From contact electrification to triboelectric nanogenerators

Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENG...

Full description

Saved in:
Bibliographic Details
Published inReports on progress in physics Vol. 84; no. 9; pp. 96502 - 96569
Main Author Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.09.2021
Subjects
Online AccessGet full text
ISSN0034-4885
1361-6633
1361-6633
DOI10.1088/1361-6633/ac0a50

Cover

Loading…
Abstract Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid–solid interfaces. Electron transfer also occurs in the CE at liquid–solid and liquid–liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid–solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid–solid interfaces. Second, by adding a time-dependent polarization term P s created by the CE-induced surface electrostatic charges in the displacement field D , we expand Maxwell’s equations to include both the medium polarizations due to electric field ( P ) and mechanical aggitation and medium boundary movement induced polarization term ( P s ). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell’s equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising from ε ∂ E /∂t is responsible for EM waves, while the newly added term ∂ P s /∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.
AbstractList Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization termPscreated by the CE-induced surface electrostatic charges in the displacement fieldD, we expand Maxwell's equations to include both the medium polarizations due to electric field (P) and mechanical aggitation and medium boundary movement induced polarization term (Ps). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising fromε∂E/∂t is responsible for EM waves, while the newly added term ∂Ps/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization termPscreated by the CE-induced surface electrostatic charges in the displacement fieldD, we expand Maxwell's equations to include both the medium polarizations due to electric field (P) and mechanical aggitation and medium boundary movement induced polarization term (Ps). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising fromε∂E/∂t is responsible for EM waves, while the newly added term ∂Ps/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.
Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid–solid interfaces. Electron transfer also occurs in the CE at liquid–solid and liquid–liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid–solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid–solid interfaces. Second, by adding a time-dependent polarization term P s created by the CE-induced surface electrostatic charges in the displacement field D , we expand Maxwell’s equations to include both the medium polarizations due to electric field ( P ) and mechanical aggitation and medium boundary movement induced polarization term ( P s ). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell’s equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising from ε ∂ E /∂t is responsible for EM waves, while the newly added term ∂ P s /∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.
Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization term created by the CE-induced surface electrostatic charges in the displacement field , we expand Maxwell's equations to include both the medium polarizations due to electric field ( ) and mechanical aggitation and medium boundary movement induced polarization term ( ). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising from ∂ /∂t is responsible for EM waves, while the newly added term ∂ /∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.
Author Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Zhong Lin
  orcidid: 0000-0002-5530-0380
  surname: Wang
  fullname: Wang, Zhong Lin
  organization: University of Chinese Academy of Sciences School of Nanoscience and Technology, Beijing 100049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34111846$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi1URD9gZ0IZGQg9J47jSCyoooBUiQVmy3Yc5Cqxi-0M_HtS0jIgwXS-0_OefM8cTayzGqFLDLcYGFvinOKU0jxfCgWigBM0-xlN0AwgJylhrJiieQhbAIxZVp2haU7w8CR0hu7W3nWJcjYKFRPdahW9aYwS0TibRJcMrXSHuUqssO5dW-1FdD6co9NGtEFfHOoCva0fXldP6ebl8Xl1v0kVgSymsmI1baTKWY0JaXIGStKylqIuQUoBTIISGaVVjZuKFFRBU2pNMw3D35nI8gW6HvfuvPvodYi8M0HpthVWuz7wrCBQYMpwOaBXB7SXna75zptO-E9-vHgA6Ago70LwuuHKxO9roxem5Rj4Xi3fe-R7j3xUOwThV_C4-5_IzRgxbse3rvd2sPQ3_gW1J4kl
CODEN RPPHAG
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_109243
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1002_aenm_202303119
crossref_primary_10_3389_fenrg_2022_1014983
crossref_primary_10_1002_adsu_202300583
crossref_primary_10_1002_adma_202209054
crossref_primary_10_1016_j_apenergy_2022_119648
crossref_primary_10_1021_acsnano_1c06950
crossref_primary_10_1631_jzus_A2300530
crossref_primary_10_1021_acsaelm_4c00531
crossref_primary_10_3390_s23031329
crossref_primary_10_1021_acsnano_4c00690
crossref_primary_10_1016_j_nanoen_2023_108959
crossref_primary_10_1002_adfm_202205313
crossref_primary_10_1016_j_cej_2024_152645
crossref_primary_10_1021_acsapm_4c03294
crossref_primary_10_1002_admt_202202106
crossref_primary_10_1021_acsanm_4c00306
crossref_primary_10_1021_acsenergylett_3c00378
crossref_primary_10_3390_mi14091776
crossref_primary_10_1002_admi_202202037
crossref_primary_10_1002_smll_202410155
crossref_primary_10_1007_s40820_022_00989_0
crossref_primary_10_1016_j_nanoen_2022_107465
crossref_primary_10_1039_D2TA08105A
crossref_primary_10_1016_j_nanoen_2022_107691
crossref_primary_10_1021_acsaelm_2c00334
crossref_primary_10_1016_j_nanoen_2024_110623
crossref_primary_10_1039_D2EE02762C
crossref_primary_10_1360_SST_2022_0176
crossref_primary_10_1002_aenm_202302838
crossref_primary_10_1021_acs_langmuir_2c00813
crossref_primary_10_1080_23746149_2024_2354767
crossref_primary_10_3390_molecules28237894
crossref_primary_10_1002_smll_202203956
crossref_primary_10_1016_j_cej_2024_157760
crossref_primary_10_1021_acsanm_2c02448
crossref_primary_10_1126_sciadv_ads2291
crossref_primary_10_1002_smll_202106960
crossref_primary_10_12677_ces_2024_124187
crossref_primary_10_1016_j_nanoen_2024_110180
crossref_primary_10_1016_j_nanoen_2023_108842
crossref_primary_10_1016_j_nanoen_2024_110615
crossref_primary_10_3390_ma15165716
crossref_primary_10_1016_j_nanoen_2022_107337
crossref_primary_10_1039_D4TA07129H
crossref_primary_10_1002_adfm_202305719
crossref_primary_10_1002_admt_202201029
crossref_primary_10_1016_j_nanoen_2024_109633
crossref_primary_10_1016_j_nanoen_2021_106783
crossref_primary_10_1021_acsnano_3c09043
crossref_primary_10_1039_D2TA03232E
crossref_primary_10_1063_5_0158240
crossref_primary_10_1038_s41467_022_33766_z
crossref_primary_10_1002_smll_202402661
crossref_primary_10_1088_2631_7990_ad39ba
crossref_primary_10_3390_nanoenergyadv2010006
crossref_primary_10_1007_s11249_024_01926_5
crossref_primary_10_1039_D2TA00343K
crossref_primary_10_1016_j_nanoen_2023_108738
crossref_primary_10_1007_s12274_023_5691_1
crossref_primary_10_1002_ente_202200699
crossref_primary_10_1002_adfm_202426020
crossref_primary_10_1016_j_seta_2023_103442
crossref_primary_10_1016_j_nanoen_2023_109151
crossref_primary_10_1021_acsnano_1c06985
crossref_primary_10_1007_s12274_024_6410_2
crossref_primary_10_1007_s40820_023_01238_8
crossref_primary_10_1002_admi_202300821
crossref_primary_10_1002_adsu_202200267
crossref_primary_10_1021_acsami_1c17964
crossref_primary_10_1002_dro2_97
crossref_primary_10_1016_j_nanoen_2024_110283
crossref_primary_10_1016_j_mtsust_2022_100219
crossref_primary_10_1002_adfm_202307678
crossref_primary_10_1016_j_cej_2024_157865
crossref_primary_10_1016_j_nanoen_2023_108509
crossref_primary_10_1016_j_nanoen_2022_107916
crossref_primary_10_1109_TIM_2024_3500064
crossref_primary_10_3390_electronics12010225
crossref_primary_10_1002_er_7283
crossref_primary_10_1016_j_chphi_2025_100813
crossref_primary_10_3390_electronics11010115
crossref_primary_10_1016_j_nanoen_2021_106648
crossref_primary_10_1016_j_matt_2023_09_017
crossref_primary_10_1016_j_nanoen_2021_106762
crossref_primary_10_1016_j_nanoen_2023_108595
crossref_primary_10_1016_j_nanoen_2024_109441
crossref_primary_10_1016_j_nanoen_2024_110557
crossref_primary_10_3390_s23146634
crossref_primary_10_1016_j_nanoen_2023_108591
crossref_primary_10_1002_admt_202301225
crossref_primary_10_1021_acsami_1c20509
crossref_primary_10_1021_acsenergylett_4c02047
crossref_primary_10_3390_fluids10040078
crossref_primary_10_1016_j_mineng_2024_108901
crossref_primary_10_1016_j_cej_2025_161036
crossref_primary_10_1002_adfm_202304839
crossref_primary_10_1002_apxr_202200039
crossref_primary_10_1016_j_nanoen_2022_108079
crossref_primary_10_1016_j_nanoen_2024_109446
crossref_primary_10_3390_mi15030371
crossref_primary_10_1126_sciadv_adk4620
crossref_primary_10_1002_adma_202409833
crossref_primary_10_1016_j_eng_2023_05_023
crossref_primary_10_3390_nano14040336
crossref_primary_10_1002_aenm_202200963
crossref_primary_10_1002_admt_202301592
crossref_primary_10_1002_aenm_202201813
crossref_primary_10_3390_nanoenergyadv1010003
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1016_j_nanoen_2023_108927
crossref_primary_10_1007_s42114_023_00783_5
crossref_primary_10_1039_D3MH02228E
crossref_primary_10_1002_chem_202400882
crossref_primary_10_1016_j_nanoen_2022_107773
crossref_primary_10_1109_JSEN_2024_3443229
crossref_primary_10_3390_polym15112462
crossref_primary_10_1021_acsaelm_3c01826
crossref_primary_10_1016_j_apenergy_2022_120218
crossref_primary_10_3390_nanoenergyadv2020009
crossref_primary_10_1016_j_nanoen_2025_110812
crossref_primary_10_1016_j_ceramint_2023_01_067
crossref_primary_10_1021_acs_nanolett_2c03481
crossref_primary_10_1063_5_0196998
crossref_primary_10_23919_emsci_2023_0017
crossref_primary_10_3390_s24123782
crossref_primary_10_1016_j_nanoen_2024_110096
crossref_primary_10_1016_j_mtsust_2022_100301
crossref_primary_10_7498_aps_73_20240150
crossref_primary_10_1039_D3TA07294K
crossref_primary_10_1016_j_mtphys_2022_100784
crossref_primary_10_1016_j_cej_2022_137985
crossref_primary_10_1039_D4EE00895B
crossref_primary_10_1002_aenm_202103677
crossref_primary_10_1016_j_nanoen_2023_109229
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_3390_nano12162790
crossref_primary_10_1002_inf2_12391
crossref_primary_10_1126_sciadv_abq2521
crossref_primary_10_3390_molecules29184500
crossref_primary_10_1177_09544062251318537
crossref_primary_10_1021_acsaelm_2c00758
crossref_primary_10_1021_acs_chemrev_1c00176
crossref_primary_10_3390_mi14081592
crossref_primary_10_1002_adma_202200146
crossref_primary_10_1021_acsaelm_4c01010
crossref_primary_10_1016_j_jpowsour_2024_235483
crossref_primary_10_1088_2631_7990_ad94b8
crossref_primary_10_1016_j_apmt_2024_102270
crossref_primary_10_1142_S021797922350159X
crossref_primary_10_1002_adfm_202213410
crossref_primary_10_1002_apxr_202300115
crossref_primary_10_1088_2399_6528_ac871e
crossref_primary_10_1021_acsnano_2c08420
crossref_primary_10_1002_smll_202407359
crossref_primary_10_1007_s40820_022_00999_y
crossref_primary_10_1002_EXP_20230073
crossref_primary_10_1016_j_progpolymsci_2023_101723
crossref_primary_10_1021_acs_langmuir_2c01376
crossref_primary_10_1016_j_nanoen_2024_110478
crossref_primary_10_1002_smll_202310023
crossref_primary_10_1007_s12274_022_4443_y
crossref_primary_10_1016_j_carbpol_2024_122040
crossref_primary_10_1007_s12274_023_5660_8
crossref_primary_10_1021_acsami_3c05859
crossref_primary_10_1039_D2EE01590K
crossref_primary_10_3390_bios13050552
crossref_primary_10_1007_s40820_024_01432_2
crossref_primary_10_1016_j_jallcom_2023_169178
crossref_primary_10_1002_chem_202403207
crossref_primary_10_1016_j_cap_2024_03_013
crossref_primary_10_1080_15368378_2022_2079672
crossref_primary_10_3390_mi13030444
crossref_primary_10_1038_s41467_022_35521_w
crossref_primary_10_1016_j_nanoen_2022_107745
crossref_primary_10_1002_adfm_202409422
crossref_primary_10_1016_j_nanoen_2022_107867
crossref_primary_10_1007_s42765_025_00534_9
crossref_primary_10_1002_adem_202400134
crossref_primary_10_1002_eem2_12697
crossref_primary_10_1109_LRA_2023_3250006
crossref_primary_10_1016_j_nanoen_2023_108435
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_15251_DJNB_2024_193_1277
crossref_primary_10_1016_j_nanoen_2022_107623
crossref_primary_10_1021_acsami_3c05729
crossref_primary_10_1038_s41467_024_46900_w
crossref_primary_10_1360_SST_2022_0226
crossref_primary_10_1063_5_0221553
crossref_primary_10_1360_SST_2023_0062
crossref_primary_10_3390_s21217129
crossref_primary_10_1002_pssr_202300388
crossref_primary_10_1016_j_device_2023_100127
crossref_primary_10_1021_acsomega_2c05457
crossref_primary_10_1016_j_triboint_2023_109163
crossref_primary_10_3390_polym15010222
crossref_primary_10_1002_adfm_202304221
crossref_primary_10_1016_j_nanoen_2024_109913
crossref_primary_10_1039_D3RA00077J
crossref_primary_10_1088_2631_7990_ad5bc6
crossref_primary_10_1016_j_cej_2023_146189
crossref_primary_10_1039_D4EE00395K
crossref_primary_10_1016_j_nanoen_2023_108445
crossref_primary_10_1360_SST_2022_0322
crossref_primary_10_1002_smsc_202400449
crossref_primary_10_1007_s12274_022_4131_y
crossref_primary_10_1002_aenm_202400672
crossref_primary_10_3390_bios12050323
crossref_primary_10_1002_smll_202405410
crossref_primary_10_1002_aenm_202400429
crossref_primary_10_1016_j_seppur_2024_128886
crossref_primary_10_1002_adfm_202303249
crossref_primary_10_3390_nanoenergyadv3040020
crossref_primary_10_1088_1361_6463_ad4cfc
crossref_primary_10_1016_j_nanoen_2022_107762
crossref_primary_10_3390_nano13061036
crossref_primary_10_1002_anie_202413343
crossref_primary_10_1016_j_nanoen_2022_107196
crossref_primary_10_1016_j_nanoen_2022_108043
crossref_primary_10_1016_j_nanoen_2024_109693
crossref_primary_10_1021_acsami_3c09407
crossref_primary_10_1002_advs_202207230
crossref_primary_10_3390_bios15010037
crossref_primary_10_1002_adfm_202300764
crossref_primary_10_1002_ente_202401281
crossref_primary_10_1021_acsami_3c06256
crossref_primary_10_1021_acssuschemeng_2c01031
crossref_primary_10_1016_j_enconman_2024_118569
crossref_primary_10_1016_j_ymssp_2023_110717
crossref_primary_10_1002_sus2_196
crossref_primary_10_3390_molecules29235716
crossref_primary_10_1021_acsanm_2c02026
crossref_primary_10_1557_s43577_024_00857_9
crossref_primary_10_1016_j_nanoen_2022_107878
crossref_primary_10_1002_admt_202201408
crossref_primary_10_1016_j_enconman_2024_119093
crossref_primary_10_1016_j_mtener_2022_101136
crossref_primary_10_1039_D4EE00482E
crossref_primary_10_1039_D2EE03114K
crossref_primary_10_1021_acsami_3c13690
crossref_primary_10_1002_open_202400373
crossref_primary_10_1088_2631_8695_ad6e58
crossref_primary_10_1016_j_matdes_2024_112991
crossref_primary_10_1016_j_mtener_2024_101732
crossref_primary_10_1063_5_0221769
crossref_primary_10_1002_advs_202309050
crossref_primary_10_1088_2631_8695_ac9e8c
crossref_primary_10_1002_aenm_202203707
crossref_primary_10_1016_j_jpowsour_2024_236080
crossref_primary_10_1016_j_mtchem_2024_102384
crossref_primary_10_1016_j_nanoen_2025_110679
crossref_primary_10_1016_j_compscitech_2023_110195
crossref_primary_10_1002_adfm_202303471
crossref_primary_10_1016_j_pmatsci_2023_101184
crossref_primary_10_1016_j_seta_2022_102644
crossref_primary_10_1002_adma_202310098
crossref_primary_10_1002_smll_202410599
crossref_primary_10_1007_s42114_022_00561_9
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1039_D3NR01334K
crossref_primary_10_1002_aenm_202302353
crossref_primary_10_1016_j_nanoen_2021_106576
crossref_primary_10_1016_j_nanoen_2023_108871
crossref_primary_10_1002_adma_202109355
crossref_primary_10_3390_ma17184514
crossref_primary_10_1039_D3CP00578J
crossref_primary_10_1002_advs_202405666
crossref_primary_10_1016_j_nanoen_2024_110380
crossref_primary_10_1038_s41467_024_49660_9
crossref_primary_10_1002_aenm_202201532
crossref_primary_10_1021_acsenergylett_2c01582
crossref_primary_10_1039_D2EE02621J
crossref_primary_10_1002_aelm_202400771
crossref_primary_10_1002_inf2_12428
crossref_primary_10_1021_acsami_2c15781
crossref_primary_10_1016_j_cej_2024_158413
crossref_primary_10_1021_acsami_2c17722
crossref_primary_10_3390_nano13050852
crossref_primary_10_1016_j_cej_2024_154974
crossref_primary_10_1002_adma_202312148
crossref_primary_10_1016_j_nanoen_2023_108769
crossref_primary_10_1016_j_nanoen_2022_106969
crossref_primary_10_1016_j_nantod_2021_101354
crossref_primary_10_3390_s22030975
crossref_primary_10_1016_j_nanoen_2022_107139
crossref_primary_10_1063_5_0145842
crossref_primary_10_1002_adfm_202113149
crossref_primary_10_1016_j_nanoen_2023_108762
crossref_primary_10_1002_ange_202413343
crossref_primary_10_1039_D2EE01553F
crossref_primary_10_1016_j_apenergy_2022_119970
crossref_primary_10_1016_j_nanoen_2023_108885
crossref_primary_10_1038_s41598_024_60823_y
crossref_primary_10_1002_adfm_202404503
crossref_primary_10_1016_j_mtphys_2022_100701
crossref_primary_10_1109_JSEN_2022_3226478
crossref_primary_10_1115_1_4056391
crossref_primary_10_1007_s12274_022_4409_0
crossref_primary_10_1016_j_nanoen_2024_110131
crossref_primary_10_1021_acsaelm_3c01428
crossref_primary_10_1038_s41598_023_42265_0
crossref_primary_10_3390_chemosensors10110484
crossref_primary_10_1088_1361_665X_adb404
crossref_primary_10_1002_advs_202310017
crossref_primary_10_1016_j_pnsc_2024_09_007
crossref_primary_10_1016_j_apenergy_2023_122400
crossref_primary_10_1016_j_cej_2024_154967
crossref_primary_10_1016_j_susmat_2024_e00954
crossref_primary_10_1002_adma_202402457
crossref_primary_10_1039_D4MH01003E
crossref_primary_10_1557_s43577_025_00864_4
crossref_primary_10_1016_j_nanoen_2022_107165
crossref_primary_10_1038_s44328_024_00011_0
crossref_primary_10_1242_jeb_247851
crossref_primary_10_1002_smsc_202300312
crossref_primary_10_1002_adfm_202204322
crossref_primary_10_1002_advs_202408718
crossref_primary_10_1016_j_sna_2022_114015
crossref_primary_10_1016_j_measurement_2022_112010
crossref_primary_10_1016_j_nanoen_2023_109191
crossref_primary_10_26599_NR_2025_94907192
crossref_primary_10_1016_j_apenergy_2024_124694
crossref_primary_10_1038_s41467_023_38815_9
crossref_primary_10_1038_s43586_023_00220_3
crossref_primary_10_1002_adfm_202111662
crossref_primary_10_1016_j_nanoen_2023_108308
crossref_primary_10_1016_j_cej_2024_152412
crossref_primary_10_1016_j_nanoen_2024_109937
crossref_primary_10_1039_D4NR01593B
crossref_primary_10_1039_D4NA00340C
crossref_primary_10_1016_j_nanoen_2023_108789
crossref_primary_10_1088_1361_6463_ac7365
crossref_primary_10_1002_adma_202415099
crossref_primary_10_1039_D3EE01658G
crossref_primary_10_1016_j_nanoen_2022_107035
crossref_primary_10_1103_Physics_16_23
Cites_doi 10.1038/542159a
10.1002/adma.201404071
10.1016/j.nanoen.2015.03.012
10.1002/adma.201504403
10.1103/physrevb.47.2301
10.1103/physrevlett.123.116103
10.1002/adma.201902034
10.1126/sciadv.1600097
10.1002/adma.201404794
10.1063/5.0020961
10.34133/2019/6528689
10.1016/j.nanoen.2019.02.012
10.1021/acsnano.0c08332
10.1002/adma.201901958
10.1002/anie.200701812
10.1063/1.3149770
10.1109/tim.2009.2030923
10.1021/nl300988z
10.1016/j.nanoen.2018.09.057
10.1016/j.nanoen.2019.04.026
10.1119/1.10955
10.1016/j.elstat.2016.04.006
10.1002/adma.201305303
10.1109/tnsre.2002.806829
10.1002/adma.201400207
10.1016/j.nanoen.2017.06.035
10.1016/j.nanoen.2018.08.055
10.1016/j.nanoen.2018.03.068
10.1016/j.nanoen.2020.105070
10.1016/0038-1101(65)90116-4
10.1021/nn507221f
10.1016/j.bspc.2014.10.005
10.1016/j.nanoen.2019.03.072
10.1021/acsnano.5b03093
10.1039/c7ee01139c
10.1088/0022-3727/10/17/001
10.1021/acsaem.8b00667
10.1016/j.nanoen.2014.05.018
10.1002/adma.201808197
10.1016/j.nanoen.2019.104185
10.1016/j.nanoen.2019.06.038
10.1002/adma.201803968
10.1038/s41467-019-12465-2
10.1021/acsnano.6b02693
10.1016/j.mattod.2018.01.006
10.1021/acsnano.5b01187
10.1002/aenm.202000137
10.1002/advs.201900617
10.1016/j.nanoen.2021.105810
10.1126/sciadv.1700015
10.1002/aenm.201501467
10.1126/sciadv.1700694
10.1016/j.nanoen.2019.05.012
10.1016/j.nanoen.2021.106191
10.1016/j.nanoen.2017.11.062
10.1021/nn403021m
10.1002/adfm.201700049
10.1002/aenm.201802906
10.1002/admi.201600187
10.1016/j.nanoen.2019.104210
10.1002/aenm.202100065
10.1063/5.0051522
10.1021/nl401006x
10.1016/j.nanoen.2016.12.061
10.1038/scientificamerican0108-82
10.1016/j.nanoen.2016.12.006
10.1007/bf02478510
10.1038/nenergy.2016.138
10.1016/j.nanoen.2019.04.047
10.1038/s41467-018-06045-z
10.1021/acsnano.5b07074
10.1016/j.nanoen.2017.12.053
10.1016/j.nanoen.2019.104117
10.1002/anie.200602914
10.1002/adma.201402064
10.1016/j.nanoen.2013.07.012
10.1038/nature07378
10.1002/aenm.202000605
10.1103/physrevlett.102.028001
10.1038/s41565-017-0019-5
10.1021/nn404614z
10.1126/science.1124005
10.1039/c3ee42311e
10.1016/j.nanoen.2019.03.054
10.1016/j.nanoen.2018.10.045
10.1039/c4ee00498a
10.1021/acs.jpcc.7b04044
10.1016/j.nanoen.2015.04.036
10.1016/j.mattod.2016.12.001
10.1016/j.nanoen.2019.04.015
10.1126/science.256.5055.362
10.1038/ncomms9975
10.1016/j.mattod.2014.05.006
10.1038/s41467-019-09851-1
10.1016/j.nanoen.2018.07.016
10.1016/j.elstat.2012.11.002
10.1016/j.cplett.2009.08.045
10.1002/adma.201801114
10.1145/3214263
10.1002/adma.201702648
10.1002/adma.202001466
10.1109/tia.2003.810663
10.1038/s41467-017-00131-4
10.1002/adfm.201704641
10.1063/1.5133023
10.1021/acsaem.8b00530
10.1016/j.mattod.2019.05.016
10.1002/aenm.201600829
10.1088/0967-3334/29/6/s24
10.1007/s12274-016-0985-1
10.1002/adma.201901418
10.1016/j.nanoen.2014.10.035
10.1002/jps.21595
10.1021/acsami.9b12747
10.1002/adma.201905696
10.1016/j.nanoen.2015.01.013
10.1038/s41467-020-15926-1
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2019.03.090
10.1016/j.nanoen.2017.05.047
10.1149/1.2056198
10.1021/nn507455f
10.1016/j.elstat.2013.07.006
10.1016/j.nanoen.2018.12.054
10.1515/zpch-1902-3914
10.1039/c5ee01532d
10.1016/j.nanoen.2018.07.032
10.1016/0038-1101(95)00193-x
10.1126/sciadv.1501478
10.1038/s41570-019-0115-1
10.1016/j.nanoen.2019.103908
10.1088/0022-3727/21/1/018
10.1021/nl3045684
10.1016/j.nanoen.2018.03.073
10.1016/j.nanoen.2019.04.096
10.1021/acsnano.7b08674
10.1021/nl4001053
10.1088/0508-3443/4/s2/301
10.1021/nl5005652
10.1002/adma.201603679
10.1021/acsnano.9b06272
10.1002/aenm.201901987
10.1002/adfm.201910461
10.1038/s41467-020-15368-9
10.1021/acsnano.5b05598
10.1126/science.aan3997
10.1038/s41467-019-09464-8
10.1002/adma.202001307
10.1002/adma.201902793
10.1002/aenm.201903713
10.1002/adma.201500311
10.1002/adma.201706738
10.1021/la00014a043
10.1016/j.nanoen.2016.05.032
10.1038/118659c0
10.1038/srep02384
10.1002/adma.201706383
10.1002/adma.201302808
10.1021/acsnano.6b01569
10.1021/acsnano.5b00618
10.1063/1.3330866
10.1021/acsami.9b06627
10.1002/ange.201008051
10.1016/j.nanoen.2014.11.034
10.1021/nn404023v
10.1021/acsnano.7b03680
10.1016/j.nanoen.2018.05.011
10.1002/admt.201800144
10.1039/c4fd00159a
10.1016/j.nanoen.2014.08.017
10.1002/adfm.201804533
10.1016/j.nanoen.2014.07.024
10.1002/adfm.201802634
10.1002/adma.201702181
10.1021/acsnano.5b07418
10.1016/j.ijpharm.2008.12.041
10.1039/b805266b
10.1126/science.1201512
10.1021/nn4043157
10.1021/la950928i
10.1021/nn506832w
10.1038/ncomms10987
10.1088/1742-6596/418/1/012002
10.1021/nl404819w
10.1038/s41467-019-09461-x
10.1039/tf9413700140
10.1016/j.nanoen.2019.104378
10.1016/j.nanoen.2020.104642
10.1016/j.nanoen.2017.06.046
10.1038/s41467-019-10232-x
10.1002/aenm.202000064
10.1016/j.nanoen.2019.02.051
10.1021/cm00018a006
10.1021/acsnano.7b05203
10.1002/adma.201603527
10.1021/nn403838y
10.1126/sciadv.aay2840
10.1021/acs.nanolett.6b01968
10.1039/c7cp05609e
10.1021/acsnano.5b02575
10.1126/science.aac5082
10.1016/j.nanoen.2017.05.027
10.1038/s41467-019-14278-9
10.1021/am5071688
10.1016/j.nanoen.2018.12.032
10.1016/j.clinph.2005.11.002
10.1016/j.nanoen.2020.104659
10.1016/j.nanoen.2016.11.037
10.1002/adma.201706790
10.1016/0375-9601(92)90630-5
10.1021/acsnano.7b07534
10.1039/c4nr01934b
10.1038/s41467-018-06198-x
10.1021/acs.chemrev.1c00176
10.1002/adma.201801210
10.1103/physrevlett.63.2669
10.1002/adma.201804944
10.1016/j.bspc.2016.06.018
10.1126/sciadv.aau3808
10.1039/c3ee42571a
10.1039/c9ee01267b
10.1039/c9ee03258d
10.1016/j.elstat.2011.05.005
10.1016/j.nanoen.2018.08.015
10.1016/0304-3886(94)90026-4
10.1002/adma.201902549
10.1038/ncomms9376
10.1126/science.aaz4740
10.1002/anie.201902425
10.1016/j.nanoen.2020.104819
10.1021/acsnano.8b08533
10.1109/ted.2014.2377728
10.1038/nmat2834
10.1002/adma.201804398
10.2139/ssrn.3451450
10.1002/adfm.201806388
10.1002/anie.200905281
10.1016/0304-3886(95)00043-7
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd
– notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-6633/ac0a50
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-6633
ExternalDocumentID 34111846
10_1088_1361_6633_ac0a50
ropac0a50
Genre Retracted Publication
Journal Article
Review
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACNCT
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
WH7
XPP
ZMT
~02
AAYXX
ADEQX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c402t-b98d6fbc38d144f380cb67dbad70bba08b0ca2669d1f9456c0f7ee62e04888a23
IEDL.DBID IOP
ISSN 0034-4885
1361-6633
IngestDate Fri Jul 11 10:11:53 EDT 2025
Thu Jan 02 22:30:43 EST 2025
Tue Jul 01 02:52:56 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
Wed Aug 21 03:35:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords triboelectric nanogenerator
contact electrification
self-powered sensor
displacement current
Language English
License This article is available under the terms of the IOP-Standard License.
2021 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-b98d6fbc38d144f380cb67dbad70bba08b0ca2669d1f9456c0f7ee62e04888a23
Notes ROPP-101369.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Correction/Retraction-4
ORCID 0000-0002-5530-0380
PMID 34111846
PQID 2540516817
PQPubID 23479
PageCount 68
ParticipantIDs proquest_miscellaneous_2540516817
pubmed_primary_34111846
crossref_primary_10_1088_1361_6633_ac0a50
iop_journals_10_1088_1361_6633_ac0a50
crossref_citationtrail_10_1088_1361_6633_ac0a50
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reports on progress in physics
PublicationTitleAbbrev RoPP
PublicationTitleAlternate Rep. Prog. Phys
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Zhang (ropac0a50bib184) 2018; 45
Apodaca (ropac0a50bib61) 2010; 49
Shi (ropac0a50bib177) 2016; 10
Baytekin (ropac0a50bib24) 2011; 123
Zheng (ropac0a50bib142) 2016; 10
Xu (ropac0a50bib216) 2018; 12
Wang (ropac0a50bib120) 2014; 10
Shaw (ropac0a50bib1) 1926; 118
McCarty (ropac0a50bib15) 2008; 47
Xia (ropac0a50bib116) 2019; 10
Nguyen (ropac0a50bib23) 2013; 2
Zhang (ropac0a50bib45) 2020; 10
Pu (ropac0a50bib159) 2016; 28
Salama (ropac0a50bib5) 2013; 71
Fu (ropac0a50bib117) 2019; 13
Zi (ropac0a50bib112) 2015; 6
Wu (ropac0a50bib236) 2015; 11
Zou (ropac0a50bib81) 2019; 10
Wu (ropac0a50bib130) 2017; 32
Zou (ropac0a50bib82) 2020; 11
Burgo (ropac0a50bib22) 2011; 69
Pu (ropac0a50bib209) 2017; 3
He (ropac0a50bib189) 2017; 39
Song (ropac0a50bib153) 2019; 55
Shao (ropac0a50bib103) 2019; 59
Terris (ropac0a50bib3) 1989; 63
Zhao (ropac0a50bib221) 2015; 9
Yang (ropac0a50bib173) 2015; 27
Racko (ropac0a50bib80) 1996; 39
Lin (ropac0a50bib40) 2019; 31
Mizzi (ropac0a50bib67) 2019; 123
He (ropac0a50bib164) 2020
Liu (ropac0a50bib35) 2018; 13
Wang (ropac0a50bib215) 2015; 5
Zhang (ropac0a50bib233) 2014; 26
Fan (ropac0a50bib181) 2020; 6
Zhan (ropac0a50bib231) 2020; 14
Crowell (ropac0a50bib79) 1965; 8
Lin (ropac0a50bib232) 2021; 118
Wang (ropac0a50bib85) 2019; 58
Wang (ropac0a50bib241) 2016; 26
Shao (ropac0a50bib104) 2019; 60
Yang (ropac0a50bib217) 2019; 60
Grimnes (ropac0a50bib186) 1983; 21
Xu (ropac0a50bib25) 2018; 30
Wang (ropac0a50bib84) 2006; 312
Wang (ropac0a50bib206) 2018; 30
Cheng (ropac0a50bib225) 2018; 9
Stöcker (ropac0a50bib55) 2013; 71
Yang (ropac0a50bib230) 2020; 67
Guo (ropac0a50bib190) 2016; 30
Willatzen (ropac0a50bib59) 2020; 30
Huang (ropac0a50bib36) 1993; 140
Niu (ropac0a50bib100) 2014; 62
Dong (ropac0a50bib147) 2018; 30
Yang (ropac0a50bib93) 2013; 7
Truby (ropac0a50bib203) 2018; 30
Kwak (ropac0a50bib152) 2017; 11
Yu (ropac0a50bib156) 2017; 11
Niu (ropac0a50bib98) 2014; 7
Schein (ropac0a50bib51) 1992; 167
Xu (ropac0a50bib123) 2018; 49
Lin (ropac0a50bib129) 2020; 68
Zhao (ropac0a50bib234) 2019; 61
Zhao (ropac0a50bib222) 2016; 3
ropac0a50bib54
Seol (ropac0a50bib83) 2018; 30
Parida (ropac0a50bib210) 2017; 29
Zheng (ropac0a50bib140) 2014; 26
Zhu (ropac0a50bib208) 2014; 14
Wang (ropac0a50bib213) 2015; 176
Zheng (ropac0a50bib144) 2016; 2
Xu (ropac0a50bib150) 2019; 58
Meng (ropac0a50bib175) 2019; 29
Harmon (ropac0a50bib135) 2020; 71
Knoblauch (ropac0a50bib18) 1902; 39U
Jiang (ropac0a50bib224) 2015; 15
Willatzen (ropac0a50bib58) 2019; 2019
Cheng (ropac0a50bib134) 2019; 61
Birbaumer (ropac0a50bib193) 2006; 117
Cheng (ropac0a50bib218) 2019; 57
Xu (ropac0a50bib219) 2017; 31
Lowell (ropac0a50bib17) 1977; 10
Kwak (ropac0a50bib151) 2019; 29
Vick (ropac0a50bib34) 1953; 4
Cheng (ropac0a50bib226) 2018; 44
Makov (ropac0a50bib65) 1993; 47
Zheng (ropac0a50bib119) 2014; 6
Fan (ropac0a50bib198) 2015; 9
Yang (ropac0a50bib228) 2019; 60
Lin (ropac0a50bib248) 2021; 118
Xi (ropac0a50bib136) 2017; 37
Chen (ropac0a50bib244) 2017; 38
Dickinson (ropac0a50bib73) 1941; 37
Guimerà (ropac0a50bib183) 2008; 29
Liu (ropac0a50bib27) 2018; 48
Nie (ropac0a50bib69) 2020; 32
Dong (ropac0a50bib146) 2017; 29
Yang (ropac0a50bib170) 2013; 7
Lacks (ropac0a50bib2) 2019; 3
Lin (ropac0a50bib169) 2018; 3
ropac0a50bib77
Cui (ropac0a50bib157) 2015; 7
Zhang (ropac0a50bib185) 2018; 1
Quan (ropac0a50bib242) 2015; 9
Xiao (ropac0a50bib220) 2018; 28
Zheng (ropac0a50bib245) 2014; 9
Wang (ropac0a50bib94) 2014; 26
Zhang (ropac0a50bib121) 2019; 11
Pu (ropac0a50bib6) 2009; 98
Harper (ropac0a50bib14) 1967
Zhao (ropac0a50bib247) 2021; 87
Zhao (ropac0a50bib227) 2018; 53
Bai (ropac0a50bib167) 2019; 66
Chen (ropac0a50bib161) 2016; 1
Shi (ropac0a50bib166) 2019; 60
Meng (ropac0a50bib180) 2020; 2
Bai (ropac0a50bib125) 2020; 10
Wang (ropac0a50bib214) 2017; 542
Wen (ropac0a50bib160) 2016; 2
Dharmasena (ropac0a50bib108) 2018; 48
Wu (ropac0a50bib196) 2018; 21
Zhou (ropac0a50bib30) 2013; 13
Li (ropac0a50bib128) 2015; 9
Shi (ropac0a50bib158) 2020; 32
Baytekin (ropac0a50bib66) 2011; 333
Belkacem (ropac0a50bib191) 2015; 16
Xu (ropac0a50bib49) 2019; 66
Lin (ropac0a50bib48) 2020; 76
Lin (ropac0a50bib246) 2021
Wang (ropac0a50bib139) 2008; 298
Nguyen (ropac0a50bib38) 1994; 10
Zhao (ropac0a50bib162) 2016; 28
Zhang (ropac0a50bib235) 2015; 9
Wang (ropac0a50bib11) 2013; 7
Pingali (ropac0a50bib4) 2009; 369
Shen (ropac0a50bib60) 2016; 82
Zi (ropac0a50bib114) 2016; 10
Meng (ropac0a50bib176) 2013; 6
Willatzen (ropac0a50bib57) 2018; 52
Zheng (ropac0a50bib46) 2021; 83
Chortos (ropac0a50bib202) 2014; 17
Usakli (ropac0a50bib192) 2009; 59
McCarty (ropac0a50bib20) 2007; 46
Lin (ropac0a50bib21) 2017; 19
Zhang (ropac0a50bib47) 2018; 51
Huang (ropac0a50bib149) 2020; 32
Jiang (ropac0a50bib72) 2019; 31
Beattie (ropac0a50bib74) 2009; 141
Fish (ropac0a50bib182) 2009; 9
Li (ropac0a50bib70) 2020; 32
Liu (ropac0a50bib171) 2020; 73
Arora (ropac0a50bib199) 2018; 2
Lai (ropac0a50bib211) 2018; 30
Wang (ropac0a50bib87) 2017; 39
Wu (ropac0a50bib95) 2019; 9
Zhao (ropac0a50bib78) 2021; 87
Wang (ropac0a50bib29) 2019; 30
Lowell (ropac0a50bib32) 1988; 21
Nie (ropac0a50bib76) 2019; 10
Forward (ropac0a50bib63) 2009; 102
Zhang (ropac0a50bib239) 2016; 9
Zhu (ropac0a50bib92) 2013; 13
Shao (ropac0a50bib99) 2018; 51
Zhao (ropac0a50bib62) 2003; 39
Stratton (ropac0a50bib89) 1941
Essex (ropac0a50bib90) 1977; 45
Lin (ropac0a50bib43) 2019; 31
Yang (ropac0a50bib187) 2013; 418
Verdaguer (ropac0a50bib37) 2009; 94
Tang (ropac0a50bib223) 2015; 27
Zi (ropac0a50bib113) 2016; 7
Zhang (ropac0a50bib188) 2019; 63
He (ropac0a50bib163) 2019; 57
Larson (ropac0a50bib204) 2016; 351
Shao (ropac0a50bib110) 2020; 128
Lee (ropac0a50bib33) 1994; 32
Fan (ropac0a50bib91) 2012; 1
Wang (ropac0a50bib238) 2017; 32
Zi (ropac0a50bib115) 2017; 27
Niu (ropac0a50bib107) 2015; 6
Zhou (ropac0a50bib168) 2018; 53
Niu (ropac0a50bib96) 2013; 6
Ouyang (ropac0a50bib143) 2019; 10
Wang (ropac0a50bib26) 2017; 8
Dharmasena (ropac0a50bib105) 2017; 10
Lai (ropac0a50bib200) 2016; 28
Xu (ropac0a50bib64) 2019; 13
Chen (ropac0a50bib197) 2015; 9
Xi (ropac0a50bib137) 2019; 61
Zhong (ropac0a50bib240) 2015; 13
Ma (ropac0a50bib141) 2016; 16
Xu (ropac0a50bib53) 2018; 30
Zhang (ropac0a50bib174) 2013; 13
Wang (ropac0a50bib237) 2015; 9
Zhou (ropac0a50bib31) 2014; 14
Shao (ropac0a50bib111) 2020; 7
Niu (ropac0a50bib102) 2015; 14
Cui (ropac0a50bib122) 2018; 1
Niu (ropac0a50bib106) 2014; 8
Lin (ropac0a50bib41) 2019; 31
Camara (ropac0a50bib56) 2008; 455
Lin (ropac0a50bib131) 2019; 64
Li (ropac0a50bib52) 2016; 10
Wang (ropac0a50bib86) 2017; 20
Liu (ropac0a50bib13) 2009; 480
Mannsfeld (ropac0a50bib201) 2010; 9
Fu (ropac0a50bib19) 2017; 121
Sayfidinov (ropac0a50bib8) 2018; 4
Pu (ropac0a50bib154) 2015; 27
Jackson (ropac0a50bib88) 1998
Wu (ropac0a50bib178) 2018; 28
Meng (ropac0a50bib179) 2019; 11
Yuan (ropac0a50bib205) 2017; 11
Diaz (ropac0a50bib16) 1991; 3
Loh (ropac0a50bib71) 2020; 367
Fang (ropac0a50bib207) 2016; 6
Cheng (ropac0a50bib124) 2018; 9
Pu (ropac0a50bib195) 2017; 3
Niu (ropac0a50bib97) 2013; 25
Liu (ropac0a50bib126) 2019; 10
Wu (ropac0a50bib133) 2020; 72
Seung (ropac0a50bib155) 2015; 9
Shi (ropac0a50bib165) 2019; 6
Jiang (ropac0a50bib132) 2020; 10
Marinova (ropac0a50bib75) 1996; 12
Liang (ropac0a50bib138) 2020; 13
Wang (ropac0a50bib10) 2016
Niu (ropac0a50bib101) 2015; 12
Wang (ropac0a50bib12) 2015; 8
Han (ropac0a50bib243) 2013; 7
Kwak (ropac0a50bib118) 2019; 12
Wang (ropac0a50bib212) 2020; 32
Barea (ropac0a50bib194) 2002; 10
Lee (ropac0a50bib42) 2019; 9
Shao (ropac0a50bib109) 2021; 11
Lin (ropac0a50bib68) 2020; 11
Horn (ropac0a50bib44) 1992; 256
Liu (ropac0a50bib127) 2020; 11
Fan (ropac0a50bib9) 2012; 12
Castle (ropac0a50bib50) 1995; 36
Hinchet (ropac0a50bib145) 2019; 365
Sun (ropac0a50bib39) 2010; 96
Zhao (ropac0a50bib229) 2019; 62
Wang (ropac0a50bib28) 2020; 10
Burgo (ropac0a50bib7) 2013; 3
Yang (ropac0a50bib172) 2013; 7
Dong (ropac0a50bib148) 2020; 32
36576205 - Rep Prog Phys. 2022 Dec 28;86(2). doi: 10.1088/1361-6633/acab14
References_xml – volume: 542
  start-page: 159
  year: 2017
  ident: ropac0a50bib214
  article-title: Catch wave power in floating nets
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 27
  start-page: 272
  year: 2015
  ident: ropac0a50bib223
  article-title: Self-powered water splitting using flowing kinetic energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404071
– volume: 13
  start-page: 771
  year: 2015
  ident: ropac0a50bib240
  article-title: Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.03.012
– volume: 28
  start-page: 98
  year: 2016
  ident: ropac0a50bib159
  article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504403
– volume: 47
  start-page: 2301
  year: 1993
  ident: ropac0a50bib65
  article-title: Electronic properties of finite metallic systems
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.47.2301
– volume: 123
  year: 2019
  ident: ropac0a50bib67
  article-title: Does flexoelectricity drive triboelectricity?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.123.116103
– volume: 32
  start-page: 1902034
  year: 2020
  ident: ropac0a50bib149
  article-title: Fiber‐based energy conversion devices for human‐body energy harvesting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902034
– volume: 2
  start-page: e1600097
  year: 2016
  ident: ropac0a50bib160
  article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 27
  start-page: 1316
  year: 2015
  ident: ropac0a50bib173
  article-title: Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404794
– volume: 128
  year: 2020
  ident: ropac0a50bib110
  article-title: Theoretical modeling of triboelectric nanogenerators (TENGs)
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0020961
– volume: 2019
  start-page: 6528689
  year: 2019
  ident: ropac0a50bib58
  article-title: Contact electrification by quantum-mechanical tunneling
  publication-title: Research
  doi: 10.34133/2019/6528689
– volume: 58
  start-page: 669
  year: 2019
  ident: ropac0a50bib85
  article-title: Entropy theory of distributed energy for internet of things
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.012
– volume: 14
  start-page: 17565
  year: 2020
  ident: ropac0a50bib231
  article-title: Electron transfer as a liquid droplet contacting a polymer surface
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08332
– volume: 32
  start-page: 1901958
  year: 2020
  ident: ropac0a50bib158
  article-title: Smart textile‐integrated microelectronic systems for wearable applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901958
– volume: 47
  start-page: 2188
  year: 2008
  ident: ropac0a50bib15
  article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701812
– volume: 94
  year: 2009
  ident: ropac0a50bib37
  article-title: Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3149770
– volume: 59
  start-page: 2099
  year: 2009
  ident: ropac0a50bib192
  article-title: Design of a novel efficient human–computer interface: an electrooculagram based virtual keyboard
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2009.2030923
– volume: 12
  start-page: 3109
  year: 2012
  ident: ropac0a50bib9
  article-title: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
  publication-title: Nano Lett.
  doi: 10.1021/nl300988z
– volume: 53
  start-page: 898
  year: 2018
  ident: ropac0a50bib227
  article-title: The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.057
– volume: 61
  start-page: 1
  year: 2019
  ident: ropac0a50bib137
  article-title: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.026
– volume: 45
  start-page: 1099
  year: 1977
  ident: ropac0a50bib90
  article-title: Hertz vector potentials of electromagnetic theory
  publication-title: Am. J. Phys.
  doi: 10.1119/1.10955
– volume: 82
  start-page: 11
  year: 2016
  ident: ropac0a50bib60
  article-title: First-principles calculation of contact electrification and validation by experiment
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2016.04.006
– volume: 26
  start-page: 2818
  year: 2014
  ident: ropac0a50bib94
  article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305303
– volume: 10
  start-page: 209
  year: 2002
  ident: ropac0a50bib194
  article-title: System for assisted mobility using eye movements based on electrooculography
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2002.806829
– volume: 26
  start-page: 3580
  year: 2014
  ident: ropac0a50bib233
  article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400207
– volume: 39
  start-page: 9
  year: 2017
  ident: ropac0a50bib87
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 53
  start-page: 501
  year: 2018
  ident: ropac0a50bib168
  article-title: Wireless self-powered sensor networks driven by triboelectric nanogenerator for in situ real time survey of environmental monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.055
– volume: 48
  start-page: 320
  year: 2018
  ident: ropac0a50bib27
  article-title: Sustained electron tunneling at unbiased metal–insulator–semiconductor triboelectric contacts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.068
– volume: 76
  year: 2020
  ident: ropac0a50bib48
  article-title: The tribovoltaic effect and electron transfer at a liquid–semiconductor interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105070
– volume: 8
  start-page: 395
  year: 1965
  ident: ropac0a50bib79
  article-title: The Richardson constant for thermionic emission in Schottky barrier diodes
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(65)90116-4
– volume: 9
  start-page: 3501
  year: 2015
  ident: ropac0a50bib155
  article-title: Nanopatterned textile-based wearable triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn507221f
– volume: 16
  start-page: 40
  year: 2015
  ident: ropac0a50bib191
  article-title: Online classification algorithm for eye-movement-based communication systems using two temporal EEG sensors
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.10.005
– volume: 60
  start-page: 630
  year: 2019
  ident: ropac0a50bib104
  article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.072
– volume: 9
  start-page: 7671
  year: 2015
  ident: ropac0a50bib221
  article-title: Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03093
– volume: 10
  start-page: 1801
  year: 2017
  ident: ropac0a50bib105
  article-title: Triboelectric nanogenerators: providing a fundamental framework
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee01139c
– volume: 10
  start-page: L233
  year: 1977
  ident: ropac0a50bib17
  article-title: The role of material transfer in contact electrification
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/10/17/001
– volume: 1
  start-page: 2955
  year: 2018
  ident: ropac0a50bib185
  article-title: Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters, and motion sensors
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00667
– volume: 8
  start-page: 150
  year: 2014
  ident: ropac0a50bib106
  article-title: Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.018
– volume: 31
  start-page: 1808197
  year: 2019
  ident: ropac0a50bib40
  article-title: Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808197
– volume: 66
  year: 2019
  ident: ropac0a50bib49
  article-title: Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104185
– volume: 63
  year: 2019
  ident: ropac0a50bib188
  article-title: Sensing body motions based on charges generated on the body
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.038
– volume: 30
  start-page: 1803968
  year: 2018
  ident: ropac0a50bib53
  article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803968
– volume: 10
  start-page: 1
  year: 2019
  ident: ropac0a50bib116
  article-title: A universal standardized method for output capability assessment of nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12465-2
– volume: 10
  start-page: 6510
  year: 2016
  ident: ropac0a50bib142
  article-title: In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02693
– volume: 21
  start-page: 216
  year: 2018
  ident: ropac0a50bib196
  article-title: Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.006
– volume: 9
  start-page: 4553
  year: 2015
  ident: ropac0a50bib237
  article-title: Hybridized electromagnetic–triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01187
– volume: 10
  start-page: 2000137
  year: 2020
  ident: ropac0a50bib28
  article-title: Triboelectric nanogenerator (TENG)-Sparking an energy and sensor revolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000137
– volume: 6
  start-page: 1900617
  year: 2019
  ident: ropac0a50bib165
  article-title: Self‐powered bio‐inspired spider‐net‐coding interface using single‐electrode triboelectric nanogenerator
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900617
– volume: 83
  year: 2021
  ident: ropac0a50bib46
  article-title: Photovoltaic effect and tribovoltaic effect at liquid–semiconductor interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105810
– volume: 3
  start-page: e1700015
  year: 2017
  ident: ropac0a50bib209
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700015
– volume: 5
  start-page: 1501467
  year: 2015
  ident: ropac0a50bib215
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501467
– volume: 3
  start-page: e1700694
  year: 2017
  ident: ropac0a50bib195
  article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700694
– volume: 62
  start-page: 38
  year: 2019
  ident: ropac0a50bib229
  article-title: The novel transistor and photodetector of monolayer MoS2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.012
– volume: 87
  year: 2021
  ident: ropac0a50bib78
  article-title: Studying of contact electrification and electron transfer at liquid–liquid interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106191
– volume: 44
  start-page: 208
  year: 2018
  ident: ropac0a50bib226
  article-title: Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.062
– volume: 7
  start-page: 7342
  year: 2013
  ident: ropac0a50bib93
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 27
  start-page: 1700049
  year: 2017
  ident: ropac0a50bib115
  article-title: Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700049
– volume: 9
  start-page: 1802906
  year: 2019
  ident: ropac0a50bib95
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802906
– volume: 3
  start-page: 1600187
  year: 2016
  ident: ropac0a50bib222
  article-title: Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600187
– volume: 67
  year: 2020
  ident: ropac0a50bib230
  article-title: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104210
– volume: 11
  start-page: 2100065
  year: 2021
  ident: ropac0a50bib109
  article-title: Designing rules and optimization of triboelectric nanogenerator arrays
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100065
– volume: 118
  year: 2021
  ident: ropac0a50bib248
  article-title: Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0051522
– volume: 13
  start-page: 2771
  year: 2013
  ident: ropac0a50bib30
  article-title: In situ quantitative study of nanoscale triboelectrification and patterning
  publication-title: Nano Lett.
  doi: 10.1021/nl401006x
– volume: 32
  start-page: 287
  year: 2017
  ident: ropac0a50bib130
  article-title: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.061
– volume: 298
  start-page: 82
  year: 2008
  ident: ropac0a50bib139
  article-title: Self-powered nanotech
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0108-82
– volume: 32
  start-page: 36
  year: 2017
  ident: ropac0a50bib238
  article-title: Effective energy storage from a hybridized electromagnetic–triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.006
– volume: 21
  start-page: 379
  year: 1983
  ident: ropac0a50bib186
  article-title: Dielectric breakdown of human skin in vivo
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/bf02478510
– volume: 1
  start-page: 1
  year: 2016
  ident: ropac0a50bib161
  article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.138
– volume: 61
  start-page: 111
  year: 2019
  ident: ropac0a50bib234
  article-title: Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.047
– volume: 9
  start-page: 1
  year: 2018
  ident: ropac0a50bib124
  article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06045-z
– volume: 10
  start-page: 4083
  year: 2016
  ident: ropac0a50bib177
  article-title: Self-powered analogue smart skin
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07074
– volume: 45
  start-page: 298
  year: 2018
  ident: ropac0a50bib184
  article-title: Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.053
– volume: 66
  year: 2019
  ident: ropac0a50bib167
  article-title: High-performance triboelectric nanogenerators for self-powered, in situ and real-time water quality mapping
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104117
– volume: 46
  start-page: 206
  year: 2007
  ident: ropac0a50bib20
  article-title: Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200602914
– volume: 26
  start-page: 5851
  year: 2014
  ident: ropac0a50bib140
  article-title: In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402064
– volume: 2
  start-page: 604
  year: 2013
  ident: ropac0a50bib23
  article-title: Effect of humidity and pressure on the triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.07.012
– volume: 455
  start-page: 1089
  year: 2008
  ident: ropac0a50bib56
  article-title: Correlation between nanosecond x-ray flashes and stick-slip friction in peeling tape
  publication-title: Nature
  doi: 10.1038/nature07378
– volume: 10
  start-page: 2000605
  year: 2020
  ident: ropac0a50bib125
  article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000605
– volume: 102
  year: 2009
  ident: ropac0a50bib63
  article-title: Charge segregation depends on particle size in triboelectrically charged granular materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.102.028001
– volume: 13
  start-page: 112
  year: 2018
  ident: ropac0a50bib35
  article-title: Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0019-5
– volume: 7
  start-page: 9533
  year: 2013
  ident: ropac0a50bib11
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 312
  start-page: 242
  year: 2006
  ident: ropac0a50bib84
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 6
  start-page: 3235
  year: 2013
  ident: ropac0a50bib176
  article-title: A transparent single-friction-surface triboelectric generator and self-powered touch sensor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42311e
– volume: 60
  start-page: 404
  year: 2019
  ident: ropac0a50bib217
  article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.054
– volume: 55
  start-page: 29
  year: 2019
  ident: ropac0a50bib153
  article-title: High-efficiency self-charging smart bracelet for portable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.045
– volume: 7
  start-page: 2339
  year: 2014
  ident: ropac0a50bib98
  article-title: A theoretical study of grating structured triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00498a
– volume: 121
  start-page: 12345
  year: 2017
  ident: ropac0a50bib19
  article-title: First-principles study of the charge distributions in water confined between dissimilar surfaces and implications in regard to contact electrification
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04044
– volume: 15
  start-page: 266
  year: 2015
  ident: ropac0a50bib224
  article-title: Self-powered seawater desalination and electrolysis using flowing kinetic energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.036
– volume: 20
  start-page: 74
  year: 2017
  ident: ropac0a50bib86
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 60
  start-page: 680
  year: 2019
  ident: ropac0a50bib228
  article-title: The high-speed ultraviolet photodetector of ZnO nanowire Schottky barrier based on the triboelectric-nanogenerator-powered surface-ionic-gate
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.015
– volume: 256
  start-page: 362
  year: 1992
  ident: ropac0a50bib44
  article-title: Contact electrification and adhesion between dissimilar materials
  publication-title: Science
  doi: 10.1126/science.256.5055.362
– volume: 6
  start-page: 1
  year: 2015
  ident: ropac0a50bib107
  article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9975
– volume: 17
  start-page: 321
  year: 2014
  ident: ropac0a50bib202
  article-title: Skin-inspired electronic devices
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.05.006
– volume: 10
  start-page: 1
  year: 2019
  ident: ropac0a50bib143
  article-title: Symbiotic cardiac pacemaker
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09851-1
– volume: 51
  start-page: 698
  year: 2018
  ident: ropac0a50bib47
  article-title: Pumping electrons from chemical potential difference
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.016
– volume: 71
  start-page: 21
  year: 2013
  ident: ropac0a50bib5
  article-title: Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas–solid fluidized bed
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2012.11.002
– volume: 480
  start-page: 145
  year: 2009
  ident: ropac0a50bib13
  article-title: Electrons on dielectrics and contact electrification
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.08.045
– volume: 30
  start-page: 1801114
  year: 2018
  ident: ropac0a50bib211
  article-title: Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801114
– volume: 2
  start-page: 1
  year: 2018
  ident: ropac0a50bib199
  article-title: SATURN: a thin and flexible self-powered microphone leveraging triboelectric nanogenerator
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3214263
– volume: 29
  start-page: 1702648
  year: 2017
  ident: ropac0a50bib146
  article-title: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702648
– volume: 32
  start-page: 2001466
  year: 2020
  ident: ropac0a50bib212
  article-title: A self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001466
– volume: 39
  start-page: 612
  year: 2003
  ident: ropac0a50bib62
  article-title: Bipolar charging of poly-disperse polymer powders in fluidized beds
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/tia.2003.810663
– volume: 8
  start-page: 1
  year: 2017
  ident: ropac0a50bib26
  article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00131-4
– volume: 28
  start-page: 1704641
  year: 2018
  ident: ropac0a50bib178
  article-title: Self‐powered noncontact electronic skin for motion sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704641
– volume: 7
  year: 2020
  ident: ropac0a50bib111
  article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5133023
– volume: 1
  start-page: 2891
  year: 2018
  ident: ropac0a50bib122
  article-title: High-performance triboelectric nanogenerator with a rationally designed friction layer structure
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00530
– volume: 30
  start-page: 34
  year: 2019
  ident: ropac0a50bib29
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 6
  start-page: 1600829
  year: 2016
  ident: ropac0a50bib207
  article-title: A stretchable nanogenerator with electric/light dual-mode energy conversion
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600829
– volume: 29
  start-page: S279
  year: 2008
  ident: ropac0a50bib183
  article-title: Method and device for bio-impedance measurement with hard-tissue applications
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/29/6/s24
– volume: 9
  start-page: 974
  year: 2016
  ident: ropac0a50bib239
  article-title: Linear-grating hybridized electromagnetic–triboelectric nanogenerator for sustainably powering portable electronics
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-0985-1
– volume: 31
  start-page: 1901418
  year: 2019
  ident: ropac0a50bib41
  article-title: Electron transfer in nanoscale contact electrification: photon excitation effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901418
– volume: 11
  start-page: 162
  year: 2015
  ident: ropac0a50bib236
  article-title: Hybrid energy cell for harvesting mechanical energy from one motion using two approaches
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.035
– volume: 98
  start-page: 2412
  year: 2009
  ident: ropac0a50bib6
  article-title: Effects of electrostatic charging on pharmaceutical powder blending homogeneity
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21595
– volume: 11
  start-page: 46399
  year: 2019
  ident: ropac0a50bib179
  article-title: Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12747
– volume: 32
  start-page: 1905696
  year: 2020
  ident: ropac0a50bib69
  article-title: Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905696
– volume: 12
  start-page: 760
  year: 2015
  ident: ropac0a50bib101
  article-title: Theory of freestanding triboelectric-layer-based nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.013
– volume: 11
  start-page: 1
  year: 2020
  ident: ropac0a50bib82
  article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15926-1
– volume: 1
  start-page: 328
  year: 2012
  ident: ropac0a50bib91
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 60
  start-page: 545
  year: 2019
  ident: ropac0a50bib166
  article-title: Triboelectric single-electrode-output control interface using patterned grid electrode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.090
– volume: 38
  start-page: 43
  year: 2017
  ident: ropac0a50bib244
  article-title: Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.047
– volume: 140
  start-page: 1065
  year: 1993
  ident: ropac0a50bib36
  article-title: Detection of effects of low electric fields with the Kelvin probe
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2056198
– volume: 9
  start-page: 3521
  year: 2015
  ident: ropac0a50bib235
  article-title: Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics
  publication-title: ACS Nano
  doi: 10.1021/nn507455f
– volume: 71
  start-page: 905
  year: 2013
  ident: ropac0a50bib55
  article-title: Generation of hard x-ray radiation using the triboelectric effect by peeling adhesive tape
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2013.07.006
– volume: 57
  start-page: 432
  year: 2019
  ident: ropac0a50bib218
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 39U
  start-page: 225
  year: 1902
  ident: ropac0a50bib18
  article-title: Versuche über die Berührungselektrizität
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1902-3914
– volume: 8
  start-page: 2250
  year: 2015
  ident: ropac0a50bib12
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c5ee01532d
– volume: 51
  start-page: 688
  year: 2018
  ident: ropac0a50bib99
  article-title: Structural figure-of-merits of triboelectric nanogenerators at powering loads
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.032
– volume: 39
  start-page: 391
  year: 1996
  ident: ropac0a50bib80
  article-title: Extended thermionic emission-diffusion theory of charge transport through a Schottky diode
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(95)00193-x
– volume: 2
  start-page: e1501478
  year: 2016
  ident: ropac0a50bib144
  article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501478
– volume: 3
  start-page: 465
  year: 2019
  ident: ropac0a50bib2
  article-title: Long-standing and unresolved issues in triboelectric charging
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0115-1
– volume: 64
  year: 2019
  ident: ropac0a50bib131
  article-title: Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103908
– volume: 21
  start-page: 125
  year: 1988
  ident: ropac0a50bib32
  article-title: Contact electrification-why is it variable?
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/21/1/018
– volume: 13
  start-page: 1168
  year: 2013
  ident: ropac0a50bib174
  article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
  publication-title: Nano Lett.
  doi: 10.1021/nl3045684
– volume: 48
  start-page: 391
  year: 2018
  ident: ropac0a50bib108
  article-title: A unified theoretical model for triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.073
– volume: 61
  start-page: 517
  year: 2019
  ident: ropac0a50bib134
  article-title: Power management and effective energy storage of pulsed output from triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.096
– volume: 12
  start-page: 1849
  year: 2018
  ident: ropac0a50bib216
  article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 13
  start-page: 847
  year: 2013
  ident: ropac0a50bib92
  article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
  publication-title: Nano Lett.
  doi: 10.1021/nl4001053
– volume: 4
  start-page: S1
  year: 1953
  ident: ropac0a50bib34
  article-title: Theory of contact electrification
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/4/s2/301
– volume: 14
  start-page: 3208
  year: 2014
  ident: ropac0a50bib208
  article-title: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
  publication-title: Nano Lett.
  doi: 10.1021/nl5005652
– volume: 28
  start-page: 10267
  year: 2016
  ident: ropac0a50bib162
  article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603679
– volume: 13
  start-page: 13257
  year: 2019
  ident: ropac0a50bib117
  article-title: On the maximal output energy density of nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06272
– volume: 9
  start-page: 1901987
  year: 2019
  ident: ropac0a50bib42
  article-title: High‐output triboelectric nanogenerator based on dual inductive and resonance effects‐controlled highly transparent polyimide for self‐powered sensor network systems
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901987
– volume: 87
  year: 2021
  ident: ropac0a50bib247
  article-title: Studying of contact electrification and electron transfer at liquid–liquid interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106191
– volume: 30
  start-page: 1910461
  year: 2020
  ident: ropac0a50bib59
  article-title: Quantum theory of contact electrification for fluids and solids
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910461
– volume: 11
  start-page: 1
  year: 2020
  ident: ropac0a50bib127
  article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15368-9
– volume: 9
  start-page: 12301
  year: 2015
  ident: ropac0a50bib242
  article-title: Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05598
– start-page: 267
  year: 2020
  ident: ropac0a50bib164
  article-title: Self-powered wireless IoT sensor based on triboelectric textile
– volume: 365
  start-page: 491
  year: 2019
  ident: ropac0a50bib145
  article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
  publication-title: Science
  doi: 10.1126/science.aan3997
– volume: 10
  start-page: 1
  year: 2019
  ident: ropac0a50bib126
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09464-8
– volume: 32
  start-page: 2001307
  year: 2020
  ident: ropac0a50bib70
  article-title: Contributions of different functional groups to contact electrification of polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001307
– volume: 31
  start-page: 1902793
  year: 2019
  ident: ropac0a50bib72
  article-title: Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual‐signal chemical sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902793
– volume: 10
  start-page: 1903713
  year: 2020
  ident: ropac0a50bib45
  article-title: Tribovoltaic effect on metal–semiconductor interface for direct‐current low‐impedance triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903713
– volume: 27
  start-page: 2472
  year: 2015
  ident: ropac0a50bib154
  article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500311
– volume: 30
  start-page: 1706738
  year: 2018
  ident: ropac0a50bib206
  article-title: A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706738
– volume: 10
  start-page: 597
  year: 1994
  ident: ropac0a50bib38
  article-title: Surface potential map of charged ionomer–polymer blends studied with a scanning Kelvin probe
  publication-title: Langmuir
  doi: 10.1021/la00014a043
– volume: 26
  start-page: 164
  year: 2016
  ident: ropac0a50bib241
  article-title: Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic–triboelectric–thermoelectric effects
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.05.032
– volume: 118
  start-page: 659
  year: 1926
  ident: ropac0a50bib1
  article-title: The electrical charges from like solids
  publication-title: Nature
  doi: 10.1038/118659c0
– volume: 3
  start-page: 2384
  year: 2013
  ident: ropac0a50bib7
  article-title: Friction coefficient dependence on electrostatic tribocharging
  publication-title: Sci. Rep.
  doi: 10.1038/srep02384
– volume: 30
  start-page: 1706383
  year: 2018
  ident: ropac0a50bib203
  article-title: Soft somatosensitive actuators via embedded 3D printing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706383
– volume: 25
  start-page: 6184
  year: 2013
  ident: ropac0a50bib97
  article-title: Theory of sliding-mode triboelectric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302808
– volume: 9
  start-page: e44
  year: 2009
  ident: ropac0a50bib182
  article-title: Conduction of electrical current to and through the human body: a review
  publication-title: Eplasty
– volume: 10
  start-page: 4797
  year: 2016
  ident: ropac0a50bib114
  article-title: Harvesting low-frequency(<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 9
  start-page: 4236
  year: 2015
  ident: ropac0a50bib198
  article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00618
– volume: 96
  year: 2010
  ident: ropac0a50bib39
  article-title: Kelvin probe force microscopy study on nanotriboelectrification
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3330866
– volume: 11
  start-page: 26824
  year: 2019
  ident: ropac0a50bib121
  article-title: Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06627
– volume: 123
  start-page: 6898
  year: 2011
  ident: ropac0a50bib24
  article-title: Is water necessary for contact electrification?
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201008051
– volume: 14
  start-page: 161
  year: 2015
  ident: ropac0a50bib102
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 7
  start-page: 8554
  year: 2013
  ident: ropac0a50bib243
  article-title: r-Shaped hybrid nanogenerator with enhanced piezoelectricity
  publication-title: ACS Nano
  doi: 10.1021/nn404023v
– volume: 11
  start-page: 8364
  year: 2017
  ident: ropac0a50bib205
  article-title: Transparent and flexible triboelectric sensing array for touch security applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03680
– volume: 49
  start-page: 625
  year: 2018
  ident: ropac0a50bib123
  article-title: Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.011
– volume: 3
  start-page: 1800144
  year: 2018
  ident: ropac0a50bib169
  article-title: Flexible timbo-like triboelectric nanogenerator as self-powered force and bend sensor for wireless and distributed landslide monitoring
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800144
– volume: 176
  start-page: 447
  year: 2015
  ident: ropac0a50bib213
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives
  publication-title: Faraday Discuss.
  doi: 10.1039/c4fd00159a
– volume: 118
  year: 2021
  ident: ropac0a50bib232
  article-title: Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0051522
– volume: 10
  start-page: 37
  year: 2014
  ident: ropac0a50bib120
  article-title: Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.017
– volume: 29
  start-page: 1804533
  year: 2019
  ident: ropac0a50bib151
  article-title: Textile-based triboelectric nanogenerators for self-powered wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804533
– volume: 9
  start-page: 291
  year: 2014
  ident: ropac0a50bib245
  article-title: Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.024
– volume: 28
  start-page: 1802634
  year: 2018
  ident: ropac0a50bib220
  article-title: Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802634
– volume: 29
  start-page: 1702181
  year: 2017
  ident: ropac0a50bib210
  article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702181
– volume: 10
  start-page: 2528
  year: 2016
  ident: ropac0a50bib52
  article-title: Excluding contact electrification in surface potential measurement using kelvin probe force microscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07418
– volume: 369
  start-page: 2
  year: 2009
  ident: ropac0a50bib4
  article-title: Use of a static eliminator to improve powder flow
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.12.041
– volume: 141
  start-page: 31
  year: 2009
  ident: ropac0a50bib74
  article-title: The surface of neat water is basic
  publication-title: Faraday Discuss.
  doi: 10.1039/b805266b
– volume: 333
  start-page: 308
  year: 2011
  ident: ropac0a50bib66
  article-title: The mosaic of surface charge in contact electrification
  publication-title: Science
  doi: 10.1126/science.1201512
– volume: 7
  start-page: 9461
  year: 2013
  ident: ropac0a50bib172
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn4043157
– volume: 12
  start-page: 2045
  year: 1996
  ident: ropac0a50bib75
  article-title: Charging of oil–water interfaces due to spontaneous adsorption of hydroxyl ions
  publication-title: Langmuir
  doi: 10.1021/la950928i
– volume: 9
  start-page: 105
  year: 2015
  ident: ropac0a50bib197
  article-title: Personalized keystroke dynamics for self-powered human–machine interfacing
  publication-title: ACS Nano
  doi: 10.1021/nn506832w
– volume: 7
  start-page: 1
  year: 2016
  ident: ropac0a50bib113
  article-title: Effective energy storage from a triboelectric nanogenerator
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10987
– volume: 418
  year: 2013
  ident: ropac0a50bib187
  article-title: Numerical calculations of human-body capacitance in mining tunnel environment
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/418/1/012002
– volume: 14
  start-page: 1567
  year: 2014
  ident: ropac0a50bib31
  article-title: Manipulating nanoscale contact electrification by an applied electric field
  publication-title: Nano Lett.
  doi: 10.1021/nl404819w
– ident: ropac0a50bib54
– volume: 10
  start-page: 1
  year: 2019
  ident: ropac0a50bib81
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 37
  start-page: 140
  year: 1941
  ident: ropac0a50bib73
  article-title: The effect of p H upon the electrophoretic mobility of emulsions of certain hydrocarbons and aliphatic halides
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9413700140
– volume: 68
  year: 2020
  ident: ropac0a50bib129
  article-title: Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104378
– volume: 71
  year: 2020
  ident: ropac0a50bib135
  article-title: Self-driven power management system for triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104642
– volume: 39
  start-page: 328
  year: 2017
  ident: ropac0a50bib189
  article-title: An ultrathin paper-based self-powered system for portable electronics and wireless human–machine interaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.046
– volume: 10
  start-page: 1
  year: 2019
  ident: ropac0a50bib76
  article-title: Power generation from the interaction of a liquid droplet and a liquid membrane
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10232-x
– volume: 10
  start-page: 2000064
  year: 2020
  ident: ropac0a50bib132
  article-title: Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000064
– year: 1967
  ident: ropac0a50bib14
– volume: 59
  start-page: 380
  year: 2019
  ident: ropac0a50bib103
  article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.051
– volume: 3
  start-page: 997
  year: 1991
  ident: ropac0a50bib16
  article-title: Contact electrification: ion transfer to metals and polymers
  publication-title: Chem. Mater.
  doi: 10.1021/cm00018a006
– volume: 11
  start-page: 10733
  year: 2017
  ident: ropac0a50bib152
  article-title: Fully stretchable textile triboelectric nanogenerator with knitted fabric structures
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05203
– volume: 28
  start-page: 10024
  year: 2016
  ident: ropac0a50bib200
  article-title: Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603527
– volume: 7
  start-page: 9213
  year: 2013
  ident: ropac0a50bib170
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403838y
– volume: 6
  start-page: eaay2840
  year: 2020
  ident: ropac0a50bib181
  article-title: Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay2840
– volume: 16
  start-page: 6042
  year: 2016
  ident: ropac0a50bib141
  article-title: Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01968
– ident: ropac0a50bib77
– volume: 19
  start-page: 29418
  year: 2017
  ident: ropac0a50bib21
  article-title: Bipolar charge transfer induced by water: experimental and first-principles studies
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c7cp05609e
– volume: 9
  start-page: 7479
  year: 2015
  ident: ropac0a50bib128
  article-title: Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02575
– volume: 351
  start-page: 1071
  year: 2016
  ident: ropac0a50bib204
  article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing
  publication-title: Science
  doi: 10.1126/science.aac5082
– volume: 37
  start-page: 168
  year: 2017
  ident: ropac0a50bib136
  article-title: Universal power management strategy for triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.027
– volume: 11
  start-page: 1
  year: 2020
  ident: ropac0a50bib68
  article-title: Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14278-9
– volume: 7
  start-page: 18225
  year: 2015
  ident: ropac0a50bib157
  article-title: Wearable triboelectric generator for powering the portable electronic devices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5071688
– year: 1998
  ident: ropac0a50bib88
– volume: 57
  start-page: 338
  year: 2019
  ident: ropac0a50bib163
  article-title: Beyond energy harvesting—multi-functional triboelectric nanosensors on a textile
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.032
– volume: 117
  start-page: 479
  year: 2006
  ident: ropac0a50bib193
  article-title: Brain–computer-interface research: coming of age
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.11.002
– volume: 72
  year: 2020
  ident: ropac0a50bib133
  article-title: Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104659
– volume: 31
  start-page: 351
  year: 2017
  ident: ropac0a50bib219
  article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.037
– volume: 30
  start-page: 1706790
  year: 2018
  ident: ropac0a50bib25
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 167
  start-page: 79
  year: 1992
  ident: ropac0a50bib51
  article-title: Theory of insulator charging
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)90630-5
– year: 2016
  ident: ropac0a50bib10
– year: 1941
  ident: ropac0a50bib89
– volume: 11
  start-page: 12764
  year: 2017
  ident: ropac0a50bib156
  article-title: Core–shell–yarn-based triboelectric nanogenerator textiles as power cloths
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07534
– volume: 6
  start-page: 7842
  year: 2014
  ident: ropac0a50bib119
  article-title: An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector
  publication-title: Nanoscale
  doi: 10.1039/c4nr01934b
– volume: 9
  start-page: 1
  year: 2018
  ident: ropac0a50bib225
  article-title: Triboelectric microplasma powered by mechanical stimuli
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06198-x
– year: 2021
  ident: ropac0a50bib246
  article-title: Contact-electrification at liquid-solid interface
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00176
– volume: 30
  start-page: 1801210
  year: 2018
  ident: ropac0a50bib83
  article-title: Triboelectric series of 2D layered materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801210
– volume: 63
  start-page: 2669
  year: 1989
  ident: ropac0a50bib3
  article-title: Contact electrification using force microscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.63.2669
– volume: 30
  start-page: 1804944
  year: 2018
  ident: ropac0a50bib147
  article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804944
– volume: 30
  start-page: 98
  year: 2016
  ident: ropac0a50bib190
  article-title: A human–machine interface based on single channel EOG and patchable sensor
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.06.018
– volume: 4
  start-page: eaau3808
  year: 2018
  ident: ropac0a50bib8
  article-title: Minimizing friction, wear, and energy losses by eliminating contact charging
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau3808
– volume: 6
  start-page: 3576
  year: 2013
  ident: ropac0a50bib96
  article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42571a
– volume: 12
  start-page: 3156
  year: 2019
  ident: ropac0a50bib118
  article-title: Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee01267b
– volume: 13
  start-page: 277
  year: 2020
  ident: ropac0a50bib138
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee03258d
– volume: 69
  start-page: 401
  year: 2011
  ident: ropac0a50bib22
  article-title: Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2011.05.005
– volume: 52
  start-page: 517
  year: 2018
  ident: ropac0a50bib57
  article-title: Theory of contact electrification: optical transitions in two-level systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.015
– volume: 32
  start-page: 1
  year: 1994
  ident: ropac0a50bib33
  article-title: Dual mechanism for metal–polymer contact electrification
  publication-title: J. Electrost.
  doi: 10.1016/0304-3886(94)90026-4
– volume: 32
  start-page: 1902549
  year: 2020
  ident: ropac0a50bib148
  article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902549
– volume: 6
  start-page: 1
  year: 2015
  ident: ropac0a50bib112
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 367
  start-page: 179
  year: 2020
  ident: ropac0a50bib71
  article-title: Observation of the fastest chemical processes in the radiolysis of water
  publication-title: Science
  doi: 10.1126/science.aaz4740
– volume: 58
  start-page: 13643
  year: 2019
  ident: ropac0a50bib150
  article-title: The rise of fiber electronics
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902425
– volume: 73
  year: 2020
  ident: ropac0a50bib171
  article-title: Wind-driven self-powered wireless environmental sensors for internet of things at long distance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104819
– volume: 13
  start-page: 2034
  year: 2019
  ident: ropac0a50bib64
  article-title: Contact-electrification between two identical materials: curvature effect
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08533
– volume: 62
  start-page: 641
  year: 2014
  ident: ropac0a50bib100
  article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/ted.2014.2377728
– volume: 9
  start-page: 859
  year: 2010
  ident: ropac0a50bib201
  article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2834
– volume: 31
  start-page: 1804398
  year: 2019
  ident: ropac0a50bib43
  article-title: A high current density direct‐current generator based on a moving van der Waals Schottky diode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804398
– volume: 2
  start-page: 896
  year: 2020
  ident: ropac0a50bib180
  article-title: A wireless textile-based sensor system for self-powered personalized health care
  publication-title: SSRN Electronic Journal
  doi: 10.2139/ssrn.3451450
– volume: 29
  start-page: 1806388
  year: 2019
  ident: ropac0a50bib175
  article-title: Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806388
– volume: 49
  start-page: 946
  year: 2010
  ident: ropac0a50bib61
  article-title: Contact electrification between identical materials
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905281
– volume: 36
  start-page: 165
  year: 1995
  ident: ropac0a50bib50
  article-title: General model of sphere-sphere insulator contact electrification
  publication-title: J. Electrost.
  doi: 10.1016/0304-3886(95)00043-7
– reference: 36576205 - Rep Prog Phys. 2022 Dec 28;86(2). doi: 10.1088/1361-6633/acab14
SSID ssj0011829
Score 2.7128832
SecondaryResourceType retracted_publication
review_article
Snippet Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still...
Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96502
SubjectTerms contact electrification
displacement current
self-powered sensor
triboelectric nanogenerator
Title From contact electrification to triboelectric nanogenerators
URI https://iopscience.iop.org/article/10.1088/1361-6633/ac0a50
https://www.ncbi.nlm.nih.gov/pubmed/34111846
https://www.proquest.com/docview/2540516817
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfDi-1FfRNCDh7RJdrO7QS8ilir4OFjoQQj7igc1KW168dc7m00LihbxFsImm8zszHzLfDuD0ImWcaIkzXzDNPbB4YVgUjTwCQ2IzDAx1Njzznf3tNcnt4N40EDns7MwxbB2_W24dIWCnQhrQhzvhJiGPgRK3BEqEHa_vog5pbZ9wc3D4yyFAMDZYV9MfFilcZ2j_OkNX2LSAsz7O9yswk53FT1PP9ixTV7bk1K21ce3Wo7__KM1tFLDUe_SDV1HDZNvoKWKFqrGm-iiOyrePUtnF6r0XMscyy2q1OmVhWf7ZRX1feXlIi9eqjrWtofPFup3r5-uen7db8FXsIssfZlwTTOpMNewzcowD0CLTEuhWSClCLgMlICAnugwSwB4qSBjxtDIWC_ARYS3UTMvcrOLPKaiRLDYUKwIIUpzYhQAMyI0DhVnuoU6U4mnqi5GbntivKVVUpzz1MoktTJJnUxa6Gz2xNAV4pgz9hREndbWOJ4z7niq5hSsyqZKRG6KyTiNLJANKQ9ZC-04_c9mhbgPi4vQvT_Oso-WI0uEqYhpB6hZjibmEJBMKY-qFfsJbinpiw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqlZcKKUFFgoNEj30kF0ndhxH6qVqWfFoKYcicXP9CgcgWbHZC7-ecexdiapFlXqLIidO5uH5rPk8A3BgdVEZzevUlZamuOBl6FKcpIwTpmvKHHf-vPP3M350wU4ui8vY57Q_C9NO4tI_xMtQKDiIMBLixCijPEsxUNKRMkQVZDSx9RI8Lyinvnj-8Y_zRRoBwXPAv5SlaKlFzFP-6S2P4tISzv13yNmHnvEr-DX_6MA4uR7OOj0097_Vc_yPv1qD1QhLk89h-Gt45pp1eNHTQ830DXwa37W3iae1K9MloXWO5xj1ak26NvF9s9p43ySNatqrvp617-XzFi7Ghz-_HKWx70JqcDfZpboSltfaUGFxu1VTQVCbpdXKlkRrRYQmRmFgr2xWVwjADKlL53ju_GogVE43YLlpG7cFSWnySpWF49QwxowVzBkEaExZmhlR2gGM5lKXJhYl970xbmSfHBdCerlILxcZ5DKAj4snJqEgxxNjP6C4ZfTK6RPj9ueqluhdPmWiGtfOpjL3gDbjIisHsBlsYDErxn80MMa3_3GW9_Dy_OtYfjs-O92BldxzY3qu2jtY7u5mbhfBTaf3egN-ADM17u8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+contact+electrification+to+triboelectric+nanogenerators&rft.jtitle=Reports+on+progress+in+physics&rft.au=Wang%2C+Zhong+Lin&rft.date=2021-09-01&rft.eissn=1361-6633&rft.volume=84&rft.issue=9&rft_id=info:doi/10.1088%2F1361-6633%2Fac0a50&rft_id=info%3Apmid%2F34111846&rft.externalDocID=34111846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon