developed threshold-based method, which obtained 0.988 and 0.974, respectively. Our proposed approach achieved similar performance as the threshold-based scheme, with the advantage of not relying on any prior knowledge of specific features for any particular inertial signal.
Author Siqueira, Adriano A. G.
Perez-Ibarra, Juan C.
Krebs, Hermano I.
Author_xml – sequence: 1
  givenname: Juan C.
  orcidid: 0000-0003-4519-979X
  surname: Perez-Ibarra
  fullname: Perez-Ibarra, Juan C.
  email: jcperezibarra@sc.usp.br
  organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil
– sequence: 2
  givenname: Adriano A. G.
  orcidid: 0000-0003-0663-156X
  surname: Siqueira
  fullname: Siqueira, Adriano A. G.
  email: siqueira@sc.usp.br
  organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil
– sequence: 3
  givenname: Hermano I.
  surname: Krebs
  fullname: Krebs, Hermano I.
  email: hikrebs@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
BookMark eNp9kEFLwzAcR4NMUKcfQLwEPHjqTNK0ab2NOedkqDAFbyVN_9HMmc4kG3jzo5s68eDBU0J4Lz94B6hnWwsIHVMyoJSU5zfz8e2AEUYGKaE0Z2IH7dMsKxIqeNHr7ilJeCqe9tCB9wtCaCkysY8-pw3YYLRRMpjW4lbjiTQBjzfx2WNj8TXIZXj5wNI2-F66V2N9a888vjQepAc8X9cLUJF99MY-46kFF4xc4jlE0PkLPIzICtwm8g2egXS244arlWulejlEu1ouPRz9nH30eDV-GF0ns7vJdDScJYoTFpJa5UrRQqdlITkVmYa6LgWoohZNDTnVuc4UoXWmm1LxVBOuZcqIZCKPAaLXR6fbf-Ps-xp8qBbt2tk4WTGeM8Z4KWik6JZSrvXega5WzrxJ91FRUnWhqy501YWufkJHR_xxlAnfNYOTZvmvebI1DQD8LpWU51mWpl_BKY7Q
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3436822
crossref_primary_10_1109_TIM_2025_3538087
crossref_primary_10_1016_j_jbi_2023_104524
crossref_primary_10_1109_JSEN_2022_3177951
crossref_primary_10_1109_JSEN_2023_3343721
crossref_primary_10_1109_LRA_2022_3226034
crossref_primary_10_1109_TNSRE_2022_3197807
crossref_primary_10_3390_electronics12204319
crossref_primary_10_1007_s41870_024_02099_z
crossref_primary_10_1016_j_neucom_2021_02_011
crossref_primary_10_1109_JSEN_2021_3072102
crossref_primary_10_1109_JSEN_2022_3188527
crossref_primary_10_1109_TNSRE_2020_3039999
crossref_primary_10_1109_JBHI_2024_3380099
crossref_primary_10_1109_JIOT_2023_3313158
crossref_primary_10_1109_JBHI_2022_3174249
crossref_primary_10_1109_JSEN_2021_3059304
crossref_primary_10_1109_JSEN_2022_3208734
crossref_primary_10_1109_TNSRE_2022_3162035
Cites_doi 10.1016/j.gaitpost.2017.06.019
10.1109/JBHI.2013.2293887
10.1109/TAFFC.2016.2549533
10.1109/JSEN.2016.2616163
10.1016/j.medengphy.2009.10.014
10.1109/TBME.2004.827933
10.1109/JSEN.2019.2951923
10.1109/BIOROB.2018.8487694
10.1016/j.medengphy.2013.10.004
10.7551/mitpress/3927.001.0001
10.1109/TNSRE.2013.2287241
10.1109/LRA.2020.2970656
10.1186/1743-0003-12-1
10.1371/journal.pone.0073152
10.3390/s140406229
10.1109/TNSRE.2013.2282080
10.1109/TNSRE.2007.908933
10.3390/s100605683
10.1016/S0021-9290(02)00008-8
10.1109/TNSRE.2013.2291907
10.1109/JTEHM.2015.2504961
10.1109/EMBC.2019.8856685
10.1007/BF01009452
10.1007/s11517-011-0736-0
10.1002/atr.1274
10.1109/TBME.2012.2227317
10.1109/TBME.2019.2955423
10.1016/j.gaitpost.2012.07.012
10.1109/TNSRE.2013.2268251
10.1016/j.pmr.2015.06.006
10.1016/j.jbiomech.2017.02.016
10.1186/1743-0003-3-4
10.3390/s120202255
10.1109/ACCESS.2016.2633304
10.1007/s41315-017-0042-6
10.1109/TNSRE.2015.2457511
10.1109/LRA.2018.2885165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3011627
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 14993
ExternalDocumentID 10_1109_JSEN_2020_3011627
9146553
Genre orig-research
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Łunder Finance Code 001
  grantid: PDSE-88881.133763/2016-01
  funderid: 10.13039/501100002322
– fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2019/05937-7 (FAPESP-MIT); 2015/50376-2
  funderid: 10.13039/501100001807
– fundername: MIT International Science and Technology Initiatives (MISTI) MIT-Brazil Program
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c402t-bc6cc18f398a4175febb97ec8b7dbe61f6f5c01b5fd9c43f04fa320a2767488f3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:14:46 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Tue Jul 01 03:36:56 EDT 2025
Wed Aug 27 02:29:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-bc6cc18f398a4175febb97ec8b7dbe61f6f5c01b5fd9c43f04fa320a2767488f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4519-979X
0000-0003-0663-156X
OpenAccessLink http://dx.doi.org/10.1109/JSEN.2020.3011627
PQID 2462224971
PQPubID 75733
PageCount 10
ParticipantIDs crossref_primary_10_1109_JSEN_2020_3011627
ieee_primary_9146553
proquest_journals_2462224971
crossref_citationtrail_10_1109_JSEN_2020_3011627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
hausdorff (ref17) 2009; 19
ref32
ref10
ref2
ref1
ref39
ref16
ref19
ref18
mileti (ref25) 2017
gu (ref38) 2012
ref24
ref23
ref26
ref20
ref41
ref22
ref21
(ref34) 2001
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref6
  doi: 10.1016/j.gaitpost.2017.06.019
– year: 2012
  ident: ref38
  article-title: Generalized Fisher score for feature selection
  publication-title: arXiv 1202 3725
– ident: ref9
  doi: 10.1109/JBHI.2013.2293887
– start-page: 402
  year: 2017
  ident: ref25
  article-title: Gait partitioning methods in Parkinson's disease patients with motor fluctuations: A comparative analysis
  publication-title: Proc IEEE Int Symp Med Meas Appl (MeMeA)
– ident: ref24
  doi: 10.1109/TAFFC.2016.2549533
– ident: ref8
  doi: 10.1109/JSEN.2016.2616163
– ident: ref39
  doi: 10.1016/j.medengphy.2009.10.014
– ident: ref18
  doi: 10.1109/TBME.2004.827933
– ident: ref31
  doi: 10.1109/JSEN.2019.2951923
– ident: ref15
  doi: 10.1109/BIOROB.2018.8487694
– ident: ref40
  doi: 10.1016/j.medengphy.2013.10.004
– ident: ref36
  doi: 10.7551/mitpress/3927.001.0001
– ident: ref16
  doi: 10.1109/TNSRE.2013.2287241
– ident: ref27
  doi: 10.1109/LRA.2020.2970656
– ident: ref2
  doi: 10.1186/1743-0003-12-1
– ident: ref10
  doi: 10.1371/journal.pone.0073152
– ident: ref28
  doi: 10.3390/s140406229
– ident: ref22
  doi: 10.1109/TNSRE.2013.2282080
– volume: 19
  year: 2009
  ident: ref17
  article-title: Gait dynamics in Parkinson's disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling
  publication-title: Chaos Interdiscipl J Nonlinear Sci
– ident: ref14
  doi: 10.1109/TNSRE.2007.908933
– ident: ref33
  doi: 10.3390/s100605683
– ident: ref12
  doi: 10.1016/S0021-9290(02)00008-8
– year: 2001
  ident: ref34
  publication-title: Observational Gait Analysis
– ident: ref5
  doi: 10.1109/TNSRE.2013.2291907
– ident: ref20
  doi: 10.1109/JTEHM.2015.2504961
– ident: ref26
  doi: 10.1109/EMBC.2019.8856685
– ident: ref35
  doi: 10.1007/BF01009452
– ident: ref7
  doi: 10.1007/s11517-011-0736-0
– ident: ref37
  doi: 10.1002/atr.1274
– ident: ref19
  doi: 10.1109/TBME.2012.2227317
– ident: ref30
  doi: 10.1109/TBME.2019.2955423
– ident: ref11
  doi: 10.1016/j.gaitpost.2012.07.012
– ident: ref21
  doi: 10.1109/TNSRE.2013.2268251
– ident: ref13
  doi: 10.1016/j.pmr.2015.06.006
– ident: ref32
  doi: 10.1016/j.jbiomech.2017.02.016
– ident: ref1
  doi: 10.1186/1743-0003-3-4
– ident: ref4
  doi: 10.3390/s120202255
– ident: ref23
  doi: 10.1109/ACCESS.2016.2633304
– ident: ref3
  doi: 10.1007/s41315-017-0042-6
– ident: ref29
  doi: 10.1109/TNSRE.2015.2457511
– ident: ref41
  doi: 10.1109/LRA.2018.2885165
SSID ssj0019757
Score 2.4224806
Snippet Automatic detection of gait phases through supervised learning is a feasible approach that takes advantage of the consistency of the gait cycle among healthy...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14984
SubjectTerms Algorithms
Classifiers
Event detection
Foot
Gait
Gait analysis
gait phases
Heuristic methods
Inertial sensing devices
Legged locomotion
Loading
machine learning
meta-heuristics
Optimization
Parkinson's disease
Phases
Real-time systems
Sensors
Simulated annealing
Supervised learning
Support vector machines
Treadmills
Walking
wearable sensors
Wearable technology
Title Identification of Gait Events in Healthy and Parkinson's Disease Subjects Using Inertial Sensors: A Supervised Learning Approach
URI https://ieeexplore.ieee.org/document/9146553
https://www.proquest.com/docview/2462224971
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bl7YH2kKrLqWVD5UqVWSxE8dOelu1SykSXABpb5E_W1SURSR7gBM_HY_jXaGCqt5yGEeWZjz2zLx5A_ApXDm8sl5mwmDqhlOdKcZ1JnmprEHKtVg9Pz4Rh-f8aFbO1mBv1QvjnIvgMzfGz1jLt3OzwFTZfs2Q7atYh_UQuA29WquKQS0jq2c4wDTjhZylCiaj9f7R6fQkRIJ5CFCx7IADZB7cQXGoyiNPHK-Xg5dwvNzYgCr5M170emxu_-Js_N-dv4LN9M4kk8EwXsOaa7fgxQP2wS14lgag_77ZhruhYdenDB6Ze_JDXfRkinDIjly0ZOhXuiGqtQRbpWPX2OeOfB8qPCR4IEzpdCSCEMjPFgHbYQenIU6eX3dfySSIXKFn6pwlidb1F5kkTvM3cH4wPft2mKXhDJkJIWefaSOMYZUv6krx8AbxTutaOlNpabUTzAtfGsp06W1teOEp96rIqcqRPagK697CRjtv3TsgUucF2pJQwTQKYxWl1tlCKuaocJUYAV2qqzGJuRwHaFw2MYKhdYMablDDTdLwCL6sllwNtB3_Et5Gja0Ek7JGsLu0iSYd7K7JuUDzriXbeXrVe3iO_0bECyt3YaO_XrgP4d3S64_RYO8Bfv3qWA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigcKLRULLTgAxISIls7cZykt1XZsi3dvbSV9hb5CRUoWzXZQznx0_E43lUFCHHLYUYZacYez-sbgLfe5fDSuCIRGlM3nKpEMq6SgufSaIRcC9Xz6UxMrvjZPJ9vwIf1LIy1NjSf2SF-hlq-WeglpsoOK4ZoX9kDeOj9fs76aa11zaAqAq6nP8I04VkxjzVMRqvDs4vxzMeCqQ9RsfCAK2TueaGwVuWPuzg4mJNtmK5E6_tKvg2XnRrqH7-hNv6v7E_hSXxpklFvGs9gwzY78Pge_uAObMUV6F_vduFnP7LrYg6PLBz5JK87MsaGyJZcN6SfWLojsjEEh6XD3Ni7lnzsazzE30GY1GlJaEMgpw22bHsJLnykvLhtj8jIk9zg3dRaQyKw6xcyiqjmz-HqZHx5PEnieoZE-6CzS5QWWrPSZVUpuX-FOKtUVVhdqsIoK5gTLteUqdyZSvPMUe5kllKZIn5Q6fn2YLNZNPYFkEKlGVqTkN44Mm0kpcaarJDMUmFLMQC6UletI3Y5rtD4XocYhlY1arhGDddRwwN4v2a56YE7_kW8ixpbE0ZlDWB_ZRN1PNptnXKBBl4V7OXfud7A1uRyel6fn84-v4JH-B_sf2H5Pmx2t0t74F8xnXodjPcX29btoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Gait+Events+in+Healthy+and+Parkinson%27s+Disease+Subjects+Using+Inertial+Sensors%3A+A+Supervised+Learning+Approach&rft.jtitle=IEEE+sensors+journal&rft.au=Perez-Ibarra%2C+Juan+C.&rft.au=Siqueira%2C+Adriano+A.+G.&rft.au=Krebs%2C+Hermano+I.&rft.date=2020-12-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=24&rft.spage=14984&rft.epage=14993&rft_id=info:doi/10.1109%2FJSEN.2020.3011627&rft.externalDocID=9146553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon