Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art
This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 70; no. 11; pp. 4597 - 4619 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of microwave devices, ANNs can be trained to learn relevant microwave relationships, which are, otherwise, computationally expensive or for which efficient analytical formulas are not available. Fundamental concepts of the ANN structure and training, such as feedforward neural networks (FFNNs), recurrent neural networks (RNNs)/dynamic neural networks (DNNs)/time-delay neural networks (TDNNs), deep neural networks, and neural network training and extrapolation, are described. Knowledge-based neural networks (KBNNs) are described for improving the accuracy and reliability of modeling and design optimization. Various advanced ANN techniques, such as neuro-transfer function (neuro-TF) modeling, neural network inverse modeling, and deep neural network modeling, are discussed. The existing and emerging applications of ANN in microwave CAD are identified, such as electromagnetic (EM)/multiphysics modeling, modeling of nonlinear circuits and transistors, filter design, very large-scale integration (VLSI) interconnects, oscillator, transmitter and receiver modeling, and CAD applications in such as gallium nitride (GaN) high electron-mobility transistor (HEMT), wireless power transfer (WPT), microelectromechanical system (MEMS), and substrate-integrated waveguide (SIW). |
---|---|
AbstractList | This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of microwave devices, ANNs can be trained to learn relevant microwave relationships, which are, otherwise, computationally expensive or for which efficient analytical formulas are not available. Fundamental concepts of the ANN structure and training, such as feedforward neural networks (FFNNs), recurrent neural networks (RNNs)/dynamic neural networks (DNNs)/time-delay neural networks (TDNNs), deep neural networks, and neural network training and extrapolation, are described. Knowledge-based neural networks (KBNNs) are described for improving the accuracy and reliability of modeling and design optimization. Various advanced ANN techniques, such as neuro-transfer function (neuro-TF) modeling, neural network inverse modeling, and deep neural network modeling, are discussed. The existing and emerging applications of ANN in microwave CAD are identified, such as electromagnetic (EM)/multiphysics modeling, modeling of nonlinear circuits and transistors, filter design, very large-scale integration (VLSI) interconnects, oscillator, transmitter and receiver modeling, and CAD applications in such as gallium nitride (GaN) high electron-mobility transistor (HEMT), wireless power transfer (WPT), microelectromechanical system (MEMS), and substrate-integrated waveguide (SIW). |
Author | Zhang, Jianan Na, Weicong Feng, Feng Zhang, Qi-Jun Zhang, Wei Jin, Jing |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-3569-8782 surname: Feng fullname: Feng, Feng email: ff@tju.edu.cn organization: School of Microelectronics, Tianjin University, Tianjin, China – sequence: 2 givenname: Weicong orcidid: 0000-0001-9775-5124 surname: Na fullname: Na, Weicong email: weicongna@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 3 givenname: Jing orcidid: 0000-0002-8638-7837 surname: Jin fullname: Jin, Jing email: jingjin@ccnu.edu.cn organization: College of Physical Science and Technology, Central China Normal University, Wuhan, China – sequence: 4 givenname: Jianan orcidid: 0000-0002-3536-5777 surname: Zhang fullname: Zhang, Jianan email: jiananzhang@seu.edu.cn organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China – sequence: 5 givenname: Wei orcidid: 0000-0001-7337-4108 surname: Zhang fullname: Zhang, Wei email: weizhang13@bupt.edu.cn organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 6 givenname: Qi-Jun orcidid: 0000-0001-7852-5331 surname: Zhang fullname: Zhang, Qi-Jun email: qjz@doe.carleton.ca organization: Department of Electronics, Carleton University, Ottawa, Canada |
BookMark | eNp9UMtOwzAQtBBItIUPQFwscU7xxontcKvKU2rhQDhHrrMGlzYujkvF35PSigMHTquR5rEzfXLY-AYJOQM2BGDFZTkty2HK0nTIoZAyhwPSgzyXSSEkOyQ9xkAlRabYMem37byDWc5Uj5SjEJ11xukFfcR1-Dlx48N7S60PdOpM8Bv9iXTsl6t1xJCMXI01vcbWvTZXtHxD-hx1ROotjR3oDE_IkdWLFk_3d0Bebm_K8X0yebp7GI8miclYGpNZDkLVpvuknmFuGbdcZAqFtsaKzBhmgNdpkWEhDWM6QwESMyMUgAKpBR-Qi53vKviPNbaxmvt1aLrIKpUcVM4l37Jgx-qatG1AW62CW-rwVQGrtuNV2_Gq7XjVfrxOI_9ojOtKOt_EoN3iX-X5TukQ8TepUIKLAvg3tYx9sw |
CODEN | IETMAB |
CitedBy_id | crossref_primary_10_1007_s10489_023_04638_w crossref_primary_10_1109_TAP_2025_3533884 crossref_primary_10_1109_TMTT_2024_3400152 crossref_primary_10_3390_app14135766 crossref_primary_10_1016_j_optcom_2025_131797 crossref_primary_10_1002_cpe_8276 crossref_primary_10_3390_mi14081600 crossref_primary_10_1002_jnm_3268 crossref_primary_10_1109_LMWT_2023_3343095 crossref_primary_10_1109_MEMC_2023_10466425 crossref_primary_10_1016_j_mejo_2025_106646 crossref_primary_10_1109_ACCESS_2022_3226323 crossref_primary_10_1109_TMTT_2024_3434959 crossref_primary_10_1109_TMTT_2023_3330403 crossref_primary_10_1109_TMTT_2023_3330766 crossref_primary_10_1109_ACCESS_2025_3536787 crossref_primary_10_3390_electronics12081771 crossref_primary_10_3390_forecast6010005 crossref_primary_10_22331_q_2024_09_09_1465 crossref_primary_10_1109_TMTT_2023_3341584 crossref_primary_10_1016_j_csite_2023_103837 crossref_primary_10_1109_TVLSI_2024_3414584 crossref_primary_10_1109_TAP_2024_3474913 crossref_primary_10_1016_j_aeue_2024_155589 crossref_primary_10_1007_s10489_023_05200_4 crossref_primary_10_1109_ACCESS_2023_3267506 crossref_primary_10_1109_TII_2023_3261880 crossref_primary_10_1109_TMTT_2024_3374371 crossref_primary_10_3390_electronics13234833 crossref_primary_10_1109_TEMC_2024_3457629 crossref_primary_10_1016_j_mejo_2024_106186 crossref_primary_10_1109_TCSI_2023_3340219 crossref_primary_10_3390_mi14020426 crossref_primary_10_1109_OJAP_2024_3412609 crossref_primary_10_1109_TMTT_2023_3297403 crossref_primary_10_1109_TPS_2024_3377668 crossref_primary_10_3390_s22187068 crossref_primary_10_1109_ACCESS_2025_3545141 crossref_primary_10_1109_TMTT_2023_3309391 crossref_primary_10_1109_TAP_2023_3331262 crossref_primary_10_1016_j_ijleo_2024_172005 crossref_primary_10_3390_electronics14040786 crossref_primary_10_1088_1361_6463_ad6fb1 crossref_primary_10_1109_TAP_2024_3372149 crossref_primary_10_1109_TEMC_2023_3279695 crossref_primary_10_1002_jnm_3157 crossref_primary_10_1109_LMWT_2024_3374792 crossref_primary_10_1109_TCPMT_2023_3317851 crossref_primary_10_1002_cta_4304 crossref_primary_10_1007_s10489_024_05853_9 crossref_primary_10_1109_JLT_2023_3325156 crossref_primary_10_1109_TCPMT_2023_3290413 crossref_primary_10_1109_MCOM_001_2400209 crossref_primary_10_1109_TCPMT_2024_3481036 crossref_primary_10_1109_TAP_2024_3349864 |
Cites_doi | 10.1109/TMTT.2003.809179 10.1109/TMTT.2005.855742 10.1109/22.808989 10.1109/TMAG.2009.2012692 10.1109/TEMC.2017.2784833 10.1109/ISCAS.2010.5537907 10.1109/TMTT.2008.2004894 10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3 10.1109/EuMC.2016.7824478 10.1109/TMTT.2018.2858787 10.1162/neco.1997.9.8.1735 10.1109/TMTT.2003.814318 10.1109/TMTT.2007.907141 10.1109/MWSYM.2016.7540385 10.1109/LMWC.2022.3146376 10.1002/mmce.10016 10.1109/22.643868 10.1109/IMS30576.2020.9223873 10.1109/TMTT.2021.3098769 10.1109/LMWC.2021.3053600 10.1109/LMWC.2009.2027048 10.1109/TAP.2018.2885437 10.1002/(SICI)1099-047X(199905)9:3<241::AID-MMCE8>3.0.CO;2-P 10.1109/22.390193 10.1109/LMWC.2011.2127465 10.1109/TMTT.2020.3004622 10.1109/TED.2009.2016029 10.1109/TEMC.2021.3091714 10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P 10.1109/MWSYM.1996.511043 10.1109/MWSYM.2006.249952 10.1109/LMWC.2020.3004003 10.1109/TMTT.2022.3162209 10.1002/mmce.10006.abs 10.1109/TMTT.2018.2854163 10.1109/MWSYM.2017.8058624 10.1109/22.554584 10.1002/(SICI)1099-047X(199905)9:3<287::AID-MMCE12>3.0.CO;2-# 10.1109/LMWC.2021.3087163 10.1002/mmce.10015 10.1109/TMTT.2003.820898 10.1109/TMTT.2006.885902 10.1109/TMTT.2003.820897 10.1109/6040.938293 10.1109/TMTT.2018.2841889 10.1126/science.1129813 10.1109/TMTT.2007.909602 10.1109/TMTT.2002.805192 10.1002/(SICI)1099-047X(199905)9:3<187::AID-MMCE5>3.0.CO;2-H 10.1109/TMTT.2020.2990171 10.1109/JMW.2020.3034263 10.1109/LMWC.2021.3078459 10.1002/mmce.10022 10.1109/LMWC.2018.2884643 10.1109/LMWC.2021.3062874 10.1109/TMTT.2013.2253793 10.1109/MWSYM.2006.249539 10.1109/LMWC.2020.3038821 10.1109/TMTT.2004.823583 10.1109/TMTT.2006.872926 10.1109/TCPMT.2020.3011910 10.1109/TMTT.2010.2090169 10.1162/neco.2006.18.7.1527 10.1002/jnm.2011 10.1109/IWS52775.2021.9499429 10.1109/IMS30576.2020.9223952 10.1109/MWSYM.2014.6848293 10.1109/TMTT.2003.820889 10.1109/TDMR.2013.2247604 10.1002/(SICI)1099-047X(199905)9:3<198::AID-MMCE6>3.0.CO;2-A 10.1109/22.971611 10.1109/TMTT.2020.3032130 10.1109/LMWC.2021.3106270 10.1109/TMTT.2021.3075689 10.1109/TMTT.2021.3112156 10.1109/TMTT.2020.3011152 10.1109/TCAD.2007.907284 10.1109/TADVP.2007.908033 10.1109/TMTT.2018.2832120 10.1109/LMWC.2010.2052594 10.1109/TENCON.2016.7848415 10.1109/TMTT.2009.2036412 10.1109/TMTT.2016.2586055 10.1109/LMWC.2016.2516761 10.1109/ECS.2014.6892539 10.1109/TMTT.2014.2298372 10.1109/TMTT.2021.3091672 10.1002/mmce.10014 10.23919/EuMIC.2019.8909451 10.1109/ACCESS.2019.2928392 10.1002/(SICI)1099-047X(199905)9:3<297::AID-MMCE13>3.3.CO;2-N 10.1002/mmce.10018 10.1109/TMTT.2005.854190 10.1109/TMTT.2006.879134 10.1109/MWSYM.1993.276791 10.1002/(SICI)1099-047X(199905)9:3<261::AID-MMCE10>3.0.CO;2-P 10.1109/TMTT.2019.2921359 10.1002/mmce.10067 10.1109/DSAA49011.2020.00039 10.1109/MWSYM.2003.1210909 10.1002/cta.3143 10.1109/TMTT.2021.3054645 10.1109/61.772353 10.1109/TMTT.2022.3161928 10.1109/TMAG.2022.3152024 10.1109/TMTT.2014.2327100 10.1002/cta.2631 10.1109/LMWC.2020.2995858 10.1109/LMWC.2020.2986156 10.1109/TAP.2016.2627026 10.1109/22.575595 10.1109/ACCESS.2019.2905136 10.1109/MMM.2010.936079 10.1109/TMTT.2019.2963639 10.1109/MWSYM.2017.8058995 10.1109/TADVP.2005.848396 10.1109/TCPMT.2021.3071351 10.1109/MWSYM.2018.8439324 10.1109/IMS30576.2020.9223841 10.1109/TAP.2021.3069543 10.1109/INMMIC.2006.283535 10.1002/mmce.10007 10.1109/MWSYM.2015.7166978 10.1109/TMTT.2008.919078 10.1109/TMTT.2002.806910 10.1002/(SICI)1099-047X(199905)9:3<158::AID-MMCE3>3.0.CO;2-V 10.1109/LMWC.2019.2952763 10.1109/ICDM.2019.00064 10.1109/MWSYM.2017.8058777 10.1109/TMTT.2021.3076064 10.1109/TMTT.2019.2955117 10.1109/TMTT.2009.2032476 10.1109/MWSYM.1994.335415 10.1109/TMTT.2022.3166176 10.1109/TMTT.2015.2504099 10.1109/20.767385 10.1109/20.34291 10.1109/TMTT.2003.820904 10.1109/NEMO.2015.7415083 10.1002/mmce.20069 10.1109/TMTT.2016.2630059 10.1109/TMTT.2005.861660 10.1002/mmce.7001 10.1109/TMTT.2012.2224366 10.1109/LMWC.2018.2888955 10.1109/TMTT.2020.3038667 10.1109/TMTT.2021.3112199 10.1109/NEMO.2017.7964194 10.1109/TMTT.2011.2140126 10.1109/TMTT.2010.2090405 10.1109/TMTT.2019.2932738 10.2307/1268522 10.1109/TMTT.2018.2869602 10.1109/22.920157 10.1109/TMTT.2016.2555948 10.1002/mmce.10021 10.1109/NEMO.2015.7415028 10.1016/S1568-4946(03)00011-5 10.1109/TMTT.2020.2979445 10.1002/(SICI)1099-047X(199905)9:3<216::AID-MMCE7>3.0.CO;2-W 10.1109/LAWP.2015.2514065 10.1109/LMWC.2005.859001 10.1109/22.382070 10.1109/TMTT.2019.2955689 10.1002/(SICI)1099-047X(199905)9:3<254::AID-MMCE9>3.3.CO;2-7 10.1109/22.382074 10.1109/TMTT.2016.2604809 10.1109/TMTT.2020.3005145 10.1109/TMTT.2021.3065972 10.1109/TMTT.2004.834554 10.1109/TMTT.2019.2905238 10.1109/MWSYM.2017.8058626 10.1109/TMTT.2017.2650904 10.1109/22.898982 10.1109/TAP.2020.2970071 10.1109/22.721137 10.1109/TMTT.2019.2952101 10.1109/22.989983 10.1109/TMTT.2010.2098041 10.1109/TMTT.2020.3011449 10.1038/nature14539 10.1109/TAP.2004.829846 10.1109/75.242258 10.1109/TMTT.2021.3061128 10.1109/LMWC.2019.2950801 10.1109/TMTT.2017.2657501 10.1109/IEEECONF35879.2020.9330480 10.1109/TAP.2020.2978952 10.1109/20.179634 10.1109/MWSYM.1996.512298 10.1109/TMTT.2019.2938753 10.1109/TMTT.2002.803427 10.1109/TMTT.1986.1133540 10.1109/LMWC.2010.2047450 10.1109/MMM.2021.3095706 10.1109/TCSI.2020.3008947 10.1109/MWSYM.2017.8058623 10.1109/NEMO.2015.7415085 10.1109/MWSYM.1997.602870 10.1109/TAP.2019.2922779 10.1002/mmce.10013 10.1109/TMTT.2019.2914106 10.1162/neco.1989.1.2.281 10.1109/TCPMT.2018.2810239 10.1002/mmce.10009.abs 10.1109/LMWC.2021.3059993 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TMTT.2022.3197751 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9670 |
EndPage | 4619 |
ExternalDocumentID | 10_1109_TMTT_2022_3197751 9863691 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2017-06420 funderid: 10.13039/501100000038 |
GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c402t-b5168dc145dbe5f03f3648e6afcf64cc0c13d294e97c00a4e617e4c6811817a63 |
IEDL.DBID | RIE |
ISSN | 0018-9480 |
IngestDate | Mon Jun 30 10:13:47 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 02:00:25 EDT 2025 Wed Aug 27 02:18:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c402t-b5168dc145dbe5f03f3648e6afcf64cc0c13d294e97c00a4e617e4c6811817a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3536-5777 0000-0001-7852-5331 0000-0002-3569-8782 0000-0002-8638-7837 0000-0001-9775-5124 0000-0001-7337-4108 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9863691 |
PQID | 2731853736 |
PQPubID | 106035 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1109_TMTT_2022_3197751 proquest_journals_2731853736 crossref_citationtrail_10_1109_TMTT_2022_3197751 ieee_primary_9863691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on microwave theory and techniques |
PublicationTitleAbbrev | TMTT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref202 ref209 ref210 ref211 ref51 ref50 ref45 ref48 ref47 ref42 ref214 ref41 ref44 ref212 ref43 ref213 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref39 guo (ref60) 2012 ref38 zhang (ref1) 2000 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 sa?iro?lu (ref30) 1999; 9 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 cao (ref54) 2009; 57 lecun (ref84) 2015; 521 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 nielsen (ref141) 2015 ref82 ref144 ref81 ref145 ref142 ref83 ref143 ref140 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref71 ref111 ref70 ref112 ref73 ref72 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref116 ref66 ref113 ref65 ref114 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 ref170 eo (ref63) 1995; 43 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 cao (ref46) 2009; 19 ref180 ref181 ref188 ref189 settles (ref160) 2010 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 brezinski (ref162) 1991 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 xu (ref164) 2004 ref165 ref163 ref13 ref12 ref15 ref14 ref11 ref10 zhang (ref110) 2016 ref17 ref16 ref19 ref18 olsson (ref161) 2009 ref2 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
References_xml | – ident: ref2 doi: 10.1109/TMTT.2003.809179 – ident: ref122 doi: 10.1109/TMTT.2005.855742 – ident: ref37 doi: 10.1109/22.808989 – ident: ref73 doi: 10.1109/TMAG.2009.2012692 – ident: ref204 doi: 10.1109/TEMC.2017.2784833 – ident: ref145 doi: 10.1109/ISCAS.2010.5537907 – ident: ref43 doi: 10.1109/TMTT.2008.2004894 – volume: 9 start-page: 277 year: 1999 ident: ref30 article-title: Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons publication-title: Int J RF Microw Comput -Aided Eng doi: 10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3 – ident: ref185 doi: 10.1109/EuMC.2016.7824478 – ident: ref128 doi: 10.1109/TMTT.2018.2858787 – ident: ref149 doi: 10.1162/neco.1997.9.8.1735 – ident: ref51 doi: 10.1109/TMTT.2003.814318 – ident: ref193 doi: 10.1109/TMTT.2007.907141 – ident: ref101 doi: 10.1109/MWSYM.2016.7540385 – start-page: 1 year: 2016 ident: ref110 article-title: Parallel matrix neural network training on cluster systems for dynamic FET modeling from large datasets publication-title: IEEE MTT-S Int Microw Symp Dig – ident: ref59 doi: 10.1109/LMWC.2022.3146376 – ident: ref16 doi: 10.1002/mmce.10016 – ident: ref94 doi: 10.1109/22.643868 – ident: ref208 doi: 10.1109/IMS30576.2020.9223873 – start-page: 1 year: 2012 ident: ref60 article-title: Passivity enforcement for passive component modeling subject to variations of geometrical parameters using neural networks publication-title: IEEE MTT-S Int Microw Symp Dig – ident: ref77 doi: 10.1109/TMTT.2021.3098769 – ident: ref103 doi: 10.1109/LMWC.2021.3053600 – volume: 19 start-page: 533 year: 2009 ident: ref46 article-title: A broadband and parametric model of differential via holes using space-mapping neural network publication-title: IEEE Microw Wireless Compon Lett doi: 10.1109/LMWC.2009.2027048 – ident: ref74 doi: 10.1109/TAP.2018.2885437 – ident: ref29 doi: 10.1002/(SICI)1099-047X(199905)9:3<241::AID-MMCE8>3.0.CO;2-P – ident: ref13 doi: 10.1109/22.390193 – ident: ref198 doi: 10.1109/LMWC.2011.2127465 – ident: ref195 doi: 10.1109/TMTT.2020.3004622 – year: 2000 ident: ref1 publication-title: Neural Networks for RF and Microwave Design – ident: ref136 doi: 10.1109/TED.2009.2016029 – ident: ref41 doi: 10.1109/TEMC.2021.3091714 – ident: ref17 doi: 10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P – ident: ref10 doi: 10.1109/MWSYM.1996.511043 – ident: ref135 doi: 10.1109/MWSYM.2006.249952 – ident: ref184 doi: 10.1109/LMWC.2020.3004003 – ident: ref155 doi: 10.1109/TMTT.2022.3162209 – start-page: 1549 year: 2004 ident: ref164 article-title: Robust neural based microwave modelling and design using advanced model extrapolation publication-title: IEEE MTT-S Int Microw Symp Dig – ident: ref31 doi: 10.1002/mmce.10006.abs – ident: ref166 doi: 10.1109/TMTT.2018.2854163 – ident: ref127 doi: 10.1109/MWSYM.2017.8058624 – ident: ref9 doi: 10.1109/22.554584 – ident: ref20 doi: 10.1002/(SICI)1099-047X(199905)9:3<287::AID-MMCE12>3.0.CO;2-# – ident: ref159 doi: 10.1109/LMWC.2021.3087163 – ident: ref22 doi: 10.1002/mmce.10015 – ident: ref4 doi: 10.1109/TMTT.2003.820898 – ident: ref52 doi: 10.1109/TMTT.2006.885902 – ident: ref3 doi: 10.1109/TMTT.2003.820897 – ident: ref202 doi: 10.1109/6040.938293 – ident: ref83 doi: 10.1109/TMTT.2018.2841889 – ident: ref88 doi: 10.1126/science.1129813 – ident: ref45 doi: 10.1109/TMTT.2007.909602 – ident: ref130 doi: 10.1109/TMTT.2002.805192 – ident: ref23 doi: 10.1002/(SICI)1099-047X(199905)9:3<187::AID-MMCE5>3.0.CO;2-H – ident: ref192 doi: 10.1109/TMTT.2020.2990171 – ident: ref154 doi: 10.1109/JMW.2020.3034263 – ident: ref90 doi: 10.1109/LMWC.2021.3078459 – ident: ref25 doi: 10.1002/mmce.10022 – ident: ref68 doi: 10.1109/LMWC.2018.2884643 – ident: ref143 doi: 10.1109/LMWC.2021.3062874 – ident: ref92 doi: 10.1109/TMTT.2013.2253793 – ident: ref200 doi: 10.1109/MWSYM.2006.249539 – ident: ref142 doi: 10.1109/LMWC.2020.3038821 – ident: ref137 doi: 10.1109/TMTT.2004.823583 – ident: ref119 doi: 10.1109/TMTT.2006.872926 – ident: ref206 doi: 10.1109/TCPMT.2020.3011910 – ident: ref47 doi: 10.1109/TMTT.2010.2090169 – ident: ref147 doi: 10.1162/neco.2006.18.7.1527 – ident: ref189 doi: 10.1002/jnm.2011 – ident: ref87 doi: 10.1109/IWS52775.2021.9499429 – ident: ref171 doi: 10.1109/IMS30576.2020.9223952 – ident: ref190 doi: 10.1109/MWSYM.2014.6848293 – ident: ref99 doi: 10.1109/TMTT.2003.820889 – ident: ref207 doi: 10.1109/TDMR.2013.2247604 – ident: ref24 doi: 10.1002/(SICI)1099-047X(199905)9:3<198::AID-MMCE6>3.0.CO;2-A – ident: ref158 doi: 10.1109/22.971611 – ident: ref72 doi: 10.1109/TMTT.2020.3032130 – ident: ref98 doi: 10.1109/LMWC.2021.3106270 – year: 2010 ident: ref160 article-title: Active learning literature survey – ident: ref172 doi: 10.1109/TMTT.2021.3075689 – ident: ref152 doi: 10.1109/TMTT.2021.3112156 – ident: ref182 doi: 10.1109/TMTT.2020.3011152 – ident: ref95 doi: 10.1109/TCAD.2007.907284 – ident: ref203 doi: 10.1109/TADVP.2007.908033 – ident: ref100 doi: 10.1109/TMTT.2018.2832120 – ident: ref178 doi: 10.1109/LMWC.2010.2052594 – ident: ref39 doi: 10.1109/TENCON.2016.7848415 – ident: ref50 doi: 10.1109/TMTT.2009.2036412 – ident: ref106 doi: 10.1109/TMTT.2016.2586055 – ident: ref114 doi: 10.1109/LMWC.2016.2516761 – ident: ref40 doi: 10.1109/ECS.2014.6892539 – ident: ref109 doi: 10.1109/TMTT.2014.2298372 – ident: ref186 doi: 10.1109/TMTT.2021.3091672 – ident: ref35 doi: 10.1002/mmce.10014 – ident: ref187 doi: 10.23919/EuMIC.2019.8909451 – ident: ref191 doi: 10.1109/ACCESS.2019.2928392 – ident: ref21 doi: 10.1002/(SICI)1099-047X(199905)9:3<297::AID-MMCE13>3.3.CO;2-N – ident: ref32 doi: 10.1002/mmce.10018 – ident: ref48 doi: 10.1109/TMTT.2005.854190 – ident: ref177 doi: 10.1109/TMTT.2006.879134 – ident: ref7 doi: 10.1109/MWSYM.1993.276791 – ident: ref27 doi: 10.1002/(SICI)1099-047X(199905)9:3<261::AID-MMCE10>3.0.CO;2-P – ident: ref199 doi: 10.1109/TMTT.2019.2921359 – ident: ref170 doi: 10.1002/mmce.10067 – ident: ref156 doi: 10.1109/DSAA49011.2020.00039 – ident: ref42 doi: 10.1109/MWSYM.2003.1210909 – ident: ref133 doi: 10.1002/cta.3143 – ident: ref108 doi: 10.1109/TMTT.2021.3054645 – ident: ref169 doi: 10.1109/61.772353 – ident: ref79 doi: 10.1109/TMTT.2022.3161928 – ident: ref82 doi: 10.1109/TMAG.2022.3152024 – ident: ref62 doi: 10.1109/TMTT.2014.2327100 – ident: ref173 doi: 10.1002/cta.2631 – ident: ref116 doi: 10.1109/LMWC.2020.2995858 – ident: ref148 doi: 10.1109/LMWC.2020.2986156 – ident: ref65 doi: 10.1109/TAP.2016.2627026 – ident: ref93 doi: 10.1109/22.575595 – ident: ref117 doi: 10.1109/ACCESS.2019.2905136 – ident: ref53 doi: 10.1109/MMM.2010.936079 – ident: ref197 doi: 10.1109/TMTT.2019.2963639 – ident: ref194 doi: 10.1109/MWSYM.2017.8058995 – ident: ref134 doi: 10.1109/TADVP.2005.848396 – ident: ref150 doi: 10.1109/TCPMT.2021.3071351 – ident: ref118 doi: 10.1109/MWSYM.2018.8439324 – ident: ref211 doi: 10.1109/IMS30576.2020.9223841 – ident: ref78 doi: 10.1109/TAP.2021.3069543 – ident: ref138 doi: 10.1109/INMMIC.2006.283535 – ident: ref33 doi: 10.1002/mmce.10007 – ident: ref181 doi: 10.1109/MWSYM.2015.7166978 – ident: ref80 doi: 10.1109/TMTT.2008.919078 – ident: ref176 doi: 10.1109/TMTT.2002.806910 – ident: ref14 doi: 10.1002/(SICI)1099-047X(199905)9:3<158::AID-MMCE3>3.0.CO;2-V – ident: ref89 doi: 10.1109/LMWC.2019.2952763 – ident: ref157 doi: 10.1109/ICDM.2019.00064 – year: 2009 ident: ref161 article-title: A literature survey of active machine learning in the context of natural language processing – ident: ref49 doi: 10.1109/MWSYM.2017.8058777 – ident: ref196 doi: 10.1109/TMTT.2021.3076064 – ident: ref102 doi: 10.1109/TMTT.2019.2955117 – volume: 57 start-page: 2727 year: 2009 ident: ref54 article-title: A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2009.2032476 – ident: ref12 doi: 10.1109/MWSYM.1994.335415 – ident: ref86 doi: 10.1109/TMTT.2022.3166176 – ident: ref55 doi: 10.1109/TMTT.2015.2504099 – ident: ref38 doi: 10.1109/20.767385 – ident: ref66 doi: 10.1109/20.34291 – ident: ref167 doi: 10.1109/TMTT.2003.820904 – ident: ref201 doi: 10.1109/NEMO.2015.7415083 – ident: ref111 doi: 10.1002/mmce.20069 – ident: ref44 doi: 10.1109/TMTT.2016.2630059 – ident: ref124 doi: 10.1109/TMTT.2005.861660 – ident: ref18 doi: 10.1002/mmce.7001 – ident: ref210 doi: 10.1109/TMTT.2012.2224366 – ident: ref144 doi: 10.1109/LMWC.2018.2888955 – ident: ref214 doi: 10.1109/TMTT.2020.3038667 – ident: ref213 doi: 10.1109/TMTT.2021.3112199 – ident: ref139 doi: 10.1109/NEMO.2017.7964194 – ident: ref61 doi: 10.1109/TMTT.2011.2140126 – ident: ref97 doi: 10.1109/TMTT.2010.2090405 – ident: ref91 doi: 10.1109/TMTT.2019.2932738 – ident: ref153 doi: 10.2307/1268522 – ident: ref183 doi: 10.1109/TMTT.2018.2869602 – year: 2015 ident: ref141 publication-title: Neural Networks and Deep Learning – ident: ref64 doi: 10.1109/22.920157 – ident: ref113 doi: 10.1109/TMTT.2016.2555948 – ident: ref34 doi: 10.1002/mmce.10021 – ident: ref57 doi: 10.1109/NEMO.2015.7415028 – ident: ref163 doi: 10.1016/S1568-4946(03)00011-5 – ident: ref56 doi: 10.1109/TMTT.2020.2979445 – ident: ref15 doi: 10.1002/(SICI)1099-047X(199905)9:3<216::AID-MMCE7>3.0.CO;2-W – ident: ref76 doi: 10.1109/LAWP.2015.2514065 – ident: ref105 doi: 10.1109/LMWC.2005.859001 – ident: ref11 doi: 10.1109/22.382070 – ident: ref123 doi: 10.1109/TMTT.2019.2955689 – ident: ref28 doi: 10.1002/(SICI)1099-047X(199905)9:3<254::AID-MMCE9>3.3.CO;2-7 – volume: 43 start-page: 1115 year: 1995 ident: ref63 article-title: Generalized coupled interconnect transfer function and high-speed signal simulations publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/22.382074 – ident: ref209 doi: 10.1109/TMTT.2016.2604809 – ident: ref70 doi: 10.1109/TMTT.2020.3005145 – ident: ref104 doi: 10.1109/TMTT.2021.3065972 – ident: ref107 doi: 10.1109/TMTT.2004.834554 – ident: ref96 doi: 10.1109/TMTT.2019.2905238 – ident: ref129 doi: 10.1109/MWSYM.2017.8058626 – ident: ref58 doi: 10.1109/TMTT.2017.2650904 – ident: ref132 doi: 10.1109/22.898982 – ident: ref81 doi: 10.1109/TAP.2020.2970071 – ident: ref112 doi: 10.1109/22.721137 – ident: ref69 doi: 10.1109/TMTT.2019.2952101 – ident: ref5 doi: 10.1109/22.989983 – ident: ref179 doi: 10.1109/TMTT.2010.2098041 – ident: ref168 doi: 10.1109/TMTT.2020.3011449 – volume: 521 start-page: 436 year: 2015 ident: ref84 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref125 doi: 10.1109/TAP.2004.829846 – ident: ref6 doi: 10.1109/75.242258 – year: 1991 ident: ref162 publication-title: Extrapolation Methods Theory and Practice – ident: ref175 doi: 10.1109/TMTT.2021.3061128 – ident: ref180 doi: 10.1109/LMWC.2019.2950801 – ident: ref131 doi: 10.1109/TMTT.2017.2657501 – ident: ref75 doi: 10.1109/IEEECONF35879.2020.9330480 – ident: ref85 doi: 10.1109/TAP.2020.2978952 – ident: ref67 doi: 10.1109/20.179634 – ident: ref8 doi: 10.1109/MWSYM.1996.512298 – ident: ref212 doi: 10.1109/TMTT.2019.2938753 – ident: ref188 doi: 10.1109/TMTT.2002.803427 – ident: ref174 doi: 10.1109/TMTT.1986.1133540 – ident: ref165 doi: 10.1109/LMWC.2010.2047450 – ident: ref151 doi: 10.1109/MMM.2021.3095706 – ident: ref140 doi: 10.1109/TCSI.2020.3008947 – ident: ref120 doi: 10.1109/MWSYM.2017.8058623 – ident: ref115 doi: 10.1109/NEMO.2015.7415085 – ident: ref36 doi: 10.1109/MWSYM.1997.602870 – ident: ref146 doi: 10.1109/TAP.2019.2922779 – ident: ref26 doi: 10.1002/mmce.10013 – ident: ref121 doi: 10.1109/TMTT.2019.2914106 – ident: ref126 doi: 10.1162/neco.1989.1.2.281 – ident: ref205 doi: 10.1109/TCPMT.2018.2810239 – ident: ref19 doi: 10.1002/mmce.10009.abs – ident: ref71 doi: 10.1109/LMWC.2021.3059993 |
SSID | ssj0014508 |
Score | 2.6341567 |
Snippet | This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4597 |
SubjectTerms | Artificial neural networks Artificial neural networks (ANNs) CAD Circuit design Computer aided design Deep learning deep neural network Design optimization Filter design (mathematics) Gallium nitrides High electron mobility transistors Integrated circuit modeling inverse modeling knowledge-based neural network (KBNN) Large scale integration Microelectromechanical systems Microwave circuits microwave computer-aided design (CAD) Microwave integrated circuits Microwave theory and techniques Modelling Neural networks neuro-transfer function (neuro-TF) Passive components Recurrent neural networks Semiconductor devices Solid modeling Substrate integrated waveguides Transfer functions Very large scale integration Wireless power transmission |
Title | Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art |
URI | https://ieeexplore.ieee.org/document/9863691 https://www.proquest.com/docview/2731853736 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT14EtNusptN1ltRSxHqKYXewmYfIEorNlXw1zu7SYovxFMC2U2WmX18k5n5BqFzmoSSKEuDKOE6YJbQQNooDmAp2VCY2PLCeXQn93w8ZXezeNZCl-tcGGOMDz4zfXfrffl6oVbuV9lApJxyl6q-AYZblau19hiwmNS7LixgljYezJCIQTbJMrAEowgMVIA7cfjlDPJFVX7sxP54Ge2gSTOwKqrksb8qi756_8bZ-N-R76LtGmfiYTUx9lDLzPfR1if2wQ7K3MOKQAI7jg5_8UHhSwxQFk9crN6bfDW4Kf0QDB-00fjGR31cYZhi2INVvLAYgKT72gGajm6z63FQF1kIFJiOZVDEIU-1AvnpAlRDqKWcpYZLqyxnShEVUh0JZkSiCJHMAOQxTPHUZawmktND1J4v5uYIYSWlTGITkYJo6GlFkYrUcRxyATAt1V1EGrHnqmYgd4UwnnJviRCRO03lTlN5rakuulh3ea7oN_5q3HGSXzeshd5FvUa3eb1AlzmgNodUEsqPf-91gjbdu6u0wx5qly8rcwr4oyzO_MT7AEfA1fs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeaKEgFtriA1yQsnX8SozEoepDW9rtKZV6C44fUgXardhdKvgt_BX-G2MnWUGpuFXilEjxxIpnPP4m8wJ4zYvcUBt4xgrlMhEoz0xgMsOtFHLtZVBN9OiOz9ToXHy4kBcr8GOZC-O9T8Fnfhhvky_fTe0i_irb1aXiSuddCOWJ_3aNBtrs_fEBcvMNY0eH1f4o63oIZBYto3nWyFyVzuZCugZnpjxwJUqvTLBBCWupzbljWnhdWEqN8Hiie2FVGRMyC6M4vvce3EecIVmbHbb0UQhJOz2PKkOUvc80p3q3GlcV2p6MoUmMAEvmf5x6qY3LX7o_HWhH6_CzX4o2juXTcDFvhvb7jSqR_-tabcCjDkmTvVb0H8OKnzyBtd_qK25CFR-2JTJIrEKSLinsfUYQrJNxjEa8Nl896ZtbZHuXzjtykOJa3hHcRCTBcTINBKFynO0pnN_JZz2D1cl04p8DscaYQnpGG-qQMuim1GWs4qg0AtHSDYD2bK5tV2M9tvr4XCdbi-o6SkYdJaPuJGMAb5ckV22BkX8N3oycXg7smDyArV6W6k4FzWrEpRGLFVy9uJ3qFTwYVePT-vT47OQlPIzztEmWW7A6_7Lw24i25s1OEnoCH-9acn4BuzszHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks+for+Microwave+Computer-Aided+Design%3A+The+State+of+the+Art&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Feng%2C+Feng&rft.au=Jin%2C+Jing&rft.au=Zhang%2C+Jianan&rft.au=Zhang%2C+Wei&rft.date=2022-11-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=70&rft.issue=11&rft.spage=4597&rft.epage=4619&rft_id=info:doi/10.1109%2FTMTT.2022.3197751&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2022_3197751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |