From contact electrification to triboelectric nanogenerators
Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENG...
Saved in:
Published in | Reports on progress in physics Vol. 84; no. 9; pp. 96502 - 96569 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0034-4885 1361-6633 1361-6633 |
DOI | 10.1088/1361-6633/ac0a50 |
Cover
Loading…
Abstract | Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid–solid interfaces. Electron transfer also occurs in the CE at liquid–solid and liquid–liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid–solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid–solid interfaces. Second, by adding a time-dependent polarization term
P
s
created by the CE-induced surface electrostatic charges in the displacement field
D
, we expand Maxwell’s equations to include both the medium polarizations due to electric field (
P
) and mechanical aggitation and medium boundary movement induced polarization term (
P
s
). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell’s equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising from
ε
∂
E
/∂t is responsible for EM waves, while the newly added term ∂
P
s
/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence. |
---|---|
AbstractList | Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization termPscreated by the CE-induced surface electrostatic charges in the displacement fieldD, we expand Maxwell's equations to include both the medium polarizations due to electric field (P) and mechanical aggitation and medium boundary movement induced polarization term (Ps). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising fromε∂E/∂t is responsible for EM waves, while the newly added term ∂Ps/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization termPscreated by the CE-induced surface electrostatic charges in the displacement fieldD, we expand Maxwell's equations to include both the medium polarizations due to electric field (P) and mechanical aggitation and medium boundary movement induced polarization term (Ps). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising fromε∂E/∂t is responsible for EM waves, while the newly added term ∂Ps/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence. Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid–solid interfaces. Electron transfer also occurs in the CE at liquid–solid and liquid–liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid–solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid–solid interfaces. Second, by adding a time-dependent polarization term P s created by the CE-induced surface electrostatic charges in the displacement field D , we expand Maxwell’s equations to include both the medium polarizations due to electric field ( P ) and mechanical aggitation and medium boundary movement induced polarization term ( P s ). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell’s equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising from ε ∂ E /∂t is responsible for EM waves, while the newly added term ∂ P s /∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence. Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization term created by the CE-induced surface electrostatic charges in the displacement field , we expand Maxwell's equations to include both the medium polarizations due to electric field ( ) and mechanical aggitation and medium boundary movement induced polarization term ( ). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising from ∂ /∂t is responsible for EM waves, while the newly added term ∂ /∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence. |
Author | Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Zhong Lin orcidid: 0000-0002-5530-0380 surname: Wang fullname: Wang, Zhong Lin organization: University of Chinese Academy of Sciences School of Nanoscience and Technology, Beijing 100049, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34111846$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi1URD9gZ0IZGQg9J47jSCyoooBUiQVmy3Yc5Cqxi-0M_HtS0jIgwXS-0_OefM8cTayzGqFLDLcYGFvinOKU0jxfCgWigBM0-xlN0AwgJylhrJiieQhbAIxZVp2haU7w8CR0hu7W3nWJcjYKFRPdahW9aYwS0TibRJcMrXSHuUqssO5dW-1FdD6co9NGtEFfHOoCva0fXldP6ebl8Xl1v0kVgSymsmI1baTKWY0JaXIGStKylqIuQUoBTIISGaVVjZuKFFRBU2pNMw3D35nI8gW6HvfuvPvodYi8M0HpthVWuz7wrCBQYMpwOaBXB7SXna75zptO-E9-vHgA6Ago70LwuuHKxO9roxem5Rj4Xi3fe-R7j3xUOwThV_C4-5_IzRgxbse3rvd2sPQ3_gW1J4kl |
CODEN | RPPHAG |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_109243 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1002_aenm_202303119 crossref_primary_10_3389_fenrg_2022_1014983 crossref_primary_10_1002_adsu_202300583 crossref_primary_10_1002_adma_202209054 crossref_primary_10_1016_j_apenergy_2022_119648 crossref_primary_10_1021_acsnano_1c06950 crossref_primary_10_1631_jzus_A2300530 crossref_primary_10_1021_acsaelm_4c00531 crossref_primary_10_3390_s23031329 crossref_primary_10_1021_acsnano_4c00690 crossref_primary_10_1016_j_nanoen_2023_108959 crossref_primary_10_1002_adfm_202205313 crossref_primary_10_1016_j_cej_2024_152645 crossref_primary_10_1021_acsapm_4c03294 crossref_primary_10_1002_admt_202202106 crossref_primary_10_1021_acsanm_4c00306 crossref_primary_10_1021_acsenergylett_3c00378 crossref_primary_10_3390_mi14091776 crossref_primary_10_1002_admi_202202037 crossref_primary_10_1002_smll_202410155 crossref_primary_10_1007_s40820_022_00989_0 crossref_primary_10_1016_j_nanoen_2022_107465 crossref_primary_10_1039_D2TA08105A crossref_primary_10_1016_j_nanoen_2022_107691 crossref_primary_10_1021_acsaelm_2c00334 crossref_primary_10_1016_j_nanoen_2024_110623 crossref_primary_10_1039_D2EE02762C crossref_primary_10_1360_SST_2022_0176 crossref_primary_10_1002_aenm_202302838 crossref_primary_10_1021_acs_langmuir_2c00813 crossref_primary_10_1080_23746149_2024_2354767 crossref_primary_10_3390_molecules28237894 crossref_primary_10_1002_smll_202203956 crossref_primary_10_1016_j_cej_2024_157760 crossref_primary_10_1021_acsanm_2c02448 crossref_primary_10_1126_sciadv_ads2291 crossref_primary_10_1002_smll_202106960 crossref_primary_10_12677_ces_2024_124187 crossref_primary_10_1016_j_nanoen_2024_110180 crossref_primary_10_1016_j_nanoen_2023_108842 crossref_primary_10_1016_j_nanoen_2024_110615 crossref_primary_10_3390_ma15165716 crossref_primary_10_1016_j_nanoen_2022_107337 crossref_primary_10_1039_D4TA07129H crossref_primary_10_1002_adfm_202305719 crossref_primary_10_1002_admt_202201029 crossref_primary_10_1016_j_nanoen_2024_109633 crossref_primary_10_1016_j_nanoen_2021_106783 crossref_primary_10_1021_acsnano_3c09043 crossref_primary_10_1039_D2TA03232E crossref_primary_10_1063_5_0158240 crossref_primary_10_1038_s41467_022_33766_z crossref_primary_10_1002_smll_202402661 crossref_primary_10_1088_2631_7990_ad39ba crossref_primary_10_3390_nanoenergyadv2010006 crossref_primary_10_1007_s11249_024_01926_5 crossref_primary_10_1039_D2TA00343K crossref_primary_10_1016_j_nanoen_2023_108738 crossref_primary_10_1007_s12274_023_5691_1 crossref_primary_10_1002_ente_202200699 crossref_primary_10_1002_adfm_202426020 crossref_primary_10_1016_j_seta_2023_103442 crossref_primary_10_1016_j_nanoen_2023_109151 crossref_primary_10_1021_acsnano_1c06985 crossref_primary_10_1007_s12274_024_6410_2 crossref_primary_10_1007_s40820_023_01238_8 crossref_primary_10_1002_admi_202300821 crossref_primary_10_1002_adsu_202200267 crossref_primary_10_1021_acsami_1c17964 crossref_primary_10_1002_dro2_97 crossref_primary_10_1016_j_nanoen_2024_110283 crossref_primary_10_1016_j_mtsust_2022_100219 crossref_primary_10_1002_adfm_202307678 crossref_primary_10_1016_j_cej_2024_157865 crossref_primary_10_1016_j_nanoen_2023_108509 crossref_primary_10_1016_j_nanoen_2022_107916 crossref_primary_10_1109_TIM_2024_3500064 crossref_primary_10_3390_electronics12010225 crossref_primary_10_1002_er_7283 crossref_primary_10_1016_j_chphi_2025_100813 crossref_primary_10_3390_electronics11010115 crossref_primary_10_1016_j_nanoen_2021_106648 crossref_primary_10_1016_j_matt_2023_09_017 crossref_primary_10_1016_j_nanoen_2021_106762 crossref_primary_10_1016_j_nanoen_2023_108595 crossref_primary_10_1016_j_nanoen_2024_109441 crossref_primary_10_1016_j_nanoen_2024_110557 crossref_primary_10_3390_s23146634 crossref_primary_10_1016_j_nanoen_2023_108591 crossref_primary_10_1002_admt_202301225 crossref_primary_10_1021_acsami_1c20509 crossref_primary_10_1021_acsenergylett_4c02047 crossref_primary_10_3390_fluids10040078 crossref_primary_10_1016_j_mineng_2024_108901 crossref_primary_10_1016_j_cej_2025_161036 crossref_primary_10_1002_adfm_202304839 crossref_primary_10_1002_apxr_202200039 crossref_primary_10_1016_j_nanoen_2022_108079 crossref_primary_10_1016_j_nanoen_2024_109446 crossref_primary_10_3390_mi15030371 crossref_primary_10_1126_sciadv_adk4620 crossref_primary_10_1002_adma_202409833 crossref_primary_10_1016_j_eng_2023_05_023 crossref_primary_10_3390_nano14040336 crossref_primary_10_1002_aenm_202200963 crossref_primary_10_1002_admt_202301592 crossref_primary_10_1002_aenm_202201813 crossref_primary_10_3390_nanoenergyadv1010003 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1016_j_nanoen_2023_108927 crossref_primary_10_1007_s42114_023_00783_5 crossref_primary_10_1039_D3MH02228E crossref_primary_10_1002_chem_202400882 crossref_primary_10_1016_j_nanoen_2022_107773 crossref_primary_10_1109_JSEN_2024_3443229 crossref_primary_10_3390_polym15112462 crossref_primary_10_1021_acsaelm_3c01826 crossref_primary_10_1016_j_apenergy_2022_120218 crossref_primary_10_3390_nanoenergyadv2020009 crossref_primary_10_1016_j_nanoen_2025_110812 crossref_primary_10_1016_j_ceramint_2023_01_067 crossref_primary_10_1021_acs_nanolett_2c03481 crossref_primary_10_1063_5_0196998 crossref_primary_10_23919_emsci_2023_0017 crossref_primary_10_3390_s24123782 crossref_primary_10_1016_j_nanoen_2024_110096 crossref_primary_10_1016_j_mtsust_2022_100301 crossref_primary_10_7498_aps_73_20240150 crossref_primary_10_1039_D3TA07294K crossref_primary_10_1016_j_mtphys_2022_100784 crossref_primary_10_1016_j_cej_2022_137985 crossref_primary_10_1039_D4EE00895B crossref_primary_10_1002_aenm_202103677 crossref_primary_10_1016_j_nanoen_2023_109229 crossref_primary_10_1016_j_nanoen_2025_110805 crossref_primary_10_3390_nano12162790 crossref_primary_10_1002_inf2_12391 crossref_primary_10_1126_sciadv_abq2521 crossref_primary_10_3390_molecules29184500 crossref_primary_10_1177_09544062251318537 crossref_primary_10_1021_acsaelm_2c00758 crossref_primary_10_1021_acs_chemrev_1c00176 crossref_primary_10_3390_mi14081592 crossref_primary_10_1002_adma_202200146 crossref_primary_10_1021_acsaelm_4c01010 crossref_primary_10_1016_j_jpowsour_2024_235483 crossref_primary_10_1088_2631_7990_ad94b8 crossref_primary_10_1016_j_apmt_2024_102270 crossref_primary_10_1142_S021797922350159X crossref_primary_10_1002_adfm_202213410 crossref_primary_10_1002_apxr_202300115 crossref_primary_10_1088_2399_6528_ac871e crossref_primary_10_1021_acsnano_2c08420 crossref_primary_10_1002_smll_202407359 crossref_primary_10_1007_s40820_022_00999_y crossref_primary_10_1002_EXP_20230073 crossref_primary_10_1016_j_progpolymsci_2023_101723 crossref_primary_10_1021_acs_langmuir_2c01376 crossref_primary_10_1016_j_nanoen_2024_110478 crossref_primary_10_1002_smll_202310023 crossref_primary_10_1007_s12274_022_4443_y crossref_primary_10_1016_j_carbpol_2024_122040 crossref_primary_10_1007_s12274_023_5660_8 crossref_primary_10_1021_acsami_3c05859 crossref_primary_10_1039_D2EE01590K crossref_primary_10_3390_bios13050552 crossref_primary_10_1007_s40820_024_01432_2 crossref_primary_10_1016_j_jallcom_2023_169178 crossref_primary_10_1002_chem_202403207 crossref_primary_10_1016_j_cap_2024_03_013 crossref_primary_10_1080_15368378_2022_2079672 crossref_primary_10_3390_mi13030444 crossref_primary_10_1038_s41467_022_35521_w crossref_primary_10_1016_j_nanoen_2022_107745 crossref_primary_10_1002_adfm_202409422 crossref_primary_10_1016_j_nanoen_2022_107867 crossref_primary_10_1007_s42765_025_00534_9 crossref_primary_10_1002_adem_202400134 crossref_primary_10_1002_eem2_12697 crossref_primary_10_1109_LRA_2023_3250006 crossref_primary_10_1016_j_nanoen_2023_108435 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_15251_DJNB_2024_193_1277 crossref_primary_10_1016_j_nanoen_2022_107623 crossref_primary_10_1021_acsami_3c05729 crossref_primary_10_1038_s41467_024_46900_w crossref_primary_10_1360_SST_2022_0226 crossref_primary_10_1063_5_0221553 crossref_primary_10_1360_SST_2023_0062 crossref_primary_10_3390_s21217129 crossref_primary_10_1002_pssr_202300388 crossref_primary_10_1016_j_device_2023_100127 crossref_primary_10_1021_acsomega_2c05457 crossref_primary_10_1016_j_triboint_2023_109163 crossref_primary_10_3390_polym15010222 crossref_primary_10_1002_adfm_202304221 crossref_primary_10_1016_j_nanoen_2024_109913 crossref_primary_10_1039_D3RA00077J crossref_primary_10_1088_2631_7990_ad5bc6 crossref_primary_10_1016_j_cej_2023_146189 crossref_primary_10_1039_D4EE00395K crossref_primary_10_1016_j_nanoen_2023_108445 crossref_primary_10_1360_SST_2022_0322 crossref_primary_10_1002_smsc_202400449 crossref_primary_10_1007_s12274_022_4131_y crossref_primary_10_1002_aenm_202400672 crossref_primary_10_3390_bios12050323 crossref_primary_10_1002_smll_202405410 crossref_primary_10_1002_aenm_202400429 crossref_primary_10_1016_j_seppur_2024_128886 crossref_primary_10_1002_adfm_202303249 crossref_primary_10_3390_nanoenergyadv3040020 crossref_primary_10_1088_1361_6463_ad4cfc crossref_primary_10_1016_j_nanoen_2022_107762 crossref_primary_10_3390_nano13061036 crossref_primary_10_1002_anie_202413343 crossref_primary_10_1016_j_nanoen_2022_107196 crossref_primary_10_1016_j_nanoen_2022_108043 crossref_primary_10_1016_j_nanoen_2024_109693 crossref_primary_10_1021_acsami_3c09407 crossref_primary_10_1002_advs_202207230 crossref_primary_10_3390_bios15010037 crossref_primary_10_1002_adfm_202300764 crossref_primary_10_1002_ente_202401281 crossref_primary_10_1021_acsami_3c06256 crossref_primary_10_1021_acssuschemeng_2c01031 crossref_primary_10_1016_j_enconman_2024_118569 crossref_primary_10_1016_j_ymssp_2023_110717 crossref_primary_10_1002_sus2_196 crossref_primary_10_3390_molecules29235716 crossref_primary_10_1021_acsanm_2c02026 crossref_primary_10_1557_s43577_024_00857_9 crossref_primary_10_1016_j_nanoen_2022_107878 crossref_primary_10_1002_admt_202201408 crossref_primary_10_1016_j_enconman_2024_119093 crossref_primary_10_1016_j_mtener_2022_101136 crossref_primary_10_1039_D4EE00482E crossref_primary_10_1039_D2EE03114K crossref_primary_10_1021_acsami_3c13690 crossref_primary_10_1002_open_202400373 crossref_primary_10_1088_2631_8695_ad6e58 crossref_primary_10_1016_j_matdes_2024_112991 crossref_primary_10_1016_j_mtener_2024_101732 crossref_primary_10_1063_5_0221769 crossref_primary_10_1002_advs_202309050 crossref_primary_10_1088_2631_8695_ac9e8c crossref_primary_10_1002_aenm_202203707 crossref_primary_10_1016_j_jpowsour_2024_236080 crossref_primary_10_1016_j_mtchem_2024_102384 crossref_primary_10_1016_j_nanoen_2025_110679 crossref_primary_10_1016_j_compscitech_2023_110195 crossref_primary_10_1002_adfm_202303471 crossref_primary_10_1016_j_pmatsci_2023_101184 crossref_primary_10_1016_j_seta_2022_102644 crossref_primary_10_1002_adma_202310098 crossref_primary_10_1002_smll_202410599 crossref_primary_10_1007_s42114_022_00561_9 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1039_D3NR01334K crossref_primary_10_1002_aenm_202302353 crossref_primary_10_1016_j_nanoen_2021_106576 crossref_primary_10_1016_j_nanoen_2023_108871 crossref_primary_10_1002_adma_202109355 crossref_primary_10_3390_ma17184514 crossref_primary_10_1039_D3CP00578J crossref_primary_10_1002_advs_202405666 crossref_primary_10_1016_j_nanoen_2024_110380 crossref_primary_10_1038_s41467_024_49660_9 crossref_primary_10_1002_aenm_202201532 crossref_primary_10_1021_acsenergylett_2c01582 crossref_primary_10_1039_D2EE02621J crossref_primary_10_1002_aelm_202400771 crossref_primary_10_1002_inf2_12428 crossref_primary_10_1021_acsami_2c15781 crossref_primary_10_1016_j_cej_2024_158413 crossref_primary_10_1021_acsami_2c17722 crossref_primary_10_3390_nano13050852 crossref_primary_10_1016_j_cej_2024_154974 crossref_primary_10_1002_adma_202312148 crossref_primary_10_1016_j_nanoen_2023_108769 crossref_primary_10_1016_j_nanoen_2022_106969 crossref_primary_10_1016_j_nantod_2021_101354 crossref_primary_10_3390_s22030975 crossref_primary_10_1016_j_nanoen_2022_107139 crossref_primary_10_1063_5_0145842 crossref_primary_10_1002_adfm_202113149 crossref_primary_10_1016_j_nanoen_2023_108762 crossref_primary_10_1002_ange_202413343 crossref_primary_10_1039_D2EE01553F crossref_primary_10_1016_j_apenergy_2022_119970 crossref_primary_10_1016_j_nanoen_2023_108885 crossref_primary_10_1038_s41598_024_60823_y crossref_primary_10_1002_adfm_202404503 crossref_primary_10_1016_j_mtphys_2022_100701 crossref_primary_10_1109_JSEN_2022_3226478 crossref_primary_10_1115_1_4056391 crossref_primary_10_1007_s12274_022_4409_0 crossref_primary_10_1016_j_nanoen_2024_110131 crossref_primary_10_1021_acsaelm_3c01428 crossref_primary_10_1038_s41598_023_42265_0 crossref_primary_10_3390_chemosensors10110484 crossref_primary_10_1088_1361_665X_adb404 crossref_primary_10_1002_advs_202310017 crossref_primary_10_1016_j_pnsc_2024_09_007 crossref_primary_10_1016_j_apenergy_2023_122400 crossref_primary_10_1016_j_cej_2024_154967 crossref_primary_10_1016_j_susmat_2024_e00954 crossref_primary_10_1002_adma_202402457 crossref_primary_10_1039_D4MH01003E crossref_primary_10_1557_s43577_025_00864_4 crossref_primary_10_1016_j_nanoen_2022_107165 crossref_primary_10_1038_s44328_024_00011_0 crossref_primary_10_1242_jeb_247851 crossref_primary_10_1002_smsc_202300312 crossref_primary_10_1002_adfm_202204322 crossref_primary_10_1002_advs_202408718 crossref_primary_10_1016_j_sna_2022_114015 crossref_primary_10_1016_j_measurement_2022_112010 crossref_primary_10_1016_j_nanoen_2023_109191 crossref_primary_10_26599_NR_2025_94907192 crossref_primary_10_1016_j_apenergy_2024_124694 crossref_primary_10_1038_s41467_023_38815_9 crossref_primary_10_1038_s43586_023_00220_3 crossref_primary_10_1002_adfm_202111662 crossref_primary_10_1016_j_nanoen_2023_108308 crossref_primary_10_1016_j_cej_2024_152412 crossref_primary_10_1016_j_nanoen_2024_109937 crossref_primary_10_1039_D4NR01593B crossref_primary_10_1039_D4NA00340C crossref_primary_10_1016_j_nanoen_2023_108789 crossref_primary_10_1088_1361_6463_ac7365 crossref_primary_10_1002_adma_202415099 crossref_primary_10_1039_D3EE01658G crossref_primary_10_1016_j_nanoen_2022_107035 crossref_primary_10_1103_Physics_16_23 |
Cites_doi | 10.1038/542159a 10.1002/adma.201404071 10.1016/j.nanoen.2015.03.012 10.1002/adma.201504403 10.1103/physrevb.47.2301 10.1103/physrevlett.123.116103 10.1002/adma.201902034 10.1126/sciadv.1600097 10.1002/adma.201404794 10.1063/5.0020961 10.34133/2019/6528689 10.1016/j.nanoen.2019.02.012 10.1021/acsnano.0c08332 10.1002/adma.201901958 10.1002/anie.200701812 10.1063/1.3149770 10.1109/tim.2009.2030923 10.1021/nl300988z 10.1016/j.nanoen.2018.09.057 10.1016/j.nanoen.2019.04.026 10.1119/1.10955 10.1016/j.elstat.2016.04.006 10.1002/adma.201305303 10.1109/tnsre.2002.806829 10.1002/adma.201400207 10.1016/j.nanoen.2017.06.035 10.1016/j.nanoen.2018.08.055 10.1016/j.nanoen.2018.03.068 10.1016/j.nanoen.2020.105070 10.1016/0038-1101(65)90116-4 10.1021/nn507221f 10.1016/j.bspc.2014.10.005 10.1016/j.nanoen.2019.03.072 10.1021/acsnano.5b03093 10.1039/c7ee01139c 10.1088/0022-3727/10/17/001 10.1021/acsaem.8b00667 10.1016/j.nanoen.2014.05.018 10.1002/adma.201808197 10.1016/j.nanoen.2019.104185 10.1016/j.nanoen.2019.06.038 10.1002/adma.201803968 10.1038/s41467-019-12465-2 10.1021/acsnano.6b02693 10.1016/j.mattod.2018.01.006 10.1021/acsnano.5b01187 10.1002/aenm.202000137 10.1002/advs.201900617 10.1016/j.nanoen.2021.105810 10.1126/sciadv.1700015 10.1002/aenm.201501467 10.1126/sciadv.1700694 10.1016/j.nanoen.2019.05.012 10.1016/j.nanoen.2021.106191 10.1016/j.nanoen.2017.11.062 10.1021/nn403021m 10.1002/adfm.201700049 10.1002/aenm.201802906 10.1002/admi.201600187 10.1016/j.nanoen.2019.104210 10.1002/aenm.202100065 10.1063/5.0051522 10.1021/nl401006x 10.1016/j.nanoen.2016.12.061 10.1038/scientificamerican0108-82 10.1016/j.nanoen.2016.12.006 10.1007/bf02478510 10.1038/nenergy.2016.138 10.1016/j.nanoen.2019.04.047 10.1038/s41467-018-06045-z 10.1021/acsnano.5b07074 10.1016/j.nanoen.2017.12.053 10.1016/j.nanoen.2019.104117 10.1002/anie.200602914 10.1002/adma.201402064 10.1016/j.nanoen.2013.07.012 10.1038/nature07378 10.1002/aenm.202000605 10.1103/physrevlett.102.028001 10.1038/s41565-017-0019-5 10.1021/nn404614z 10.1126/science.1124005 10.1039/c3ee42311e 10.1016/j.nanoen.2019.03.054 10.1016/j.nanoen.2018.10.045 10.1039/c4ee00498a 10.1021/acs.jpcc.7b04044 10.1016/j.nanoen.2015.04.036 10.1016/j.mattod.2016.12.001 10.1016/j.nanoen.2019.04.015 10.1126/science.256.5055.362 10.1038/ncomms9975 10.1016/j.mattod.2014.05.006 10.1038/s41467-019-09851-1 10.1016/j.nanoen.2018.07.016 10.1016/j.elstat.2012.11.002 10.1016/j.cplett.2009.08.045 10.1002/adma.201801114 10.1145/3214263 10.1002/adma.201702648 10.1002/adma.202001466 10.1109/tia.2003.810663 10.1038/s41467-017-00131-4 10.1002/adfm.201704641 10.1063/1.5133023 10.1021/acsaem.8b00530 10.1016/j.mattod.2019.05.016 10.1002/aenm.201600829 10.1088/0967-3334/29/6/s24 10.1007/s12274-016-0985-1 10.1002/adma.201901418 10.1016/j.nanoen.2014.10.035 10.1002/jps.21595 10.1021/acsami.9b12747 10.1002/adma.201905696 10.1016/j.nanoen.2015.01.013 10.1038/s41467-020-15926-1 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2019.03.090 10.1016/j.nanoen.2017.05.047 10.1149/1.2056198 10.1021/nn507455f 10.1016/j.elstat.2013.07.006 10.1016/j.nanoen.2018.12.054 10.1515/zpch-1902-3914 10.1039/c5ee01532d 10.1016/j.nanoen.2018.07.032 10.1016/0038-1101(95)00193-x 10.1126/sciadv.1501478 10.1038/s41570-019-0115-1 10.1016/j.nanoen.2019.103908 10.1088/0022-3727/21/1/018 10.1021/nl3045684 10.1016/j.nanoen.2018.03.073 10.1016/j.nanoen.2019.04.096 10.1021/acsnano.7b08674 10.1021/nl4001053 10.1088/0508-3443/4/s2/301 10.1021/nl5005652 10.1002/adma.201603679 10.1021/acsnano.9b06272 10.1002/aenm.201901987 10.1002/adfm.201910461 10.1038/s41467-020-15368-9 10.1021/acsnano.5b05598 10.1126/science.aan3997 10.1038/s41467-019-09464-8 10.1002/adma.202001307 10.1002/adma.201902793 10.1002/aenm.201903713 10.1002/adma.201500311 10.1002/adma.201706738 10.1021/la00014a043 10.1016/j.nanoen.2016.05.032 10.1038/118659c0 10.1038/srep02384 10.1002/adma.201706383 10.1002/adma.201302808 10.1021/acsnano.6b01569 10.1021/acsnano.5b00618 10.1063/1.3330866 10.1021/acsami.9b06627 10.1002/ange.201008051 10.1016/j.nanoen.2014.11.034 10.1021/nn404023v 10.1021/acsnano.7b03680 10.1016/j.nanoen.2018.05.011 10.1002/admt.201800144 10.1039/c4fd00159a 10.1016/j.nanoen.2014.08.017 10.1002/adfm.201804533 10.1016/j.nanoen.2014.07.024 10.1002/adfm.201802634 10.1002/adma.201702181 10.1021/acsnano.5b07418 10.1016/j.ijpharm.2008.12.041 10.1039/b805266b 10.1126/science.1201512 10.1021/nn4043157 10.1021/la950928i 10.1021/nn506832w 10.1038/ncomms10987 10.1088/1742-6596/418/1/012002 10.1021/nl404819w 10.1038/s41467-019-09461-x 10.1039/tf9413700140 10.1016/j.nanoen.2019.104378 10.1016/j.nanoen.2020.104642 10.1016/j.nanoen.2017.06.046 10.1038/s41467-019-10232-x 10.1002/aenm.202000064 10.1016/j.nanoen.2019.02.051 10.1021/cm00018a006 10.1021/acsnano.7b05203 10.1002/adma.201603527 10.1021/nn403838y 10.1126/sciadv.aay2840 10.1021/acs.nanolett.6b01968 10.1039/c7cp05609e 10.1021/acsnano.5b02575 10.1126/science.aac5082 10.1016/j.nanoen.2017.05.027 10.1038/s41467-019-14278-9 10.1021/am5071688 10.1016/j.nanoen.2018.12.032 10.1016/j.clinph.2005.11.002 10.1016/j.nanoen.2020.104659 10.1016/j.nanoen.2016.11.037 10.1002/adma.201706790 10.1016/0375-9601(92)90630-5 10.1021/acsnano.7b07534 10.1039/c4nr01934b 10.1038/s41467-018-06198-x 10.1021/acs.chemrev.1c00176 10.1002/adma.201801210 10.1103/physrevlett.63.2669 10.1002/adma.201804944 10.1016/j.bspc.2016.06.018 10.1126/sciadv.aau3808 10.1039/c3ee42571a 10.1039/c9ee01267b 10.1039/c9ee03258d 10.1016/j.elstat.2011.05.005 10.1016/j.nanoen.2018.08.015 10.1016/0304-3886(94)90026-4 10.1002/adma.201902549 10.1038/ncomms9376 10.1126/science.aaz4740 10.1002/anie.201902425 10.1016/j.nanoen.2020.104819 10.1021/acsnano.8b08533 10.1109/ted.2014.2377728 10.1038/nmat2834 10.1002/adma.201804398 10.2139/ssrn.3451450 10.1002/adfm.201806388 10.1002/anie.200905281 10.1016/0304-3886(95)00043-7 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1361-6633/ac0a50 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-6633 |
ExternalDocumentID | 34111846 10_1088_1361_6633_ac0a50 ropac0a50 |
Genre | Retracted Publication Journal Article Review |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ACAFW ACBEA ACGFO ACGFS ACHIP ACNCT AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RKQ RNS RO9 ROL RPA SY9 TN5 UCJ W28 WH7 XPP ZMT ~02 AAYXX ADEQX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c402t-b98d6fbc38d144f380cb67dbad70bba08b0ca2669d1f9456c0f7ee62e04888a23 |
IEDL.DBID | IOP |
ISSN | 0034-4885 1361-6633 |
IngestDate | Fri Jul 11 10:11:53 EDT 2025 Thu Jan 02 22:30:43 EST 2025 Tue Jul 01 02:52:56 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Wed Aug 21 03:35:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | triboelectric nanogenerator contact electrification self-powered sensor displacement current |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2021 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-b98d6fbc38d144f380cb67dbad70bba08b0ca2669d1f9456c0f7ee62e04888a23 |
Notes | ROPP-101369.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Correction/Retraction-4 |
ORCID | 0000-0002-5530-0380 |
PMID | 34111846 |
PQID | 2540516817 |
PQPubID | 23479 |
PageCount | 68 |
ParticipantIDs | proquest_miscellaneous_2540516817 pubmed_primary_34111846 crossref_primary_10_1088_1361_6633_ac0a50 iop_journals_10_1088_1361_6633_ac0a50 crossref_citationtrail_10_1088_1361_6633_ac0a50 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Reports on progress in physics |
PublicationTitleAbbrev | RoPP |
PublicationTitleAlternate | Rep. Prog. Phys |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Zhang (ropac0a50bib184) 2018; 45 Apodaca (ropac0a50bib61) 2010; 49 Shi (ropac0a50bib177) 2016; 10 Baytekin (ropac0a50bib24) 2011; 123 Zheng (ropac0a50bib142) 2016; 10 Xu (ropac0a50bib216) 2018; 12 Wang (ropac0a50bib120) 2014; 10 Shaw (ropac0a50bib1) 1926; 118 McCarty (ropac0a50bib15) 2008; 47 Xia (ropac0a50bib116) 2019; 10 Nguyen (ropac0a50bib23) 2013; 2 Zhang (ropac0a50bib45) 2020; 10 Pu (ropac0a50bib159) 2016; 28 Salama (ropac0a50bib5) 2013; 71 Fu (ropac0a50bib117) 2019; 13 Zi (ropac0a50bib112) 2015; 6 Wu (ropac0a50bib236) 2015; 11 Zou (ropac0a50bib81) 2019; 10 Wu (ropac0a50bib130) 2017; 32 Zou (ropac0a50bib82) 2020; 11 Burgo (ropac0a50bib22) 2011; 69 Pu (ropac0a50bib209) 2017; 3 He (ropac0a50bib189) 2017; 39 Song (ropac0a50bib153) 2019; 55 Shao (ropac0a50bib103) 2019; 59 Terris (ropac0a50bib3) 1989; 63 Zhao (ropac0a50bib221) 2015; 9 Yang (ropac0a50bib173) 2015; 27 Racko (ropac0a50bib80) 1996; 39 Lin (ropac0a50bib40) 2019; 31 Mizzi (ropac0a50bib67) 2019; 123 He (ropac0a50bib164) 2020 Liu (ropac0a50bib35) 2018; 13 Wang (ropac0a50bib215) 2015; 5 Zhang (ropac0a50bib233) 2014; 26 Fan (ropac0a50bib181) 2020; 6 Zhan (ropac0a50bib231) 2020; 14 Crowell (ropac0a50bib79) 1965; 8 Lin (ropac0a50bib232) 2021; 118 Wang (ropac0a50bib85) 2019; 58 Wang (ropac0a50bib241) 2016; 26 Shao (ropac0a50bib104) 2019; 60 Yang (ropac0a50bib217) 2019; 60 Grimnes (ropac0a50bib186) 1983; 21 Xu (ropac0a50bib25) 2018; 30 Wang (ropac0a50bib84) 2006; 312 Wang (ropac0a50bib206) 2018; 30 Cheng (ropac0a50bib225) 2018; 9 Stöcker (ropac0a50bib55) 2013; 71 Yang (ropac0a50bib230) 2020; 67 Guo (ropac0a50bib190) 2016; 30 Willatzen (ropac0a50bib59) 2020; 30 Huang (ropac0a50bib36) 1993; 140 Niu (ropac0a50bib100) 2014; 62 Dong (ropac0a50bib147) 2018; 30 Yang (ropac0a50bib93) 2013; 7 Truby (ropac0a50bib203) 2018; 30 Kwak (ropac0a50bib152) 2017; 11 Yu (ropac0a50bib156) 2017; 11 Niu (ropac0a50bib98) 2014; 7 Schein (ropac0a50bib51) 1992; 167 Xu (ropac0a50bib123) 2018; 49 Lin (ropac0a50bib129) 2020; 68 Zhao (ropac0a50bib234) 2019; 61 Zhao (ropac0a50bib222) 2016; 3 ropac0a50bib54 Seol (ropac0a50bib83) 2018; 30 Parida (ropac0a50bib210) 2017; 29 Zheng (ropac0a50bib140) 2014; 26 Zhu (ropac0a50bib208) 2014; 14 Wang (ropac0a50bib213) 2015; 176 Zheng (ropac0a50bib144) 2016; 2 Xu (ropac0a50bib150) 2019; 58 Meng (ropac0a50bib175) 2019; 29 Harmon (ropac0a50bib135) 2020; 71 Knoblauch (ropac0a50bib18) 1902; 39U Jiang (ropac0a50bib224) 2015; 15 Willatzen (ropac0a50bib58) 2019; 2019 Cheng (ropac0a50bib134) 2019; 61 Birbaumer (ropac0a50bib193) 2006; 117 Cheng (ropac0a50bib218) 2019; 57 Xu (ropac0a50bib219) 2017; 31 Lowell (ropac0a50bib17) 1977; 10 Kwak (ropac0a50bib151) 2019; 29 Vick (ropac0a50bib34) 1953; 4 Cheng (ropac0a50bib226) 2018; 44 Makov (ropac0a50bib65) 1993; 47 Zheng (ropac0a50bib119) 2014; 6 Fan (ropac0a50bib198) 2015; 9 Yang (ropac0a50bib228) 2019; 60 Lin (ropac0a50bib248) 2021; 118 Xi (ropac0a50bib136) 2017; 37 Chen (ropac0a50bib244) 2017; 38 Dickinson (ropac0a50bib73) 1941; 37 Guimerà (ropac0a50bib183) 2008; 29 Liu (ropac0a50bib27) 2018; 48 Nie (ropac0a50bib69) 2020; 32 Dong (ropac0a50bib146) 2017; 29 Yang (ropac0a50bib170) 2013; 7 Lacks (ropac0a50bib2) 2019; 3 Lin (ropac0a50bib169) 2018; 3 ropac0a50bib77 Cui (ropac0a50bib157) 2015; 7 Zhang (ropac0a50bib185) 2018; 1 Quan (ropac0a50bib242) 2015; 9 Xiao (ropac0a50bib220) 2018; 28 Zheng (ropac0a50bib245) 2014; 9 Wang (ropac0a50bib94) 2014; 26 Zhang (ropac0a50bib121) 2019; 11 Pu (ropac0a50bib6) 2009; 98 Harper (ropac0a50bib14) 1967 Zhao (ropac0a50bib247) 2021; 87 Zhao (ropac0a50bib227) 2018; 53 Bai (ropac0a50bib167) 2019; 66 Chen (ropac0a50bib161) 2016; 1 Shi (ropac0a50bib166) 2019; 60 Meng (ropac0a50bib180) 2020; 2 Bai (ropac0a50bib125) 2020; 10 Wang (ropac0a50bib214) 2017; 542 Wen (ropac0a50bib160) 2016; 2 Dharmasena (ropac0a50bib108) 2018; 48 Wu (ropac0a50bib196) 2018; 21 Zhou (ropac0a50bib30) 2013; 13 Li (ropac0a50bib128) 2015; 9 Shi (ropac0a50bib158) 2020; 32 Baytekin (ropac0a50bib66) 2011; 333 Belkacem (ropac0a50bib191) 2015; 16 Xu (ropac0a50bib49) 2019; 66 Lin (ropac0a50bib48) 2020; 76 Lin (ropac0a50bib246) 2021 Wang (ropac0a50bib139) 2008; 298 Nguyen (ropac0a50bib38) 1994; 10 Zhao (ropac0a50bib162) 2016; 28 Zhang (ropac0a50bib235) 2015; 9 Wang (ropac0a50bib11) 2013; 7 Pingali (ropac0a50bib4) 2009; 369 Shen (ropac0a50bib60) 2016; 82 Zi (ropac0a50bib114) 2016; 10 Meng (ropac0a50bib176) 2013; 6 Willatzen (ropac0a50bib57) 2018; 52 Zheng (ropac0a50bib46) 2021; 83 Chortos (ropac0a50bib202) 2014; 17 Usakli (ropac0a50bib192) 2009; 59 McCarty (ropac0a50bib20) 2007; 46 Lin (ropac0a50bib21) 2017; 19 Zhang (ropac0a50bib47) 2018; 51 Huang (ropac0a50bib149) 2020; 32 Jiang (ropac0a50bib72) 2019; 31 Beattie (ropac0a50bib74) 2009; 141 Fish (ropac0a50bib182) 2009; 9 Li (ropac0a50bib70) 2020; 32 Liu (ropac0a50bib171) 2020; 73 Arora (ropac0a50bib199) 2018; 2 Lai (ropac0a50bib211) 2018; 30 Wang (ropac0a50bib87) 2017; 39 Wu (ropac0a50bib95) 2019; 9 Zhao (ropac0a50bib78) 2021; 87 Wang (ropac0a50bib29) 2019; 30 Lowell (ropac0a50bib32) 1988; 21 Nie (ropac0a50bib76) 2019; 10 Forward (ropac0a50bib63) 2009; 102 Zhang (ropac0a50bib239) 2016; 9 Zhu (ropac0a50bib92) 2013; 13 Shao (ropac0a50bib99) 2018; 51 Zhao (ropac0a50bib62) 2003; 39 Stratton (ropac0a50bib89) 1941 Essex (ropac0a50bib90) 1977; 45 Lin (ropac0a50bib43) 2019; 31 Yang (ropac0a50bib187) 2013; 418 Verdaguer (ropac0a50bib37) 2009; 94 Tang (ropac0a50bib223) 2015; 27 Zi (ropac0a50bib113) 2016; 7 Zhang (ropac0a50bib188) 2019; 63 He (ropac0a50bib163) 2019; 57 Larson (ropac0a50bib204) 2016; 351 Shao (ropac0a50bib110) 2020; 128 Lee (ropac0a50bib33) 1994; 32 Fan (ropac0a50bib91) 2012; 1 Wang (ropac0a50bib238) 2017; 32 Zi (ropac0a50bib115) 2017; 27 Niu (ropac0a50bib107) 2015; 6 Zhou (ropac0a50bib168) 2018; 53 Niu (ropac0a50bib96) 2013; 6 Ouyang (ropac0a50bib143) 2019; 10 Wang (ropac0a50bib26) 2017; 8 Dharmasena (ropac0a50bib105) 2017; 10 Lai (ropac0a50bib200) 2016; 28 Xu (ropac0a50bib64) 2019; 13 Chen (ropac0a50bib197) 2015; 9 Xi (ropac0a50bib137) 2019; 61 Zhong (ropac0a50bib240) 2015; 13 Ma (ropac0a50bib141) 2016; 16 Xu (ropac0a50bib53) 2018; 30 Zhang (ropac0a50bib174) 2013; 13 Wang (ropac0a50bib237) 2015; 9 Zhou (ropac0a50bib31) 2014; 14 Shao (ropac0a50bib111) 2020; 7 Niu (ropac0a50bib102) 2015; 14 Cui (ropac0a50bib122) 2018; 1 Niu (ropac0a50bib106) 2014; 8 Lin (ropac0a50bib41) 2019; 31 Camara (ropac0a50bib56) 2008; 455 Lin (ropac0a50bib131) 2019; 64 Li (ropac0a50bib52) 2016; 10 Wang (ropac0a50bib86) 2017; 20 Liu (ropac0a50bib13) 2009; 480 Mannsfeld (ropac0a50bib201) 2010; 9 Fu (ropac0a50bib19) 2017; 121 Sayfidinov (ropac0a50bib8) 2018; 4 Pu (ropac0a50bib154) 2015; 27 Jackson (ropac0a50bib88) 1998 Wu (ropac0a50bib178) 2018; 28 Meng (ropac0a50bib179) 2019; 11 Yuan (ropac0a50bib205) 2017; 11 Diaz (ropac0a50bib16) 1991; 3 Loh (ropac0a50bib71) 2020; 367 Fang (ropac0a50bib207) 2016; 6 Cheng (ropac0a50bib124) 2018; 9 Pu (ropac0a50bib195) 2017; 3 Niu (ropac0a50bib97) 2013; 25 Liu (ropac0a50bib126) 2019; 10 Wu (ropac0a50bib133) 2020; 72 Seung (ropac0a50bib155) 2015; 9 Shi (ropac0a50bib165) 2019; 6 Jiang (ropac0a50bib132) 2020; 10 Marinova (ropac0a50bib75) 1996; 12 Liang (ropac0a50bib138) 2020; 13 Wang (ropac0a50bib10) 2016 Niu (ropac0a50bib101) 2015; 12 Wang (ropac0a50bib12) 2015; 8 Han (ropac0a50bib243) 2013; 7 Kwak (ropac0a50bib118) 2019; 12 Wang (ropac0a50bib212) 2020; 32 Barea (ropac0a50bib194) 2002; 10 Lee (ropac0a50bib42) 2019; 9 Shao (ropac0a50bib109) 2021; 11 Lin (ropac0a50bib68) 2020; 11 Horn (ropac0a50bib44) 1992; 256 Liu (ropac0a50bib127) 2020; 11 Fan (ropac0a50bib9) 2012; 12 Castle (ropac0a50bib50) 1995; 36 Hinchet (ropac0a50bib145) 2019; 365 Sun (ropac0a50bib39) 2010; 96 Zhao (ropac0a50bib229) 2019; 62 Wang (ropac0a50bib28) 2020; 10 Burgo (ropac0a50bib7) 2013; 3 Yang (ropac0a50bib172) 2013; 7 Dong (ropac0a50bib148) 2020; 32 36576205 - Rep Prog Phys. 2022 Dec 28;86(2). doi: 10.1088/1361-6633/acab14 |
References_xml | – volume: 542 start-page: 159 year: 2017 ident: ropac0a50bib214 article-title: Catch wave power in floating nets publication-title: Nature doi: 10.1038/542159a – volume: 27 start-page: 272 year: 2015 ident: ropac0a50bib223 article-title: Self-powered water splitting using flowing kinetic energy publication-title: Adv. Mater. doi: 10.1002/adma.201404071 – volume: 13 start-page: 771 year: 2015 ident: ropac0a50bib240 article-title: Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.03.012 – volume: 28 start-page: 98 year: 2016 ident: ropac0a50bib159 article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201504403 – volume: 47 start-page: 2301 year: 1993 ident: ropac0a50bib65 article-title: Electronic properties of finite metallic systems publication-title: Phys. Rev. B doi: 10.1103/physrevb.47.2301 – volume: 123 year: 2019 ident: ropac0a50bib67 article-title: Does flexoelectricity drive triboelectricity? publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.123.116103 – volume: 32 start-page: 1902034 year: 2020 ident: ropac0a50bib149 article-title: Fiber‐based energy conversion devices for human‐body energy harvesting publication-title: Adv. Mater. doi: 10.1002/adma.201902034 – volume: 2 start-page: e1600097 year: 2016 ident: ropac0a50bib160 article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 27 start-page: 1316 year: 2015 ident: ropac0a50bib173 article-title: Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition publication-title: Adv. Mater. doi: 10.1002/adma.201404794 – volume: 128 year: 2020 ident: ropac0a50bib110 article-title: Theoretical modeling of triboelectric nanogenerators (TENGs) publication-title: J. Appl. Phys. doi: 10.1063/5.0020961 – volume: 2019 start-page: 6528689 year: 2019 ident: ropac0a50bib58 article-title: Contact electrification by quantum-mechanical tunneling publication-title: Research doi: 10.34133/2019/6528689 – volume: 58 start-page: 669 year: 2019 ident: ropac0a50bib85 article-title: Entropy theory of distributed energy for internet of things publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.012 – volume: 14 start-page: 17565 year: 2020 ident: ropac0a50bib231 article-title: Electron transfer as a liquid droplet contacting a polymer surface publication-title: ACS Nano doi: 10.1021/acsnano.0c08332 – volume: 32 start-page: 1901958 year: 2020 ident: ropac0a50bib158 article-title: Smart textile‐integrated microelectronic systems for wearable applications publication-title: Adv. Mater. doi: 10.1002/adma.201901958 – volume: 47 start-page: 2188 year: 2008 ident: ropac0a50bib15 article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701812 – volume: 94 year: 2009 ident: ropac0a50bib37 article-title: Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.3149770 – volume: 59 start-page: 2099 year: 2009 ident: ropac0a50bib192 article-title: Design of a novel efficient human–computer interface: an electrooculagram based virtual keyboard publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2009.2030923 – volume: 12 start-page: 3109 year: 2012 ident: ropac0a50bib9 article-title: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films publication-title: Nano Lett. doi: 10.1021/nl300988z – volume: 53 start-page: 898 year: 2018 ident: ropac0a50bib227 article-title: The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.057 – volume: 61 start-page: 1 year: 2019 ident: ropac0a50bib137 article-title: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.026 – volume: 45 start-page: 1099 year: 1977 ident: ropac0a50bib90 article-title: Hertz vector potentials of electromagnetic theory publication-title: Am. J. Phys. doi: 10.1119/1.10955 – volume: 82 start-page: 11 year: 2016 ident: ropac0a50bib60 article-title: First-principles calculation of contact electrification and validation by experiment publication-title: J. Electrost. doi: 10.1016/j.elstat.2016.04.006 – volume: 26 start-page: 2818 year: 2014 ident: ropac0a50bib94 article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – volume: 10 start-page: 209 year: 2002 ident: ropac0a50bib194 article-title: System for assisted mobility using eye movements based on electrooculography publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2002.806829 – volume: 26 start-page: 3580 year: 2014 ident: ropac0a50bib233 article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy publication-title: Adv. Mater. doi: 10.1002/adma.201400207 – volume: 39 start-page: 9 year: 2017 ident: ropac0a50bib87 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 53 start-page: 501 year: 2018 ident: ropac0a50bib168 article-title: Wireless self-powered sensor networks driven by triboelectric nanogenerator for in situ real time survey of environmental monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.055 – volume: 48 start-page: 320 year: 2018 ident: ropac0a50bib27 article-title: Sustained electron tunneling at unbiased metal–insulator–semiconductor triboelectric contacts publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.068 – volume: 76 year: 2020 ident: ropac0a50bib48 article-title: The tribovoltaic effect and electron transfer at a liquid–semiconductor interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105070 – volume: 8 start-page: 395 year: 1965 ident: ropac0a50bib79 article-title: The Richardson constant for thermionic emission in Schottky barrier diodes publication-title: Solid-State Electron. doi: 10.1016/0038-1101(65)90116-4 – volume: 9 start-page: 3501 year: 2015 ident: ropac0a50bib155 article-title: Nanopatterned textile-based wearable triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn507221f – volume: 16 start-page: 40 year: 2015 ident: ropac0a50bib191 article-title: Online classification algorithm for eye-movement-based communication systems using two temporal EEG sensors publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.10.005 – volume: 60 start-page: 630 year: 2019 ident: ropac0a50bib104 article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.072 – volume: 9 start-page: 7671 year: 2015 ident: ropac0a50bib221 article-title: Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection publication-title: ACS Nano doi: 10.1021/acsnano.5b03093 – volume: 10 start-page: 1801 year: 2017 ident: ropac0a50bib105 article-title: Triboelectric nanogenerators: providing a fundamental framework publication-title: Energy Environ. Sci. doi: 10.1039/c7ee01139c – volume: 10 start-page: L233 year: 1977 ident: ropac0a50bib17 article-title: The role of material transfer in contact electrification publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/10/17/001 – volume: 1 start-page: 2955 year: 2018 ident: ropac0a50bib185 article-title: Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters, and motion sensors publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00667 – volume: 8 start-page: 150 year: 2014 ident: ropac0a50bib106 article-title: Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.018 – volume: 31 start-page: 1808197 year: 2019 ident: ropac0a50bib40 article-title: Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case publication-title: Adv. Mater. doi: 10.1002/adma.201808197 – volume: 66 year: 2019 ident: ropac0a50bib49 article-title: Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104185 – volume: 63 year: 2019 ident: ropac0a50bib188 article-title: Sensing body motions based on charges generated on the body publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.038 – volume: 30 start-page: 1803968 year: 2018 ident: ropac0a50bib53 article-title: Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification publication-title: Adv. Mater. doi: 10.1002/adma.201803968 – volume: 10 start-page: 1 year: 2019 ident: ropac0a50bib116 article-title: A universal standardized method for output capability assessment of nanogenerators publication-title: Nat. Commun. doi: 10.1038/s41467-019-12465-2 – volume: 10 start-page: 6510 year: 2016 ident: ropac0a50bib142 article-title: In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b02693 – volume: 21 start-page: 216 year: 2018 ident: ropac0a50bib196 article-title: Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.006 – volume: 9 start-page: 4553 year: 2015 ident: ropac0a50bib237 article-title: Hybridized electromagnetic–triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors publication-title: ACS Nano doi: 10.1021/acsnano.5b01187 – volume: 10 start-page: 2000137 year: 2020 ident: ropac0a50bib28 article-title: Triboelectric nanogenerator (TENG)-Sparking an energy and sensor revolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000137 – volume: 6 start-page: 1900617 year: 2019 ident: ropac0a50bib165 article-title: Self‐powered bio‐inspired spider‐net‐coding interface using single‐electrode triboelectric nanogenerator publication-title: Adv. Sci. doi: 10.1002/advs.201900617 – volume: 83 year: 2021 ident: ropac0a50bib46 article-title: Photovoltaic effect and tribovoltaic effect at liquid–semiconductor interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105810 – volume: 3 start-page: e1700015 year: 2017 ident: ropac0a50bib209 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 5 start-page: 1501467 year: 2015 ident: ropac0a50bib215 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501467 – volume: 3 start-page: e1700694 year: 2017 ident: ropac0a50bib195 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci. Adv. doi: 10.1126/sciadv.1700694 – volume: 62 start-page: 38 year: 2019 ident: ropac0a50bib229 article-title: The novel transistor and photodetector of monolayer MoS2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.012 – volume: 87 year: 2021 ident: ropac0a50bib78 article-title: Studying of contact electrification and electron transfer at liquid–liquid interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106191 – volume: 44 start-page: 208 year: 2018 ident: ropac0a50bib226 article-title: Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.062 – volume: 7 start-page: 7342 year: 2013 ident: ropac0a50bib93 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 27 start-page: 1700049 year: 2017 ident: ropac0a50bib115 article-title: Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700049 – volume: 9 start-page: 1802906 year: 2019 ident: ropac0a50bib95 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802906 – volume: 3 start-page: 1600187 year: 2016 ident: ropac0a50bib222 article-title: Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600187 – volume: 67 year: 2020 ident: ropac0a50bib230 article-title: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104210 – volume: 11 start-page: 2100065 year: 2021 ident: ropac0a50bib109 article-title: Designing rules and optimization of triboelectric nanogenerator arrays publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100065 – volume: 118 year: 2021 ident: ropac0a50bib248 article-title: Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film publication-title: Appl. Phys. Lett. doi: 10.1063/5.0051522 – volume: 13 start-page: 2771 year: 2013 ident: ropac0a50bib30 article-title: In situ quantitative study of nanoscale triboelectrification and patterning publication-title: Nano Lett. doi: 10.1021/nl401006x – volume: 32 start-page: 287 year: 2017 ident: ropac0a50bib130 article-title: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.061 – volume: 298 start-page: 82 year: 2008 ident: ropac0a50bib139 article-title: Self-powered nanotech publication-title: Sci. Am. doi: 10.1038/scientificamerican0108-82 – volume: 32 start-page: 36 year: 2017 ident: ropac0a50bib238 article-title: Effective energy storage from a hybridized electromagnetic–triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.006 – volume: 21 start-page: 379 year: 1983 ident: ropac0a50bib186 article-title: Dielectric breakdown of human skin in vivo publication-title: Med. Biol. Eng. Comput. doi: 10.1007/bf02478510 – volume: 1 start-page: 1 year: 2016 ident: ropac0a50bib161 article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nat. Energy doi: 10.1038/nenergy.2016.138 – volume: 61 start-page: 111 year: 2019 ident: ropac0a50bib234 article-title: Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.047 – volume: 9 start-page: 1 year: 2018 ident: ropac0a50bib124 article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed publication-title: Nat. Commun. doi: 10.1038/s41467-018-06045-z – volume: 10 start-page: 4083 year: 2016 ident: ropac0a50bib177 article-title: Self-powered analogue smart skin publication-title: ACS Nano doi: 10.1021/acsnano.5b07074 – volume: 45 start-page: 298 year: 2018 ident: ropac0a50bib184 article-title: Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.053 – volume: 66 year: 2019 ident: ropac0a50bib167 article-title: High-performance triboelectric nanogenerators for self-powered, in situ and real-time water quality mapping publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104117 – volume: 46 start-page: 206 year: 2007 ident: ropac0a50bib20 article-title: Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200602914 – volume: 26 start-page: 5851 year: 2014 ident: ropac0a50bib140 article-title: In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201402064 – volume: 2 start-page: 604 year: 2013 ident: ropac0a50bib23 article-title: Effect of humidity and pressure on the triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.012 – volume: 455 start-page: 1089 year: 2008 ident: ropac0a50bib56 article-title: Correlation between nanosecond x-ray flashes and stick-slip friction in peeling tape publication-title: Nature doi: 10.1038/nature07378 – volume: 10 start-page: 2000605 year: 2020 ident: ropac0a50bib125 article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000605 – volume: 102 year: 2009 ident: ropac0a50bib63 article-title: Charge segregation depends on particle size in triboelectrically charged granular materials publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.102.028001 – volume: 13 start-page: 112 year: 2018 ident: ropac0a50bib35 article-title: Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0019-5 – volume: 7 start-page: 9533 year: 2013 ident: ropac0a50bib11 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 312 start-page: 242 year: 2006 ident: ropac0a50bib84 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science doi: 10.1126/science.1124005 – volume: 6 start-page: 3235 year: 2013 ident: ropac0a50bib176 article-title: A transparent single-friction-surface triboelectric generator and self-powered touch sensor publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42311e – volume: 60 start-page: 404 year: 2019 ident: ropac0a50bib217 article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.054 – volume: 55 start-page: 29 year: 2019 ident: ropac0a50bib153 article-title: High-efficiency self-charging smart bracelet for portable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.045 – volume: 7 start-page: 2339 year: 2014 ident: ropac0a50bib98 article-title: A theoretical study of grating structured triboelectric nanogenerators publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00498a – volume: 121 start-page: 12345 year: 2017 ident: ropac0a50bib19 article-title: First-principles study of the charge distributions in water confined between dissimilar surfaces and implications in regard to contact electrification publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04044 – volume: 15 start-page: 266 year: 2015 ident: ropac0a50bib224 article-title: Self-powered seawater desalination and electrolysis using flowing kinetic energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.036 – volume: 20 start-page: 74 year: 2017 ident: ropac0a50bib86 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 60 start-page: 680 year: 2019 ident: ropac0a50bib228 article-title: The high-speed ultraviolet photodetector of ZnO nanowire Schottky barrier based on the triboelectric-nanogenerator-powered surface-ionic-gate publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.015 – volume: 256 start-page: 362 year: 1992 ident: ropac0a50bib44 article-title: Contact electrification and adhesion between dissimilar materials publication-title: Science doi: 10.1126/science.256.5055.362 – volume: 6 start-page: 1 year: 2015 ident: ropac0a50bib107 article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics publication-title: Nat. Commun. doi: 10.1038/ncomms9975 – volume: 17 start-page: 321 year: 2014 ident: ropac0a50bib202 article-title: Skin-inspired electronic devices publication-title: Mater. Today doi: 10.1016/j.mattod.2014.05.006 – volume: 10 start-page: 1 year: 2019 ident: ropac0a50bib143 article-title: Symbiotic cardiac pacemaker publication-title: Nat. Commun. doi: 10.1038/s41467-019-09851-1 – volume: 51 start-page: 698 year: 2018 ident: ropac0a50bib47 article-title: Pumping electrons from chemical potential difference publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.016 – volume: 71 start-page: 21 year: 2013 ident: ropac0a50bib5 article-title: Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas–solid fluidized bed publication-title: J. Electrost. doi: 10.1016/j.elstat.2012.11.002 – volume: 480 start-page: 145 year: 2009 ident: ropac0a50bib13 article-title: Electrons on dielectrics and contact electrification publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.08.045 – volume: 30 start-page: 1801114 year: 2018 ident: ropac0a50bib211 article-title: Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins publication-title: Adv. Mater. doi: 10.1002/adma.201801114 – volume: 2 start-page: 1 year: 2018 ident: ropac0a50bib199 article-title: SATURN: a thin and flexible self-powered microphone leveraging triboelectric nanogenerator publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3214263 – volume: 29 start-page: 1702648 year: 2017 ident: ropac0a50bib146 article-title: 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors publication-title: Adv. Mater. doi: 10.1002/adma.201702648 – volume: 32 start-page: 2001466 year: 2020 ident: ropac0a50bib212 article-title: A self‐powered angle sensor at nanoradian‐resolution for robotic arms and personalized medicare publication-title: Adv. Mater. doi: 10.1002/adma.202001466 – volume: 39 start-page: 612 year: 2003 ident: ropac0a50bib62 article-title: Bipolar charging of poly-disperse polymer powders in fluidized beds publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/tia.2003.810663 – volume: 8 start-page: 1 year: 2017 ident: ropac0a50bib26 article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-017-00131-4 – volume: 28 start-page: 1704641 year: 2018 ident: ropac0a50bib178 article-title: Self‐powered noncontact electronic skin for motion sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704641 – volume: 7 year: 2020 ident: ropac0a50bib111 article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode publication-title: Appl. Phys. Rev. doi: 10.1063/1.5133023 – volume: 1 start-page: 2891 year: 2018 ident: ropac0a50bib122 article-title: High-performance triboelectric nanogenerator with a rationally designed friction layer structure publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00530 – volume: 30 start-page: 34 year: 2019 ident: ropac0a50bib29 article-title: On the origin of contact-electrification publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 6 start-page: 1600829 year: 2016 ident: ropac0a50bib207 article-title: A stretchable nanogenerator with electric/light dual-mode energy conversion publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600829 – volume: 29 start-page: S279 year: 2008 ident: ropac0a50bib183 article-title: Method and device for bio-impedance measurement with hard-tissue applications publication-title: Physiol. Meas. doi: 10.1088/0967-3334/29/6/s24 – volume: 9 start-page: 974 year: 2016 ident: ropac0a50bib239 article-title: Linear-grating hybridized electromagnetic–triboelectric nanogenerator for sustainably powering portable electronics publication-title: Nano Res. doi: 10.1007/s12274-016-0985-1 – volume: 31 start-page: 1901418 year: 2019 ident: ropac0a50bib41 article-title: Electron transfer in nanoscale contact electrification: photon excitation effect publication-title: Adv. Mater. doi: 10.1002/adma.201901418 – volume: 11 start-page: 162 year: 2015 ident: ropac0a50bib236 article-title: Hybrid energy cell for harvesting mechanical energy from one motion using two approaches publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.035 – volume: 98 start-page: 2412 year: 2009 ident: ropac0a50bib6 article-title: Effects of electrostatic charging on pharmaceutical powder blending homogeneity publication-title: J. Pharm. Sci. doi: 10.1002/jps.21595 – volume: 11 start-page: 46399 year: 2019 ident: ropac0a50bib179 article-title: Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12747 – volume: 32 start-page: 1905696 year: 2020 ident: ropac0a50bib69 article-title: Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface publication-title: Adv. Mater. doi: 10.1002/adma.201905696 – volume: 12 start-page: 760 year: 2015 ident: ropac0a50bib101 article-title: Theory of freestanding triboelectric-layer-based nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 11 start-page: 1 year: 2020 ident: ropac0a50bib82 article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials publication-title: Nat. Commun. doi: 10.1038/s41467-020-15926-1 – volume: 1 start-page: 328 year: 2012 ident: ropac0a50bib91 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 60 start-page: 545 year: 2019 ident: ropac0a50bib166 article-title: Triboelectric single-electrode-output control interface using patterned grid electrode publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.090 – volume: 38 start-page: 43 year: 2017 ident: ropac0a50bib244 article-title: Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.047 – volume: 140 start-page: 1065 year: 1993 ident: ropac0a50bib36 article-title: Detection of effects of low electric fields with the Kelvin probe publication-title: J. Electrochem. Soc. doi: 10.1149/1.2056198 – volume: 9 start-page: 3521 year: 2015 ident: ropac0a50bib235 article-title: Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics publication-title: ACS Nano doi: 10.1021/nn507455f – volume: 71 start-page: 905 year: 2013 ident: ropac0a50bib55 article-title: Generation of hard x-ray radiation using the triboelectric effect by peeling adhesive tape publication-title: J. Electrost. doi: 10.1016/j.elstat.2013.07.006 – volume: 57 start-page: 432 year: 2019 ident: ropac0a50bib218 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 39U start-page: 225 year: 1902 ident: ropac0a50bib18 article-title: Versuche über die Berührungselektrizität publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1902-3914 – volume: 8 start-page: 2250 year: 2015 ident: ropac0a50bib12 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/c5ee01532d – volume: 51 start-page: 688 year: 2018 ident: ropac0a50bib99 article-title: Structural figure-of-merits of triboelectric nanogenerators at powering loads publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.032 – volume: 39 start-page: 391 year: 1996 ident: ropac0a50bib80 article-title: Extended thermionic emission-diffusion theory of charge transport through a Schottky diode publication-title: Solid-State Electron. doi: 10.1016/0038-1101(95)00193-x – volume: 2 start-page: e1501478 year: 2016 ident: ropac0a50bib144 article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source publication-title: Sci. Adv. doi: 10.1126/sciadv.1501478 – volume: 3 start-page: 465 year: 2019 ident: ropac0a50bib2 article-title: Long-standing and unresolved issues in triboelectric charging publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0115-1 – volume: 64 year: 2019 ident: ropac0a50bib131 article-title: Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103908 – volume: 21 start-page: 125 year: 1988 ident: ropac0a50bib32 article-title: Contact electrification-why is it variable? publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/21/1/018 – volume: 13 start-page: 1168 year: 2013 ident: ropac0a50bib174 article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems publication-title: Nano Lett. doi: 10.1021/nl3045684 – volume: 48 start-page: 391 year: 2018 ident: ropac0a50bib108 article-title: A unified theoretical model for triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.073 – volume: 61 start-page: 517 year: 2019 ident: ropac0a50bib134 article-title: Power management and effective energy storage of pulsed output from triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.096 – volume: 12 start-page: 1849 year: 2018 ident: ropac0a50bib216 article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 13 start-page: 847 year: 2013 ident: ropac0a50bib92 article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator publication-title: Nano Lett. doi: 10.1021/nl4001053 – volume: 4 start-page: S1 year: 1953 ident: ropac0a50bib34 article-title: Theory of contact electrification publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/4/s2/301 – volume: 14 start-page: 3208 year: 2014 ident: ropac0a50bib208 article-title: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification publication-title: Nano Lett. doi: 10.1021/nl5005652 – volume: 28 start-page: 10267 year: 2016 ident: ropac0a50bib162 article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns publication-title: Adv. Mater. doi: 10.1002/adma.201603679 – volume: 13 start-page: 13257 year: 2019 ident: ropac0a50bib117 article-title: On the maximal output energy density of nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.9b06272 – volume: 9 start-page: 1901987 year: 2019 ident: ropac0a50bib42 article-title: High‐output triboelectric nanogenerator based on dual inductive and resonance effects‐controlled highly transparent polyimide for self‐powered sensor network systems publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901987 – volume: 87 year: 2021 ident: ropac0a50bib247 article-title: Studying of contact electrification and electron transfer at liquid–liquid interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106191 – volume: 30 start-page: 1910461 year: 2020 ident: ropac0a50bib59 article-title: Quantum theory of contact electrification for fluids and solids publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910461 – volume: 11 start-page: 1 year: 2020 ident: ropac0a50bib127 article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density publication-title: Nat. Commun. doi: 10.1038/s41467-020-15368-9 – volume: 9 start-page: 12301 year: 2015 ident: ropac0a50bib242 article-title: Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch publication-title: ACS Nano doi: 10.1021/acsnano.5b05598 – start-page: 267 year: 2020 ident: ropac0a50bib164 article-title: Self-powered wireless IoT sensor based on triboelectric textile – volume: 365 start-page: 491 year: 2019 ident: ropac0a50bib145 article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology publication-title: Science doi: 10.1126/science.aan3997 – volume: 10 start-page: 1 year: 2019 ident: ropac0a50bib126 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/s41467-019-09464-8 – volume: 32 start-page: 2001307 year: 2020 ident: ropac0a50bib70 article-title: Contributions of different functional groups to contact electrification of polymers publication-title: Adv. Mater. doi: 10.1002/adma.202001307 – volume: 31 start-page: 1902793 year: 2019 ident: ropac0a50bib72 article-title: Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual‐signal chemical sensing publication-title: Adv. Mater. doi: 10.1002/adma.201902793 – volume: 10 start-page: 1903713 year: 2020 ident: ropac0a50bib45 article-title: Tribovoltaic effect on metal–semiconductor interface for direct‐current low‐impedance triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903713 – volume: 27 start-page: 2472 year: 2015 ident: ropac0a50bib154 article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201500311 – volume: 30 start-page: 1706738 year: 2018 ident: ropac0a50bib206 article-title: A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201706738 – volume: 10 start-page: 597 year: 1994 ident: ropac0a50bib38 article-title: Surface potential map of charged ionomer–polymer blends studied with a scanning Kelvin probe publication-title: Langmuir doi: 10.1021/la00014a043 – volume: 26 start-page: 164 year: 2016 ident: ropac0a50bib241 article-title: Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic–triboelectric–thermoelectric effects publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.05.032 – volume: 118 start-page: 659 year: 1926 ident: ropac0a50bib1 article-title: The electrical charges from like solids publication-title: Nature doi: 10.1038/118659c0 – volume: 3 start-page: 2384 year: 2013 ident: ropac0a50bib7 article-title: Friction coefficient dependence on electrostatic tribocharging publication-title: Sci. Rep. doi: 10.1038/srep02384 – volume: 30 start-page: 1706383 year: 2018 ident: ropac0a50bib203 article-title: Soft somatosensitive actuators via embedded 3D printing publication-title: Adv. Mater. doi: 10.1002/adma.201706383 – volume: 25 start-page: 6184 year: 2013 ident: ropac0a50bib97 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201302808 – volume: 9 start-page: e44 year: 2009 ident: ropac0a50bib182 article-title: Conduction of electrical current to and through the human body: a review publication-title: Eplasty – volume: 10 start-page: 4797 year: 2016 ident: ropac0a50bib114 article-title: Harvesting low-frequency(<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 9 start-page: 4236 year: 2015 ident: ropac0a50bib198 article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording publication-title: ACS Nano doi: 10.1021/acsnano.5b00618 – volume: 96 year: 2010 ident: ropac0a50bib39 article-title: Kelvin probe force microscopy study on nanotriboelectrification publication-title: Appl. Phys. Lett. doi: 10.1063/1.3330866 – volume: 11 start-page: 26824 year: 2019 ident: ropac0a50bib121 article-title: Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06627 – volume: 123 start-page: 6898 year: 2011 ident: ropac0a50bib24 article-title: Is water necessary for contact electrification? publication-title: Angew. Chem. doi: 10.1002/ange.201008051 – volume: 14 start-page: 161 year: 2015 ident: ropac0a50bib102 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 7 start-page: 8554 year: 2013 ident: ropac0a50bib243 article-title: r-Shaped hybrid nanogenerator with enhanced piezoelectricity publication-title: ACS Nano doi: 10.1021/nn404023v – volume: 11 start-page: 8364 year: 2017 ident: ropac0a50bib205 article-title: Transparent and flexible triboelectric sensing array for touch security applications publication-title: ACS Nano doi: 10.1021/acsnano.7b03680 – volume: 49 start-page: 625 year: 2018 ident: ropac0a50bib123 article-title: Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.011 – volume: 3 start-page: 1800144 year: 2018 ident: ropac0a50bib169 article-title: Flexible timbo-like triboelectric nanogenerator as self-powered force and bend sensor for wireless and distributed landslide monitoring publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800144 – volume: 176 start-page: 447 year: 2015 ident: ropac0a50bib213 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives publication-title: Faraday Discuss. doi: 10.1039/c4fd00159a – volume: 118 year: 2021 ident: ropac0a50bib232 article-title: Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film publication-title: Appl. Phys. Lett. doi: 10.1063/5.0051522 – volume: 10 start-page: 37 year: 2014 ident: ropac0a50bib120 article-title: Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.017 – volume: 29 start-page: 1804533 year: 2019 ident: ropac0a50bib151 article-title: Textile-based triboelectric nanogenerators for self-powered wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804533 – volume: 9 start-page: 291 year: 2014 ident: ropac0a50bib245 article-title: Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.024 – volume: 28 start-page: 1802634 year: 2018 ident: ropac0a50bib220 article-title: Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802634 – volume: 29 start-page: 1702181 year: 2017 ident: ropac0a50bib210 article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications publication-title: Adv. Mater. doi: 10.1002/adma.201702181 – volume: 10 start-page: 2528 year: 2016 ident: ropac0a50bib52 article-title: Excluding contact electrification in surface potential measurement using kelvin probe force microscopy publication-title: ACS Nano doi: 10.1021/acsnano.5b07418 – volume: 369 start-page: 2 year: 2009 ident: ropac0a50bib4 article-title: Use of a static eliminator to improve powder flow publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.12.041 – volume: 141 start-page: 31 year: 2009 ident: ropac0a50bib74 article-title: The surface of neat water is basic publication-title: Faraday Discuss. doi: 10.1039/b805266b – volume: 333 start-page: 308 year: 2011 ident: ropac0a50bib66 article-title: The mosaic of surface charge in contact electrification publication-title: Science doi: 10.1126/science.1201512 – volume: 7 start-page: 9461 year: 2013 ident: ropac0a50bib172 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano doi: 10.1021/nn4043157 – volume: 12 start-page: 2045 year: 1996 ident: ropac0a50bib75 article-title: Charging of oil–water interfaces due to spontaneous adsorption of hydroxyl ions publication-title: Langmuir doi: 10.1021/la950928i – volume: 9 start-page: 105 year: 2015 ident: ropac0a50bib197 article-title: Personalized keystroke dynamics for self-powered human–machine interfacing publication-title: ACS Nano doi: 10.1021/nn506832w – volume: 7 start-page: 1 year: 2016 ident: ropac0a50bib113 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/ncomms10987 – volume: 418 year: 2013 ident: ropac0a50bib187 article-title: Numerical calculations of human-body capacitance in mining tunnel environment publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/418/1/012002 – volume: 14 start-page: 1567 year: 2014 ident: ropac0a50bib31 article-title: Manipulating nanoscale contact electrification by an applied electric field publication-title: Nano Lett. doi: 10.1021/nl404819w – ident: ropac0a50bib54 – volume: 10 start-page: 1 year: 2019 ident: ropac0a50bib81 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 37 start-page: 140 year: 1941 ident: ropac0a50bib73 article-title: The effect of p H upon the electrophoretic mobility of emulsions of certain hydrocarbons and aliphatic halides publication-title: Trans. Faraday Soc. doi: 10.1039/tf9413700140 – volume: 68 year: 2020 ident: ropac0a50bib129 article-title: Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104378 – volume: 71 year: 2020 ident: ropac0a50bib135 article-title: Self-driven power management system for triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104642 – volume: 39 start-page: 328 year: 2017 ident: ropac0a50bib189 article-title: An ultrathin paper-based self-powered system for portable electronics and wireless human–machine interaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.046 – volume: 10 start-page: 1 year: 2019 ident: ropac0a50bib76 article-title: Power generation from the interaction of a liquid droplet and a liquid membrane publication-title: Nat. Commun. doi: 10.1038/s41467-019-10232-x – volume: 10 start-page: 2000064 year: 2020 ident: ropac0a50bib132 article-title: Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000064 – year: 1967 ident: ropac0a50bib14 – volume: 59 start-page: 380 year: 2019 ident: ropac0a50bib103 article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.051 – volume: 3 start-page: 997 year: 1991 ident: ropac0a50bib16 article-title: Contact electrification: ion transfer to metals and polymers publication-title: Chem. Mater. doi: 10.1021/cm00018a006 – volume: 11 start-page: 10733 year: 2017 ident: ropac0a50bib152 article-title: Fully stretchable textile triboelectric nanogenerator with knitted fabric structures publication-title: ACS Nano doi: 10.1021/acsnano.7b05203 – volume: 28 start-page: 10024 year: 2016 ident: ropac0a50bib200 article-title: Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications publication-title: Adv. Mater. doi: 10.1002/adma.201603527 – volume: 7 start-page: 9213 year: 2013 ident: ropac0a50bib170 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano doi: 10.1021/nn403838y – volume: 6 start-page: eaay2840 year: 2020 ident: ropac0a50bib181 article-title: Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2840 – volume: 16 start-page: 6042 year: 2016 ident: ropac0a50bib141 article-title: Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01968 – ident: ropac0a50bib77 – volume: 19 start-page: 29418 year: 2017 ident: ropac0a50bib21 article-title: Bipolar charge transfer induced by water: experimental and first-principles studies publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c7cp05609e – volume: 9 start-page: 7479 year: 2015 ident: ropac0a50bib128 article-title: Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states publication-title: ACS Nano doi: 10.1021/acsnano.5b02575 – volume: 351 start-page: 1071 year: 2016 ident: ropac0a50bib204 article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing publication-title: Science doi: 10.1126/science.aac5082 – volume: 37 start-page: 168 year: 2017 ident: ropac0a50bib136 article-title: Universal power management strategy for triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.027 – volume: 11 start-page: 1 year: 2020 ident: ropac0a50bib68 article-title: Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer publication-title: Nat. Commun. doi: 10.1038/s41467-019-14278-9 – volume: 7 start-page: 18225 year: 2015 ident: ropac0a50bib157 article-title: Wearable triboelectric generator for powering the portable electronic devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5071688 – year: 1998 ident: ropac0a50bib88 – volume: 57 start-page: 338 year: 2019 ident: ropac0a50bib163 article-title: Beyond energy harvesting—multi-functional triboelectric nanosensors on a textile publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.032 – volume: 117 start-page: 479 year: 2006 ident: ropac0a50bib193 article-title: Brain–computer-interface research: coming of age publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.11.002 – volume: 72 year: 2020 ident: ropac0a50bib133 article-title: Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104659 – volume: 31 start-page: 351 year: 2017 ident: ropac0a50bib219 article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.037 – volume: 30 start-page: 1706790 year: 2018 ident: ropac0a50bib25 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 167 start-page: 79 year: 1992 ident: ropac0a50bib51 article-title: Theory of insulator charging publication-title: Phys. Lett. A doi: 10.1016/0375-9601(92)90630-5 – year: 2016 ident: ropac0a50bib10 – year: 1941 ident: ropac0a50bib89 – volume: 11 start-page: 12764 year: 2017 ident: ropac0a50bib156 article-title: Core–shell–yarn-based triboelectric nanogenerator textiles as power cloths publication-title: ACS Nano doi: 10.1021/acsnano.7b07534 – volume: 6 start-page: 7842 year: 2014 ident: ropac0a50bib119 article-title: An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector publication-title: Nanoscale doi: 10.1039/c4nr01934b – volume: 9 start-page: 1 year: 2018 ident: ropac0a50bib225 article-title: Triboelectric microplasma powered by mechanical stimuli publication-title: Nat. Commun. doi: 10.1038/s41467-018-06198-x – year: 2021 ident: ropac0a50bib246 article-title: Contact-electrification at liquid-solid interface publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00176 – volume: 30 start-page: 1801210 year: 2018 ident: ropac0a50bib83 article-title: Triboelectric series of 2D layered materials publication-title: Adv. Mater. doi: 10.1002/adma.201801210 – volume: 63 start-page: 2669 year: 1989 ident: ropac0a50bib3 article-title: Contact electrification using force microscopy publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.63.2669 – volume: 30 start-page: 1804944 year: 2018 ident: ropac0a50bib147 article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing publication-title: Adv. Mater. doi: 10.1002/adma.201804944 – volume: 30 start-page: 98 year: 2016 ident: ropac0a50bib190 article-title: A human–machine interface based on single channel EOG and patchable sensor publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.06.018 – volume: 4 start-page: eaau3808 year: 2018 ident: ropac0a50bib8 article-title: Minimizing friction, wear, and energy losses by eliminating contact charging publication-title: Sci. Adv. doi: 10.1126/sciadv.aau3808 – volume: 6 start-page: 3576 year: 2013 ident: ropac0a50bib96 article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42571a – volume: 12 start-page: 3156 year: 2019 ident: ropac0a50bib118 article-title: Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators publication-title: Energy Environ. Sci. doi: 10.1039/c9ee01267b – volume: 13 start-page: 277 year: 2020 ident: ropac0a50bib138 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ. Sci. doi: 10.1039/c9ee03258d – volume: 69 start-page: 401 year: 2011 ident: ropac0a50bib22 article-title: Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation publication-title: J. Electrost. doi: 10.1016/j.elstat.2011.05.005 – volume: 52 start-page: 517 year: 2018 ident: ropac0a50bib57 article-title: Theory of contact electrification: optical transitions in two-level systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.015 – volume: 32 start-page: 1 year: 1994 ident: ropac0a50bib33 article-title: Dual mechanism for metal–polymer contact electrification publication-title: J. Electrost. doi: 10.1016/0304-3886(94)90026-4 – volume: 32 start-page: 1902549 year: 2020 ident: ropac0a50bib148 article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 6 start-page: 1 year: 2015 ident: ropac0a50bib112 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 367 start-page: 179 year: 2020 ident: ropac0a50bib71 article-title: Observation of the fastest chemical processes in the radiolysis of water publication-title: Science doi: 10.1126/science.aaz4740 – volume: 58 start-page: 13643 year: 2019 ident: ropac0a50bib150 article-title: The rise of fiber electronics publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902425 – volume: 73 year: 2020 ident: ropac0a50bib171 article-title: Wind-driven self-powered wireless environmental sensors for internet of things at long distance publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104819 – volume: 13 start-page: 2034 year: 2019 ident: ropac0a50bib64 article-title: Contact-electrification between two identical materials: curvature effect publication-title: ACS Nano doi: 10.1021/acsnano.8b08533 – volume: 62 start-page: 641 year: 2014 ident: ropac0a50bib100 article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage publication-title: IEEE Trans. Electron Devices doi: 10.1109/ted.2014.2377728 – volume: 9 start-page: 859 year: 2010 ident: ropac0a50bib201 article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers publication-title: Nat. Mater. doi: 10.1038/nmat2834 – volume: 31 start-page: 1804398 year: 2019 ident: ropac0a50bib43 article-title: A high current density direct‐current generator based on a moving van der Waals Schottky diode publication-title: Adv. Mater. doi: 10.1002/adma.201804398 – volume: 2 start-page: 896 year: 2020 ident: ropac0a50bib180 article-title: A wireless textile-based sensor system for self-powered personalized health care publication-title: SSRN Electronic Journal doi: 10.2139/ssrn.3451450 – volume: 29 start-page: 1806388 year: 2019 ident: ropac0a50bib175 article-title: Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806388 – volume: 49 start-page: 946 year: 2010 ident: ropac0a50bib61 article-title: Contact electrification between identical materials publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905281 – volume: 36 start-page: 165 year: 1995 ident: ropac0a50bib50 article-title: General model of sphere-sphere insulator contact electrification publication-title: J. Electrost. doi: 10.1016/0304-3886(95)00043-7 – reference: 36576205 - Rep Prog Phys. 2022 Dec 28;86(2). doi: 10.1088/1361-6633/acab14 |
SSID | ssj0011829 |
Score | 2.7128832 |
SecondaryResourceType | retracted_publication review_article |
Snippet | Although the contact electrification (CE) (or usually called ‘triboelectrification’) effect has been known for over 2600 years, its scientific mechanism still... Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 96502 |
SubjectTerms | contact electrification displacement current self-powered sensor triboelectric nanogenerator |
Title | From contact electrification to triboelectric nanogenerators |
URI | https://iopscience.iop.org/article/10.1088/1361-6633/ac0a50 https://www.ncbi.nlm.nih.gov/pubmed/34111846 https://www.proquest.com/docview/2540516817 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfDi-1FfRNCDh7RJdrO7QS8ilir4OFjoQQj7igc1KW168dc7m00LihbxFsImm8zszHzLfDuD0ImWcaIkzXzDNPbB4YVgUjTwCQ2IzDAx1Njzznf3tNcnt4N40EDns7MwxbB2_W24dIWCnQhrQhzvhJiGPgRK3BEqEHa_vog5pbZ9wc3D4yyFAMDZYV9MfFilcZ2j_OkNX2LSAsz7O9yswk53FT1PP9ixTV7bk1K21ce3Wo7__KM1tFLDUe_SDV1HDZNvoKWKFqrGm-iiOyrePUtnF6r0XMscyy2q1OmVhWf7ZRX1feXlIi9eqjrWtofPFup3r5-uen7db8FXsIssfZlwTTOpMNewzcowD0CLTEuhWSClCLgMlICAnugwSwB4qSBjxtDIWC_ARYS3UTMvcrOLPKaiRLDYUKwIIUpzYhQAMyI0DhVnuoU6U4mnqi5GbntivKVVUpzz1MoktTJJnUxa6Gz2xNAV4pgz9hREndbWOJ4z7niq5hSsyqZKRG6KyTiNLJANKQ9ZC-04_c9mhbgPi4vQvT_Oso-WI0uEqYhpB6hZjibmEJBMKY-qFfsJbinpiw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqlZcKKUFFgoNEj30kF0ndhxH6qVqWfFoKYcicXP9CgcgWbHZC7-ecexdiapFlXqLIidO5uH5rPk8A3BgdVEZzevUlZamuOBl6FKcpIwTpmvKHHf-vPP3M350wU4ui8vY57Q_C9NO4tI_xMtQKDiIMBLixCijPEsxUNKRMkQVZDSx9RI8Lyinvnj-8Y_zRRoBwXPAv5SlaKlFzFP-6S2P4tISzv13yNmHnvEr-DX_6MA4uR7OOj0097_Vc_yPv1qD1QhLk89h-Gt45pp1eNHTQ830DXwa37W3iae1K9MloXWO5xj1ak26NvF9s9p43ySNatqrvp617-XzFi7Ghz-_HKWx70JqcDfZpboSltfaUGFxu1VTQVCbpdXKlkRrRYQmRmFgr2xWVwjADKlL53ju_GogVE43YLlpG7cFSWnySpWF49QwxowVzBkEaExZmhlR2gGM5lKXJhYl970xbmSfHBdCerlILxcZ5DKAj4snJqEgxxNjP6C4ZfTK6RPj9ueqluhdPmWiGtfOpjL3gDbjIisHsBlsYDErxn80MMa3_3GW9_Dy_OtYfjs-O92BldxzY3qu2jtY7u5mbhfBTaf3egN-ADM17u8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+contact+electrification+to+triboelectric+nanogenerators&rft.jtitle=Reports+on+progress+in+physics&rft.au=Wang%2C+Zhong+Lin&rft.date=2021-09-01&rft.eissn=1361-6633&rft.volume=84&rft.issue=9&rft_id=info:doi/10.1088%2F1361-6633%2Fac0a50&rft_id=info%3Apmid%2F34111846&rft.externalDocID=34111846 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon |