Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art

This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 70; no. 11; pp. 4597 - 4619
Main Authors Feng, Feng, Na, Weicong, Jin, Jing, Zhang, Jianan, Zhang, Wei, Zhang, Qi-Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of microwave devices, ANNs can be trained to learn relevant microwave relationships, which are, otherwise, computationally expensive or for which efficient analytical formulas are not available. Fundamental concepts of the ANN structure and training, such as feedforward neural networks (FFNNs), recurrent neural networks (RNNs)/dynamic neural networks (DNNs)/time-delay neural networks (TDNNs), deep neural networks, and neural network training and extrapolation, are described. Knowledge-based neural networks (KBNNs) are described for improving the accuracy and reliability of modeling and design optimization. Various advanced ANN techniques, such as neuro-transfer function (neuro-TF) modeling, neural network inverse modeling, and deep neural network modeling, are discussed. The existing and emerging applications of ANN in microwave CAD are identified, such as electromagnetic (EM)/multiphysics modeling, modeling of nonlinear circuits and transistors, filter design, very large-scale integration (VLSI) interconnects, oscillator, transmitter and receiver modeling, and CAD applications in such as gallium nitride (GaN) high electron-mobility transistor (HEMT), wireless power transfer (WPT), microelectromechanical system (MEMS), and substrate-integrated waveguide (SIW).
AbstractList This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of microwave devices, ANNs can be trained to learn relevant microwave relationships, which are, otherwise, computationally expensive or for which efficient analytical formulas are not available. Fundamental concepts of the ANN structure and training, such as feedforward neural networks (FFNNs), recurrent neural networks (RNNs)/dynamic neural networks (DNNs)/time-delay neural networks (TDNNs), deep neural networks, and neural network training and extrapolation, are described. Knowledge-based neural networks (KBNNs) are described for improving the accuracy and reliability of modeling and design optimization. Various advanced ANN techniques, such as neuro-transfer function (neuro-TF) modeling, neural network inverse modeling, and deep neural network modeling, are discussed. The existing and emerging applications of ANN in microwave CAD are identified, such as electromagnetic (EM)/multiphysics modeling, modeling of nonlinear circuits and transistors, filter design, very large-scale integration (VLSI) interconnects, oscillator, transmitter and receiver modeling, and CAD applications in such as gallium nitride (GaN) high electron-mobility transistor (HEMT), wireless power transfer (WPT), microelectromechanical system (MEMS), and substrate-integrated waveguide (SIW).
Author Zhang, Jianan
Na, Weicong
Feng, Feng
Zhang, Qi-Jun
Zhang, Wei
Jin, Jing
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-3569-8782
  surname: Feng
  fullname: Feng, Feng
  email: ff@tju.edu.cn
  organization: School of Microelectronics, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Weicong
  orcidid: 0000-0001-9775-5124
  surname: Na
  fullname: Na, Weicong
  email: weicongna@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Jing
  orcidid: 0000-0002-8638-7837
  surname: Jin
  fullname: Jin, Jing
  email: jingjin@ccnu.edu.cn
  organization: College of Physical Science and Technology, Central China Normal University, Wuhan, China
– sequence: 4
  givenname: Jianan
  orcidid: 0000-0002-3536-5777
  surname: Zhang
  fullname: Zhang, Jianan
  email: jiananzhang@seu.edu.cn
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China
– sequence: 5
  givenname: Wei
  orcidid: 0000-0001-7337-4108
  surname: Zhang
  fullname: Zhang, Wei
  email: weizhang13@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Qi-Jun
  orcidid: 0000-0001-7852-5331
  surname: Zhang
  fullname: Zhang, Qi-Jun
  email: qjz@doe.carleton.ca
  organization: Department of Electronics, Carleton University, Ottawa, Canada
BookMark eNp9UMtOwzAQtBBItIUPQFwscU7xxontcKvKU2rhQDhHrrMGlzYujkvF35PSigMHTquR5rEzfXLY-AYJOQM2BGDFZTkty2HK0nTIoZAyhwPSgzyXSSEkOyQ9xkAlRabYMem37byDWc5Uj5SjEJ11xukFfcR1-Dlx48N7S60PdOpM8Bv9iXTsl6t1xJCMXI01vcbWvTZXtHxD-hx1ROotjR3oDE_IkdWLFk_3d0Bebm_K8X0yebp7GI8miclYGpNZDkLVpvuknmFuGbdcZAqFtsaKzBhmgNdpkWEhDWM6QwESMyMUgAKpBR-Qi53vKviPNbaxmvt1aLrIKpUcVM4l37Jgx-qatG1AW62CW-rwVQGrtuNV2_Gq7XjVfrxOI_9ojOtKOt_EoN3iX-X5TukQ8TepUIKLAvg3tYx9sw
CODEN IETMAB
CitedBy_id crossref_primary_10_1007_s10489_023_04638_w
crossref_primary_10_1109_TAP_2025_3533884
crossref_primary_10_1109_TMTT_2024_3400152
crossref_primary_10_3390_app14135766
crossref_primary_10_1016_j_optcom_2025_131797
crossref_primary_10_1002_cpe_8276
crossref_primary_10_3390_mi14081600
crossref_primary_10_1002_jnm_3268
crossref_primary_10_1109_LMWT_2023_3343095
crossref_primary_10_1109_MEMC_2023_10466425
crossref_primary_10_1016_j_mejo_2025_106646
crossref_primary_10_1109_ACCESS_2022_3226323
crossref_primary_10_1109_TMTT_2024_3434959
crossref_primary_10_1109_TMTT_2023_3330403
crossref_primary_10_1109_TMTT_2023_3330766
crossref_primary_10_1109_ACCESS_2025_3536787
crossref_primary_10_3390_electronics12081771
crossref_primary_10_3390_forecast6010005
crossref_primary_10_22331_q_2024_09_09_1465
crossref_primary_10_1109_TMTT_2023_3341584
crossref_primary_10_1016_j_csite_2023_103837
crossref_primary_10_1109_TVLSI_2024_3414584
crossref_primary_10_1109_TAP_2024_3474913
crossref_primary_10_1016_j_aeue_2024_155589
crossref_primary_10_1007_s10489_023_05200_4
crossref_primary_10_1109_ACCESS_2023_3267506
crossref_primary_10_1109_TII_2023_3261880
crossref_primary_10_1109_TMTT_2024_3374371
crossref_primary_10_3390_electronics13234833
crossref_primary_10_1109_TEMC_2024_3457629
crossref_primary_10_1016_j_mejo_2024_106186
crossref_primary_10_1109_TCSI_2023_3340219
crossref_primary_10_3390_mi14020426
crossref_primary_10_1109_OJAP_2024_3412609
crossref_primary_10_1109_TMTT_2023_3297403
crossref_primary_10_1109_TPS_2024_3377668
crossref_primary_10_3390_s22187068
crossref_primary_10_1109_ACCESS_2025_3545141
crossref_primary_10_1109_TMTT_2023_3309391
crossref_primary_10_1109_TAP_2023_3331262
crossref_primary_10_1016_j_ijleo_2024_172005
crossref_primary_10_3390_electronics14040786
crossref_primary_10_1088_1361_6463_ad6fb1
crossref_primary_10_1109_TAP_2024_3372149
crossref_primary_10_1109_TEMC_2023_3279695
crossref_primary_10_1002_jnm_3157
crossref_primary_10_1109_LMWT_2024_3374792
crossref_primary_10_1109_TCPMT_2023_3317851
crossref_primary_10_1002_cta_4304
crossref_primary_10_1007_s10489_024_05853_9
crossref_primary_10_1109_JLT_2023_3325156
crossref_primary_10_1109_TCPMT_2023_3290413
crossref_primary_10_1109_MCOM_001_2400209
crossref_primary_10_1109_TCPMT_2024_3481036
crossref_primary_10_1109_TAP_2024_3349864
Cites_doi 10.1109/TMTT.2003.809179
10.1109/TMTT.2005.855742
10.1109/22.808989
10.1109/TMAG.2009.2012692
10.1109/TEMC.2017.2784833
10.1109/ISCAS.2010.5537907
10.1109/TMTT.2008.2004894
10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3
10.1109/EuMC.2016.7824478
10.1109/TMTT.2018.2858787
10.1162/neco.1997.9.8.1735
10.1109/TMTT.2003.814318
10.1109/TMTT.2007.907141
10.1109/MWSYM.2016.7540385
10.1109/LMWC.2022.3146376
10.1002/mmce.10016
10.1109/22.643868
10.1109/IMS30576.2020.9223873
10.1109/TMTT.2021.3098769
10.1109/LMWC.2021.3053600
10.1109/LMWC.2009.2027048
10.1109/TAP.2018.2885437
10.1002/(SICI)1099-047X(199905)9:3<241::AID-MMCE8>3.0.CO;2-P
10.1109/22.390193
10.1109/LMWC.2011.2127465
10.1109/TMTT.2020.3004622
10.1109/TED.2009.2016029
10.1109/TEMC.2021.3091714
10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P
10.1109/MWSYM.1996.511043
10.1109/MWSYM.2006.249952
10.1109/LMWC.2020.3004003
10.1109/TMTT.2022.3162209
10.1002/mmce.10006.abs
10.1109/TMTT.2018.2854163
10.1109/MWSYM.2017.8058624
10.1109/22.554584
10.1002/(SICI)1099-047X(199905)9:3<287::AID-MMCE12>3.0.CO;2-#
10.1109/LMWC.2021.3087163
10.1002/mmce.10015
10.1109/TMTT.2003.820898
10.1109/TMTT.2006.885902
10.1109/TMTT.2003.820897
10.1109/6040.938293
10.1109/TMTT.2018.2841889
10.1126/science.1129813
10.1109/TMTT.2007.909602
10.1109/TMTT.2002.805192
10.1002/(SICI)1099-047X(199905)9:3<187::AID-MMCE5>3.0.CO;2-H
10.1109/TMTT.2020.2990171
10.1109/JMW.2020.3034263
10.1109/LMWC.2021.3078459
10.1002/mmce.10022
10.1109/LMWC.2018.2884643
10.1109/LMWC.2021.3062874
10.1109/TMTT.2013.2253793
10.1109/MWSYM.2006.249539
10.1109/LMWC.2020.3038821
10.1109/TMTT.2004.823583
10.1109/TMTT.2006.872926
10.1109/TCPMT.2020.3011910
10.1109/TMTT.2010.2090169
10.1162/neco.2006.18.7.1527
10.1002/jnm.2011
10.1109/IWS52775.2021.9499429
10.1109/IMS30576.2020.9223952
10.1109/MWSYM.2014.6848293
10.1109/TMTT.2003.820889
10.1109/TDMR.2013.2247604
10.1002/(SICI)1099-047X(199905)9:3<198::AID-MMCE6>3.0.CO;2-A
10.1109/22.971611
10.1109/TMTT.2020.3032130
10.1109/LMWC.2021.3106270
10.1109/TMTT.2021.3075689
10.1109/TMTT.2021.3112156
10.1109/TMTT.2020.3011152
10.1109/TCAD.2007.907284
10.1109/TADVP.2007.908033
10.1109/TMTT.2018.2832120
10.1109/LMWC.2010.2052594
10.1109/TENCON.2016.7848415
10.1109/TMTT.2009.2036412
10.1109/TMTT.2016.2586055
10.1109/LMWC.2016.2516761
10.1109/ECS.2014.6892539
10.1109/TMTT.2014.2298372
10.1109/TMTT.2021.3091672
10.1002/mmce.10014
10.23919/EuMIC.2019.8909451
10.1109/ACCESS.2019.2928392
10.1002/(SICI)1099-047X(199905)9:3<297::AID-MMCE13>3.3.CO;2-N
10.1002/mmce.10018
10.1109/TMTT.2005.854190
10.1109/TMTT.2006.879134
10.1109/MWSYM.1993.276791
10.1002/(SICI)1099-047X(199905)9:3<261::AID-MMCE10>3.0.CO;2-P
10.1109/TMTT.2019.2921359
10.1002/mmce.10067
10.1109/DSAA49011.2020.00039
10.1109/MWSYM.2003.1210909
10.1002/cta.3143
10.1109/TMTT.2021.3054645
10.1109/61.772353
10.1109/TMTT.2022.3161928
10.1109/TMAG.2022.3152024
10.1109/TMTT.2014.2327100
10.1002/cta.2631
10.1109/LMWC.2020.2995858
10.1109/LMWC.2020.2986156
10.1109/TAP.2016.2627026
10.1109/22.575595
10.1109/ACCESS.2019.2905136
10.1109/MMM.2010.936079
10.1109/TMTT.2019.2963639
10.1109/MWSYM.2017.8058995
10.1109/TADVP.2005.848396
10.1109/TCPMT.2021.3071351
10.1109/MWSYM.2018.8439324
10.1109/IMS30576.2020.9223841
10.1109/TAP.2021.3069543
10.1109/INMMIC.2006.283535
10.1002/mmce.10007
10.1109/MWSYM.2015.7166978
10.1109/TMTT.2008.919078
10.1109/TMTT.2002.806910
10.1002/(SICI)1099-047X(199905)9:3<158::AID-MMCE3>3.0.CO;2-V
10.1109/LMWC.2019.2952763
10.1109/ICDM.2019.00064
10.1109/MWSYM.2017.8058777
10.1109/TMTT.2021.3076064
10.1109/TMTT.2019.2955117
10.1109/TMTT.2009.2032476
10.1109/MWSYM.1994.335415
10.1109/TMTT.2022.3166176
10.1109/TMTT.2015.2504099
10.1109/20.767385
10.1109/20.34291
10.1109/TMTT.2003.820904
10.1109/NEMO.2015.7415083
10.1002/mmce.20069
10.1109/TMTT.2016.2630059
10.1109/TMTT.2005.861660
10.1002/mmce.7001
10.1109/TMTT.2012.2224366
10.1109/LMWC.2018.2888955
10.1109/TMTT.2020.3038667
10.1109/TMTT.2021.3112199
10.1109/NEMO.2017.7964194
10.1109/TMTT.2011.2140126
10.1109/TMTT.2010.2090405
10.1109/TMTT.2019.2932738
10.2307/1268522
10.1109/TMTT.2018.2869602
10.1109/22.920157
10.1109/TMTT.2016.2555948
10.1002/mmce.10021
10.1109/NEMO.2015.7415028
10.1016/S1568-4946(03)00011-5
10.1109/TMTT.2020.2979445
10.1002/(SICI)1099-047X(199905)9:3<216::AID-MMCE7>3.0.CO;2-W
10.1109/LAWP.2015.2514065
10.1109/LMWC.2005.859001
10.1109/22.382070
10.1109/TMTT.2019.2955689
10.1002/(SICI)1099-047X(199905)9:3<254::AID-MMCE9>3.3.CO;2-7
10.1109/22.382074
10.1109/TMTT.2016.2604809
10.1109/TMTT.2020.3005145
10.1109/TMTT.2021.3065972
10.1109/TMTT.2004.834554
10.1109/TMTT.2019.2905238
10.1109/MWSYM.2017.8058626
10.1109/TMTT.2017.2650904
10.1109/22.898982
10.1109/TAP.2020.2970071
10.1109/22.721137
10.1109/TMTT.2019.2952101
10.1109/22.989983
10.1109/TMTT.2010.2098041
10.1109/TMTT.2020.3011449
10.1038/nature14539
10.1109/TAP.2004.829846
10.1109/75.242258
10.1109/TMTT.2021.3061128
10.1109/LMWC.2019.2950801
10.1109/TMTT.2017.2657501
10.1109/IEEECONF35879.2020.9330480
10.1109/TAP.2020.2978952
10.1109/20.179634
10.1109/MWSYM.1996.512298
10.1109/TMTT.2019.2938753
10.1109/TMTT.2002.803427
10.1109/TMTT.1986.1133540
10.1109/LMWC.2010.2047450
10.1109/MMM.2021.3095706
10.1109/TCSI.2020.3008947
10.1109/MWSYM.2017.8058623
10.1109/NEMO.2015.7415085
10.1109/MWSYM.1997.602870
10.1109/TAP.2019.2922779
10.1002/mmce.10013
10.1109/TMTT.2019.2914106
10.1162/neco.1989.1.2.281
10.1109/TCPMT.2018.2810239
10.1002/mmce.10009.abs
10.1109/LMWC.2021.3059993
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2022.3197751
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 4619
ExternalDocumentID 10_1109_TMTT_2022_3197751
9863691
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2017-06420
  funderid: 10.13039/501100000038
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c402t-b5168dc145dbe5f03f3648e6afcf64cc0c13d294e97c00a4e617e4c6811817a63
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 10:13:47 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 02:00:25 EDT 2025
Wed Aug 27 02:18:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-b5168dc145dbe5f03f3648e6afcf64cc0c13d294e97c00a4e617e4c6811817a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3536-5777
0000-0001-7852-5331
0000-0002-3569-8782
0000-0002-8638-7837
0000-0001-9775-5124
0000-0001-7337-4108
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9863691
PQID 2731853736
PQPubID 106035
PageCount 23
ParticipantIDs crossref_primary_10_1109_TMTT_2022_3197751
proquest_journals_2731853736
crossref_citationtrail_10_1109_TMTT_2022_3197751
ieee_primary_9863691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref59
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref202
ref209
ref210
ref211
ref51
ref50
ref45
ref48
ref47
ref42
ref214
ref41
ref44
ref212
ref43
ref213
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref39
guo (ref60) 2012
ref38
zhang (ref1) 2000
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref200
sa?iro?lu (ref30) 1999; 9
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
cao (ref54) 2009; 57
lecun (ref84) 2015; 521
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
nielsen (ref141) 2015
ref82
ref144
ref81
ref145
ref142
ref83
ref143
ref140
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref71
ref111
ref70
ref112
ref73
ref72
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref116
ref66
ref113
ref65
ref114
ref122
ref123
ref62
ref120
ref61
ref121
ref168
ref169
ref170
eo (ref63) 1995; 43
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
cao (ref46) 2009; 19
ref180
ref181
ref188
ref189
settles (ref160) 2010
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
brezinski (ref162) 1991
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref167
xu (ref164) 2004
ref165
ref163
ref13
ref12
ref15
ref14
ref11
ref10
zhang (ref110) 2016
ref17
ref16
ref19
ref18
olsson (ref161) 2009
ref2
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
References_xml – ident: ref2
  doi: 10.1109/TMTT.2003.809179
– ident: ref122
  doi: 10.1109/TMTT.2005.855742
– ident: ref37
  doi: 10.1109/22.808989
– ident: ref73
  doi: 10.1109/TMAG.2009.2012692
– ident: ref204
  doi: 10.1109/TEMC.2017.2784833
– ident: ref145
  doi: 10.1109/ISCAS.2010.5537907
– ident: ref43
  doi: 10.1109/TMTT.2008.2004894
– volume: 9
  start-page: 277
  year: 1999
  ident: ref30
  article-title: Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons
  publication-title: Int J RF Microw Comput -Aided Eng
  doi: 10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3
– ident: ref185
  doi: 10.1109/EuMC.2016.7824478
– ident: ref128
  doi: 10.1109/TMTT.2018.2858787
– ident: ref149
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref51
  doi: 10.1109/TMTT.2003.814318
– ident: ref193
  doi: 10.1109/TMTT.2007.907141
– ident: ref101
  doi: 10.1109/MWSYM.2016.7540385
– start-page: 1
  year: 2016
  ident: ref110
  article-title: Parallel matrix neural network training on cluster systems for dynamic FET modeling from large datasets
  publication-title: IEEE MTT-S Int Microw Symp Dig
– ident: ref59
  doi: 10.1109/LMWC.2022.3146376
– ident: ref16
  doi: 10.1002/mmce.10016
– ident: ref94
  doi: 10.1109/22.643868
– ident: ref208
  doi: 10.1109/IMS30576.2020.9223873
– start-page: 1
  year: 2012
  ident: ref60
  article-title: Passivity enforcement for passive component modeling subject to variations of geometrical parameters using neural networks
  publication-title: IEEE MTT-S Int Microw Symp Dig
– ident: ref77
  doi: 10.1109/TMTT.2021.3098769
– ident: ref103
  doi: 10.1109/LMWC.2021.3053600
– volume: 19
  start-page: 533
  year: 2009
  ident: ref46
  article-title: A broadband and parametric model of differential via holes using space-mapping neural network
  publication-title: IEEE Microw Wireless Compon Lett
  doi: 10.1109/LMWC.2009.2027048
– ident: ref74
  doi: 10.1109/TAP.2018.2885437
– ident: ref29
  doi: 10.1002/(SICI)1099-047X(199905)9:3<241::AID-MMCE8>3.0.CO;2-P
– ident: ref13
  doi: 10.1109/22.390193
– ident: ref198
  doi: 10.1109/LMWC.2011.2127465
– ident: ref195
  doi: 10.1109/TMTT.2020.3004622
– year: 2000
  ident: ref1
  publication-title: Neural Networks for RF and Microwave Design
– ident: ref136
  doi: 10.1109/TED.2009.2016029
– ident: ref41
  doi: 10.1109/TEMC.2021.3091714
– ident: ref17
  doi: 10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P
– ident: ref10
  doi: 10.1109/MWSYM.1996.511043
– ident: ref135
  doi: 10.1109/MWSYM.2006.249952
– ident: ref184
  doi: 10.1109/LMWC.2020.3004003
– ident: ref155
  doi: 10.1109/TMTT.2022.3162209
– start-page: 1549
  year: 2004
  ident: ref164
  article-title: Robust neural based microwave modelling and design using advanced model extrapolation
  publication-title: IEEE MTT-S Int Microw Symp Dig
– ident: ref31
  doi: 10.1002/mmce.10006.abs
– ident: ref166
  doi: 10.1109/TMTT.2018.2854163
– ident: ref127
  doi: 10.1109/MWSYM.2017.8058624
– ident: ref9
  doi: 10.1109/22.554584
– ident: ref20
  doi: 10.1002/(SICI)1099-047X(199905)9:3<287::AID-MMCE12>3.0.CO;2-#
– ident: ref159
  doi: 10.1109/LMWC.2021.3087163
– ident: ref22
  doi: 10.1002/mmce.10015
– ident: ref4
  doi: 10.1109/TMTT.2003.820898
– ident: ref52
  doi: 10.1109/TMTT.2006.885902
– ident: ref3
  doi: 10.1109/TMTT.2003.820897
– ident: ref202
  doi: 10.1109/6040.938293
– ident: ref83
  doi: 10.1109/TMTT.2018.2841889
– ident: ref88
  doi: 10.1126/science.1129813
– ident: ref45
  doi: 10.1109/TMTT.2007.909602
– ident: ref130
  doi: 10.1109/TMTT.2002.805192
– ident: ref23
  doi: 10.1002/(SICI)1099-047X(199905)9:3<187::AID-MMCE5>3.0.CO;2-H
– ident: ref192
  doi: 10.1109/TMTT.2020.2990171
– ident: ref154
  doi: 10.1109/JMW.2020.3034263
– ident: ref90
  doi: 10.1109/LMWC.2021.3078459
– ident: ref25
  doi: 10.1002/mmce.10022
– ident: ref68
  doi: 10.1109/LMWC.2018.2884643
– ident: ref143
  doi: 10.1109/LMWC.2021.3062874
– ident: ref92
  doi: 10.1109/TMTT.2013.2253793
– ident: ref200
  doi: 10.1109/MWSYM.2006.249539
– ident: ref142
  doi: 10.1109/LMWC.2020.3038821
– ident: ref137
  doi: 10.1109/TMTT.2004.823583
– ident: ref119
  doi: 10.1109/TMTT.2006.872926
– ident: ref206
  doi: 10.1109/TCPMT.2020.3011910
– ident: ref47
  doi: 10.1109/TMTT.2010.2090169
– ident: ref147
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref189
  doi: 10.1002/jnm.2011
– ident: ref87
  doi: 10.1109/IWS52775.2021.9499429
– ident: ref171
  doi: 10.1109/IMS30576.2020.9223952
– ident: ref190
  doi: 10.1109/MWSYM.2014.6848293
– ident: ref99
  doi: 10.1109/TMTT.2003.820889
– ident: ref207
  doi: 10.1109/TDMR.2013.2247604
– ident: ref24
  doi: 10.1002/(SICI)1099-047X(199905)9:3<198::AID-MMCE6>3.0.CO;2-A
– ident: ref158
  doi: 10.1109/22.971611
– ident: ref72
  doi: 10.1109/TMTT.2020.3032130
– ident: ref98
  doi: 10.1109/LMWC.2021.3106270
– year: 2010
  ident: ref160
  article-title: Active learning literature survey
– ident: ref172
  doi: 10.1109/TMTT.2021.3075689
– ident: ref152
  doi: 10.1109/TMTT.2021.3112156
– ident: ref182
  doi: 10.1109/TMTT.2020.3011152
– ident: ref95
  doi: 10.1109/TCAD.2007.907284
– ident: ref203
  doi: 10.1109/TADVP.2007.908033
– ident: ref100
  doi: 10.1109/TMTT.2018.2832120
– ident: ref178
  doi: 10.1109/LMWC.2010.2052594
– ident: ref39
  doi: 10.1109/TENCON.2016.7848415
– ident: ref50
  doi: 10.1109/TMTT.2009.2036412
– ident: ref106
  doi: 10.1109/TMTT.2016.2586055
– ident: ref114
  doi: 10.1109/LMWC.2016.2516761
– ident: ref40
  doi: 10.1109/ECS.2014.6892539
– ident: ref109
  doi: 10.1109/TMTT.2014.2298372
– ident: ref186
  doi: 10.1109/TMTT.2021.3091672
– ident: ref35
  doi: 10.1002/mmce.10014
– ident: ref187
  doi: 10.23919/EuMIC.2019.8909451
– ident: ref191
  doi: 10.1109/ACCESS.2019.2928392
– ident: ref21
  doi: 10.1002/(SICI)1099-047X(199905)9:3<297::AID-MMCE13>3.3.CO;2-N
– ident: ref32
  doi: 10.1002/mmce.10018
– ident: ref48
  doi: 10.1109/TMTT.2005.854190
– ident: ref177
  doi: 10.1109/TMTT.2006.879134
– ident: ref7
  doi: 10.1109/MWSYM.1993.276791
– ident: ref27
  doi: 10.1002/(SICI)1099-047X(199905)9:3<261::AID-MMCE10>3.0.CO;2-P
– ident: ref199
  doi: 10.1109/TMTT.2019.2921359
– ident: ref170
  doi: 10.1002/mmce.10067
– ident: ref156
  doi: 10.1109/DSAA49011.2020.00039
– ident: ref42
  doi: 10.1109/MWSYM.2003.1210909
– ident: ref133
  doi: 10.1002/cta.3143
– ident: ref108
  doi: 10.1109/TMTT.2021.3054645
– ident: ref169
  doi: 10.1109/61.772353
– ident: ref79
  doi: 10.1109/TMTT.2022.3161928
– ident: ref82
  doi: 10.1109/TMAG.2022.3152024
– ident: ref62
  doi: 10.1109/TMTT.2014.2327100
– ident: ref173
  doi: 10.1002/cta.2631
– ident: ref116
  doi: 10.1109/LMWC.2020.2995858
– ident: ref148
  doi: 10.1109/LMWC.2020.2986156
– ident: ref65
  doi: 10.1109/TAP.2016.2627026
– ident: ref93
  doi: 10.1109/22.575595
– ident: ref117
  doi: 10.1109/ACCESS.2019.2905136
– ident: ref53
  doi: 10.1109/MMM.2010.936079
– ident: ref197
  doi: 10.1109/TMTT.2019.2963639
– ident: ref194
  doi: 10.1109/MWSYM.2017.8058995
– ident: ref134
  doi: 10.1109/TADVP.2005.848396
– ident: ref150
  doi: 10.1109/TCPMT.2021.3071351
– ident: ref118
  doi: 10.1109/MWSYM.2018.8439324
– ident: ref211
  doi: 10.1109/IMS30576.2020.9223841
– ident: ref78
  doi: 10.1109/TAP.2021.3069543
– ident: ref138
  doi: 10.1109/INMMIC.2006.283535
– ident: ref33
  doi: 10.1002/mmce.10007
– ident: ref181
  doi: 10.1109/MWSYM.2015.7166978
– ident: ref80
  doi: 10.1109/TMTT.2008.919078
– ident: ref176
  doi: 10.1109/TMTT.2002.806910
– ident: ref14
  doi: 10.1002/(SICI)1099-047X(199905)9:3<158::AID-MMCE3>3.0.CO;2-V
– ident: ref89
  doi: 10.1109/LMWC.2019.2952763
– ident: ref157
  doi: 10.1109/ICDM.2019.00064
– year: 2009
  ident: ref161
  article-title: A literature survey of active machine learning in the context of natural language processing
– ident: ref49
  doi: 10.1109/MWSYM.2017.8058777
– ident: ref196
  doi: 10.1109/TMTT.2021.3076064
– ident: ref102
  doi: 10.1109/TMTT.2019.2955117
– volume: 57
  start-page: 2727
  year: 2009
  ident: ref54
  article-title: A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2009.2032476
– ident: ref12
  doi: 10.1109/MWSYM.1994.335415
– ident: ref86
  doi: 10.1109/TMTT.2022.3166176
– ident: ref55
  doi: 10.1109/TMTT.2015.2504099
– ident: ref38
  doi: 10.1109/20.767385
– ident: ref66
  doi: 10.1109/20.34291
– ident: ref167
  doi: 10.1109/TMTT.2003.820904
– ident: ref201
  doi: 10.1109/NEMO.2015.7415083
– ident: ref111
  doi: 10.1002/mmce.20069
– ident: ref44
  doi: 10.1109/TMTT.2016.2630059
– ident: ref124
  doi: 10.1109/TMTT.2005.861660
– ident: ref18
  doi: 10.1002/mmce.7001
– ident: ref210
  doi: 10.1109/TMTT.2012.2224366
– ident: ref144
  doi: 10.1109/LMWC.2018.2888955
– ident: ref214
  doi: 10.1109/TMTT.2020.3038667
– ident: ref213
  doi: 10.1109/TMTT.2021.3112199
– ident: ref139
  doi: 10.1109/NEMO.2017.7964194
– ident: ref61
  doi: 10.1109/TMTT.2011.2140126
– ident: ref97
  doi: 10.1109/TMTT.2010.2090405
– ident: ref91
  doi: 10.1109/TMTT.2019.2932738
– ident: ref153
  doi: 10.2307/1268522
– ident: ref183
  doi: 10.1109/TMTT.2018.2869602
– year: 2015
  ident: ref141
  publication-title: Neural Networks and Deep Learning
– ident: ref64
  doi: 10.1109/22.920157
– ident: ref113
  doi: 10.1109/TMTT.2016.2555948
– ident: ref34
  doi: 10.1002/mmce.10021
– ident: ref57
  doi: 10.1109/NEMO.2015.7415028
– ident: ref163
  doi: 10.1016/S1568-4946(03)00011-5
– ident: ref56
  doi: 10.1109/TMTT.2020.2979445
– ident: ref15
  doi: 10.1002/(SICI)1099-047X(199905)9:3<216::AID-MMCE7>3.0.CO;2-W
– ident: ref76
  doi: 10.1109/LAWP.2015.2514065
– ident: ref105
  doi: 10.1109/LMWC.2005.859001
– ident: ref11
  doi: 10.1109/22.382070
– ident: ref123
  doi: 10.1109/TMTT.2019.2955689
– ident: ref28
  doi: 10.1002/(SICI)1099-047X(199905)9:3<254::AID-MMCE9>3.3.CO;2-7
– volume: 43
  start-page: 1115
  year: 1995
  ident: ref63
  article-title: Generalized coupled interconnect transfer function and high-speed signal simulations
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/22.382074
– ident: ref209
  doi: 10.1109/TMTT.2016.2604809
– ident: ref70
  doi: 10.1109/TMTT.2020.3005145
– ident: ref104
  doi: 10.1109/TMTT.2021.3065972
– ident: ref107
  doi: 10.1109/TMTT.2004.834554
– ident: ref96
  doi: 10.1109/TMTT.2019.2905238
– ident: ref129
  doi: 10.1109/MWSYM.2017.8058626
– ident: ref58
  doi: 10.1109/TMTT.2017.2650904
– ident: ref132
  doi: 10.1109/22.898982
– ident: ref81
  doi: 10.1109/TAP.2020.2970071
– ident: ref112
  doi: 10.1109/22.721137
– ident: ref69
  doi: 10.1109/TMTT.2019.2952101
– ident: ref5
  doi: 10.1109/22.989983
– ident: ref179
  doi: 10.1109/TMTT.2010.2098041
– ident: ref168
  doi: 10.1109/TMTT.2020.3011449
– volume: 521
  start-page: 436
  year: 2015
  ident: ref84
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref125
  doi: 10.1109/TAP.2004.829846
– ident: ref6
  doi: 10.1109/75.242258
– year: 1991
  ident: ref162
  publication-title: Extrapolation Methods Theory and Practice
– ident: ref175
  doi: 10.1109/TMTT.2021.3061128
– ident: ref180
  doi: 10.1109/LMWC.2019.2950801
– ident: ref131
  doi: 10.1109/TMTT.2017.2657501
– ident: ref75
  doi: 10.1109/IEEECONF35879.2020.9330480
– ident: ref85
  doi: 10.1109/TAP.2020.2978952
– ident: ref67
  doi: 10.1109/20.179634
– ident: ref8
  doi: 10.1109/MWSYM.1996.512298
– ident: ref212
  doi: 10.1109/TMTT.2019.2938753
– ident: ref188
  doi: 10.1109/TMTT.2002.803427
– ident: ref174
  doi: 10.1109/TMTT.1986.1133540
– ident: ref165
  doi: 10.1109/LMWC.2010.2047450
– ident: ref151
  doi: 10.1109/MMM.2021.3095706
– ident: ref140
  doi: 10.1109/TCSI.2020.3008947
– ident: ref120
  doi: 10.1109/MWSYM.2017.8058623
– ident: ref115
  doi: 10.1109/NEMO.2015.7415085
– ident: ref36
  doi: 10.1109/MWSYM.1997.602870
– ident: ref146
  doi: 10.1109/TAP.2019.2922779
– ident: ref26
  doi: 10.1002/mmce.10013
– ident: ref121
  doi: 10.1109/TMTT.2019.2914106
– ident: ref126
  doi: 10.1162/neco.1989.1.2.281
– ident: ref205
  doi: 10.1109/TCPMT.2018.2810239
– ident: ref19
  doi: 10.1002/mmce.10009.abs
– ident: ref71
  doi: 10.1109/LMWC.2021.3059993
SSID ssj0014508
Score 2.6341567
Snippet This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4597
SubjectTerms Artificial neural networks
Artificial neural networks (ANNs)
CAD
Circuit design
Computer aided design
Deep learning
deep neural network
Design optimization
Filter design (mathematics)
Gallium nitrides
High electron mobility transistors
Integrated circuit modeling
inverse modeling
knowledge-based neural network (KBNN)
Large scale integration
Microelectromechanical systems
Microwave circuits
microwave computer-aided design (CAD)
Microwave integrated circuits
Microwave theory and techniques
Modelling
Neural networks
neuro-transfer function (neuro-TF)
Passive components
Recurrent neural networks
Semiconductor devices
Solid modeling
Substrate integrated waveguides
Transfer functions
Very large scale integration
Wireless power transmission
Title Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art
URI https://ieeexplore.ieee.org/document/9863691
https://www.proquest.com/docview/2731853736
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT14EtNusptN1ltRSxHqKYXewmYfIEorNlXw1zu7SYovxFMC2U2WmX18k5n5BqFzmoSSKEuDKOE6YJbQQNooDmAp2VCY2PLCeXQn93w8ZXezeNZCl-tcGGOMDz4zfXfrffl6oVbuV9lApJxyl6q-AYZblau19hiwmNS7LixgljYezJCIQTbJMrAEowgMVIA7cfjlDPJFVX7sxP54Ge2gSTOwKqrksb8qi756_8bZ-N-R76LtGmfiYTUx9lDLzPfR1if2wQ7K3MOKQAI7jg5_8UHhSwxQFk9crN6bfDW4Kf0QDB-00fjGR31cYZhi2INVvLAYgKT72gGajm6z63FQF1kIFJiOZVDEIU-1AvnpAlRDqKWcpYZLqyxnShEVUh0JZkSiCJHMAOQxTPHUZawmktND1J4v5uYIYSWlTGITkYJo6GlFkYrUcRxyATAt1V1EGrHnqmYgd4UwnnJviRCRO03lTlN5rakuulh3ea7oN_5q3HGSXzeshd5FvUa3eb1AlzmgNodUEsqPf-91gjbdu6u0wx5qly8rcwr4oyzO_MT7AEfA1fs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeaKEgFtriA1yQsnX8SozEoepDW9rtKZV6C44fUgXardhdKvgt_BX-G2MnWUGpuFXilEjxxIpnPP4m8wJ4zYvcUBt4xgrlMhEoz0xgMsOtFHLtZVBN9OiOz9ToXHy4kBcr8GOZC-O9T8Fnfhhvky_fTe0i_irb1aXiSuddCOWJ_3aNBtrs_fEBcvMNY0eH1f4o63oIZBYto3nWyFyVzuZCugZnpjxwJUqvTLBBCWupzbljWnhdWEqN8Hiie2FVGRMyC6M4vvce3EecIVmbHbb0UQhJOz2PKkOUvc80p3q3GlcV2p6MoUmMAEvmf5x6qY3LX7o_HWhH6_CzX4o2juXTcDFvhvb7jSqR_-tabcCjDkmTvVb0H8OKnzyBtd_qK25CFR-2JTJIrEKSLinsfUYQrJNxjEa8Nl896ZtbZHuXzjtykOJa3hHcRCTBcTINBKFynO0pnN_JZz2D1cl04p8DscaYQnpGG-qQMuim1GWs4qg0AtHSDYD2bK5tV2M9tvr4XCdbi-o6SkYdJaPuJGMAb5ckV22BkX8N3oycXg7smDyArV6W6k4FzWrEpRGLFVy9uJ3qFTwYVePT-vT47OQlPIzztEmWW7A6_7Lw24i25s1OEnoCH-9acn4BuzszHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks+for+Microwave+Computer-Aided+Design%3A+The+State+of+the+Art&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Feng%2C+Feng&rft.au=Jin%2C+Jing&rft.au=Zhang%2C+Jianan&rft.au=Zhang%2C+Wei&rft.date=2022-11-01&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=70&rft.issue=11&rft.spage=4597&rft.epage=4619&rft_id=info:doi/10.1109%2FTMTT.2022.3197751&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMTT_2022_3197751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon